HOL-Z 2.0:
A Proof Environment for Z-Specifications

Extended Abstract

Achim D. Brucker, Stefan Friedrich, Frank Rittinger, and Burkhart Wolff

Albert-Ludwigs-Universitat Freiburg

{brucker,friedric,rittinge,wolff}@informatik.uni-freiburg.de

1 Introduction

The design of tools for formal specification languages (SL) can be roughly divided
into two categories: special purpose design strives for implementing an SL and its
method straight-forwardly in an implementation language. In contrast, embedded
designs are based on a logical embedding in theorem prover environments such
as Isabelle. Examples for the former are Z/EVES, KIV or FDR, examples for
the latter are VHDL, HOL-Unity, HOL-CSP and HOL-Z.

The advantage of embedded designs such as HOL-Z (whose underlying con-
servative embedding into higher-order logic (HOL) has been described in [1])
is its solid logical basis: all symbolic computations on formulas are divided into
“logical core theorems” (i.e. derived rules) and special tactical programs control-
ling their application. Thus, logical consistency of the tool for SL can be reduced
to the consistency of the underlying meta-logic and the correctness of the un-
derlying logical engine. The problems with embedded designs are threefold:

1. Alogical embedding must be designed for application — this usually conflicts
with other design goals such as proof of meta-theoretic properties.

2. Embeddings often present the embedded language in the form of meta-logical
formulas: this has effects on syntax, error-handling, and proof style.

3. The concrete prover sometimes enforces a particular organization of specifi-
cations which is unsuited for larger developments (e.g. bottom-up).

In order to meet these problems, we improved our logical embedding for Z
in Isabelle/HOL called HOL-Z. Our main contribution in this paper consists of
an integration of HOL-Z into a specific tool-chain. The integrated environment
— still called HOL-Z for simplicity — offers the following features:

1. HOL-Z is based on a “shallow embedding” [1]; many elements of Z are
“parsed away” and represent no obstacle for symbolic manipulations,

2. HOL-Z is based on a new front-end consisting of a common editor with an
integrated parser and type checker; this paves the way for high-level error-
messages and for professional documentation,

3. HOL-Z offers technical support of methodology (such as refinement, top-
down proof development, proof-obligation management), and support of par-
ticular “proof-idioms” such as the schema calculus in Z.

34 Achim D. Brucker, Stefan Friedrich, Frank Rittinger, and Burkhart Wolff

2 A Tool Chain for Literate Specification

HOL-Z is now embedded in a chain of tools, that can either be integrated into
XEmacs (which is our preferred setting since, for example, a click on a type error
messages leads to a highlighting of the corresponding source) or in usual shell
scripts, that allow for an easy integration of the specification process into the
general software development process. The data flow in our tool chain can be

ificati type checkin,
generate Specx;iﬁtlon \Q?\d HOL—Zg specification
- il B Lo
literate specification proof generated COIL\g?;swon and Obhgatlons_ in
uEing obligations proof obligations ZETgA HOL-Z notation
IATEX-based hgins,gt /
Z notation .Sty

Isabelle script y —
for checking fulfill proof obligations

fulfillment using
of obligations Isabelle/HOL-Z

Fig. 1. A Tool Chain supporting Literate Specification

described as follows: At the beginning, a normal ITEX-based Z specification is
created. Running ITEX leads to the expansion of proof-obligation macros, which
also generates an Isabelle-script that checks that the obligations are fulfilled (to
be run at a later stage). ZETA takes over, extracts the definitions and axioms
from the I¥TEX source (including the generated ones) and type checks them
or provides animation for some Z schemas. Our plug-in into ZETA converts
the specification (sections, declarations, definitions, schemas, ...) into SML-
files that can be loaded into Isabelle. In the theory contexts provided by these
files, usual Isabelle proof-scripts can be developed. An integration of the process
into a version management system allows for semantically checked specifications:
for example, only when the proof obligation check scripts run successfully, new
versions of the specification document are accepted as final versions.

2.1 holz.sty — A Macro Package for Generating Proof Obligations

We decided to use ITEX itself as a flexible mechanism to construct and present
proof-obligations inside the specification — this may include consistency condi-
tions, refinement conditions or special safety properties imposed by a special for-
mal method for a certain specification architecture. Our ' TEX-package holz. sty
provides, among others, commands for generating refinement conditions as de-
scribed in [2], where also the paradigmatical “BirthdayBook” is presented we use
as running example. For AddBirthday is refined by AddBirthdayl, we instantiate
a macro as follows:

\zrefinesOp[Astate=BirthdayBook, Cstate=BirthdayBookl1,
Aop=AddBirthday, Cop=AddBirthdayl,
Args={name?: NAME; date?: DATE}, Abs=Abs]{Add}

HOL-Z 2.0: A Proof Environment for Z-Specifications 35

Here, Astate contains the schema describing the abstract state and Cstate hold the
schema describing the concrete state. Based on this input, our IKTEX-package auto-
matically generates the following two proof obligations:

Addy ==V BirthdayBook; BirthdayBookl; name? : NAME; date? : DATE e
(pre AddBirthday N Abs) = pre AddBirthdayl

Adds ==V BirthdayBook; BirthdayBookl; BirthdayBookl'; name? : NAME;
date? : DATE e (pre AddBirthday N\ Abs A AddBirthdayl)
= (3 BirthdayBook' e Abs' N AddBirthday)

These proof obligations are type checked using ZETA and are converted to HOL-Z
by our ZETA-to-HOL-Z converter.

2.2 The ZETA System

ZETA [3] is an open environment for the development, analysis and animation of spec-
ifications based on Z. Specification documents are represented by wunits in the ZETA
system, that can be annotated with different content like M TEX mark-up, type-checked
abstract syntax, etc. The contents of units is computed by adaptors, which can be
plugged into the system dynamically.

2.3 ZETA-to-HOL-Z Converter

The converter consists of two parts: an adaptor that is plugged into ZETA and converts
the type-checked abstract syntax of a unit more or less directly into an SML file. On
the SML side, this file is read and a theory context is build inside Isabelle/HOL-
Z. This involves an own type-checking and an own check of integrity conditions of
the specification and some optimizations for partial function application in order to
simplify later theorem proving.

In its present state, the converter can translate most Z constructs with the exception
of user-defined generic definitions, arbitrary free types or less frequently used schema
operators like hiding and piping.

2.4 Experiences with Case-Studies

We applied HOL-Z to several specifications, including Spivey’s Birthday Book, an ar-
chitecture of CVS (the Concurrent Versions System) and the CORBA Security Service,
with a focus on security analysis of CVS and CORBA.

We applied our tool-chain including some proofs of refinement conditions for the
Birthday Book example and some proofs of the refinement of an abstract architectural
description of CVS to the implementation on top of a Unix file system. The large
CORBA example (approx. 90 pages (!), that are converted and loaded in less than 5
minutes on a standard PC under PolyML) shows the feasibility of our approach for
real world examples.

36 Achim D. Brucker, Stefan Friedrich, Frank Rittinger, and Burkhart Wolff

3 Proof Support for Z

3.1 Isabelle/HOL-Z revisited

The SL Z is centered around a specific structuring mechanism called schema. Semanti-
cally, schemas are just sets of records (called bindings in Z terminology; [4]) of a certain
type. Z is based on typed set theory equivalent to HOL set theory. However, a reference
to a schema can play different roles in a specification: it can serve as import in the
declaration list in other schemas, or as predicate (where all arguments are suppressed
syntactically), or as set (see [1] for more details).

The approach of HOL-Z is to represent records by products in Isabelle/HOL and
to manage their layout in order to support as import-references. This is achieved by
a parser making implicit bindings in Z expressions explicit and generating coercions
of schemas according to their role. For example, we assume throughout this section a
schema A of type [z1 — 71, 22 — 72] and a schema B of type [zz — T2, 23 — 73]. Then,
a schema expression A A B can be represented by

M1, 22, 23) ® A(z1, 32) A B(22,23) ,

while an expression A U A will be represented by (asSet A) U (asSet A).

Thus, having “parsed away” the specific binding conventions of Z into standard
A-calculus, Isabelle’s proof-engine can handle Z as ordinary HOL-formulas. There is no
more “embedding specific” overhead such as predicates stating the well-typedness of
certain expressions, etc.

For full-automatic proofs this is fine; however, in practice, realistic case studies
require proofs with user interaction. This leads to the requirement that intermediate
lemmas can be inserted “in the way of Z”, intermediate results are presented “Z-
alike” and deduction attempts to mimic the proof style imposed by Z (cf. [5]). As a
prerequisite, we defined a special abstraction operator SB semantically equivalent to
the pair-splitting A-abstraction from the example above, which is actually encoded by:

SB “z1” ~ x1, “a2” ~> 12, “a3” ~> 3 A(11,22) N\ B(22, 23)

where each field-name is kept as a (semantically irrelevant) string in the representation.
Thus, while the “real binding” is dealt with by Isabelle’s internal A, which is underlying
a-conversion, the presentation of intermediate results is done on the basis of the original
field-names used in the users specification.

3.2 New Proof Support in HOL-Z 2.0

Schemas can also be used in quantifications as part of some very Z specific concept,
the so-called schema calculus, for which we implemented syntax and proof support. For
example, V A @ B is a schema of type P([z3 — 73]). In HOL-Z, it is represented by:

SB” 13" ~ x3 @ V(x1, 22) : asSet A ® B(xz, x3)

This and similar quantifiers and operators allow for a very compact presentation of
typical proof-obligations occurring in refinements in Z. As example, we use an already
slightly simplified version of Add; already described in [2, pp. 138]. (The full proof
had been omitted for space reasons). Instead of referring to constants representing the
proof obligations generated by the I¥TEX-based front-end, we use the HOL-Z-parser
directly:

HOL-Z 2.0: A Proof Environment for Z-Specifications 37

zgoal thy

"V BirthdayBook eV BirthdayBookl eV name? € Name eV date? € Date e
(name? ¢ known A known = {n. J¢: #1..hwm. n=names i}
=+=> (Vi : #1..hwm. name? F#names i))";

which opens an Isabelle proof-state.

In the literature, several calculi for the schema calculus have been presented more
or less formally ([4, 6]). From the perspective of HOL-Z it is quite clear what is needed:
for any construct of the schema calculus, a special tactic must be provided that works
analogously to the usual introduction and elimination rules for standard (bounded)
quantifiers and set comprehensions. These tactics have been implemented and com-
bined to new tactics, for example to a tactic that “strips-off” all universal quantifiers
(including schema quantifiers) and implications. Thus, the HOL-Z tactic:

by(stripS_tac 1);
transforms the goal into the following proof state:

1. !!birthday known dates hwm names name? date? i.
[l BirthdayBook (birthday, known); BirthdayBookl (dates, hwm, names);
name? : Name; date? : Date;
name? ¢ known A known = {n. J¢: #1..hwm. n=names i};
i : (#1 .. hwm) |] =name? #names i

Note that the quite substantial reconstruction of the underlying binding still leads to
a proof state that is similar in style and presentation to [5].

Besides the “schema calculus”, Z comes with a large library of set operators spec-
ifying relations, functions as relations, sequences and bags; this library — called the
Mathematical Toolkit of Z — differs in style substantially from the Isabelle/HOL li-
brary, albeit based on the same foundations. For HOL-Z 2.0, we improved this library
substantially and added many derived rules that make a higher degree of automatic
reasoning by Isabelle’s standard proof procedures possible. For example, the goal above
is simply “blown away” by:

auto();

which finishes the proof.

4 Conclusion and Further Work

We have presented HOL-Z, a tool chain for writing Z specifications, type-checking
them, and proving properties about them. In this new setting, we can specify our Z
specifications in a type setting system, automatically generate proof obligations, import
both of them into a theorem prover environment and use the existing proof mechanisms
to gain a higher degree of automation. With the proof support for the schema calculus,
realistic analysis of specifications, in particular refinement proofs become feasible.

A consequence of our implementation of the converter is that we cannot directly
interact between ZETA and HOL-Z. A closer integration of HOL-Z into ZETA would
be desirable but has not been realized so far.

We will investigate if the introduction and elimination tactics can be integrated
much deeper into Isabelle’s fast_tac procedure; this would pave the way for a tableaux-
based approach of reasoning over the “schema calculus” — which is, to our knowledge,
a new technique for automated deduction on Z specifications.

38 Achim D. Brucker, Stefan Friedrich, Frank Rittinger, and Burkhart Wolff

References

1. Kolyang, Santen, T., Wolff, B.: A structure preserving encoding of z in isabelle/hol.
In von Wright, J., Grundy, J., Harrison, J., eds.: Theorem Proving in Higher Order
Logics — 9th International Conference. LNCS 1125, Springer Verlag (1996) 283-298

2. Spivey, J.M.: The Z Notation: A Reference Manual. 2nd edn. Prentice Hall Inter-
national Series in Computer Science (1992)

3. anonymous: The ZETA system (2002) http://uebb.cs.tu-berlin.de/zeta/.

4. anonymous: Formal Specification — Z Notation — Syntax, Type and Semantics (2000)
Consensus Working Draft 2.6.

5. Woodock, J., Davies, J.: Using Z. Prentice Hall (1996)

6. Henson, M.C., Reeves, S.: A logic for the schema calculus. In Bowen, J.P., Fett, A.,
Hinchey, M.G., eds.: ZUM’98: The Z Formal Specification Notation. Volume 1493
of Lecture Notes in Computer Science., Springer-Verlag (1998) 172-191

