
Metamodel-based UML Notations for
Domain-specific Languages

Achim D. Brucker and Jürgen Doser

Information Security, eth Zurich, 8092 Zurich, Switzerland
{brucker, doserj}@inf.ethz.ch

Abstract We present a metamodel-based approach for specifying uml
notations for domain-specific modeling languages. Traditionally, domain
specific languages are either defined by uml profiles or using metamod-
els. We provide a generic integration of these two methods supporting
arbitrary uml profiles and metamodels. Our approach provides a bi-
directional mapping between the uml notation and the metamodel of
the domain specific language. We use ocl constraints that are embed-
ded into the metamodel, for describing the mapping between the uml
notation and the metamodel.
Moreover, we describe an implementation, as ArgoUML-plugin, for ar-
bitrary SecureUML dialects.
Key words: dsl, uml, ocl, uml Profile, Metamodel, mof, SecureUML

1 Introduction

The success of general-purpose modeling languages, especially the Unified Mod-
eling Language (uml), does not render Domain-specific Modeling Languages
(dsl) superfluous. On the one hand, uml provides a rich tool support, ranging
from requirements engineering, over modeling to code generation; on the other
hand, it is clumsy for tasks that can profit from integrating domain-specific re-
strictions. Moreover, large languages like uml usually lack a detailed, formal
semantics needed for formal analysis. Domain-specific languages are often small
and thus provide a good basis for domain-specific formal analysis and fully-
automated tool support. In addition, dsls usually utilize the notation domain
experts are used to, which increases their acceptance. As dsls are very spe-
cific, however, they usually do not benefit from the wealth of tools available for
general-purpose modeling languages.

A common idea for combining the advantages of general-purpose modeling
languages and domain specific languages is to define a dsl in terms of a general-
purpose modeling language, e. g., uml. Such a uml-based domain-specific lan-
guage can restrict the uml, for example, to certain model-elements and also
introduce, by using stereotypes, new “types” into the language.

Classically, there are two ways for defining uml-based domain-specific mod-
eling languages. First, domain-specific languages can be defined as a uml profile
in a lightweight way, using stereotypes and tagged values. Second, the Meta-
Object Facility (mof) [10] can be used to either extend the uml metamodel,

4th International Workshop on Language Engineering (atem 2007), pp. 1–??, 2007.

2 Achim D. Brucker and Jürgen Doser

or to directly define the metamodel of the new modeling language without any
dependency on uml.

As most current uml tools support the definition of custom stereotypes and
tagged values, the first approach has the advantage that most uml tools can
readily be used to apply this approach. Some uml tools even allow to change
the presentation (e. g., using different colors, or icons) based on the uml profile.
While this approach by definition clearly defines the concrete syntax for the dsl
at hand, the abstract syntax of it is at most only implicitly defined, and some
aspects of the abstract syntax cannot be conveniently defined at all.

In contrast, the second approach clearly defines the abstract syntax. A draw-
back of the second approach is that it may require one to extend the case
tool itself, in particular the storage components, i. e., the repository, and the
visualization components, to support the dsl metamodel.

A naive combination of both approaches is frequently done by defining sep-
arately the abstract syntax by a metamodel, and the concrete syntax by a uml
profile. This does not provide a well-defined mapping from the uml models the
developer works with, to instances of the dsl metamodel that define the meaning
of these models.

In this paper, we present a new approach for defining dsls that combines the
advantages of the previous two approaches, while avoiding the aforementioned
problem. The fundamental idea of our approach is to encode a uml profile,
and thus the concrete syntax of the dsl, into the metamodel of the dsl. This
encoding provides a bi-directional mapping between the concrete syntax and the
abstract syntax of the dsl. Overall, our approach allows for consistently defining
the concrete syntax, the abstract syntax and the semantics of a dsl.

Moreover, we propose an architecture for implementing dsl support for stan-
dard uml case tools that only requires a programming interface to the model
repository of the case tool. In particular, the model repository of the case tool
does not need to support new metamodels. This architecture was used for imple-
menting a plug-in for the case tool ArgoUML. This plugin supports SecureUML,
a domain-specific modeling language for access control requirements.

The Plan of the Paper. After a brief introduction into domain specific languages
in general and SecureUML in particular, we present in Section 3 the key concepts
of integrating concrete uml notations into metamodels. In Section 4 we propose
a concrete architecture for implementing dsl-specific extensions of case tools
and in Section 5 we discuss the advantages and disadvantages of our approach
in detail. Finally, in Section 6 we summarize related work and draw conclusions
in Section 7.

2 Background

2.1 Domain Specific Languages

A Domain Specific Language (dsl) should define both syntax and semantics of
its domain of application. In particular, a dsl may be an orthogonal extension

Metamodel-based UML Notations for Domain-specific Languages 3

to uml instead of only a restriction of existing uml concepts. Especially in the
context of uml, two mostly distinct methods for defining dsls are used: dsls
are either defined by a metamodel or a uml profile (see Table 1 for a brief
comparison of both approaches).

Metamodel uml Profile

new attributes yes no
new default datatype instances yes no
new Associations yes no
new methods yes no
new types yes no
adding subtypes yes yes
deleting/renaming uml types no no
any uml tool no yes
concrete syntax no yes
abstract syntax yes no
semantic definition easy difficult

Table 1. Comparing Metamodel-based vs. Profile-based dsl Definitions

In principle, defining a uml profile means to introduce a set of new uml
stereotypes. Thus, a uml profile is a light-weight way of classifying model el-
ements. Of course, defining a dsl only by stereotypes is a very limited way
to describe the syntax of the dsl and giving a semantics for a uml profile is
very hard. Nevertheless, this approach for defining dsls is widely used as it is
supported by many case tools.

Defining a dsl by defining a metamodel allows for defining the dsl, inde-
pendently from uml, in terms of its datatypes, methods, etc. Moreover, defining
the (formal) semantics of a dsl based on its abstract syntax is usually easier
than describing the semantics for the concrete syntax. Sadly, only a very limited
number of case tools support metamodel-based dsls in such a generic way.

Overall, it seems to be common knowledge to choose a metamodel-based
technique for defining a dsl, if
– the domain is well defined, and has a unique well accepted set of concepts,
– a model realized under the domain is not subject to be transferred into other

domains.
– there is no need to combine your domain with other domains;

and to choose a technique based on uml profiles, if
– the domain may be combined with other domains, in an unpredictable way,
– models defined under the domain may be interchanged with other domains.

2.2 An Example DSL: SecureUML

In this paper, we use SecureUML [2] (and its dialects) as a running example
of a family of dsls. SecureUML is a security modeling language based on role-

4 Achim D. Brucker and Jürgen Doser

based access control (rbac) [13] with some generalizations. The abstract syntax
of SecureUML is defined by a metamodel (see Figure 1). SecureUML supports

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*

0..* 0..* 0..*

0..1 0..*

0..*

Figure 1. SecureUML Metamodel

notions of users, roles and permissions, as well as assignments between them:
Users can be assigned to roles, and roles are assigned to specific permission. Users
acquire permissions through the roles they are assigned to. Moreover, users are
organized into a hierarchy of groups, and roles are organized into a role hierarchy.
In addition to this rbac model, permissions can be restricted by Authorization
Constraints, which are conditions that have to be true (at run-time) to allow
access.

Permissions specify which Role may perform which Action on which Re-
source. SecureUML is generic in that it does not specify the type of actions and
resources itself. Instead, these are assumed to be defined in the design mod-
eling language which is then “plugged” into SecureUML by specifying (in a
SecureUML dialect) exactly which elements of the design modeling language
are protected resources and what actions are available on them. Furthermore,
a dialect specifies a default policy, i. e., whether access for a particular action is
allowed or denied in the case that no permission is specified.

Currently, SecureUML supports two dialects: One for a component-based
design modeling language, and one for a state-machine based modeling language.
For example, a SecureUML dialect definition for uml class diagrams in the spirit
of the ComponentUML dialect specifies classes, attributes and operations to
be resources. The dialect also specifies, among others, the actions create, read,
update, and delete on classes, read and update on attributes, and execute on
operations.

SecureUML features a notation that is based on uml class diagrams, using
a uml profile consisting of custom stereotypes. Users, Groups and Roles are
represented by classes with stereotypes �secureuml.user�, �secureuml.group�,
and �secureuml.role�. Assignments between them are represented by ordinary
uml associations, whereas the role hierarchy is represented by a generalization
relationship. Permissions are represented as association classes with stereotype
�secureuml.permission� connecting the role and a permission anchor. The at-
tributes of the association class specify which action (the attribute’s type) on
which resource (the attribute’s name) is permitted by this permission. Autho-
rization constraints are (ocl) constraints attached to the association class. At-
tributes or operations on roles as well as operations on permission have no se-
mantics in SecureUML and are therefore not allowed in the uml notation.

Metamodel-based UML Notations for Domain-specific Languages 5

Figure 2 shows a part of a uml model of a group calendar applications to-
gether with an exemplary access control policy. The left part of Figure 2 shows

Meeting

start:Date
duration:Time

notify():OclVoid
cancel():OclVoid

Person

name:String

0..*

owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMeeting

Meeting:update
Meeting:delete

caller=self.owner.name

Figure 2. Access Control Policy for Class Meeting in Concrete uml Syntax

the access control policy for the class Meeting, whereas the right part shows the
design model of the application. The design model consists of Meetings and Per-
sons. The association class specifies a simple access control policy: only owners
of meetings may delete them, or change the meeting data.

The association class (OwnerMeeting) has two attributes with type update
resp. delete. This specifies that the associated role (UserRole) has the permission
to update and to delete meeting objects. According to the policy, however, only
owners of meetings should be able to do so. The property of being an owner of a
meeting cannot be easily specified using a pure rbac model. It is therefore speci-
fied using the authorization constraint caller = self.owner.name. For this purpose,
we introduced a new keyword caller of type String into the ocl language that
refers to the name of the authenticated user making the current call. Attaching
this authorization constraints to the permission thus restricts the permission to
system states where the name of the owner of the meeting matches the name of
the user making the request.

3 Details of the Integration

mof, even in the restricted form of emof, is a quite substantial language. For the
purposes of presentation this paper, we restrict ourselves to the most-frequently
used subset of mof. We consider a metamodel as consisting of (meta-)classes
with attributes and operations, as well as associations and generalization rela-
tionships between classes. Association ends can be further specified by multi-
plicities and whether they are ordered or not. Figure 3 shows this simplified
meta-modeling language.

We can give a simple semantics to such metamodels by observing that such
a metamodel directly corresponds to a first-order signature Σ = (S, <,F ,P),
where F is a set of function symbols, and P is a set of predicate symbols:
attributes and operations give function (symbols), and (n-ary) associations give
(n-ary) predicate symbols. Instead of introducing a predicate InstanceOfX for
each meta-class X , we use a many-sorted first-order signature, i. e., S is a set of

6 Achim D. Brucker and Jürgen Doser

Class
name

Operation
name

Parameter
name
multiplicity

Attribute
name
multiplicity

AssociationEnd
name
multiplicity

Association
name

type

type
rtype

inheritance

Figure 3. Simplified meta-modeling language

sorts, and for dealing with inheritance relations, we let this set of sorts be ordered
by < . An instance of a metamodel then corresponds to an algebra of the
corresponding signature. To illustrate this, consider the SecureUML metamodel
given above in Figure 1; this SecureUML metamodel corresponds to the following
order-sorted signature: the set of sorts is

S =
{

User,Group,Subject,Role,Permission,AuthorizationConstraint,
Action,AtomicAction,CompositeAction,Resource

}
,

where the sorts are ordered as follows: Group < Subject, User < Subject,
AtomicAction < Action and CompositeAction < Action. Because there are no
attributes or operations in the metamodel, the set of function symbols is empty,
i. e.: F = ∅ . The set of predicate symbols is

P =

GroupSubject,SubjectRole,RoleRole,RolePermission,
PermissionConstraint,PermissionAction,ActionCompositeAction,
ActionResource

 .

In a SecureUML dialect, this signature is then extended by additional sorts,
which are ordered below the sort Resource.

A uml profile, in turn, consists of a set of stereotypes as well as a set of tagged
values, which can be attached to certain uml modelelements. Stereotypes are
essentially just strings, tagged values are (name, value) pairs, where the value
can be, according to the standard, a typed uml model element, but in practice
often also is just a string. For our purposes, we assume it is a string. Typically,
the stereotypes in a uml profile are associated with constraints, which define the
semantics of the modelelements tagged with this stereotype. In our approach,
this is unnecessary, as the semantics is defined in terms of the metamodel, not
the uml profile. However, it may be useful to define syntactic restrictions on the
use of these stereotypes as ocl constraint. This is particularly useful in the case
that the case tool can evaluate these constraint and in this way give feedback
to the user.

There are basically three different ways for defining an integration between
the dsl’s metamodel and the uml profile for it:
1. describe the notation for metamodel elements, e. g., by defining for each

metamodel element how it is represented in the uml notation.

Metamodel-based UML Notations for Domain-specific Languages 7

2. describe the meaning of uml profile elements, e. g., by defining for each uml
profile element which metamodel element it represents.

3. (externally) define a mapping from uml models using the profile to instances
of the dsl metamodel.

Each of these approaches has their pros and cons. The third possibility is obvi-
ously the most flexible one, but has the disadvantage of being a bit heavyweight.
The first two possibilities are conceptually very similar, they mostly differ in the
point of view. As, in our view, the metamodel is the central definition of the
language, it makes sense to put the notation definition in the metamodel, and
not vice versa. For this reasons, we advocate the first possibility. The basic idea
is to annotate each metamodel class with directly corresponding uml profile
elements, i. e., stereotypes and tagged values. Additionally, ocl formulae may
be used to calculate the associations and other relationships between the meta-
model classes. This does not support arbitrary notations, but we argue it is still
flexible enough to support sensible notations for most dsls. In more detail, we
define a uml profile for a metamodel as follows:

Metaclasses: we annotate each metaclass with two types of information: a uml
modelelement type and a stereotype name.
The intended meaning is that every such uml modelelement with the given
stereotype results in an instance of this metaclass. We do not require a
metaclass to be represented by a uml class. This can considerably simplify
the notation.

Attributes of metaclasses: we annotate each attribute of a metaclass with
an ocl expression (to be evaluated over the uml model) in the context of
the uml modelelement type that is used in the notation of the (meta-)class
this attribute belongs to. This ocl expression is used to calculate the value
of this attribute in an instance of the metamodel.

Binary Associations: We annotate each association end ae with an ocl ex-
pression ae, similar to the case of attributes. This expression is used to
calculate, parametrized by self, the set of objects ae(self) associated to
self. However, one now has to be careful: one has to ensure that opposite
association ends give consistent results, i.e, if ae1 and ae2 are opposite as-
sociation ends and x ∈ ae1(y), then also y ∈ ae2(x). In our experience, this
was rarely a problem. For cases where this is a problem, or for cases where
the association end value is not that easily calculated, we support another
approach. If no ocl expression is defined for an association end, it’s value is
calculated using the inverse of the ocl expression of the opposite association
end. We try to avoid this, however, as it may incur substantial overhead to
calculate it this way.

n-ary Associations: The approach used for binary associations is not directly
transferable to the general case of n-ary associations, as it would lose some
of the information in the association. For this reason, we here annotate the
association itself with an ocl expression that calculates the value of the
associations, using an appropriate ocl TupleType as the result type.

8 Achim D. Brucker and Jürgen Doser

Operations: There is no need to define a notation for operations. The behav-
ioral specification of operations can be defined by pre- and postconditions in
the metamodel of the dsl, as usual.

Inheritance: Because every instance of a subclass is automatically an instance
of the superclass, there is no need to define a notation for inheritance rela-
tionships.
It is easy to see that given a metamodel for a dsl, one can always define a

uml profile, in the way described above, that can be used to represent arbitrary
instances of the metamodel: if nothing else, one can simply represent each dsl
metaclass X by a uml class with stereotype �X�. Associations between dsl
metaclasses can then be represented straightforwardly by associations between
the corresponding uml classes. The focus then lies on defining a uml profile that
makes working with the dsl convenient. This requires some creativity on behalf
of the dsl designer.

Sometimes, the notation defined in such a way poses difficulties which cannot
be overcome. For example, consider the frequent case where we want to represent
a particular metaclass and a particular associated metaclass by a uml classifier
with its attributes and appropriate stereotypes. Using our approach so far would
mean that one has to put a certain stereotype on each attribute of the uml
classifier. As this is lot of work, we support a simple shortcut: instead of a
stereotype, one can define an anchor class and an anchor path. The anchor class
is a directly associated metamodel class. The anchor path is an ocl expression.
Whenever this ocl expression evaluates to a uml model element that is mapped
to an instance of the anchor class, this modelelement gets mapped also.

Although this definition of a notation maps dsl metamodel elements to uml
profile elements, it actually defines a mapping from uml (profile) models to in-
stances of the dsl metamodel. In certain, in our experience quite frequent, cases
however, we actually can derive a mapping in both directions. Obviously, we
can simply generate for each instance of a metaclass a corresponding uml mod-
elelement with the appropriate stereotype. We then have to ensure, however,
that the mapping back to the metamodel results in the same instance. For this,
we have to ensure that the associations and attribute values “fit.” If the ocl
expressions for attribute and association end values are simple enough, for ex-
ample only “property calls,” we can do this by setting the property to the right
value. This is the case for ComponentUML, for example, where the associations
between the different resource types (entities, attributes, operations) are directly
given by corresponding associations in the UML metamodel. Therefore these as-
sociation end values are calculated by property calls like getOwner, getFeature,
getParticipant, etc.

With these definitions so far, there are still some questions, for which we can
currently only give partial answers:
– Defining a mapping between models (here, from a uml model to an instance

of the dsl metamodel) always poses the question of how to ensure that the
result of this mapping is well-formed. This means, the result should conform
to the dsl metamodel.

Metamodel-based UML Notations for Domain-specific Languages 9

For certain structural properties, like which associations between modelele-
ments are possible, this is essentially done by a simple type-checking of the
ocl expressions that calculate the association ends. For more complex prop-
erties, like multiplicities of association ends, or even ocl well-formedness
constraints, this is, unfortunately, not possible.

– uml allows modelelements to be annotated with multiple stereotypes. This
poses the problem of what to do, when a uml modelelement could be mapped
to two different dsl modelelements, because it is annotated with two different
stereotypes. There are essentially two strategies for handling these cases: (1)
Simply map to both dsl modelelements, or (2) disallow these situations,
and raise an error. Both strategies may be sensible in certain situations. A
third strategy, namely mapping to only one of the dsl modelelements, and
ignoring the others, is probably not useful.

– Given such a notation for a dsl, it may be that always mapping the complete
uml model to an instance of the dsl metamodel is too expensive. This can
happen with very large uml models, where additionally one wants to have a
high degree of interactivity, for examples some continuous display, calculated
on the basis of the dsl model. A solution for this would be, if we could not
only map uml modelelements, but also uml model operations, like adding,
deleting modelelements to corresponding operations on the dsl model. Also,
editing the dsl model is sometimes more convenient directly on the dsl level
(maybe through some specialized user interface, cf. Section 4). This would
require, however, the converse ability: mapping dsl model operations to
corresponding uml model operation. Unfortunately, both are not easy.

4 The Extension Architecture

For showing the applicability of our approach, we developed a plugin for the
uml case tool ArgoUML (http://argouml.tigris.org) supporting arbitrary
SecureUML dialects. Thus, our plugin does not only support one dsl, but a
“family” of related dsls. Overall, the plugin has three main purposes:
1. provide a dsl specific extension for storing models using the metamodel of

the dsl and dialects thereof,
2. provide a synchronization facility to the model repository of the case tool

using the uml notation as concrete syntax for modeling, and
3. provide a specialized concrete syntax in form of a special gui.

Whereas the first two purposes will be present in any extension, providing a spe-
cialized gui, i. e., a domain-specific user interface for the case tool, is optional.

We propose the architecture depicted in Figure 4 for developing such dsl-
specific case tool extensions. Usually, case tools do not support domain-specific
extensions based on metamodels directly. The fundamental idea of our archi-
tecture for supporting a metamodel-based dsl is to provide a separate mof-
compliant model repository (on the right side of Figure 4). We use this model-
repository to store models specified using the dsl, e. g., SecureUML. Moreover,
we allow for customizing this repository by loading dialects (also specified by

http://argouml.tigris.org

10 Achim D. Brucker and Jürgen Doser

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

User Models

(Concrete DSL Syntax)

GUI

DSL−specific

Repository

Model

Model−facade

Repository

Model

Model

Synchronisation

DSL Metamodel

(UML Profile)

GUI

G
U

I
e

x
te

n
s
io

n

DSL−related

Logic

Model−facade

UML CASE−Tool DSL Extension

Figure 4. Generic dsl Extension Architecture

a metamodel) of our dsl. Recall that our dsl is defined by a metamodel that
also encodes a uml profile. Based on this profile, the repository of the case tool
(storing dsl models using the concrete, uml profile-based, syntax) can be syn-
chronized with the model repository of our extension. The control-logic of the
extension can now provide operations for modifying and analyzing specification
that use the dsl, e. g., SecureUML.

Recall that our encoding provides a bi-directional mapping between the con-
crete uml syntax (which can be stored in the model repository of the case
tool) and the abstract syntax of the dsl (which is stored in model repository
of the dsl extension). Thus, we can store the complete model, including the
domain-specific parts, in the model repository of the case tool and use its file
format for storing models; i. e., there is no need for a dsl specific file format
for storing models. Moreover, we can use the xmi export of the case tool for
exporting standard uml models, containing the domain-specific parts as a uml
profile. The xmi export of the model repository of the dsl extension can be used
for exporting models in the abstract syntax of the dsl.

Overall, the case tool only has to provide a programming interface to its
model repository, to be extensible with our approach. Thus, this approach can
be used together with any case tool supporting a programming interface to its
repository. On the one hand, by using a mof-compliant repository for the dsl
extension, even case tools using the Eclipse Modeling Framework (emf) can be
used with a mof-based dsl definition. On the other hand, for case tools using
a model repository supporting a concept of extents, e. g., as it is the case for
ArgoUML using mdr, using a model extent is sufficient for our architecture.

Moreover, case tools that support extending their user interface can be fur-
ther customized in a domain-specific way. For example, for our SecureUML ex-
tension of ArgoUML, we developed a SecureUML specific gui as an alterna-
tive to the concrete uml syntax of SecureUML. Figure 5 shows an extension
of ArgoUML’s property pane for classes, for example. The SecureUML related
properties in the middle of the pane allow for creating new roles and modifying
the access control specification of the class Meeting (recall our example shown

Metamodel-based UML Notations for Domain-specific Languages 11

Figure 5. SecureUML Property Pane

in Figure 2). For example, in the column “User” we see that users are allowed
to update objects of the class Meeting; the question mark denotes that this per-
mission is restricted further by a constraint, i.e, self.caller=owner. Overall, such
an extension of the gui of the case tool can, in comparison to the concrete uml
syntax of the dsl, provide a more concise presentation. Thus, this provides a
first step into the direction of providing a domain-specific case tools, using a
standard uml case tool as a kind of meta case tool, or framework.

5 Discussion

In this section, we discuss several alternatives and limitations of both our en-
coding and our extension architecture.

Repository synchronization. Our approach gears toward supporting the dsl
by DSL-specific plugins or extensions that are integrated into a generic case
tool. Given that the dsl has a well-defined metamodel, we assume that these
extensions work on an api, i. e., a model-facade, that reflects this metamodel. In
principle, there are two possibilities for implementing this model-facade:
1. the model facade can be implemented by a separate repository (or model

extent, if supported) storing the complete dsl specific model information;
2. based on the representation using a uml profile, the dsl-specific model infor-

mation can be mapped partially and on-demand into the dsl specific model
repository.

In both cases, the dsl specific repository needs to be synchronized with the
repository of the underlying case tool. The two approaches differ mainly in
their synchronization strategy between the different repositories.

In the first case, we need to keep both repositories in sync at all times. More-
over, this synchronization needs to be bi-directional because we want editing
capabilities in the dsl extensions. Providing a real-time, bi-directional synchro-
nization of two model repositories is a technical challenge, e. g., one has to iden-
tify model elements after re-namings and one has to guarantee the consistency
of both repositories at all times. In the second case, we only need to map the
current scope, i. e., the parts of the model on which a domain-specific opera-
tion is performed, into a fresh repository. This solution does not suffer from the
synchronization problem.

12 Achim D. Brucker and Jürgen Doser

Based on this considerations, our prototype uses the on-demand mapping
strategy (i. e., the second option), which has proven to be successful for our
example case tool extension.

Query languages for metamodels. At first sight, our approach for specifying
metamodel-based uml notations for dsls heavily depends on a query language
like ocl. Taking a closer look reveals that only a very limited subset of ocl (see
Table 2) is used. Our approach only requires a query-language that comprises,

varDeclList ::= [varDeclList ,] varDecl

varDecl ::= simpleName [: type] [= expr]

type ::= pathName | collKind (type)

expr ::= literalExp | expr->simpleName

| expr(expr [:type][=expr],varDecl|expr) | expr([{expr,}expr])

| expr(varDecl | expr) | expr->iterate(varDecl [;varDecl]|expr)

| prefixOperator expr | expr infixOperator expr

| if expr then expr else expr endif

| let varDeclList in expr

infixOperator ::= < | > | <= | >= | = | <> | and | or | xor | implies
prefixOperator ::= - | not

literalExp ::= collLiteralExp | primLiteralExp

collLiteralExp ::= collKind{{collLiteralPart,}collLiteralPart}
collKind ::= Set | Bag | Sequence | Collection | OrderedSet

collLiteralPart ::= expr | expr..expr

primLiteralExp ::= Boolean | Integer | Real | String
pathName ::= [pathName::]simpleName

simpleName ::= SIMPLE NAME

Table 2. ocl subset used for describing Metamodel-based uml Notations

informally, the following features: navigation over the metamodel, i. e., path ex-
pression, basic set operations (such as union and intersection), and a two-valued
Boolean logic with (in-)equalities. These requirements are met by nearly all
object-oriented programming or specification languages. Implementations, i. e.,
metamodeling frameworks often provide means for executing queries on a given
(meta-) model. For example, emf provides a query framework that supports
many different languages. Whereas ocl is one of the supported languages, any
language supported by the eclipse query framework would be sufficient.

Standards for metamodeling languages do usually not include a query lan-
guage. Nevertheless, we propose to extend languages for metamodeling, e.g, km3,
with a standardized query language. This would enable the easy exchange of
metamodels for dsl together with a concrete syntax (as uml profile) for the
dsl. This guarantees the same mapping between metamodel and uml profile for
all repository implementations supporting the specific metamodeling language.

Metamodel-based UML Notations for Domain-specific Languages 13

In case of mof, using ocl seems to be a natural choice: ocl is used widely
in the uml and mof standards and is more than sufficient for our needs. As an
alternative, we could have also used pocl [11], a variant of ocl that includes
language constructs like while loops allowing turning ocl into a procedural
programming language. Whereas our approach does not need the extensions
pocl offers, we can image that they could be useful, e. g., for computing the
transitive closure of an association.

Providing a strong link between concrete syntax, abstract syntax,
and semantics. Usually, the semantics of a dsl is defined with respect to the
abstract syntax, e. g., by mapping the metamodel to a well-known semantic do-
main. In contrast, models are build using a concrete syntax which often provides
a wealth of syntactic sugar. Therefore it is not obvious, that a modeler, using the
concrete syntax, is conscious of the meaning of his models. Assuming a query
language with a formal semantics, our approach provides a formal description
of a bidirectional mapping from concrete syntax to abstract syntax. Thus, a for-
mal semantics given in terms of the abstract syntax can be easily described in
terms of the concrete syntax. This is especially important in situations where
the mapping from concrete syntax to abstract syntax is not obvious; for more
details, see [1] for example.

Supporting families of DSLs. Many dsls, even though they are domain spe-
cific, are applicable in different contexts. For example, a notion of access control
as provided by SecureUML, can be used within data models (e. g., class models)
and behavioral models (state models). Whereas the underlying concept, e. g.,
role-based access control remains the same in both applications, model elements
(and thus the subjects of SecureUML) that are restricted differ. We call this sit-
uation, where different dialects of the “same” dsl are needed, a family of dsls.
As all dsls dialect of a family share common concepts, these concepts should
be described in a reusable manner. Moreover, case tools extension can be im-
plemented in a generic way, i. e., such a plugin supports a whole family of dsls:
support for a concrete dialect can be activated at runtime by loading the cor-
responding metamodel. For example, our prototypical ArgoUML plugin already
supports arbitrary SecureUML dialects like ComponentUML or ControllerUML.

Supporting combinations of DSLs. Combining dsls includes both the use
of different members of the same dsl family within the same model and the
simultaneous use of different dsl families. Both applications require the for-
mal description of dependencies and incompatibilities between different dsls. In
principle, it should be possible to describe (e. g., using ocl) these dependencies
as well-formedness requirements on the model. These well-formedness rules can
be described in terms of invariants on the metamodel of the dsl and need to
be checked before a fragment of a dsl is used. Moreover, every dsl and dialect
thereof should be defined in its own (sub-) namespace; among others, this avoid
ambiguities of the defined stereotypes.

14 Achim D. Brucker and Jürgen Doser

6 Related Work

There are several dsls that are defined using metamodels or uml profiles. More-
over, several dsls, e. g., SysML [12], epal [6], or WebML [9] provide both a
metamodel and a uml profile; however, all these dsls define the metamodel
and the uml profile independently from each other. Thus, none of these works
can guarantee, that the metamodel and the uml profile define the same lan-
guage. Overall, the majority of uml-related dsls seems to be defined by profiles.
We assume that the reason for this is the lack of uml case tools supporting
metamodel-based dsls.

Meta-case tools, that are not based on uml, like gme [3] or MetaEdit+
(http://www.metacase.com) allow the definition of a concrete representation
for each metaclass in the abstract syntax. Within a concrete representation of a
model, each instance of a metaclass is represented by its (visual) representation.
A generalization of this approach, using ocl for selecting a refined definition of
the concrete representation, is presented in [4]. The use of ocl allows, among
other things, for choosing modifying the visual representation based on its con-
text or usage of a specific model element. Nevertheless, all these approaches have
in common that They focus on the presentation of the concrete syntax whereas
we define a concrete syntax in terms of uml, i. e., independently from its concrete
visual representation.

The work in [5] is quite similar to our approach: they use, externally specified,
atl [8] programs for mapping the abstract syntax to a concrete uml represen-
tation. In contrast, we encode this mapping, using ocl, within the metamodel
of the dsl and, moreover, we aim for a bidirectional mapping.

There are several alternatives to mof [10], e. g., emf (http://www.eclipse.
org/emf) and km3 [7]. Our approach can be directly used for emf-based meta-
models using the emf Query Framework which, among other query languages,
supports ocl. In the case of km3, the lack of a standardized query language pre-
vents the direct transfer of our approach. Extending km3 with a simple query
language should be easy, though.

7 Conclusion

The debate if a uml-related dsls should be defined using metamodels or profiles
has a long history. Usually, dsls are either defined using a metamodel-based
approach or as a uml profile. Our work here describes one way for combining
these approaches.

We presented an approach combining the advantages of both metamodel-
based and uml profile-based approaches for defining dsls. We achieve this by
encoding the concrete uml syntax, i. e., a uml profile, into the metamodel of our
dsl. Using such an encoding, one can describe syntax and semantics of a dsl
in one place, providing a strong link between concrete syntax, abstract syntax,
and semantics of the dsl.

Whereas our approach is not directly supported by many uml case tools, it
can be implemented with only a very restricted interface to the model repository

http://www.metacase.com
http://www.eclipse.org/emf
http://www.eclipse.org/emf

Metamodel-based UML Notations for Domain-specific Languages 15

of the case tool. As most of todays uml case tools are using standard model
repositories, like emf or mdr (http://mdr.netbeans.org/), such programming
interfaces are provided and well-documented.

Moreover, our approach allows for developing plugins for any uml case tools
providing a programming api for their internal model repository. For example,
such a plugin could use internally a mof-based storage for the metamodel-based
dsl representation and communicate with the model repository of the case
tool by using the api. Thus, plugins can be developed independently from the
language used for describing the metamodel of the case tool.

Acknowledgment

We thank Marcel Beer for valuable discussions on the subject of developing a
generic gui for SecureUML and the work he did during his diploma thesis.

References

[1] D. Basin, M. Clavel, J. Doser, and M. Egea. A metamodel-based approach for ana-
lyzing security-design models. In models 2007, volume 4735 of lncs, Heidelberg,
2007. Springer.

[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from uml models
to access control infrastructures. acm Transactions on Software Engineering and
Methodology, 15(1):39–91, January 2006.

[3] M. J. Emerson, J. Sztipanovits, and T. Bapty. A mof-based metamodeling envi-
ronment. Journal of Universal Computer Science, 10(10):1357–1382, 2004.

[4] F. Fondement and T. Baar. Making metamodels aware of concrete syntax. In
ecmda-fa ’05, volume 3748 of lncs, pages 190–204, Heidelberg, 2005. Springer.

[5] B. Graaf and A. van Deursen. Visualisation of domain-specific modelling lan-
guages using uml. In ecbs ’07, pages 586–595, Washington, dc, usa, 2007. ieee
Computer Society.

[6] Enterprise privacy authorization language (epal 1.2), Nov. 2003. Available as
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/.

[7] F. Jouault and J. Bézivin. km3: a dsl for metamodel specification. In fmoods
’06, volume 4037 of lncs, pages 171–185, Heidelberg, 2006. Springer.

[8] F. Jouault and I. Kurtev. Transforming models with atl. In models Satellite
Events, volume 3844 of lncs, pages 128–138. Springer, 2005.

[9] N. Moreno, P. Fraternalli, and A. Vallecillo. A uml 2.0 profile for WebML mod-
eling. In icwe’06 Workshops, New York, ny, usa, 2006. acm Press.

[10] Meta object facility (mof) specification, 2005. omg document formal/05-05-05.
Also available as iso/iec 19502.

[11] mof qvt final adopted specification, Nov. 2005. omg document ptc/05-11-01.
[12] SysML specification v. 1.0, May 2006. omg document ptc/06-05-04.
[13] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

http://mdr.netbeans.org/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.omg.org/cgi-bin/doc?formal/05-05-05
http://www.omg.org/cgi-bin/doc?ptc/05-11-01
http://www.omg.org/cgi-bin/doc?ptc/06-05-04

	Metamodel-based UML Notations for Domain-specific Languages
	Achim D. Brucker and Jürgen Doser
	1 Introduction
	2 Background
	2.1 Domain Specific Languages
	2.2 An Example DSL: SecureUML

	3 Details of the Integration
	4 The Extension Architecture
	5 Discussion
	6 Related Work
	7 Conclusion

