The CVS-Server Case Study:
A Formalized Security Architecture
Extended Abstract

Achim D. Brucker, Frank Rittinger, and Burkhart Wolff

{brucker,rittinge,wolff}@informatik.uni-freiburg.de

1 Introduction

These days, the Concurrent Versions System (CVS) is a widely used tool for
version management in many industrial software development projects, and
plays a key role in open source projects usually performed by highly distributed
teams [4]. CVS provides a central database (the repository) and means to syn-
chronize local partial copies (the working copies) and their local modifications
with the repository. CVS can be accessed via a network; this requires a security
architecture establishing authentication, access control and non-repudiation. A
further complication of the CVS security architecture stems from the fact that
the administration of authentication and access control is done via CVS itself;
i.e. the relevant data is accessed and modified via standard CVS operations and,
thus, access to objects may change dynamically.

The current standard “out-of-the-box” CVS-server has a number of short-
comings with respect to security. To overcome some of these problems, we pro-
pose a number of improvements of the standard CVS-server [1], either on the
level of its implementation (via patches), its configuration (i.e. the file system,
including the initial state of the repository) or its architecture (i.e. the particular
setup of a CVS-server and its configuration in a network).

The first aim of our configuration of CVS-server is to enforce a particular
access control model, namely role-based access control [6]. Our second aim is
an open CVS-server architecture, where the repository is part of the shared file
system. While this “open CVS-server architecture” has a number of technical
advantages, the correctness of the security mechanisms become a major concern.

The purpose of this paper is to give an overview over an ongoing case study [3]
that provides a formal model of the “open CVS-server architecture” and (the be-
gin of) a formal analysis performed with HOL-Z 2.0 [2]. We believe that this ap-
plication is quite typical for client-server applications, where a particular security
model must be mapped on the concrete security technology of POSIX/UNIX.

We will proceed as follows: After a discussion on the architecture notion
and its refinement, we will first outline the CVS-server system architecture, that
incorporates a role-based access control model. Second we will describe the key
concepts of the implementation architecture based on the security mechanism
of the Unix file system. Both layers will be connected via a refinement. Third,
security properties were stated over state transition sequences on both levels.

48 Achim D. Brucker, Frank Rittinger, Burkhart Wolff
2 Formalizing Architectures

Architecture models were used in the early design phases of a software develop-
ment; they are composed by components and connectors. Components are com-
putational units that interact via connectors with each other; connectors can be
remote procedure calls, communication protocols or access to shared variables.
An informal diagram showing the open architecture can be seen in Fig. 1.

ovs-
adm/cli ent,

CVS-Server
CVS-
adm/client_
FILESY STEM

we,

Fig. 1. The Open CVS-server Architecture

The boxes represent the components of the system, internal boxes parts of
their state, and the connectors represent operations components may engage
in. In particular, CVS client programs may engage in cvs commands like “cvs
update” or in standard UNIX filesystem commands like “cp” or “chmod”.

Following the approaches of Garlan and Shaw [7], architecture models are
biased towards event-oriented or behavioral modeling; it is quite natural to use
a process algebra such as CSP for its formalization and analysis. In this setting,
components are just processes, while connectors are also processes or particular
parallel operators of CSP.

However, for CVS-server, a data model is much more appropriate: the com-
plexity of the model does not consist in the interaction, but in the invariants of a
highly structured state. Consequently, we model the states of clients and server
individually as well as their operations; the parallel composition of them is just
the conjunction of the corresponding operation schemas.

3 Refining Architectures

The problem is adequately represented by an abstract system architecture, that
models the repository, the working copies and the access operations incorporat-
ing the desired security model, similar to the RBAC1-model described in the
formal framework presented in [6]. This security model must be mapped on a
concrete, widely used security technology, namely standard Discretionary Access
Control (DAC) as implemented by the Unix/POSIX.1 file system layer. This de-
scription is the concrete implementation architecture. This mapping involves the

The CVS-Server Case Study: A Formalized Security Architecture 49

representation of “roles” in form of unique UNIX owners and groups and ap-
propriate settings of permissions in regular files and directories in the working
copies and the repository.

system security H
architecture

* correct refinement

implementation
architecture

security plo]lv('lll_os
(access control policy)

security technologies
& safety requirements

B0

Fig. 2. Refining Security Architectures

Such a connection between abstract and more concrete views on a system
and their semantic underpinning is well-known under the term refinement, and
security technology mappings can be understood as a special case; we chose to
apply data refinement following [8].

4 The CVS-Server Case Study

4.1 The System Architecture

The CVS-server provides the following commands that modify the repository
and the working copies:

login: authenticates a user (in a specific role) to the server,

add: put files or directories under version control,

cd: set a filter on the files affected CVS operations,

commit: transfer local changes to the repository, and

update: update working copy with newer information from the repository.

Note that the functionality provided by CVS for conflict resolution (merges), for
accessing the history, for branching, and for logging information, is not covered
by our security (!) model.

4.2 The Implementation Architecture

The implementation is based on a standard CVS-server [4] embedded into a
Unix/POSIX.1 filesystem. Therefore, the implementation has to cope with the
full range of Unix/POSIX.1 methods for accessing files and chancing their access
attributes and thus attacker on the implementation level can use the standard
cvs commands (commit, etc) and the Unix commands for copying files (cp),
removing (rm), chancing attributes (chmod, chown, setumask), etc, which can be
applied to the repository and the working copies directly.

50 Achim D. Brucker, Frank Rittinger, Burkhart Wolff

4.3 Establishing the Refinement

In order to prove that the concrete architecture correctly implements the abstract
one, we have to define an abstraction schema which relates the components of
the abstract state schemas to the components of the concrete implementation
state schemas. In particular, we must map abstract names and abstract data to
paths and files in the sense of the Unix file system.

Importing the abstract and concrete state schemas introduces all components
that have to be set into relation. Note that some components of the abstract state
also appear in the concrete state, having the same meaning in both states, they
don’t need to be related in this schema. We restrict this schema such that the
permission tables in the abstract and in the concrete state are the same and that
the roles and passwords that are assigned to each file in the working copy of the
abstract state have corresponding attributes in the concrete state.

Following [8], we must prove two refinement conditions for each operation on
the abstract state and its corresponding operation on the concrete state: Condi-
tion (a) ensures that a concrete operation terminates whenever its corresponding
abstract operation is guaranteed to terminate, and condition (b) ensures that
the state after the concrete operation represents one of those abstract states in
which the abstract operation could terminate.

4.4 Security Properties of Both Architecture Layers

By their nature, security properties as well as functional properties are safety
properties, i.e. it is necessary to consider the set of possible sequences of opera-
tions the system may engage in and state requirements on the possible states the
system reaches after arbitrarily mixed commands. Hence, the specification of the
safety properties in the system architecture and the implementation architecture
motivate two Z sections that contain classical behavioral specifications.

As functional properties, we describe requirements what the system should
do: giving access to the objects in the repository the user has permission to. In
contrast, security properties in our setting state that the user must not access
data that he is not allowed to, whatever combination of cvs-commands he applies.

Methodically, we need an interface between the operation schemas of the two
architecture layers the behavioral part allowing to specify the safety properties.
The trick is done by converting the suitably restricted operation schemas of both
system layers into relations over the underlying state:

op1 R = op1 N Ry step=op RV ...V op, R
trans = {step | (Ostate,Ostate’)}x
opnR = op, A R, SecProp = Vtrans(| init |) e P

In the above scheme, op; R represent the restricted operation schemas, their
schema disjunction step the overall step relation of the system, that is converted
into a transitively closed relation trans. The security property SecProp can be
stated over the set of a state reachable via trans from an initial state.

We instantiate this scheme as follows: We assume that a user “knows” a
set of pairs of roles and passwd, and that the user “invents” only files from a

The CVS-Server Case Study: A Formalized Security Architecture 51

given set of pairs from names to data in the add-operation. Further, we assume
logins to be restricted to role/passwd’s the user “knows” and adds restricted to
name/data the user “invents”).

Now we can postulate the following list of security properties SecPropp:

1. Any sequence of CVS-operations starting from an empty working copy does
not lead to a working copy with data the user has no permission to (except
he was able to “invent” it),

2. any sequence of CVS-operations does not lead to a repository with “in-
vented” data, except the user “knows” the corresponding role/passwd.

3. A CVS-administrator can withdraw all role/passwd for a user (after a suit-
able update of the authentication table); i.e. after a withdraw, the user does
not get data into his working copy except by “inventing” it.

Moreover, there is the obvious property that the user can access “his” data.

This specification pattern is repeated on the level of the implementation
architecture. Unfortunately, implementing one security architecture by another
opens the door to new types of attacks on the implementation architecture,
that can be completely overlooked on the abstract level: on the implementation
level, we have more operations available (the schema disjunction step comprises
additionally the UNIX commands “cp” or “setumask”).

4.5 Summing Up

At present, the overall specification in [3] consists of ca. 80 pages. Its overall
organization in Z-sections follows directly the overall scheme presented in Sec. 2.

AbsState
A > o SysArchSec
AbsOperations|=~ - - - - -~ <~
‘onsistency | T~ .
CombinedSec
FileSystem -7
7 H o
CvSServer J<- | TN 7 ImplArchSec

[mplConsistency

Fig. 3. The Specification Organization

The Z-sections AbsState and AbsOperations describe the system architec-
ture, while the attached Z-section SysConsistency contains the consistency
conditions (convervativity of axiomatic definitions, definedness of applications,
deadlock-freeness of all operation schema). This is mirrored at the implementa-
tion architecture by the corresponding structures FileSystem, CVSServer and
ImplConsistency respectively. The section Refinement, which contains the
usual abstraction predicate relating abstract and concrete states, also contains

52 Achim D. Brucker, Frank Rittinger, Burkhart Wolff

the proof obligations for the data refinements of the various operations. The se-
curity properties are defined and the proof obligations postulated in the sections
SysArchSec and ImplArchSec; statements relating the security properties are
kept in section CombinedSec.

5 Conclusion and Future Work

We have seen a security technology mapping based on an abstract role-based
access control security model to concrete security mechanisms as offered by the
traditional UNIX/POSIX security architecture. Our informal security analysis
on the basis of our model establishes that the abstract security requirements
were met by the properties of the concrete technologies.

Some methodological conclusion may be drawn from our case study:

— The good news is that refinement methodology can be used to greatly sim-
plify the task of proving some security properties.

— The bad news is that a security technology mapping involves fairly concrete
and complex models of the implementation technologies and the analysis of
attacks against these. This represents for some vital security properties a
barrier to our standard methodology to use as abstract models as possible.

This implies that attacks against the implementation must simply be taken more
seriously, which means that models of implementation architectures deserve more
attention as before, where more abstract models have been preferred. But in
security, more abstract models are not necessarily better ones.

In the near future, we plan provide a more complete formal analysis in HOL-
Z, i.e. more proofs of consistency, refinement and security properties on both
levels of the abstraction. We believe, that the proof architecture and the model
of the UNIX filesystem will be reusable for a wider range of similar applications.

References

1. http://www.informatik.uni-freiburg.de/ softech/software/cvs/.

2. A. D. Brucker, S. Friedrich, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof envi-
ronment for Z-specifications, 2002. Submitted.

3. A.D. Brucker, F. Rittinger, and B. Wolff. A CVS-server security architecture — con-

cepts and formal analysis. Technical report, Albert-Ludwigs-Universitdt Freiburg,

Jan. 2002. An preliminary version is available at http://wailoa.informatik.

uni-freiburg.de/WebBIB/preliminary/cvs_sec.pdf.

P. Cederqvist et al. Version Management with CVS, 2000.

D. Garlan and M. Shaw. An introduction to software architecture. In V. Am-

briola and G. Tortora, editors, Advances in Software Engineering and Knowledge

Engineering, pages 1-39. World Scientific Publishing Company, Singapore, 1993.

6. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38-47, Feb. 1996.

7. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice-Hall, Englewood Cliffs, NJ, 1996.

8. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

G

