
FMICS 2003

A Case Study of a Formalized
Security Architecture

Achim D. Brucker
ETH Zürich, Switzerland

Burkhart Wolff
Albert-Ludwigs Universität Freiburg, Germany

June 5, 2003

FMICS 03 Motivation 1

Our Problem

Practical Request: Provide a secure (and safe) CVS server, that

▲

conforms to our local network security policy (e.g. encryption, . . .)

▲

work reliably for at least 40 internal and external users

▲

migration of existing (local) repository (ca. 2GB of data)

▲

provides an easy to maintain access control

▲

no need for a separated server (extra hardware)

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Motivation 2

Our Proposal

A CVS server with cvsauth extension and a special setup, providing:

▲

role based access control (discussed in this talk)

▲

encrypted data transfer (via cvsauth, not discussed here)

▲

a (secure) anonymous access

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Motivation 3

Research Work/Challenges
▲

verify mapping of roles and users

▲

verify security/safety/access control properties

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Motivation 3

Research Work/Challenges

▲

verify mapping of roles and users

▲

verify security/safety/access control properties

▲

We provide this using:

– standardized modeling language, namely Z

– a compiler to Isabelle/HOL-Z

– standard data refinement notions á la Spivey

– special tactics for this type of proofs

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Introduction 4

Roadmap

▲

Concepts of CVS

▲

CVS Server Refinement

– Example: Group Setup (Roles)

– The CVS Server Architectures

▲

Security as a Refinement Problem

▲

Security Analysis

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Concepts 5

Concepts of CVS

▲

concurrent (and cooperative)
versions management system▲

provides a central database:
the repository▲

provides merging for different
versions of files (not discussed here)▲

every client has a local copy:
the working copy

teaching admsoftech−www

cvs_rep

teaching.index.htmlresearch

softech−www

.index.htmlresearch

softech−www

teaching.index.html

User A User B

commitcommit
update

update

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Concepts 5

Concepts of CVS
▲

concurrent (and cooperative)
versions management system▲

provides a central database:
the repository▲

provides merging for different
versions of files (not discussed here)▲

every client has a local copy:
the working copy▲

Problem:
limited access control via file
system

teaching admsoftech−www

cvs_rep

teaching.index.htmlresearch

softech−www

.index.htmlresearch

softech−www

teaching.index.html

User A User B

commitcommit
update

update

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Concepts 5

Concepts of CVS

▲

concurrent (and cooperative)
versions management system▲

provides a central database:
the repository▲

provides merging for different
versions of files (not discussed here)▲

every client has a local copy:
the working copy▲

Problem:
limited access control via file
system▲

Our extensions provide:
role-based access control over an
insecure network (non-standard)

teaching admsoftech−www

cvs_rep

teaching.index.htmlresearch

softech−www

.index.htmlresearch

softech−www

teaching.index.html

User A User B

commitcommit
update

update

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Server Architecture 6

CVS Server Refinement: Group Setup

High-level request: Low-Level Implementation:
(/etc/group)

students friend

staff

admin

public

group users
admin admin
staff admin staff
friend admin staff friend
students admin staff students
public admin staff students friend public

▲

Who can write to a file with the following access attributes:

admin:owner friend:group other
r x r x w

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Server Architecture 6

CVS Server Refinement: Group Setup

High-level request: Low-Level Implementation:
(/etc/group)

students friend

staff

admin

public

group users
admin admin
staff admin staff
friend admin staff friend
students admin staff students
public admin staff students friend public

▲

Who can write to a file with the following access attributes:

admin:owner friend:group other
r x r x w▲

Only the users students and public can write to it.

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 CVS Server Architecture 7

The System Architecture: Group Setup
▲

Abstract Data Type for Permissons

[Cvs Perm]

▲

Permissions must be organized in a hierarchy

cvs admin, cvs public : Cvs Perm
cvs perm order : Cvs Perm↔Cvs Perm

cvs perm order = cvs perm order∗

∀ x : Cvs Perm • (x , cvs admin) ∈ cvs perm order
∀ x : Cvs Perm • (cvs public , x) ∈ cvs perm order
∀ x : Cvs Perm • (cvs admin, x) /∈ cvs perm order
∀ x : Cvs Perm • (x , cvs public) /∈ cvs perm order

cvs public

cvs admin

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 8

Refinement and Security

e.g.
configuration of
POSIX groups,
users, and
file permissions

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
requirements

security
technology

hierarchic
role−based
access control

e.g.

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 9

CVS-Server: High-Level Architecture

Security Properties: access control, authentication, non-repudiation

CVS-Server

cvs login
| add
| update
| commit

cvs login
| add
| update
| commit

CVS client 1

CVS client n

repository

working
copy

working
copy

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 10

CVS-Server: Low-Level Architecture

Security Properties: access control

cvs login
| add
| update
| commit

copy, mv, chmod, chown, . . .

copy, mv, chmod, chown, . . .

cvs login
| add
| update
| commit

CVS client n

CVS client 1

CVS-Server

filesystem

repository
and

working copy

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 11

The Abstract CVS-Server Model

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
requirements

security
technology

▲

Data:
– clients with their states (a table

of files)
– server with its state
– roles, authentication, permissions
– role hierarchies

▲

Abstract Operations:
– login
– commit
– update
– checkout

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 12

The System Architecture

▲

names and data

[Abs Name,Abs Data]

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 12

The System Architecture

▲

names and data

[Abs Name,Abs Data]

▲

modeling the working copy
ABS DATATAB == Abs Name 7→Abs Data
ABS ROLETAB == Abs Name 7→Cvs Perm

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 12

The System Architecture

▲

names and data

[Abs Name,Abs Data]

▲

modeling the working copy
ABS DATATAB == Abs Name 7→Abs Data
ABS ROLETAB == Abs Name 7→Cvs Perm

▲

modeling the client state (the security context):

ClientState
wfiles : PAbs Name
wc : ABS DATATAB
wc uidtab : ABS UIDTAB
abs passwd : PASSWD TAB

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 13

The System Architecture: Operations

abs up
∆ClientState

ΞRepositoryState

files? : PAbs Name

wc ′ = wc ⊕ {n : wfiles ∩ files? | n ∈ dom rep ∧ n ∈ domwc uidtab

∧ (wc uidtab(n), abs passwd(wc uidtab n)) is valid in rep}C rep)

wc uidtab′ = wc uidtab ∪ {n : wfiles ∩ files? | n ∈ dom rep

∧ n /∈ domwc uidtab • n 7→ choose valid rolename(rep permtab,n)}
abs passwd ′ = abs passwd ∧ wfiles ′ = wfiles

▲

client needs sufficient permissions

▲

non-blocking, files to which the client has no permissions are ignored

▲

the permission table in the working copy is updated
Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 14

Concrete CVS-Server Model

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
requirements

security
technology

▲

The POSIX Layer:
– names, paths
– POSIX permissions (DAC model)
– state of a filesystem
– state of the process
– operations cd, mkdir, chmod,

umask, cp, . . .

▲

The CVS-Server Layer:
– Operation cvs login
– Operation cvs ci
– Operation cvs up
– Operation cvs co

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 15

The Refinement

implementation
architecture

(+ security tech.)
security

technology

system architecture
(+ security model)

security
requirements

R R

▲

The concrete state:
System invariant describing allowable UNIX permissions on the user
accounts and the repository. (formalizing ‘the administrators job’)

▲

Abstraction relation R:

– abstract client state are mapped onto files with suitable file
permissions

– roles are mapped onto UNIX configurations (groups, unique
uid’s, sticky bits, . . .)

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 16

System Architecture: Security Properties

Any sequence of CVS operations starting from an empty working copy
does not lead to a working copy with data to which the client has no

permission (unless he was able to “invent” it).

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security as a Refinement Problem 16

System Architecture: Security Properties

Any sequence of CVS operations starting from an empty working copy
does not lead to a working copy with data to which the client has no

permission (unless he was able to “invent” it).

InitAbsState1 == AbsState ∧ [wc : ABS DATATAB | wc = ∅]

ReachableStates == AtransR(|InitAbsState1|)
ReadAccess == ∀ReachableStates • ClientState ∧ RepositoryState

∧ [wc : ABS DATATAB;

rep : ABS DATATAB;

rep permtab : ABS PERMTAB |
∀n : domwc • (n,wc(n)) ∈ Ainvents ∨

((wc(n) = rep(n)) ∧ (∃m : Aknows •
(rep permtab(n), authtab(rep)(m)) ∈

cvs perm order))]

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security Analysis 17

Security Analysis

security
requirements

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security Analysis 17

Security Analysis

security
requirements

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

security
requirements

login
commit
update

. . .

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security Analysis 17

Security Analysis

security
requirements

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

security
requirements

login
commit
update

. . .

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

Attack

security
requirements

login
commit
update

. . .

login
commit
update

. . . implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security Analysis 17

Security Analysis

security
requirements

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

security
requirements

login
commit
update

. . .

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

Attack

security
requirements

login
commit
update

. . .

login
commit
update

. . . implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

Attack

Attack

Attack

security
requirements

login
commit
update

. . .

login
commit
update

. . .

cp
rmdir

chmod
. . .

implementation
architecture

(+ security tech.)

system architecture
(+ security model)

security
technology

new security
requirements

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Security Analysis 18

Security Analysis

We study two levels of possible attacks:

▲

Attacks against the abstract model:

trans = (login ∨ add ∨ commit ∨ update)∗

(change data in wc only to invent data)

▲

Attacks against the concrete model (POSIX):

trans = (login ∨ add ∨ commit ∨ update
∨ chmod ∨ umask ∨ cp ∨ . . .)∗

(not being root)

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Summary 19

Summary

▲

Architecture modeling is an important abstraction level in security
analysis: we investigate security models and their relation (and not
code)

▲

. . . technique to analyze tricky system administration issues formally

▲

POSIX/Unix-model reusable, (validated against POSIX and Linux)

▲

Method applicable for a wide range of practical security problems

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

FMICS 03 Summary 20

Practical relevance (Application)

▲

over 80 users in 5 different roles

▲

over 3 GB of versioned data

▲

used on a daily basis (in mission critical projects)

▲

used for over two year without problems

Achim D. Brucker and Burkhart Wolff A Case Study of a Formalized Security Architecture

