
c ©
20

14
W

ile
y.

T
hi

s
is

th
e

au
th

or
’s

ve
rs

io
n

of
th

e
w

or
k.

It
is

po
st

ed
at

ht
tp

://
w

w
w

.b
ru

ck
er

.c
h/

bi
bl

io
gr

ap
hy

/a
bs

tr
ac

t/b
ru

ck
er

.e
a-

fo
rm

al
-f

w
-t

es
tin

g-
20

14
by

pe
rm

is
si

on
of

W
ile

y
fo

ry
ou

rp
er

so
na

lu
se

.N
ot

fo
rr

ed
is

tr
ib

ut
io

n.
T

he
de

fin
iti

ve
ve

rs
io

n
w

as
pu

bl
is

he
d

in
So

ftw
ar

e
Te

st
in

g,
Ve

ri
fic

at
io

n
&

R
el

ia
bi

lit
y

(S
TV

R
),

pp
.1

–3
8,

20
14

,d
oi

:1
0.

10
02

/s
tv

r.1
54

4.

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2014; 00:1–38
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/stvr

Formal firewall conformance testing: an application of test and
proof techniques

Achim D. Brucker1,∗,†, Lukas Brügger2 and Burkhart Wolff3

1 SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
2 Information Security, ETH Zurich, 8092 Zurich, Switzerland

3 Université Paris-Sud, Laboratoire de Recherche en Informatique (LRI, Bât 650), 91893 Orsay Cedex, France

SUMMARY

Firewalls are an important means to secure critical ICT infrastructures. As configurable off-the-shelf
products, the effectiveness of a firewall crucially depends on both the correctness of the implementation itself
as well as the correct configuration. While testing the implementation can be done once by the manufacturer,
the configuration needs to be tested for each application individually. This is particularly challenging as the
configuration, implementing a firewall policy, is inherently complex, hard to understand, administrated by
different stakeholders and thus difficult to validate. This paper presents a formal model of both stateless
and stateful firewalls (packet filters), including NAT, to which a specification-based conformance test
case generation approach is applied. Furthermore, a verified optimisation technique for this approach is
presented: starting from a formal model for stateless firewalls, a collection of semantics-preserving policy
transformation rules and an algorithm that optimizes the specification with respect of the number of test
cases required for path coverage of the model are derived. We extend an existing approach that integrates
verification and testing, that is, tests and proofs to support conformance testing of network policies. The
presented approach is supported by a test framework that allows to test actual firewalls using the test cases
generated on the basis of the formal model. Finally, a report on several larger case studies is presented.
Copyright c© 2014 John Wiley & Sons, Ltd.

Received 6 August 2012; Revised 24 June 2014; Accepted 16 July 2014

KEY WORDS: model-based testing; conformance testing; security testing; firewall; specification-based
testing; testing cloud infrastructure; transformation for testability; HOL-TESTGEN; test
and proof; security configuration testing

1. INTRODUCTION

Because of its connected life, the modern world is increasingly depending on secure implementa-
tions and configurations of network infrastructures. As building blocks of the latter, firewalls are
playing a central role in ensuring the overall security of networked applications.

Firewalls, routers applying NAT and similar networking systems suffer from the same quality
problems as other complex software. Jennifer Rexford mentioned in her keynote at POPL 2012 that
high-end firewalls consist of more than 20 million lines of code comprising components written
in Ada as well as LISP. However, the testing techniques discussed here are of wider interest
to all network infrastructure operators that need to ensure the security and reliability of their
infrastructures across system changes such as system upgrades or hardware replacements. This is
because firewalls and routers are active network elements that can filter and rewrite network traffic
based on configurable rules. The configuration by appropriate rule sets implements a security policy
or links networks together.

∗Correspondence to: Achim D. Brucker, SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany.
†E-mail: achim.brucker@sap.com

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using stvrauth.cls [Version: 2010/05/13 v2.00]

http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
http://dx.doi.org/10.1002/stvr.1544
http://www.brucker.ch/
http://www.lri.fr/~wolff/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>

2 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Thus, it is, firstly, important to test both the implementation of a firewall and, secondly, the correct
configuration for each use. While the former can be done once and for all by the firewall vendor,
the latter needs to be done by the customer for each and every installation. In practice, an extensive
compliance test of firewall configurations is often neglected, even if the security risk of wrong
configurations is high:

NSA found that inappropriate or incorrect security configurations (most often caused by
configuration errors at the local base level) were responsible for 80 percent of Air Force
vulnerabilities. [16, p. 55]

A particular variant of configuration testing is the test of collections of firewalls and routers for
their combined behaviour. This is an important scenario for at least two different reasons: first,
the security of cloud offerings (for any variant of cloud computing, for example, infrastructure-as-a-
service, platform-as-a-service, software-as-a-service) relies on securely separated network segments
and thus on correctly configured routers and firewalls. Consequently, the approach discussed in
this paper is applicable to any cloud data centre and can support any cloud company in offering
secure services to their customers. Second, firewall policies change over time, sometimes modified
by different administrators, who may belong to different stake-holders enforcing their own security
interests. Depending on the concrete testing scenario, a firewall policy can play the role of a program
(‘Does a firewall interpret its configuration file correctly?’) or the role of a policy specification (‘Is
protocol x possible from a to b?’). For both implementation integration tests as well as configuration
tests, the technique presented in this paper can be used to generate runtime testers used in ‘hardware-
in-the-loop’ scenarios during installation and maintenance.

Several approaches for the generation of test cases are well known: while unit-test-
oriented test generation methods essentially use preconditions and post-conditions of system
operation specifications, sequence-test-oriented approaches essentially use temporal specifications
or automata based specifications of system behaviour. Usually, firewalls combine both aspects:
whereas firewall policies are static, the underlying network protocols may depend on protocol states
which some policies are aware of. This combination of complexity and criticality makes firewalls a
challenging and rewarding target for security testing in the sense of the ISO 29199 specification [29,
Section 4.36], that is, conformance testing of security properties. While there is an overlap of
the detectable vulnerabilities, this form of conformance testing complements penetration testing
approaches that simulate an attacker trying to circumvent security infrastructures.

In this paper, a formal model of firewall policies as packet filtering functions or transformations
over them in HOL is presented. Thus, the presented approach can cover data-oriented as well as
temporal security policies. On the basis of this formal model, HOL-TESTGEN [7, 11] automatically
generates abstract test cases. From the latter, concrete test driver can be derived that can be used for
both testing firewall implementations as well as network configurations.

While applying HOL-TESTGEN ‘out-of-the-box’ to these kind of model works for smaller
policies, it does not scale well to policies of practically relevant size, that is, common rule
sets with several hundred rules in medium-sized company networks. The situation is particularly
worsened if the underlying state is evolving over time (as in stateful firewalls). To overcome this
technical difficulty, a policy transformation strategy that transforms a given policy into a functionally
equivalent one while improving the effectiveness of test generation by orders of magnitude is
developed. The theorem-prover-based approach allows both to formally prove the correctness of this
policy transformation, as well as integrating it into the symbolic computations of HOL-TESTGEN.

Summing up, this paper has the following main contributions:

1. a formal model of stateless and stateful firewall policies, instantiating the generic Unified
Policy Framework (UPF) [12],

2. a specification-based test generation approach that can be used for testing the correctness of
firewall implementations as well as testing that a concrete configuration of a network complies
to a given policy specification,

3. a policy transformation approach that is formally proven correct; it is shown to increase the
effectiveness of the approach by several orders of magnitude,

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 3

4. a combination of unit and sequence test strategies, providing an efficient test technique for
stateful firewalls, and

5. a domain-specific test tool built on top of HOL-TESTGEN that increases the degree of
automation as well as the effectiveness of HOL-TESTGEN. This test tool provides an infra-
structure for test execution and tracing on real firewalls and networks.

This paper extends the previous work of the authors [6, 8, 10, 13, 14] in several aspects: first,
partial solutions previously modelled directly in HOL are integrated in the UPF, which allows to
highlight common principles. Second, the firewall policy model is extended significantly to include
different network models (address representations) as well as pervasive support of NAT. Third,
an investigation on the role of the optimisation on the equivalence classes underlying the test
generation is added. And, finally, an empirical evaluation covering various aspects of the optimized
test generation procedure is provided.

The rest of the paper is structured as follows: after an introduction of the preliminaries, that is,
Isabelle/HOL and the HOL-TESTGEN approach (Section 2), we discuss the formal model of stateless
firewall policies in Section 3. In Section 5 we extend this model to stateful firewall policies. Section 4
presents the transformation of stateless firewall policies and discusses its effect on the underlying
equivalence classes. Before the discussion of empirical results in Section 7, we describe our domain-
specific test framework in Section 6. Finally, we discuss related work and draw conclusions in
Section 8.

The presented domain-specific test tool as well as all proofs and examples presented in this
paper are part of the HOL-TESTGEN distribution, which can be downloaded from the website:
http://www.brucker.ch/projects/hol-testgen/.

2. FORMAL AND TECHNICAL BACKGROUND

2.1. Isabelle and higher-order logic

Isabelle [34] is a generic theorem prover. New object logics can be introduced by specifying their
syntax and natural deduction inference rules. Among other logics, Isabelle supports first-order
logic, Zermelo-Fraenkel set theory and the instance for Church’s higher-order logic HOL, which
is the basis of HOL-TESTGEN and which is introduced in this section. Moreover, Isabelle is also
a generic system framework (roughly comparable with Eclipse) which offers editing, modelling,
code generation, document generation and (as mentioned) theorem proving facilities, to the extent
that some users use it just as programming environment for SML or to write papers over checked
mathematical content to generate LATEX output. Many users know only the theorem proving language
Isar for structured proofs and are more or less unaware that this is a particular configuration of
the system, that can be easily extended. This is what the HOL-TESTGEN system underlying this
work technically is: an extended Isabelle/HOL configuration providing specialized commands for a
document-centric model-based test generation method.

Higher-order logic (HOL) [2, 17] is a classical logic based on a simple type system. It provides the
usual logical connectives such as _ ∧ _, _→ _, ¬_ as well as the object-logical quantifiers ∀x. P x
and ∃x. P x; in contrast to first-order logic, quantifiers may range over arbitrary types, including
total functions f ::α⇒ β. HOL is centred around extensional equality _ = _ ::α⇒ α⇒ bool. HOL
is more expressive than first-order logic, because, for example, induction schemes can be expressed
inside the logic. Being based on a polymorphically typed λ-calculus, HOL can be viewed as a
combination of a programming language such as SML or Haskell, and a specification language
providing powerful logical quantifiers ranging over elementary and function types.

Isabelle/HOL is a logical embedding of HOL into Isabelle. The simple-type system underlying
HOL has been extended by Hindley/Milner style polymorphism with type classes similar to Haskell.
Isabelle/HOL offers support for a particular methodology to extend given theories in a logically
safe way: a theory extension is conservative if the extended theory is consistent provided that the
original theory was consistent. Conservative extensions can be constant definitions, type definitions,
datatype definitions, primitive recursive definitions and well-founded recursive definitions.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://www.brucker.ch/projects/hol-testgen/

4 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

For example, typed sets are built in the Isabelle libraries conservatively on top of the kernel of HOL
as functions to bool; consequently, the constant definitions for set comprehension and membership
are as follows (to increase readability, the presentation is slightly simplified):

type_synonym α set = α⇒ bool

definition Collect :: (α⇒ bool)⇒ α set — set comprehension
where Collect S = S

definition member ::α⇒ α set⇒ bool — membership test
where member s S = S s

(1)

Isabelle’s powerful syntax engine is instructed to accept the notation {x | P} for Collect λx. P and
the notation s ∈ S for member s S. As can be inferred from the example, constant definitions are
axioms that introduce a fresh constant symbol by some closed, non-recursive expressions; these
types of axioms are logically safe because they work like an abbreviation. The syntactic side
conditions of the axioms are mechanically checked, of course. It is straightforward to express the
usual operations on sets such as _ ∪ _, _ ∩ _ ::α set⇒ α set⇒ α set as conservative extensions,
too, while the rules of typed set theory are derived by proofs from these definitions.

Similarly, a logical compiler is invoked for the following statements introducing the types option
and list:

datatype α option = None | Someα

datatype α list = Nil | Cons α (α list)
(2)

Here, [] and a#l are alternative syntax for Nil and Cons a l; moreover, [a, b, c] is defined as
alternative syntax for a#b#c#[]. Similarly, the option type shown previously is given a different
notation: α option is written as α⊥, None as ⊥, and SomeX as xXy. Internally, recursive datatype
definitions are represented by type- and constant definitions. Besides the constructors None, Some,
Nil and Cons, the aforementioned statement defines implicitly the match-operation case x of ⊥ ⇒
F | xay⇒ G a, respectively, case x of []⇒ F | (a#r)⇒ G a r. From the internal definitions (not
shown here), many properties are automatically derived like distinctness [] 6= a#t, injectivity of the
constructors or induction schemes. Finally, there is a parser for primitive and well-founded recursive
function definition syntax. For example, the sort operation can be defined by

fun ins :: [α :: linorder, α list]⇒ α list
where ins x [] = [x]

ins x (y#ys) = if x < y thenx#y#ys else y#(ins x ys)
(3)

fun sort :: (α :: linorder) list⇒ α list
where sort [] = []

sort(x#xs) = ins x (sort xs)
(4)

which is again compiled internally to constant and type definitions. Here, α :: linorder requires that
the type α is a member of the type class linorder. Thus, the operation sort works on arbitrary lists of
type (α :: linorder) list on which a linear ordering is defined. The internal (non-recursive) constant
definition for the operations ins and sort is quite involved and requires a termination proof with
respect to a well-founded ordering constructed by a heuristic. Nevertheless, the logical compiler
will finally derive all the equations in the aforementioned statements from this definition and makes
them available for automated simplification.

On these conservative definition principles, the Isabelle/HOL library provides a large collection
of theories such as sets, lists, Cartesian products α× β and disjoint type sums α+ β, multisets,
orderings and various arithmetic theories, which only contain rules derived from conservative
definitions.

The theory of partial functions is of particular importance for this paper. As prerequisite, we
introduce the function p_q : α⊥ ⇒ α as the inverse of x_y (unspecified for ⊥). Partial functions
α ⇀ β are then defined as functions α⇒ β⊥ supporting the usual concepts of domain dom f ≡
{x | f x 6= ⊥}) and range ran f ≡ {x | ∃y. f y = xxy}. Partial functions can be viewed as ‘maps’ or

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 5

dictionaries; the empty map is defined by� ≡ λx. ⊥, and the update operation, written p(x 7→ t), by
λ y. if y = x then xty else p y. Finally, the override operation on maps, written p1⊕ p2, is defined by
λx. case p1 x of ⊥ ⇒ p2 x | xXy⇒ xXy. This definition incorporates a first-fit-strategy, while the
standard Isabelle/HOL operator _ ++_ implements a last-fit strategy.

Finally, Isabelle/HOL manages a set of executable types and operators, that is, types and operators
for which a compilation to SML, OCaml, Scala, or Haskell is possible. Setups for arithmetic types
such as int have been done; moreover, any datatype and any recursive function is included in this
executable set (providing that they only consist of executable operators). Similarly, Isabelle manages
a large set of (higher-order) rewrite rules in which recursive function definitions are included.
The Isabelle simplifier provides also a highly potent procedure for computing normal forms of
specifications and deciding many fragments of theories underlying the constraints to be processed
when constructing test theorems.

2.2. The HOL-TestGen workflow and system architecture

HOL-TESTGEN (Figure 1) is an interactive, that is, semi-automated, test tool for specification-based
tests built upon Isabelle/HOL. While Isabelle/HOL is usually seen as ‘proof assistant’, it is used in this
context as a document centric modelling environment for the domain specific background theory of
a test (the test theory), for stating and logically transforming test goals (the test specifications), as
well as for the test generation method implemented by Isabelle’s tactic procedures. In a nutshell, the
test generation method consists of the following:

1. a test case generation phase, which is essentially an equivalence partitioning procedure of the
input/output relation based on a CNF-like normal form computation,

2. a test data selection phase, which essentially uses a combination of constraint solvers using
random test generation and the integrated SMT-solver Z3 [18],

3. a test execution phase, which reuses the Isabelle/HOL code generators to convert the
instantiated test cases to test driver code that is run against a firewall or a network.

A detailed account on the symbolic computation performed by the test case generation and test
selection procedures is contained in [7]; its description in detail is out of the scope of this paper.
For the remainder of this paper, a high-level view suffices: the test case generation is an equivalence
partitioning method combined with a variable splitting technique that can be seen as an (abstract)
syntax testing in the sense of the ISO 29199 specification [29, Sec. 5.2.1 and 5.2.4].

Figure 1. A HOL-TESTGEN session showing the jEdit-based Isabelle Interface. The upper-left sub-window
allows one to interactively step through a test theory comprising test specifications, while the lower-left

sub-window shows the corresponding system state of the spot marked in blue in the upper window.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

6 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

The equivalence partitioning separates the input/output relation of a programme under test
(PUT), usually specified by pre-conditions and post-conditions, into classes for which the tester has
reasons to believe that PUT will treat them the same. Technically, this is achieved by converting the
test specification into a normal form called TNFE , which resembles a conjunctive normal form CNF.
TNF is an acronym for Testing Normal Form, and E is the underling theory of the literals occurring
its clause. In our concrete application, E consists of logical rules, arithmetic simplification rules,
rules concerning policy simplification and symbolic evaluation (all proven correct with respect to
the given theories). Equivalence classes correspond to clauses that are synonym to test cases.

The abstract syntax testing method splits equivalence classes in an interleaved way with the
normalization process. Technically, it performs case splitting, which replaces variables in the clauses
by terms (so to speak, abstract syntax skeletons, which may again contain variables for holes to be
filled in later in the process). For example, a variable of type list is replaced by [], [a], [a, b], and
[a, b, c]@l for given test-depth k=3.

Test cases, that is, clauses in normal form, are converted to test data by solving the constraints
on input variables of the PUT modulo the underlying theory E. Test cases that are unsatisfiable
with respect to E represent empty equivalence classes and are eliminated. Section 4.8 contains a
discussion of HOL-TESTGEN’s coverage criteria and their relation to policy coverage.

2.3. The unified policy framework

The UPF [14] is a generic framework for policy modelling with the primary goal of being used
for test case generation. The interested reader is referred to [12] for an application of UPF to
large scale access control policies in the health care domain; a comprehensive treatment is also
contained in the reference manual coming with the distribution on the HOL-TESTGEN website
(http://www.brucker.ch/projects/hol-testgen/). UPF is based on the following four principles:

1. policies are represented as functions (rather than relations),
2. policy combination avoids conflicts by construction,
3. the decision type is three-valued (allow, deny, undefined),
4. the output type does not only contain the decision but also a ‘slot’ for arbitrary result data.

Formally, the concept of a policy is specified as a partial function from some input to a decision
value and additional some output. Partial functions are used because elementary policies are
described by partial system behaviour, which are glued together by operators such as function
override and functional composition.

type_synonym α 7→ β = α ⇀ β decision (5)

where the enumeration type decision is

datatype α decision = allow α | deny α (6)

As policies are partial functions or ‘maps’, the notions of a domain dom p ::α ⇀ β ⇒ α set and
a range ran p :: [α ⇀ β]⇒ β set can be inherited from the Isabelle library.

Inspired by the Z notation [38], there is the concept of domain restriction _ / _ and range
restriction _ . _, defined as:

definition _ / _ ::α set⇒ α 7→ β ⇒ α 7→ β
where S / p = λx. if x ∈ S then p x else⊥
definition _ . _ ::α 7→ β ⇒ β decision set⇒ α 7→ β
where p . S = λx. if

(
the (p x)

)
∈ S then p x else⊥

(7)

The operator ‘the’ strips off the Some, if it exists. Otherwise the range restriction is underspecified.
There are many operators that change the result of applying the policy to a particular element.

The essential one is the update:

p(x 7→ t) = λ y. if y = x thenbtc else p y (8)

Next, there are three categories of elementary policies in UPF, relating to the three possible
decision values:
Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://www.brucker.ch/projects/hol-testgen/

FORMAL FIREWALL CONFORMANCE TESTING 7

• The empty policy; undefined for all elements: ∅ = λx. ⊥
• A policy allowing everything, written as Af f , or AU if the additional output is unit (defined

as λx. ballow()c).
• A policy denying everything, written as Df f , or DU if the additional output is unit.

The most often used approach to define individual rules is to define a rule as a refinement of one
of the elementary policies, by using a domain restriction. As an example,{

(Alice, obj1, read)
}
/ AU (9)

Finally, rules can be combined to policies in three different ways:

• Override operators: used for policies of the same type, written as _⊕i _.
• Parallel combination operators: used for the parallel composition of policies of potentially

different type, written as _⊗i _.
• Sequential combination operators: used for the sequential composition of policies of

potentially different type, written as _ ◦i _.

All three combinators exist in four variants, depending on how the decisions of the constituent
policies are to be combined. For example, the _⊗2 _ operator is the parallel combination operator
where the decision of the second policy is used.

Several interesting algebraic properties are proved for UPF operators. For example, distributivity

(P1 ⊕ P2)⊗ P3 = (P1 ⊗ P3)⊕ (P2 ⊗ P3) (10)

Other UPF concepts are introduced in this paper on-the-fly when needed.

3. STATELESS FIREWALLS

This section introduces a formal model of stateless firewall policies as an instantiation of the UPF.

3.1. An introduction to stateless firewalls

A message that should be sent from network A to network B is split into several packets. A packet
contains parts of the content of the message and routing information. The routing information of a
packet mainly contains its source and its destination address.

A stateless firewall, also called a stateless packet filter, filters (i. e. rejects or allows) traffic from
one network to another on the basis of certain criteria as for example on its source and destination
address. The policy is the specification (or configuration) of the firewall and describes which packets
should be denied and which should be allowed.

Table I shows a firewall policy as it can be found in security textbooks for a common firewall
setup separating three networks: the external Internet, the internal network that has to be protected
(intranet) and an intermediate network, the DMZ. The DMZ is usually used for servers that should
be accessible both from the outside (Internet) and from the internal network (intranet) and thus are
governed by a more relaxed policy than the intranet. Such a table-based presentation of a policy
(Table I) uses a first-fit matching strategy, that is, the first match overrides later ones. For example,
a TCP packet from the Internet to the intranet is rejected as it only matches the last line of the table,
whereas a TCP packet on port 25 from the intranet to the DMZ is allowed. Lines in such a table
are also called rules; together, they describe the policy of a firewall. In general, a single rule can,
conceptually, be understood as a (simple) policy. As the formal model of firewall policies based on
UPF provides powerful operators for combining policies, a complex policy can be constructed by
combining simpler policies. Thus, the formal model does not need to distinguish policies and rules.
Consequently, in this paper, the terms policy and rules are used synonymously.

The rest of this section formalizes the required concepts, that is, networks, addresses, ports and
protocols. This formalization provides the basis for formally specifying firewall policies, which can
be used for specification-based conformance tests.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

8 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Table I. A simple firewall policy separating three networks.

Source Destination Protocol Port Action

Internet DMZ TCP 25 Allow
Internet DMZ TCP 80 Allow
Intranet Internet UDP 8080 Allow
Intranet DMZ TCP 25 Allow

DMZ Intranet TCP 25 Allow
Internet Intranet UDP 8081 Allow

Any Any Any Any Deny

Such a policy table uses a first-fit pattern matching strategy, that is, the first match overrides
later ones. For example, a TCP packet from the Internet to the intranet is rejected (it only
matches the last line of the table), whereas a UDP packet on port 8081 is allowed.

3.2. A model of networks

A stateless firewall takes as input a single network packet and statically decides what should be done
with it, independently of what has happened before. Thus, all the information common firewalls use
to make that decision need to be modelled. To accommodate for the large number of different kinds
and models of firewalls, the model is kept generic, also reflecting the need for different kinds of test
scenarios.

3.2.1. Network addresses. A network address is used to specify origin and destination of a packet.
Depending on the test scenario one has in mind, different kinds of address representations might
be desired. While at times, it might be enough to specify the host, at other times, specific host
addresses including port numbers are required. For this reason, arbitrary address representation is
allowed by declaring the unconstrained type class α adr. The use of a type class allows one to
formalize most aspects of the network communication without relying on a concrete representation
of network addresses.

Typically, an address consists of a specification of the network and, optionally, a port number and
a protocol indication, which can be combined to tuples. Using Isabelle’s type class mechanism, there
are constants provided for these parts, that further theories can make use of. Address representations
that want to use these theories need to provide definitions for those constants.

In the following, some example address representations are provided. First, three possible network
representations are presented, which can arbitrarily be combined with a port number and protocol
formalization:

• Datatype: Many policies do not differentiate the different hosts within a network. Thus,
instead of modelling single addresses, it is often sufficient to only specify the network a host
is being part of. This can, for example, be done by modelling all the relevant networks as an
element of a fixed datatype, as in

datatype networks = internet | intranet | dmz (11)

The advantage of this representation is its simplicity; the state explosion during test case
generation can be minimized. An additional post-processing step after test data generation
must be used to randomly choose a specific host within a network.
The expressiblity of the models however, is limited: several hosts within a network cannot
be distinguish and the (sub-)networks must not be overlapping. Thus, this model can only be
used in rather simple scenarios.

• IPv4: Another address format tries to stay as close to reality as possible: IPv4 addresses are
directly modelled as a four-tuple of Integers.

type_synonym ip = int× int× int× int (12)

The expressiveness of the model is significantly extended when using this address
representation: each host is specified directly, and thus, overlapping networks can be specified.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 9

Moreover, network masks can be specified directly. This expressiveness comes with a price,
however, as also the complexity is larger. Instead of one variable for each host, there are four.
This makes test case and test data generation much slower.

• Integer: There is a good trade-off between the last two models: modelling an address as a
single Integer:

type_synonym ip′ = int (13)

This model is as expressive as the IPv4 model: a four-tuple of Integers can always be
transformed into a single Integer (after all, an IPv4 address is a 32-Bit Integer). Compared with
the IPv4 model, the state space is reduced significantly, which allows for a deeper exploration
of the test space.

These network representations can be combined with the concepts of source ports, destination
ports and protocols, that is, depending on the purpose of the model, an address can be modelled as
an element of a network or it can be refined with either a pair of source and destination ports, a
protocol, or both. These concepts can be modelled as follows:

• Ports: A common requirement for firewall policy models is port numbers. They can be
modelled as Integers.

type_synonym port = int (14)

• Protocols: If it is required to model a policy that discriminates packets according to the
transport layer protocol, those can also be modelled as part of an address. Usually, the number
of such protocols is quite small; thus it is best modelled as a datatype:

datatype protocol = tcp | udp (15)

At first sight, it might be surprising to model the protocol as part of an address. However, this
choice allows to keep the generic model as clean and simple as possible.

For the sake of simplicity, only one address representation is used throughout the rest of this
paper: an address is a tuple consisting of two Integers and a protocol indication. The first Integer is
denoting a host (encoding its IP address), the second one the port number:

type_synonym address = int
datatype protocol = tcp | udp
type_synonym port = int
type_synonym adrIP = address×protocol× port

(16)

This representation has turned out to be the most effective one throughout the experiments. Of
course, the formalizations and tests work for other representations equally well.

For the sake of simplicity, the same format for the source and destination address of a packet is
required. This means that for the protocol field, which needs to be the same for both addresses, only
one should be considered and the other one ignored.

3.2.2. Networks. A network (or sub-network) is essentially a set of addresses. To allow some
further modelling possibilities, they are defined as sets of sets of addresses—making it simpler
to define some networks forming together one bigger network. Thus, a network consists of a set of
networks, and a network of a set of addresses:

type_synonym α net = (α ::adr) set set (17)

For checking whether a given address is part of a network, the following operator is defined:

definition _ @ _ :: (α ::adr)⇒ α net⇒ bool
where a @ S = ∃s ∈ S. (a ∈ s) (18)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

10 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

3.2.3. Packets. Next to its origin and destination, little more information needs to be encoded into
a packet: an identifier (as an Integer) and a generic content. Both are mostly of use later for stateful
firewalls and can be set to some default dummy value when restricting testing to stateless firewalls.
In the end, a packet is

type_synonym (α, β) packet = id × (α ::adr) × (α ::adr) × β content (19)

Further, there exist projectors, for example, getId, for accessing the components of a packet.

3.3. A model of stateless firewall policies

A firewall policy takes as input a packet and returns a decision value (either allow or deny) and a
possibly transformed packet (in the case of NAT).

On the basis of the core language provided by the UPF, domain-specific combinators for defining
rules for firewalls and for NAT done by routers are introduced. While some of the rules are for all
kinds of packets, others are only applicable for more specific address representations, for example,
only those containing port numbers.

3.3.1. Stateless packet filtering rules. A stateless packet filtering rule takes as input a network
packet and either allows or denies this packet. There is no address translation or anything similar
performed. Thus, the type of such a rule is

(α, β) packet 7→ unit (20)

where the type unit consists of only one element written ‘()’. It is used for policies having no special
output apart from the decision.

The default operator that denies all traffic can be defined directly (the dual DU is defined
analogously):

definition DU :: (α, β) packet 7→ unit
where DU = λ x. xdeny ()y

(21)

Starting from these elementary policies, more complex combinators can be defined. An example
of a typical combinator for such a policy is the following one that can be used to model a rule
that allows all the traffic between two networks. It is defined by a domain restriction of the allow-
everything combinator to those packets having their origin (src_net) and destination (dest_net) in
the given networks:

definition allow_from_to ::α ::adr net⇒ α ::adr net⇒ (α, β) packet 7→ unit
where allow_from_to src_net dest_net

= {(pa | getSrc pa @ src_net) ∧ (getDest pa @ dest_net)} / allow_all

(22)

where getSrc (getDest) allow to access the source (destination) address of a packet. This combinator
can then be used to formalize a rule such as

allow_from_to intranet internet (23)

A stateless packet filtering policy usually consists of an often very large number of such rules,
which are processed in a first-fit manner and a default rule being used when no other rule matches.
The operation override _⊕ _ ::α ⇀ β ⇒ α ⇀ β ⇒ α ⇀ β (cf. Section 2.1) allows elementary
policies (rules) to be combined to more complex ones in a first-fit manner, for example,

p1⊕ · · ·⊕ pn⊕DU (24)

where the last rule serves as ‘catch-all’ (for a given function f producing the default return value, if
any) that, in this case, denies everything.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 11

The configuration table of Table I is ready to be translated one-to-one into the combinator
language of the model just presented:

definition Policy = allow_port_from_to internet dmz tcp 25
⊕ allow_port_from_to internet dmz tcp 80
⊕ allow_port_from_to intranet internet udp 8080
⊕ allow_port_from_to intranet dmz tcp 25
⊕ allow_port_from_to dmz inranet tcp 993
⊕ allow_port_from_to internet intranet udp 8081
⊕DU

(25)

where allow_port_from_to allows traffic from one network to another network only for a specific
protocol and destination port. This combinator is defined similarly to allow_from_to (Fact 22).

3.3.2. Network address translation rules. Common firewalls or routers often perform some kind of
NAT, where either the source or the destination address of a packet is transformed when passing the
firewall. There is a wide range of possible transformations, for example,

• all IP addresses in a given range are transformed to a static one,
• all IP addresses in a given range are transformed (pretty randomly) to a pool of addresses, or
• all IP addresses in a given range are transformed, as well as their ports. The latter is called

PAT.

The policy type for these kinds of rules is

type_synonym NAT_Policy = (α ::adr, β) packet 7→ (α, β) packet set (26)

These rules allow all packets in their domain, but additionally return a set of packets in their
decision, which denote the valid packet transformations. A received packet is legitimate if it matches
any element of this set. A typical NAT rule, performing NAT to pool transformation on the source
address, is

definition nat2pool_IntPort ::address set⇒ address set
⇒ (adrIP, β) packet 7→ (adrIP, β) packet set

where nat2pool_IntPort srcs transl =

λ p. if (getSrcAdr p) ∈ srcs
then xallow{(i, (s1, s2), d, c) |

(i = getId p ∧ s1 ∈ transl ∧ s2 = getSrcPort p
∧ d = getDest p ∧ c = getContent p)}y

else ⊥

(27)

3.3.3. Combining policies. A real firewall usually performs several activities in parallel, for
example, filtering and network address translations. If such a policy needs to be tested, it is necessary
to generate test data for a combination of policies of a different type.

In the ‘policy-as-function’ view, policies are easy to combine using (higher-order) combinators.
There are many generic combinators provided for common situations. As an example, there is the
parallel combination of two policies, inspired by parallel composition of automata: each policy
makes an (independent) step, and the result is a step relation on the Cartesian product of states.
There are several different combinators, depending how the filtering decisions are supposed to be
combined. Consider, for example, _⊗2 _ (parallel-2), keeping the filtering decision of the second

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

12 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

policy only:

definition _⊗2 _ :: (α 7→ β)⇒ (γ 7→ δ)⇒ (α× γ 7→ β × δ)
where p1⊗2 p2 = λ(x, y). (case p1 x of

xallow d1y⇒ (case p2 y of

xallow d2y⇒ xallow(d1, d2)y
| xdeny d2y⇒ xdeny(d1, d2)y
| ⊥ ⇒ ⊥)

| xdeny d1y⇒ (case p2 y of

xallow d2y⇒ xallow(d1, d2)y
| xdeny d2y⇒ xdeny(d1, d2)y
| ⊥ ⇒ ⊥)

| ⊥ ⇒ ⊥)

(28)

It may be necessary to adapt the input type or output type of a policy to a more refined context.
This boils down to variants of functional composition for functions that do not have the format of
a policy. With the standard function composition _ ◦ _, it is possible to change the input domain of
a policy p :: (β 7→ γ) to p ◦ f :: (α 7→ γ), provided that f is a coercion function of type α⇒ β. The
same effect can be achieved for the range with the ◦f -operator.

These combination combinators can be used to combine a stateless packet filtering policy with a
policy governing network address translation. Assume the policies have the following type:

Filter :: (adrIP, β) packet 7→ unit (29)
and a network address translation policy of type:

NAT::(adrIP, β) packet 7→ ((adrIP, β) packet) set (30)

Their combination is
definition Policy :: (adrIP, β) packet 7→ ((adrIP, β) packet) set
where Policy = (λ(x, y). x) ◦f (NAT⊗2 Filter) ◦ (λx. (x, x))

(31)

The first coercion function throws away the return value of the second policy (which is just unit),
the second one assures that instead of a pair of packets for the input, only one is kept.

3.4. Testing stateless firewalls

The test specification for the stateless firewall case is now within reach: for every packet x, the
firewall under test (FUT) has the same behaviour as specified in the just formalized policy:

testspec test: FUT x = Policy x (32)

Usually, this test specification is extended by predicates ensuring that only valid test data (e. g.
no negative numbers in the IP addresses) will be generated, and that the content fields will be set to
some default value. Another predicate can ensure that only packets which cross network boundaries
are considered.

Before applying the test case generation algorithm, (recall Section 2.2), the test specification
needs to be transformed. The granularity of the test space partitioning is determined by how much
of the definition are unfolded before the algorithm is applied; for example, the networks could be
kept closed, or completely unfolded. Much more test data would be produced in the latter case.

The algorithm will return a set of abstract test cases. Test data generation instantiates each of them
to concrete values using constraint and random solving mechanisms. Next are two examples of test
data for a filtering policy, where the first is a packet meant to be rejected by the firewall, while the
second one should be passed:

1. FUT (12, (2, 1, tcp), (1002, 80, tcp), content) = xdeny ()y
2. FUT (8, (1002, 1,udp), (2, 8080,udp), content) = xallow ()y

Such test data can be exported and used as input for a tool that executes the tests on a real network
setup (the test driver). This is shown in Section 6. Overall, testing stateless firewalls is quite similar
to classical unit testing of stateless software.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 13

4. NORMALIZING POLICIES

A common characteristic of ‘real’ policies is that they consist of a large number of rules. To
overcome the inherent state explosion of the underlying model-exploration technique, a few new
optimisation ideas have to be added; as will be seen later, these will also help to overcome the
apparent drawback of using a powerful modelling language such as HOL, which is more distant
to efficient computation and deduction than, say, a limited form of first-order logic with suitable
instrumentation (‘triggers’) for, say, an SMT solver such as Z3 [18].

A key observation is that semantically equivalent policies can be formulated in many syntactically
different ways. Moreover, parts of them can be redundant. Consider the following case, where
allow_port_from_to is the combinator allowing all packets of a specific protocol on a specific
destination port between two networks:

lemma redundant_allowPort:
deny_from_to x y⊕ allow_port_from_to x y pr po = deny_from_to x y

(33)

The expression on the left corresponds roughly to a nesting of if-then-else-expressions where the
inner branches of the second branch are never reached: consequently they represent unfeasible parts
that would, if not eliminated beforehand, eventually result in path conditions (in the model) that
have to be proven unfeasible in the general CNF-normalization procedure. The experiments show
that in practice these situations occur often in various different disguises.

Of course, the rule shown previously could be used directly by the Isabelle simplifier (a rewriting-
based decision procedure); however, it turns out that a certain strategy in applying these and similar
rules is necessary and a non-deterministic simplification procedure is insufficient for this purposes.

In the following, a normalization procedure for firewall policies is presented that consists of
nine different policy transformation procedures. First, an abstract syntax for the firewall policy
language is presented, and next transformations on policies are reformulated as a particular syntactic
transformation process. The advantage of this technique—sometimes called reification in the
literature—is that local transformations on the syntax as well as the entire normalization strategy
can be defined inside HOL, as an ordinary function definition, and semantical correctness of local
transformations as well as the entire normalization can be verified by formal proof.

4.1. Reification of policies and correct policy transformations

For the transformations, an abstract syntax called policy syntax is introduced. For the sake of
conciseness, only a few core combinators are presented here.

datatype (α, β) Comb = DenyAll
| DenyFromTo α α

...
| AllowPort α α β
| Conc ((α, β) Comb) ((α, β) Comb)

(34)

The infix notation _⊕S _ is used for the constructor Conc _ _. This abstract syntax is linked to the
semantics described in the previous sections by a semantic interpretation function C:

fun C::(adrIP net,protocol× port) Comb⇒ (adrIP,Content) packet 7→ unit
where
C DenyAll = DU

C (DenyFromTo x y) = deny_from_to x y
...

...
...

C (AllowPort x y (pr, po)) = allow_port_from_to x y pr po
C (x⊕S y) = C x⊕C y

(35)

In the following, the concept of a policy transformation as well as the semantic correctness of a
policy transformation is introduced:

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

14 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Definition 4.1 (Policy transformation)
A policy transformation T for a policy syntax P :: (α, β) Comb is a function taking P as input and
returning a list [P1, . . . , Pn] :: (α, β) Comb list, which is interpreted as P1 ⊕S · · · ⊕S Pn, and where
the domains of all Pi are pairwise disjoint, with the possible exception of Pn.

Definition 4.2 (Semantic correctness of policy transformations)
A policy transformation T is correct if and only if for all policy syntax P :: (α, β) Comb it holds:

C P = foldl (_⊕ _) � (map C (T P))
= �⊕(C P1)⊕ · · ·⊕(C Pn) where T P = [P1, . . . , Pn],

(36)

using the standard map and fold functions on lists and the empty map �. As abbreviation for
transforming a list of policy syntax into a single policy, the following operator is defined

definition list2policy l = foldl (_⊕ _) � l (37)

The normalization procedure is constructed from correct transformation rules only; it is a particular
advantage of the approach that the correctness of the entire procedure can be, and is, formally
verified.

4.2. Technique of normalization

There are in general three kinds of strategies a (correct) transformation procedure might employ to
ensure the transformed policy is better suited for test case generation:

1. Eliminate redundant rules: rules that are shadowed by others are never fired and can therefore
be removed from the model as redundant.

2. Combine similar rules to a single one: for example, instead of a sequence of rules for one
particular element, a single rule might allow a range containing all these elements.

3. Pre-partition the test space: often, policies consist of several independent parts, which might
be processed individually. For example, rules P1 and P2 might partially overlap, such that
cutting the domain into only P1, only P2, and mixed is advantageous.

The first point can be justified in all cases semantically, because it is easy to see that it does not even
change the test cases or partitions because only vacuous (empty) test partitions are removed. This
is in contrast to the second one, where the price has to be payed that test partitions are joined and
therefore (because for each non-vacuous partition, one test is selected) the coverage with respect to
the original policy is reduced. The last point, finally, is very domain-specific and must be applied
with care.

As mentioned earlier, only correct transformations are used. For a number of rules, however,
correctness can only be established under some preconditions of the target to be transformed; for
this reason, the overall normalization must be organized into a total of nine phases, where each
phase establishes stronger invariants than the previous one. This also explains why an organization
into just a set of rewriting rules to be put in the Isabelle simplifier is impossible and must be replaced
by a process that applies these rules according to a strategy.

Furthermore, the transformation procedure is presented in a way such that it can be integrated
into the HOL-TESTGEN methodology. To achieve a pre-partitioning of the test space, the test
specification must be rewritten into a set of test specifications, where each element considers only
one part of the original specification. Technically, this can be achieved by rewriting the original
test specification into a conjunction, which is later transformed into a sequence of subgoals, each
processed individually by the test case generation algorithm. This technique is only correct if it can
be assured that each test specification is creating test cases for the relevant domain only. From this
fact stems the requirement that the domains of the sub-policies need to be pairwise distinct.

Recall that in general the format of a test specification is as follows:

P x =⇒ FUT x = Policy x (38)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 15

First, the following function is required, which transforms the conclusion of such a test
specification into a conjunction of individual specifications if provided a list of policies.

fun FUTList :: (α 7→ β)⇒ α⇒ (α 7→ β) list⇒ bool where
FUTList FUT x(p#ps) = (x ∈ dom p −→ (FUT x = p x))

∧ (FUTList FUT x ps)
FUTList FUT x [] = true

(39)

The theorem

theorem distrFUTL:
assumes a1: x ∈ dom P and a2: (list2policy PL) = P
and a3: FUTList FUT x PL

shows FUT x = P x

(40)

is most crucial for the entire technique: it can be applied in a test specification to execute the
transformation of the test specification into a conjunction of test specifications. Because this is stated
and proved as a theorem, the transformation is guaranteed to be correct, given that two assumptions
(preconditions) hold:

(a1) the domain of the original policy must be universal (the policy must be defined everywhere,
that is, not yielding ⊥) and

(a2) the semantical equivalence of the original policy with the list of sub-policies as stated in
Fact 36 must hold.

For the common special case where there is a default rule at the end of the policy, an alternative
version of FUTList exists, ensuring that the domain of the last sub-policy is the universe minus the
domains of the other sub-policies.

In the following, first some elementary transformation rules are presented, followed by a detailed
description of one notable transformation procedures. Next, a complete normalization procedure for
stateless firewall policies consisting of a couple of transformation functions applied in sequence is
presented. Finally, the effect of the normalization procedure on a small example is presented. The
section concludes with observations on coverage.

4.3. Elementary transformation rules

A large collection of elementary policy transformation rules can be proved correct. For example,
it can be shown that a shadowed rule is redundant, the _⊕S _ operator is associative, and in many
cases, commutativity holds:

C (DenyAll⊕Sa) = C DenyAll (41)
C((a⊕S b)⊕S c) = C(a⊕S (b⊕S c)) (42)
C(AllowPort x y a⊕S AllowPort x y b) = C(AllowPort x y b⊕S AllowPort x y a) (43)

C(DenyFromTo x y ⊕S DenyFromTo u v)
= C(DenyFromTo u v ⊕S DenyFromTo x y)

(44)

dom(C a) ∩ dom(C b) = {} =⇒ C(a⊕S b) = C(b⊕S a) (45)

The proofs of these theorems are trivial to establish by the simplifier provided in Isabelle.

4.4. A transformation procedure

Here, one particular transformation procedure is presented. The procedure takes a list of single
rules and a list defining an ordering on networks as input, and returns an ordered list consisting of
the same rules.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

16 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

The sorting phase is formalized as a function mapping a list of syntactic policy operators (called
combinators) to a list of combinators sorted according to the following principles:

• If there is a DenyAll, it should be at the last place.
• Rules dealing with the same set of networks should be grouped together, with the DenyAll’s

coming after the AllowPort’s.

These principles motivate a pre-ordering, which is not unique in general, but which can be completed
to an ordering (satisfying reflexivity, transitivity and anti-symmetry) under certain side conditions
to be discussed later. Formally, a smaller relation is defined on policy syntax:

fun smaller :: (α set) list⇒ (α, β) Comb⇒ (α, β) Comb⇒ bool where
smaller l x DenyAll = (x 6= DU)
smaller l DenyAll x = false
smaller l x y = (x = y) ∨

if bothNet x = bothNet y
then casex of

DenyFromTo a b⇒ y = DenyFromTo b a
| _⇒ true

else
(
pos (bothNet x) l

)
≤
(
pos (bothNet y) l

)
(46)

Here, bothNet returns the set of the source and destination network of a rule, and pos returns the
position of an element within a list. The variable l in the aforementioned definition is a list of
network sets. The ordering of this list determines which group of rules is treated as smaller than
another. For the correctness of the transformation, the concrete ordering of this list is irrelevant,
but it is required that all the sets of network pairs of a policy are in this list. This requirement is
formalized in a predicate called all_in_list. There are circumstances not directly related to testing,
where the ordering of this list might become relevant. This would allow one to transform a policy
into a semantically equivalent one, where certain classes of rules (for example, those dealing with
the most frequently appearing traffic) will be considered earlier by the firewall.

Instead of smaller l x y it is also possible to write x ≤l y. With this ordering, a version of
the sorting function can be supplied—similar to Fact 3—with the ordering as explicit argument
sort ≤l S; this represents the core algorithm of the transformation phase. Of course, in practice, a
more efficient algorithm than the just insertion sort shown in this presentation is chosen.

All the proofs about the semantical correctness of the sorting transformation, some of which are
outlined in the succeeding text, merely require the fact that the sorting algorithm returns a sorted
list, such that any sorting algorithm may be used as long as it can be proved that it is returning a list
that is sorted according to the aforementioned sorted definition. One of the main prerequisites for
such a proof is to show that the ordering relation is transitive, reflexive and anti-symmetric. This is
true as long as all the network pairs that appear in the policy are in the list l.

Next, one has to prove that the sorting transformation is semantics-preserving. The following
assumptions are made about the input policy:

• singleComb: the policy is given as a list of single rules.
• allNetsDistinct: all the networks are either equal or disjoint.
• wellformed_policy1: there is exactly one DenyAll and it is at the last position.
• wellformed_policy3: the domain of any AllowPortFromTo rule is disjoint from all the rules

appearing on the left of it.

In the next section, it is shown that these conditions always hold at that specific point in the
normalization algorithm. To facilitate the proofs, there exists a matching function that returns xry
for the first rule r in a policy p that matches packet x and ⊥ if there is no such rule. To prove the
semantic correctness of sort, that is to prove that the application of the sort transformation does
not change the semantics of the policy, an indirect approach is applied. First, it is shown that for all
packets x, and for all policies p and s that satisfy the conditions previously listed, and that have the

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 17

same set of rules (but not necessarily in the same order), the first rule that matches x in p is the same
as in s.

theorem C_eq_Sets_mr:
assumes sets_eq: set p = set s
and wp1_p: wellformed_policy1 p and wp1_s: wellformed_policy1 s
and wp3_p: wellformed_policy3 p and wp3_s: wellformed_policy3 s
and aND: allNetsDistinct p
and SC: singleComb p

shows matching_rule x p = matching_rule x s

(47)

In the succeeding text, a proof sketch of the aforementioned theorem (Fact 47) is presented, which
is also proven formally in Isabelle. A case distinction over matching_rule x p results in two cases:
this expression can either be ⊥ or xyy:

1. ⊥. This case is shown by contradiction. As there is a DenyAll, which matches all packets, the
matching rule of x cannot be ⊥.

2. xyy. This is shown by case distinction on y, that is, on the matching rule. By definition of the
Comb datatype, there are four possibilities:
• DenyAll: if the matching rule is DenyAll, there is no other rule in p that matches, as it

is necessarily the rule considered last. Thus, as the two sets are equal, there is no other
rule in s that matches either. As DenyAll is in s, this has to be the matching rule in s.

• DenyFromTo a b: if this is the matching rule in p, there cannot be another rule in p
that matches: as the networks are disjoint and the only DenyAll is the last considered
rule, the only possibility is an AllowPort a b c, for some c. However, because of
wellformed_policy3, such a rule can only be on the left of the matching rule as their
domains are not disjoint. But if it were on the left, the allow-rule would be the matching
rule. Thus, by contradiction, there is no such rule. Because such a rule does not exist in
p, it does not exist in s either. As DenyFromTo a b is in s, this has to be the matching
rule in s.

• AllowPort a b c: the proof of this subgoal is very similar to the previous one: the only
alternative rule that could match is the corresponding DenyFromTo a b, but if this
rule appears on the left of the matching rule; this would contradict the wellformedness
conditions. Therefore, this has to be the matching rule also in s.

• a⊕S b: this case is ruled out by the wellformedness conditions.

The formal proof of this lemma can be found in the appendix. Having proofs that any sorted list of
rules conforms to the conditions after sorting if the input list does, the main correctness theorem of
the sorting transformation is established:

lemma C_eq_sorted:
assumes ail: all_in_list p l
and wp1: wellformed_policy1 p
and wp3: wellformed_policy3 p
and aND: allNetsDistinct p
and SC: singleComb p
shows C (list2policy(sort (≤p) l)) = C(list2policy p)

Thus, there is a sorting transformation for policies that is proven to be semantics-preserving given
that some well-specified conditions hold for the input policy.

4.5. The normalization procedure

The sorting transformation is one part of a full normalization procedure that is presented next. The
procedure is organized into nine phases in total.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

18 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

The result of the nine phases is a list of policies, in which:

• each element of the list contains a policy that completely specifies the blocking behaviour
between two networks, and

• there are no shadowed rules.

This result is desirable because the test case generation for rules between networks A and B
is independent of the rules that specify the behaviour for traffic flowing between networks C and
D. Thus, the different segments of the policy can be processed individually. The normalization
procedure does not aim at minimizing the number of rules. While it does remove unnecessary ones,
it also adds new ones, enabling a policy to be split into several independent parts.

The following two restrictions are imposed on the input policies:

• Each policy must contain a DenyAll rule. If this restriction was to be lifted, the insertDenies
phase would have to be adjusted accordingly.

• For each pair of networks n1 and n2, the networks are either disjoint or equal. If this restriction
was to be lifted, some additional phases would be required before the start of the normalization
procedure presented in the succeeding text. This rule would split single rules into several
rules by splitting up the networks such that they are all pairwise disjoint or equal. Such
a transformation is clearly semantics-preserving and the condition would hold after these
phases.

The full procedure is defined as follows:

definition normalize p = (removeAllDuplicates ◦ insertDenies
◦ separate ◦ (sort ≤Nets_List p)
◦ removeShadowRules2 ◦ remdups
◦ removeShadowRules3 ◦ insertDeny
◦ removeShadowRules1 ◦ policy2list) p

(48)

The nine transformation phases of the normalization procedure and their preconditions are next
discussed in more detail. The preconditions are necessary to establish the correctness theorem for
the overall procedure:

theorem C_eq_normalize:
assumes a1: member DenyAll p and a2: allNetsDistinct p

shows C(list2policy(normalize p)) = C p
(49)

The proof of this theorem combines the local correctness results of the single transformations (e. g.
the sorting phase result described in the previous section) while discharging their preconditions
using invariance properties of the previous transformations. The nine transformations are as follows:

1. policy2list: transforms a policy into a list of single rules. The result does not contain policies
composed via _⊕S _, that is, the property singleComb is established.

2. removeShadowRules1: removes all the rules that appear after a DenyAll. The transformation
preserves singleComb and establishes wellformed_policy1, stating that there is a DenyAll at
the end of the policy.

3. removeShadowRules3: removes all rules with an empty domain; they never match any
packet. It maintains all previous invariants and does not establish any required new one.

4. remdups: removes duplicate rules. Only the first rule appearing in the list remains. As policies
are evaluated from left to right, it can easily be shown that this transformation preserves the
semantics.

5. removeShadowRules2: removes all rules allowing the traffic on a specific port between two
networks, where an earlier rule already denies all the traffic between them. This function
maintains the earlier invariants, and establishes wellformed_policy3, the invariant necessary
for the sorting function to be correct. It ensures that the domain of an AllowPortFromTo rule
is disjoint from all the rules appearing on the left of it.

6. sort: maintains the previous invariants and, besides the sorted invariant, also establishes an
important new one: the rules are grouped according to the two networks they consider.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 19

7. separate: transforms the list of single combinators into a list of policies. Each of those
policies contains all the rules between two networks (in both directions). While singleComb
is invalidated by this transformation, all the others are maintained. Two important additional
properties hold after this transformation:

• OnlyTwoNets: each policy treats at most two different networks.
• separated: the domains of the policies are pairwise disjoint (except from DenyAll). This

follows from the fact that the rules were already grouped.

8. insertDenies: is the only phase where additional rules are inserted. At the end of each policy,
the two rules denying all traffic between those two networks in both directions are added. As
new rules are added here, the proof of semantic equivalence is relatively involved. The main
part consists of proving the property that separated is maintained with this transformation.
This phase is only semantics-preserving because of the initial requirement that the policy has
a DenyAll. Only after this phase the traffic between two networks is characterized completely
by the corresponding policy.

9. removeAllDuplicates: removes superfluous duplicate DenyFromTos introduced by the
previous phase.

After the last phase, the result is a list of policies that satisfies the requirements stated in the
beginning of this section. Using the correctness of the transformations, it is straightforward to prove
semantic equivalence of the full normalization. In the end, the individual elements of the returned
list are policies on their own and can be processed individually by HOL-TESTGEN. Thus, the set of
test cases for the full policy is decomposed into the set of test cases of the smaller policies.

4.6. Example

In the following, the effect of the normalization procedure on the running example policy (Fact 25)
is presented. Recall that the original policy contains seven rules restricting the traffic between three
networks; After applying the normalization procedure, there are the following policies:

1. AllowPort intranet dmz (tcp, 25) ⊕S AllowPort dmz intranet (tcp, 25)
⊕S DenyFromTo dmz intranet ⊕S DenyFromTo intranet dmz

2. AllowPort intranet internet (udp, 8080) ⊕S AllowPort internet intranet (udp, 8081)
⊕S DenyFromTo intranet internet ⊕S DenyFromTo internet intranet

3. AllowPort internet dmz (tcp, 80)⊕S AllowPort internet dmz (tcp, 25)
⊕S DenyFromTo internet dmz⊕S DenyFromTo dmz internet

4. DenyAll

Summing up, the process results in four policies with a total of 13 rules. The number of generated
test cases shrinks from 60 to 12, the required time reduces from 400 to about 2 seconds (including
normalization).

4.7. Distributivity of transformations

Firewall policies are often created by a parallel composition of smaller policies. As this might
lead to a large state explosion hindering efficient test case generation, the question arises how
transformations can be used together with parallel compositions.

Of course, it is possible to devise a transformation procedure for a parallel combined policy.
However, this is in many cases not easy achievable and not compatible with the goal of a modular
modelling approach. Much better would be to have transformation procedures for the smaller policy
parts and the means to transfer these transformations over parallel compositions.

Transformation procedures can be distributed over parallel compositions such as _⊗2 _ (Fact 28)
thanks to distributivity laws holding over these operators:

(P1⊕P2)⊗2Q = (P1⊗2Q)⊕(P2⊗2Q) (50)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

20 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Assume a policy under test being created as a combination of policies P and Q, and a correct
transformation T transforming P into the list [P1, P2, . . . , PN]. Then, for policies that are combined
in parallel such as P ⊗2Q, the following theorem holds:

(CP)⊗2Q = list2policy[CP1⊗2Q, . . . ,CPN ⊗2Q]

This gives rise to a transformation strategy for policies consisting of many parts executed in
parallel: define transformation procedures for the individual policies, which in the end will lead
to a transformed combined policy. Of course, the number of final sub-policies might grow very
large when transformation procedures are being executed on several constituent policies, as all the
sub-policies are paired. For this reason, it is sensible to have transformations which are similar in
the sense that they create similar domains for their sub-policies. In that way, most domains of the
combined sub-policies are empty, and those elements can be eliminated later.

4.8. Excursion: test coverage, test size and policy normalization effects

HOL-TESTGEN is centred around the idea to construct a test for each feasible (i. e. satisfiable) test
case; this corresponds to a one-to-one non-empty equivalence class coverage in the sense of the
ISO 29199 specification [29, par 5.2.1.3, case 1.a]. The standard states explicitly its unawareness
on syntax testing coverage criteria; in the case of HOL-TESTGEN, [7] propose the notion of a one-
to-one-coverage to the normal form TNFE

d , where d is the abstract syntax tree depth up to which
variables belonging to a given set of types are split.

The question arises, even if policies are shown to be semantically equivalent, what is the impact
on the set of generated tests? Experiments (Section 7) reveal that the tests generated from policies
and their optimized counterparts are obviously not identical; it can therefore not be taken for granted
that the equivalence partitioning before and after normalization is related.

To shed some light on the nature of the optimizing effect of policy normalization, the effect of the
generic equivalence partitioning process in the specific domain of security policies is studied. The
simplest UPF constructors for elementary UPF policies are �, p(x 7→ t), and p1⊕ p2. A policy p like
�(x1 7→ t1)(x2 7→ t2)(x3 7→ t3) is converted by unfolding definitions (Section 2.1) to

λ y. if y = x1 then xt1y else if y = x2 then xt2y else if y = x3 then xt3y else⊥ (51)

that is, a cascade of nested conditional expressions. As part of the background theory E, test case
generation uses case split rules for conditionals such as

P (if C then D elseE) ≡ (C → P (D) ∧ (¬C → P (D)) (52)

which brings the aforementioned Fact 51 for the test specification p z = r into the form:

z = x1 → xt1y = r ∧
z 6= x1 ∧ z = x2 → xt2y = r ∧
z 6= x1 ∧ z 6= x2 ∧ z = x3 → xt3y = r ∧
z 6= x1 ∧ z 6= x2 ∧ z 6= x3 → ⊥ = r

(53)

which is close to a CNF with four conjoints, that is, four test cases. Domain-specific policy
combinators such as allow_port_from_to are also built from conditionals, only that the condition
is significantly more complex and involves arithmetic and set theoretic reasoning. For the override,
the conditionals of the one policy are crafted into the final else branch of the other; this gives rise to
the following simple meta-function that provides a tight bound for the number of test cases implied
by a policy: |Jp(x 7→ t)K| = |JpK|+ 1 and |Jp1⊕ p2K| = |Jp1K|+ |Jp2K|. It is easy to check that the
operators of the product family such as _⊗2 _ and the sequential policy compositions family such
as _ op _ behave multiplicative on test cases, which explains the exponential effect over the length
of test sequences over stateful policies to be discussed in the next section.

From this perspective, it is easy to see that a policy represents (large) nested conditional
expressions, and HOL-TESTGEN’s CNF-computation constructs all path conditions in the model.
The generic normal form TNFE

d implies for d = 2 for a policy α 7→ β path coverage, provided
Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 21

that β is simple and not again a datatype requiring case splitting. Thus, for small d and a fixed E
(essentially, HOL + UPF + domain-specific combinator theory), the result is a natural interpretation
of the generated tests. The test hypothesis ([7] and [22]) underlying the test selection are somewhat
‘reasonable’ assumptions. This is especially true for the uniformity hypothesis (here, pick one
instance of the path condition; if the test passes, the system conforms to the specification for all
instances of this path). For the regularity hypothesis, there is no need because for a stateless firewall,
the involved data structures of policies are all non-recursive.

After explaining the construction of the equivalence classes, that is, the test cases, as clauses in
the CNF-derivation of policies, the question how the optimization affects their number and relative
size can be addressed. The following situations may occur:

1. a policy is shadowed or a duplicate. This corresponds to empty equivalence classes, that is,
conjoints that reduce to true because the premise of the implications become false in the
underlying theory E. This is the most common case, which does not change the number of
feasible test cases at all.

2. two policies p1 and p2 are ‘adjacent’ equivalence classes, that is, there is a more general one
px that subsumes both and the union of the domains of both are exactly dom px. In this case,
the number of test cases decreases by one.

3. two policies p1 and p2 overlap, that is, dom p1 ∩ dom p1 6= {}. In this case, policy splitting
may be applied that transform p1⊕ p2 into p′1⊕ p′2⊕ p′3 such that the domains of the p′i are
distinct. The number of test cases increases by one.

The key observation is now that the latter situation called policy split may only arise a small and
bounded number of times during the process.

Generally speaking, the number of policy splits depends on the number of networks and the
number of policy rules R. In particular, the number of splits grows, firstly, at most linearly with the
number of networks S, that is, specified networks are never split into smaller units. Secondly, every
rule of a policy can at most overlap with all other rules. Thus, the number of policy splits grows at
most with N2 of the initial policy. In case there are more overlapping rules than networks S, there
must be shadowed or duplicates rules. Thus, in this case the overall number of policy splits is at
most equal to the number of networks S. Similarly, if there are more networks as overlapping rules,
only the overlapping rules are split.

Thus, the number of equivalence classes grows after normalization in the worst case by at most
min(S,N2) and decreases in the average case substantially. In most practical scenarios, a policy
contains much more rules than networks, thus the number of splits is usually restricted by S.

Summing up, the selected test data may be different, but the equivalence partitioning after
optimization is related in the following way: in general, it is a coarser partitioning in the sense
that non-empty partitions in original policy are either maintained or fused with adjacent partitions
during optimization. However, there is a usually small number of exceptions where an equivalence
class is split into smaller classes during this process.

5. STATEFUL FIREWALLS

The stateless scenario just introduced does not solve all security problems of modern network
infrastructures. There are several network protocols that require the firewall to observe the internal
state of a protocol run, and therefore require a stateful firewall. A stateful firewall keeps track
of the existing connections and can adapt its filtering behaviour accordingly. As an example, the
well-known FTP protocol is based on a dynamic negotiation of a port number, which is then
used as channel to communicate the file content between the sender and the receiver. Thus, a
stateless firewall can only provide a very limited form of network protection if protocols such
as FTP are involved, whereas a stateful firewall observing the inner state of FTP sessions can
open the negotiated port dynamically. Similarly, modern VoIP protocols as well as protocols used
for streaming multimedia data use dynamically negotiated protocol parameters for optimizing the
network load. Testing stateful firewalls, where the filter functions change, requires test sequence
generation and the means to model and reason about states and state transitions.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

22 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

In the following, the method for sequence testing in the HOL-TESTGEN framework is presented.
For this purpose, first the foundational setting of test sequences in monads are presented, followed
by how to represent stateful policies as abstract specifications, how to model test purposes to slice
down the input trace space and finally how to generate test cases for this.

The stateful FTP policy is modelled in a deterministic way: the client explicitly asks for a port
number. This behaviour is called active FTP in the protocol specification [36]. Because of the lack of
space, the presentation is limited to this protocol variant. Ways to model other variants are described
in [6], where FUT -controlled non-deterministic behaviour is represented by explicit variables that
get replaced on the fly by concrete values during test execution. An alternative would be to admit
the Hilbert-choice operator Somex. P x that chooses an arbitrary x satisfying P if it exists, and
an undefined value otherwise. In that model, however, the constraint-resolution/data selection can
no longer be done completely during the test case generation (hence, statically), rather it must be
finished at test execution time, where observed behaviour leads to new constraints that eventually
should eliminate Hilbert-choices in the constraint-list of a test run on the fly. A detailed description
of this technique called online testing is out of the scope of this paper.

5.1. Sequence testing in HOL

As HOL is a purely functional specification formalism, it has no built-in concepts for states and state
transitions. Using monads—a concept made popular for purely functional programming languages
by [35]—is one way to overcome this apparent limitation. Abstractly, a monad is a type constructor
with a unit and a bind operator enjoying unit and associativity properties. Because of well-known
limitations of the Hindley-Milner type system, it is not possible to represent monads as such in HOL,
only concrete instances. The state-exception monad is one such instance best fitted for this purpose,
because it precisely models partial state transition functions of type

type_synonym (o, σ) MONSE = σ ⇀ (o× σ) (54)

Using monads, programmes under test, PUT , can be seen as i/o stepping functions of type
ι⇒ (o, σ) MONSE, where each stepping function may either fail for a given state σ and input ι,
or produce an output o and a successor state.

The usual concepts of bind (representing sequential composition with value passing) and unit
(representing the embedding of a value into a computation) are defined for the case of the state-
exception monad as follows:

definition bindSE :: (o, σ) MONSE ⇒ (o⇒ (o′, σ) MONSE)⇒ (o′, σ) MONSE

where bindSE fg = λσ. case fσ of ⊥ ⇒ ⊥
| x(out , σ′)y⇒ g out σ′

(55)

and
definition unitSE ::o⇒ (o, σ) MONSE

where unitSE e = λσ. x(e, σ)y
(56)

x← f ; g is written for bindSE f(λx. g) and return for unitSE. On this basis, the concept of a valid
test sequence (no exception, P yields true for observed output) can be specified:

σ |= o1 ← PUT i1; . . . ; on ← PUT in; return(P o1 · · · on) (57)

where σ |= m is defined as (m σ 6= ⊥ ∧ fst(pm σq). For iterations of i/o stepping functions, an
mbind operator can be used, which takes a list of inputs ιs = [i1, . . . , in], feeds it subsequently
into PUT and stops when an error occurs. Using mbind, valid test sequences for a programme
under test (PUT) satisfying a post-condition P can be reformulated by

σ |= os ← mbind ιs PUT ; return(P os) (58)

which is the standard way to represent sequence test specifications in HOL-TESTGEN. The
construction can be used both for specification purposes (in this case, the behaviour of PUT must be

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 23

constrained by a specification and P os is typically of the form os = X where X is a free variable
for instances of valid runs of PUT) as well as code included into the test driver and run in the test
execution. In the latter case, PUT must be a free variable marked in the test case generation phase
to designate the programme under test.

5.2. A stateful firewall model

In general, policies based on a state σ are modelled as follows:

• Model the policy behaviour based on a given state.
• Model state transitions as a partial function to be applied whenever the policy allows an access.
• Model state transitions to be applied whenever the policy denies an access.
• Use the UPF operator _⊗∇ _ to combine the three parts in parallel.

The operator _⊗∇ _ is defined as follows:

definition _⊗∇ _ :: (α ⇀ γ)× (α ⇀ γ)⇒ δ 7→ β ⇒ (δ × α) 7→ (β × γ)
where (A,D)⊗∇ p = λx. case p(fst x) of

xallow yy⇒ (case(A(sndx)) of
⊥ ⇒ ⊥
|xzy⇒ xallow(y, z)y)

|xdeny yy⇒ (case(D(sndx)) of
⊥ ⇒ ⊥
|xzy⇒ xdeny(y, z)y)

|⊥ ⇒ ⊥

(59)

In the end, a stateful policy, also called a transition policy, has the following format:

(ι× σ) 7→ (o× σ) (60)

Such transition policies are isomorphic to state-exception monads introduced before and there
are two conversion functions linking them. For example, to transform a transition policy into a
state-exception monad, the following operator can be used:

definition p2M :: (ι× σ) 7→ (o× σ)⇒ ι⇒ (o decision, σ) MONSE

where p2M p = λ ι σ. case p(ι, σ) of

xallow(o, σ′)y⇒ x(allow o, σ′)y
|xdeny(o, σ′)y ⇒ x(deny o, σ′)y
|⊥ ⇒ ⊥

(61)

It is easy to check that p2M is a bijection to state exception monads.
The question arises how to instantiate the state σ in question. It needs to contain the currently

active policy (which can change dynamically), and ‘other stuff’ captured by the type variable α.
Thus:

type_synonym (α, β, γ) FwState = α× (β, γ) packet 7→ unit (62)

and the resulting state transition notion modelled as a partial function:

type_synonym (α, β, γ) FWStateTransition =
(β, γ) packet×(α, β, γ) FWState) ⇀ (α, β, γ) FWState

(63)

The most general way to refine the ‘other stuff’ α is to instantiate it by the history, that is, the
list of so far received packets. Of course, in firewall implementations, complex data structures such
as tables keeping the state of protocol runs for each conversation may be possible; however, these
should be constructible via abstraction functions from the history. Because the goal is to aim at the
most general concept of a stateful policy specification, an instance for α is defined as:

type_synonym (β, γ) history = (β, γ) packet list (64)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

24 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

It is now possible to introduce a wealth of specification formalisms to describe properties on the
history; because HOL is used as background formalism, there is nearly arbitrary freedom here.
In the theories, for example, there exists an LTL like language with the operators atom: «_» ::
(α⇒ bool)⇒ α list⇒ bool, next: N::(α list⇒ bool)⇒ α list⇒ bool, always: 2_ :: (α list⇒
bool)⇒ α list⇒ bool and its dual eventually, as well as the operator until: _ U _ :: (α list⇒
bool)⇒ (α list⇒ bool)⇒ α list⇒ bool. For reasons of space limitations, this theory is not
developed here, with the exception of one special operator:

fun before :: (α⇒ bool)⇒ (α⇒ bool)⇒ α list⇒ bool where
before p q [] = false
before p q (a#S) = q a ∨ (p a ∧ (before p q S))

(65)

which can be processed by the HOL-TESTGEN procedure directly and which is formally proven
equivalent to before p q = ((2«p») U «q»).

5.3. Modelling the file transfer protocol (FTP)

At this point, the model of the stateful FTP protocol is outlined, as a typical example of stateful
network protocols.

During an FTP session, the server opens a data connection to the client using a port that was
indicated by the client. Figure 2 shows an abstract trace of an FTP session: the client initialises the
session by sending an init message to the server, next the client sends a port_request containing
a dynamic port for the data connection, and then the server sends the data to the client using this
dynamic port. Eventually, the client will close the connection and the firewall will block the data
port. The messages are identified using the content part of a packet. More formally, there is:

datatype msg = init | port_request port | data | close | other (66)

The id part of a packet is used to distinguish FTP sessions. Next, the state transitions have to be
defined. The case for denial state transition is trivial since the state is unchanged:

fun DST :: ((adrIP,msg) history, adrIP,msg) FWStateTransition
where DST (p, s) = xsy

(67)

For the acceptance state transition, three cases must be distinguished.

1. If a legitimate port request message arrives, the policy is extended by a rule that opens the
given port, and the packet is appended to the history.

2. Several sender IP’s s may get the right to communicate via a port p. However, the policy
ensures as invariant that the triple of session id i, sender s and open port p is unique at any
time. If all senders have closed their protocol along a port, the policy will deny any further
communication along this port.

Client Server

init

portRequest port

data

close

Figure 2. An abstract trace of an FTP session: the client initialises the session by sending an init message
to the server; next the client sends a port_request containing a dynamic port for the data connection, and
then the server sends the data to the client using this dynamic port. Eventually, the client will close the

connection, and the firewall will block the data port.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 25

3. All other messages do not change the policy, but the packets are appended to the history.

Those three cases are modelled as follows:

fun AST :: ((adrIP,msg) history, adrIP,msg) FWStateTransition
where
AST ((i, s, d, port_request pr), (log, policy)) =

if before(Not o is_close i)(is_init i)(log)∧
get_dest_port(i, s, d, port_request pr) = 21 ∧ get_protocol d = tcp

then x((i, s, d, port_request pr)#log,
allow_port_from_to(net_of d)(net_of s)(pr)⊕ policy)y

else x((i, s, d, port_request pr)#log, policy)y
|AST ((i, s, d, close), (log, policy)) =

if(∃p. same_open_ports log i s = [(p, i, s)]) ∧ get_dest_port(i, s, d, close) = 21∧
get_protocol d = tcp

thenx((i, s, d, close)#log,
deny_from_to (net_of d) (net_of s) (fst(hd(same_open_ports log i s)))

⊕ policy)y
elsex((i, s, d, close)#log, policy)y

|AST (p, (log , policy)) = x(p#log , policy)y

(68)

The auxiliary function same_open_ports (not formally defined here) extracts from the log the
last port request of s for session i, and filters from the log the triples of s′ and i′ with this p that
constitute open connections. Next, the policy is modelled. The policy that needs to applied in any
given state is part of that state. Thus the policy is the application of the policy of the current state.
This is formalized as follows:

definition applyPolicy :: (ι× (ι 7→ α)) 7→ α where applyPolicy = λ(x, z).z x (69)

Finally, the state transitions are combined with the policy:

definition policy ::
(adrIP,msg) packet×(adrIP,msg) history×((adrIP,msg) packet 7→ unit)

7→ unit ×(adrIP,msg) history×((adrIP,msg) packet 7→ unit)
where policy = ((AST , DST)⊗∇ applyPolicy)(λ(x, y).((x, (snd y)), (x, y)))

(70)

where the function (λ(x, y). . . .) serves for a mere technical repackaging of the underlying state and
input formats involved in the composition. The modelled ftp policy is a policy transforming policy,
or second order policy as can be inferred from the type; with similar techniques, administrative
policies such as administrative RBAC policies [37] can be modelled and tested in the framework.
Furthermore note that the policy specifies a machine that accepts arbitrary interleaved runs of the
protocol; for practical purposes, this generality has to be restricted by test purposes discussed in the
next section. Finally, note that this transition policy can be transformed to a monad by using p2M
(as will be done in the test specification).

5.4. Test purposes for FTP

From this model, test sequences for FTP packets could be generated directly, producing sequences
of more or less random packets. This is usually not what one wants to test against, and thus further
means for constraining the test space according to the need of the test engineer are required. There
are a couple of standard test purposes when testing for stateful network protocols:

• Tests for one correct protocol run.
• Tests for several correct protocol runs sequentially.
• Tests for several correct protocol runs interleaved.
• Tests for one or several illegal protocol runs.
• Tests for protocol runs interspersed with packets that do not belong to a protocol run.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

26 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

In the following, only simple correct protocol runs are presented. In the framework, test purposes
are constraints (pre-conditions) of test specifications that can be added at wish and that generate
(when symbolically evaluated during test case generation) constraint systems that have a similar
effect than a product-automata construction, albeit avoiding any finiteness-assumptions.

Because a simple correct run can be in any of four different states, the following datatype is
introduced:

datatype ftp_states = S0 | S1 | S2 | S3 (71)

The following recursive definition checks for legal protocol runs

fun is_ftp :: ftp_states⇒ adrIP ⇒ adrIP ⇒ id⇒ port⇒
(adrIP,msg) history⇒ bool

where
is_ftpH c s i p [] = (H = S3)
is_ftpH c s i p (x#t) =
(λ(id , sr , de, co). (((id = i ∧ ∧ get_dest_protocol(id , sr , de, co) = tcp∧(

(H = S2 ∧ sr = c ∧ de = s ∧ co = init∧ is_ftpS3 c s i p t)∨
(H = S1 ∧ sr = c ∧ de = s ∧ co = port_request p ∧ is_ftpS2 c s i p t)∨
(H = S1 ∧ sr = s ∧ de = (fst c, p) ∧ co = data∧ is_ftp S1 c s i p t)∨
(H = S0 ∧ sr = c ∧ de = s ∧ co = close∧ is_ftpS1 c s i p t)))))) x

(72)

Finally, everything is wrapped together and the single_run-predicate is defined for traces,
restricting the set of traces to legal runs of the ftp protocol and, furthermore, restricting the used
network addresses to traffic between specific networks:

definition single_run t = ∃ s d i p. is_ftp s d i p t ∧ get_port s = 21
∧ is_in_intranet c ∧ is_in_internet s

(73)

where the predicates (is_in_intranet and is_in_internet) are used for checking if an address is
within a specific network.

5.5. Testing FTP

The usual starting state for a test sequence is the empty trace and the given initial policy; the latter
only allows ftp sessions (started using port 21, the control port of the ftp protocol) from the intranet
to the internet:

definition σ0 = ([], allow_from_to_port intranet internet tcp 21) (74)

The keystone of the test section is the test specification:

testspec test:
length (t) = length(X) =⇒ single_run (t) =⇒
σ0 |= os ← mbind t (p2M policy); return(os = X)

=⇒ FUT σ0 t = X

(75)

The test case generation procedure searches for solutions for X and t that satisfy the first 3
constraints, namely that t must be a single protocol run, its execution on the FTP policy must
yield a valid test sequence, and whose output must be equal to X . For solutions of this constraint
resolution problem, a test may be run on FUT and checked if its behaviour conforms to X . This
test specification is an instance of the test specification scheme discussed in Fact 58.

Using the presented test generation method and restricting the maximal length of test traces to
four, four test cases are generated which each represent different FTP traces. The following is one
example:

FUT σ0 [(1, (3, 9, tcp), (1005, 21 tcp), init), (1, (3, 9 tcp), (1005, 21 tcp),port_request 9),

(1, (1005, 21 tcp), (3, 9 tcp),data), (1, (3, 9 tcp), (1005, 21 tcp), close)] =

[allow (), allow (), allow (), allow ()] (76)

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 27

6. A DOMAIN-SPECIFIC TEST TOOL FOR FIREWALL POLICIES

So far, the presentation was concentrated on generating test data for abstract firewall policy models.
In this section, the framework is extended to use this test data for testing real firewalls. Figure 3
illustrates the architecture of the framework for testing firewalls. This framework extends the
HOL-TESTGEN workflow with components that are necessary for injecting the generated test data
into a network that contains the firewall under test as well as components to monitor the test
execution.

The Test Execution takes the generated test data as input and rewrites it as instructions that are
then distributed to the Probes for execution. A description of expected results is also generated for
use by the Test Result Validation. This rewriting steps also contain the input and output mappings
inherently required in model-based testing: information needs to be provided how the inputs and
outputs of the model are mapped to the real-world values and vice-versa (i. e. here, mainly how the
addresses and the networks of the model are mapped to real IP addresses and networks).

The Probes have two basic roles: in the ‘injector’ role they send out packets according to the
instructions, and in the ‘sniffer’ role they report packets they observe. These two basic roles
are sufficient for testing stateless firewalls. Testing of stateful firewalls additionally requires a
‘responder’ role that can generate and send appropriate replies to packets belonging to certain
protocols. In general, a probe may embody any combination of these three roles.

One of the main architectural units of the prototype is the endpoint. An endpoint is a combination
of a network interface and a set of probes using it to sniff or insert packets. A single machine (virtual
or real one) with multiple interfaces can host several endpoints. However an injector and a sniffer
on the same interface count as one endpoint only—in most cases, each endpoint contains both. The
endpoints should be connected as close to the firewall under test as possible (preferably with nothing
else in between) and emulate the whole network which is (in normal operation) connected to the
respective interface of the firewall under test.

The probes log events corresponding to the sending and sniffing of packets. This information is
made available for evaluation by the Test Result Validation. The results analysis module takes as
input files containing descriptions of the expected results (produced by the Test Data Generation,
that is, HOL-TESTGEN), and the event logs recording the packets sent and received. It presents the
results to the test engineer, allowing her to see where the actual results deviate from the expectations.

Recall the abstract test data from our stateless firewall example (Section 3.4):

1. FUT (12, (2, 1, tcp), (1002, 80, tcp), content) = xdeny ()y
2. FUT (8, (1002, 1,udp), (2, 8080,udp), content) = xallow ()y

These abstract test data need to be refined into a format that can be injected into the network. In the
framework, an adapted version of fwtest (http://user.cs.tu-berlin.de/~seb/fwtest/) is used. Thus, the

Test

Firewall under Test (FUT)

Probe Probe Probe Probe Probe Probe Probe Probe Probe

Specification
Test Data

Generation
Test

Execution
Test Result
Validation

Figure 3. A framework for testing firewalls or routers.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://user.cs.tu-berlin.de/~seb/fwtest/

28 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

abstract test data generated by HOL-TESTGEN have to be adapted to the input format of fwtest. For
the given example, this gives:

62001:172.31.1.8:1:123.43.3.2:80:S:TCP:10
62002:123.43.3.2:1:172.31.1.8:8080::UDP:10

where the meaning of the individual parts (separated by a colon) is as follows: (unique) packet id,
source IP, source port, destination IP, destination port, TCP flags, and the time to live. Moreover, also
the expected test results need to be converted to a format used by fwtest:

62001 -- 1F -- 172.31.1.8:1:123.43.3.2:80:S:TCP -- deny
62002 -- 1F -- 123.43.3.2:12:172.31.1.8:8080::UDP:10 -- allow

where 1F stands for ‘filtered only, no NAT’
The following are the entries for a packet with NAT: the source port is mapped to a pool, that is,

the source address is rewritten to a fixed new one with an arbitrary new source port number:

52041:10.11.1.8:1:10.11.2.1:67::UDP:10
52041 -- 1P -- 10.11.2.5:10.11.2.1:67:UDP -- allow

Similarly, the rewriting of IP addresses is supported automatically. For example, assume that the
source IP is rewritten to a range of addresses:

52019:10.11.1.16:1:10.11.2.1:443:S:TCP:10
52019 -- SN -- 1:10.11.2.1:443:TCP:10.11.2.15:10.11.2.24 -- allow

7. EMPIRICAL RESULTS

In this section, empirical results of the test generation procedure are presented. For the evaluation,
both real policies, for example drawn from the network of the ETH Zurich where part of this work
emerged, as well as randomly generated policies, whose structure is inspired by ETH Zurich and
industrial use cases, are used. In particular, randomly generated policies are used to estimate the
correlation between the size of a policy and generation time of tests, to study the influence of various
parameters of this correlation, as for example the address format used in the model, the number of
involved networks and, of course, the impact of the normalization. The policies used were discussed
with experts from industry to ensure that the evaluation fulfils the need of industrial partners from
the telecommunication industry.

For lack of space, only stateless firewalls are evaluated in this presentation. Evaluations of stateful
scenarios are discussed by [14].

Unless otherwise noted, all examples use an address representation consisting of a pair of Integers,
the first denoting the host address, the second the port number. Furthermore, the indicated number
of rules in the tables does not contain the default deny rule.

7.1. Packet filter with varying number of rules and networks

This scenario consists of what is often called a personal firewall. There are two networks: a
workstation and the internet. The workstation consists of one single host, with all the remaining
addresses belonging to the internet. All test specifications contain a constraint limiting the tests to
packets that either have their source or their destination in the workstation network, and the other
somewhere in the internet. The policies are constructed by a sequence of rules allowing packets
arriving on one single port on the workstation, combined using an override operator and with a
default deny rule in the end.

Figure 4a displays the number of generated test cases in relation to the number of rules allowing
certain traffic in the policy n and the required time for test case generation. A relatively modest
increase by adding a rule can be expected, as all the rules are conceptually very similar and only
differ in one part of the input (although considering two others as well). This is reflected in the
empirical results: the number of generated test cases for a policy consisting of n rules is 2n+ 2.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 29

 0
 100
 200
 300
 400
 500
 600

 0 50 100 150 200 250
 0
 1000
 2000
 3000
 4000
 5000
 6000

nu
m

be
r o

f t
es

t c
as

es

ru
nt

im
e

in
 s

number of rules

number of test cases runtime

(a) The number of test cases and the runtime increase
moderately when adding similar rules.

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 1 2 3 4 5 6 7
 1

 10

 100

 1000

 10000

nu
m

be
r o

f t
es

t c
as

es

ru
nt

im
e

in
 s

number of networks

number of test cases runtime

(b) The complexity of test case generation increases
quickly when increasing the number of networks.

Figure 4. Policy complexity.
Table II. The number of test cases corresponds roughly to the number of rules, even if the policies are

semantically very different.

Rules 10 20 30 40 50

Test cases 22 42 62 82 102
Test cases (summarized) 24 44 64 84 104

It is no surprise that two additional test cases are being generated for each new rule: there will be
two additional packets with the new port number, one in each of the possible two directions. The
required time increases slightly faster, but remains acceptable.

As an intermediate result from this experiment, it can be noted that policies of moderate
complexity, in other words with similar rules, can be processed relatively efficiently even if
consisting of a large number of rules.

One important fact is that the processing time and the number of generated test data, and
consequently also the achieved coverage, does not only depend on the semantics of the model of
the policy, but also of its concrete representation. For example, a sequence of rules allowing one
port between two networks might also be represented as a single rule allowing a set of port numbers
between these networks. To explore the effect of such a representation on test case generation, the
aforementioned experiment was adapted by always combining ten of the rules to one single rule (i. e.
one rule allows a set of ten port numbers between the two networks) and run the algorithm again
(Table II). It can be seen that the number of test cases is similar regarding the number of rules of the
policy, even though in the second case the number of rules is ten times smaller for a semantically
equivalent policy.

Next, the effect of varying another parameter is investigated: the number of networks. Again
the policy ends with a default denial policy, which is prepended by a sequence of rules using an
override operator. Each of the rules allows packets to the same port, originating in a new network
and destined for the Internet. Each of the networks consists of a set of addresses.

Figure 4b illustrates the results. This time the number of generated test cases increases much more
than in the previous case where the number of networks remained constant. As the time required also
increases rapidly, only policies with a modest number of networks can be processed. There are two
reasons that contribute to the fact that enlarging the number of networks increases complexity much
larger than only enlarging the number of rules. First of all, there is the fact that the number of relevant
input variables is now larger. Instead of only the port number, there are two additional variables for
the networks (source and destination). Furthermore, those new input variables representing sets of
sets of Integers are of a bigger internal complexity than the port numbers, which are modelled as
simple Integers only.

At this stage it can already be noticed that the additional complexity in the rules leads test case
generation to no longer scale using the naive approach without any normalization applied.

Figure 5a and Figure 5b present the outcome of generating tests for the same policies again
with an increasing number of rules and networks, but where the network definitions have only

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

30 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

 1

 10

 100

 1000

0 1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f t
es

t c
as

es

number of rules

unfolded networks folded networks

(a) The number of test cases decreases significantly when
not unfolding the networks

 1

 10

 100

 1000

 10000

0 1 2 3 4 5 6 7 8 9 10

ru
nt

im
e

(s
)

number of rules

unfolded networks folded networks

(b) The runtime decreases significantly when not
unfolding the networks.

Figure 5. Unfolding networks.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 1 2 3 4 5 6 7

nu
m

be
r o

f t
es

t c
as

es

number of rules

standard addr. addr. incl. protocol

(a) The number of test cases increases when using a more
complex address representation.

 0.1
 1

 10
 100

 1000
 10000

 100000

 0 1 2 3 4 5 6 7
ru

nt
im

e
(s

)

number of rules

standard addr. addr. incl. protocol

(b) The runtime increases even more when using a more
complex address representation.

Figure 6. Comparing address representations.

been unfolded after application of the test case generation algorithm. A significant drop in both the
number of generated test cases, as well as in the required time can be observed. As often the concrete
values of the addresses do not matter, this approach is applicable in many cases. In essence, with
this experiment the (partial) removal of the second effect on complexity mentioned before (internal
complexity of the input variables) is simulated.

7.2. Effect of address representation

To study the effect of a more complex input type representation, the first scenario of the last
example was also carried out with another address representation, including the protocol (as used
in the examples in the previous sections). The rules of the policy are the same as before, but the
packet protocol is additionally restricted to either tcp or udp (alternating). The effect is presented
in Figure 6a and Figure 6b. It can be observed that the number of generated test cases doubles,
corresponding to the two additional possibilities for each of the previous paths in the policy.
Interestingly, the time complexity increases much faster.

7.3. Packet filter and NAT

The next two examples evaluate the effects when testing a policy composed in parallel from two
individual policies. More specifically, the effect of testing a combination of a NAT and a filtering
policy is explored.

There are two networks in this scenario. The filtering policy consists of many rules allowing
packets for differing ports from the first network to the second, and denying anything else. The NAT
policy consists of many rules, each transforming certain packets originating from the first network.
All other packets remain unchanged.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 31

 0
 10
 20
 30
 40
 50
 60

 1 2 3 4 5
 1

 10

 100

 1000

 10000
nu

m
be

r o
f t

es
t c

as
es

ru
nt

im
e

in
 s

number of rules

number of test cases runtime

(a) The number of test cases increases quickly when
adding new rules combined in parallel

 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10
 1

 10

 100

 1000

nu
m

be
r o

f t
es

t c
as

es

ru
nt

im
e

in
 s

number of rules

number of test cases runtime

(b) The number of test cases increases less quickly when
adding new rules to only one of the policies to be

combined in parallel

Figure 7. Network address translation.

 10

 100

 1000

 1 2 3 4
 0.1
 1
 10
 100
 1000
 10000

nu
m

be
r o

f t
es

t c
as

es

ru
nt

im
e

in
 s

number of rules

number of test cases runtime

(a) The number of test cases increases substantially when
the rules of the policy are not similar to each other.

 10

 100

 1000

R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10

nu
m

be
r o

f t
es

t c
as

es

unnormalized policy normalized policy

(b) The normalization of policies decreases the number of
test cases by several orders of magnitude.

Figure 8. Non-uniform policies and normalization.

The example is carried out in two variants: in the first one, the number of rules of both sub-policies
increases uniformly (Figure 7a). In the second variant, the number of filtering rules is fixed to three
and only the number of NAT rules increases (Figure 7b). It can be observed that when increasing the
number of rules in both policies in a rather non-related way, the complexity increases substantially.

7.4. A non-uniform policy

So far, diverse scenarios have been considered where one or more parameters were changed in a
controlled manner. The next example is an experiment with a small non-uniform policy with very
diverse rules. The choice of the rules is random and thus the results of the experiment are of limited
value. Furthermore, most real world policies are rather uniform. Nonetheless, this experiment gives
an indication about the effects of processing non-standard policies.

The policy consists of a default deny rule, to which sequentially the following rules are added
using an override operator.

• AllowPortTo subnet1 internet 80
• DenyFromTo subnet2 subnet4
• AllowPortRangeTo subnet3 subnet1 {80, 180, 280}
• AllowFromTo subnet3 subnet4

Explicitly no coverage- and complexity-reducing strategy are employed. In particular all concepts
are unfolded for the test case generation algorithm (Figure 8a).

This small example has confirmed that adding diverse rules and processing them in a non-optimal
manner will lead to a very large if-then-else cascade and consequently a very high complexity of

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

32 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Table III. Test case generation for firewall policies utilising normalization.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 E1 E2

Original Networks 2 3 4 3 4 3 4 5 5 6 4 5
Rules 13 9 5 9 13 13 8 15 5 11 11 8
TC Gen. (s) 4.8 38 2.4 2.8 10216 309 119 — 2.8 — 42 4
Test Cases 84 360 78 78 3864 860 637 — 84 — 322 130

Normalized Rules 8 14 11 10 24 15 17 28 11 25 17 16
Segments 2 4 5 3 7 4 6 9 5 9 6 5
TC Gen. (s) 0.5 1.4 0.5 0.8 2.3 1.6 1.4 2.5 0.6 1.9 1.0 1.0
Test Cases 19 31 19 22 52 34 34 58 19 49 32 34

the test case generation. Furthermore, the relative increase in both the time required and the number
of generated test cases when adding one single rule largely depends on the kind of the rule.

7.5. Normalization

In a first experiment, the impact of policy normalization was explored on the overall time required
for generating test cases. Table III summaries these results for randomly generated policies (R1 to
R10) as well as policies used at ETH Zurich (E1 and E2). The most important result is that while
the number of rules can increase during normalization, the time required for generating test cases
is significantly smaller after normalization, even if the time needed for normalization is included.
While for some policies, the test case generation took more than 24 hours before normalization,
the required time for normalizing the policy and generating test cases for the normalized policy is
only a few seconds. The increase in the number of rules can be explained by the fact that during
normalization, segment-specific deny rules need to be inserted. The significant reduction of test case
generation time can be explained by the fact that after segmentation, each segment specific policy is
much smaller and less complex. As the normalization of policies reduces the number of test cases
significantly (Figure 8b), the time needed for executing a test on an implementation is also reduced
substantially.

The generation of test cases for larger policies in reasonable time is only possible after
normalization. Thus, the effect of the normalization was investigated in isolation. Table IV shows
the normalization results for randomly generated policies with different sizes both in the number of
rules and the number of networks covered (see also Figure 9a and Figure 9b). All policies end with a
DenyAll rule and one in every five rules is a DenyAllFromTo. If the number of rules is small related
to the number of networks, the number of rules after normalization increases quite significantly as
there are a lot of additional DenyAllFromTo’s to be inserted. In the opposite case, it decreases a lot,
as many of the AllowPortFromTo rules will be removed during normalization. The time needed for
the normalization primarily depends upon the number of networks and on the number of rules.

To shed some light on the influence of algorithmic factors of the transformation, this series
of experiments has been carried out with different sorting procedures, namely insertion sort and
quicksort. Quite large differences can be observed, especially with the large-scale policies. It must
be noted that the sorting phase is by far the most time-consuming one.

The table also presents the number of test cases generated by applying the test case generation
algorithm to the normalized policies. The time required remains very low compared with the time
used for normalization. Even for the biggest policy, it requires less than three minutes for both test
case and test data generation combined.

As a last measurement, to present the effect of normalizing parallel composed policies, a couple of
policies have been defined as parallel composition of a filtering and a NAT policy. The normalization
is transferred over the composition operator, as outlined in Section 4.5. The filtering rules are
defined to allow each a distinct port between two distinct networks. For each filtering rule, there
is a corresponding NAT rule performing source address translation to a pool of addresses, rewriting
all packets having the source in the same network as the source of the corresponding filtering
rule. Each policy of the experiment is constructed by an override composition of both policies
individually (including a default rule for each), and performing the parallel composition in the end

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 33

Table IV. The size of a normalized policy mainly depends on the number of rules in relation to the number
of networks.

Rules 51 51 51 101 101 101 201 201 201 301 301 301
Networks 5 10 25 5 10 25 5 10 25 5 10 25

Segments 11 32 48 11 41 86 11 46 147 11 46 188
Rules 52 105 136 69 154 251 89 223 438 115 283 600
Average 5 3 3 7 4 3 9 5 3 11 6 3
Time[s] (insort) 33 83 67 102 373 590 212 1731 6460 516 2782 34248
Time[s] (qsort) 31 112 522 91 318 1593 206 765 7960 453 1198 17355
Test cases 124 220 265 175 340 496 235 532 877 313 713 1237

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300

nu
m

be
r o

f r
ul

es
 (n

or
m

al
iz

ed
)

number of rules (unnormalized)

5 networks 10 networks 25 networks

(a) The size (number of rules) of a policy after
normalization increases with both the number of rules in

the normalized policy and the number of networks.

 0

 200

 400

 600

 800

 1000

 1200

 50 100 150 200 250 300nu
m

be
r o

f t
es

t c
as

es
 (n

or
m

al
iz

ed
)

number of rules (unnormalized)

5 networks 10 networks 25 networks

(b) The number of test cases of a policy after normalization
increases with both the number of rules in the normalized

policy and the number of networks.

Figure 9. Policy normalization.

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10

nu
m

be
r o

f t
es

t c
as

es

unnormalized policy normalized policy

(a) The number of test cases decreases significantly for
combined NAT and filtering policies (logarithmic scale)

 0.1

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10

ru
nt

im
e

(s
)

unnormalized policy normalized policy

(b) The runtime decreases significantly for combined NAT
and filtering policies (logarithmic scale)

Figure 10. Combining NAT and filtering policies.

only. Recalling the previous section, naive test case generation for such a policy would not scale.
For this reason, the normalization procedure for filtering policies presented before, which distributes
over to the combined policy, is applied. The results of applying the normalization on these policies
are presented in Figure 10a, Figure 10b and Table V. The number of rules is the number for each sub-
policy. It can be observed that large gains in efficiency are achieved. These could even be increased
if a transformation procedure would be applied also on the NAT part of the policy.

As a summary of the last couple of experiments, the application of policy transformation
techniques allows for a relatively efficient testing technology for a wide range of large-scale policies
as encountered in practice. Of course, the coverage regarding the original specification is reduced,
and consequently also the probability of detecting failures. However, mostly only those parts from
the specification have been removed from being tested that are very unlikely to contain any failures,
by splitting the policy into independent parts. The experiments provided evidence that in practice

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

34 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

Table V. The number of test cases and the runtime of parallel composed policies: application of
transformation procedures increases efficiency substantially.

Rules 1 2 3 4 5 6 7 8 9 10

Test cases (normalized) 8 20 29 38 47 56 65 74 83 92
Test cases (original) 8 48 224 960 - - - - - -

Runtime (normalized) 1 5 10 18 32 66 151 414 1427 6225
Runtime (original) 1 4 41 483 - - - - - -

the ability to detect failures is not reduced significantly, and overall effectiveness of the testing
procedure has been improved substantially.

8. CONCLUSION AND RELATED WORK

8.1. Related work

While several approaches for the formal specification, e. g., [15, 23, 33, 39], as well as specification-
based testing, e. g., [20, 21, 28, 30], of firewalls have been proposed, none of them supports NAT or
uses transformations of policies for increasing the effectiveness of the test case generation. Given the
large address space of common network protocols (e. g. 232 addresses for IPv4 and 2128 addresses
for IPv6) there is a common understanding that random testing approaches are not feasible.

All existing formal specification approaches model the decision of a firewall as mapping to a
simple binary domain (e. g., allow or deny) and, thus, do not support NAT. For example, Capretta
et al. [15] present a formalization of network addresses in Coq [3] that is quite close to the presented
model for stateless packet filters discussed in Section 3.2 using records. The authors model security
policies as set of rules (instead of partial functions). Thus, they are interested in detecting conflicting
rules, that is, rules that map the same network packets to different decisions. For this, they present
a conflict detection algorithm together with a formal correctness proof. Gawanmeh and Tahar
[23] achieve a similar result using Event-B [1]. Using a similar model for stateless packet filters,
Matsumoto and Bouhoula [33] discuss a mapping to Boolean formulae and use a SAT solver for
implementing a tool that verifies the correctness of stateless firewall configurations with respect to
a given specification. A similar result, using an SMT solver, is presented by Youssef and Bouhoula
[39] for stateful firewalls. Their model of application-level stateful firewalls does, similar to the
model presented in this paper, discuss a deterministic FTP variant as an example.

Jürjens and Wimmel [30] propose specification-based testing of firewalls that employs a finite
formal model of the network, modelling all entities as simple datatypes. This model is used for
deriving test cases automatically. Unfortunately, the test case generation technique is not really
described, and the tested configurations appear small. Apparently, it does not apply any policy
transformation technique. Bishop et al. [4] describe a formal model of protocols in HOL. However,
their level of abstraction is much lower than ours; therefore, it is much less suited for testing of
policy conformance. Marmorstein and Kearns [32] propose a policy-based host classification which
can be used to detect errors and anomalies in a firewall policy. Finally, Hwang et al. [28] present
an informal approach to firewall conformance testing that generates test cases based on certain
structural coverage criteria (e. g. rule coverage).

El-Atawy et al. [20, 21] present a purely syntactic approach for the segmentation of policies
into sub-policies that restrict the traffic between pairs of networks. Overall, this result of their
segmentation is quite similar to the presented policy normalization, which also groups policy rules
according to the networks. While this is the only work that discusses a transformation of firewall
policies in the context of test case generation, transforming security policies to improve their overall
runtime performance is a well-known technique. Liu et al. [31] present algorithms based on decision
diagrams, that minimize the number of rules of a firewall policy. We are not aware of any attempt to
formally verify the correctness of the policy transformation technique.

Dssouli et al. [19] have already introduced a notion of testability for communication protocols
using a specification based on finite state machines. They present a method for designing
communication protocols that are ‘easy’ to test. The closest related work, however, is that of Harman

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 35

et al. [25], which is further developed in, e. g., Harman [24], Harman et al. [26], Hierons et al. [27].
They introduce the concept of testability transformations, that is, source-to-source transformations
of programmes that increase their testability. Similar to work presented in this paper, the goal of
these transformations is minimization of the test cases required to achieve full test coverage (with
respect to a given test adequacy criterion). While their work is based on transformations of the source
code, that is, the system under test, we transform a formal specification, which makes our approach
applicable in black-box testing scenarios. Furthermore, in contrast to their work, our transformation
procedures allow for explicit modifications of the test adequacy criterion with respect to the original
form of the specification, something which we believe to be necessary for being able to realistically
perform conformance testing of large-scale security policies.

In contrast to these works, we provide a uniform, tool-supported approach for formally specifying
and analysing firewall specifications, transforming a test specification to improve the testability, and
generating test cases for an implementation. Thus, we provide an efficient and effective approach
for testing the conformance of a firewall (and its configuration) to a specification (i. e. high level
policy) that supports advanced concepts such as network address (or port) translation. Moreover, the
presented approach integrates the testing of both stateless and stateful protocols. And last but not
least, our approach is based on a formal proof that the applied testability transformation preserves
semantics.

8.2. Conclusion and future work

In this paper, a formal model of stateless and stateful firewall policies in Isabelle/HOL as an
instantiation of the UPF was presented. The formal model is supported by a policy normalization
approach that is formally proven correct and which increases the effectiveness of the specification-
based test case generation approach by several orders of magnitude. We integrated modelling,
derived rules for symbolic computation, test generation and adapted test execution in a framework
that allows a seamless transition from particularly clean semantic foundations to a practically useful
and competitive application.

Harman [24] discusses a list of open problems in testability transformations. With this work, a
significant contribution to the final problem in his list is provided: testability transformations for
specification-based testing. In particular, the policy normalization acts as testability translation for
the model-based generation of test cases for firewalls. Moreover, the correctness, that is, semantics
preservation of transformations was proven formally within the same framework used for test case
generation.

With HOL-TESTGEN’s firewall support, we believe the first test tool to integrate the specification,
formal analysis, transformation, test case generation, and test execution of firewall policies including
support for NAT as well as stateful protocols has been developed.

Besides applying test case generation to other kinds of security domains, for example, [5], we
see several productive lines of future work. On the theoretical side, developing formal testability
transformations for sequence testing seems to be particularly appealing. This work would address
the second to last problem of Harman [24]: testability transformations for specifications based on
finite-state machines. Moreover, considering testability transformations that do not preserve the
semantics of the specifications, as suggested by Harman et al. [26], requires the development of new
test hypotheses. Here, the integrated approach of HOL-TESTGEN allows for the formal computation
and analysis of such hypotheses (cf. Brucker et al. [9]). Finally, the relation between testability
transformation and fault models needs to be investigated further.

APPENDIX A: CORE PART OF THE CORRECTNESS PROOF OF THE RULE SORTING
ALGORITHM

This theorem and its formal proof script is crucial for proving the correctness of the sorting
algorithm as described in Section 4.4. It states that for any two lists consisting of the same rules and
conforming to two wellformedness conditions, the semantics is the same under the assumption that
all networks are either equal or pairwise distinct. The proof is performed by doing a case distinction

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

36 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

theorem C_eq_Sets_mr:
assumes sets_eq : " set p = set s" and SC: "singleComb p" and wp1_p: "wellformed_policy1_new p"

and wp1_s: "wellformed_policy1_new s" and wp3_p: "wellformed_policy3 p"
and wp3_s: "wellformed_policy3 s" and aND: " allNetsDistinct p"

shows "matching_rule x p = matching_rule x s"
proof (cases "matching_rule x p")
case None

have DA: "DenyAll ∈ set p" using wp1_p by (auto simp: wp1_aux1aa)
have notDA: "DenyAll /∈ set p" using None by (auto simp: DAimplieMR)
thus ? thesis using DA by (contradiction)

next
case (Some y) thus ? thesis

proof (cases y)
have tl_p : "p = DenyAll#(tl p)" by (metis wp1_p wp1n_tl)
have tl_s : "s = DenyAll#(tl s)" by (metis wp1_s wp1n_tl)
have tl_eq : " set (tl p) = set (tl s)" by(metis tl . simps(2) WP1n_DA_notinSetfoo2

mem_def sets_eq wellformed_policy1_charn wp1_aux1aa wp1_eq wp1_p wp1_s)
{ case DenyAll

have mr_p_is_DenyAll: "matching_rule x p = Some DenyAll" by (simp add: DenyAll Some)
hence x_notin_tl_p : "∀ r . r ∈ set (tl p) −→ x /∈ dom (C r)"

using wp1_p by (auto simp: mrDenyAll_is_unique)
hence x_notin_tl_s : "∀ r . r ∈ set (tl s) −→ x /∈ dom (C r)"

using tl_eq by auto
hence mr_s_is_DenyAll: "matching_rule x s = Some DenyAll" using tl_s

by (auto simp: mr_first)
thus ? thesis using mr_p_is_DenyAll by simp

}{ case (DenyFromTo a b)
have mr_p_is_DAFT: "matching_rule x p = Some (DenyFromTo a b)"

by (simp add: DenyFromTo Some)
have DA_notin_tl: "DenyAll /∈ set (tl p)" by (metis WP1n_DA_notinSet wp1_p)
have mr_tl_p: "matching_rule x p = matching_rule x (tl p)"

by (metis Comb.simps(1) DenyFromTo Some mrConcEnd tl_p)
have dom_tl_p: "

∧
r. r ∈ set (tl p) ∧ x ∈ dom (C r) =⇒ r = (DenyFromTo a b)"

using wp1_p aND SC wp3_p mr_p_is_DAFT by (auto simp: rule_charnDAFT)
hence dom_tl_s: "

∧
r. r ∈ set (tl s) ∧ x ∈ dom (C r)
=⇒ r = (DenyFromTo a b)" using tl_eq by auto

have DAFT_in_tl_s: "DenyFromTo a b ∈set (tl s)"
using mr_tl_p by (metis DenyFromTo mrSet mr_p_is_DAFT tl_eq)

have x_in_dom_DAFT: "x ∈dom (C (DenyFromTo a b))"
by (metis mr_p_is_DAFT DenyFromTo mr_in_dom)

hence mr_tl_s_is_DAFT: "matching_rule x (tl s) = Some (DenyFromTo a b)"
using DAFT_in_tl_s dom_tl_s by (auto simp: mr_charn)

hence mr_s_is_DAFT: "matching_rule x s = Some (DenyFromTo a b)"
using tl_s
by (metis DA_notin_tl DenyFromTo EX_MR mrDA_tl mr_p_is_DAFT not_Some_eq tl_eq

wellformed_policy1_new.simps(2))
thus ? thesis using mr_p_is_DAFT by simp

}{ case (AllowPort a b c)
have wp1s: "wellformed_policy1 s" by (metis wp1_eq wp1_s)
have mr_p_is_A: "matching_rule x p = Some (AllowPort a b c)"

by (simp add: AllowPort Some)
hence A_in_s: "AllowPort a b c ∈ set s" using sets_eq by (auto intro : mrSet)

have x_in_dom_A: "x ∈dom (C (AllowPort a b c)) " by (metis mr_p_is_A AllowPort mr_in_dom)
have SCs: "singleComb s" using SC sets_eq by (auto intro : SCSubset)
hence ANDs: " allNetsDistinct s" using aND sets_eq SC by (auto intro : aNDSetsEq)
hence mr_s_is_A: "matching_rule x s = Some (AllowPort a b c)"

using A_in_s wp1s mr_p_is_A aND SCs wp3_s x_in_dom_A by (simp add: rule_charn2)
thus ? thesis using mr_p_is_A by simp

} case (Conc a b) thus ? thesis by (metis Some mr_not_Conc SC)
qed

qed

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

FORMAL FIREWALL CONFORMANCE TESTING 37

of the rule that matches a packet x in the first list. There are four cases: for the DenyAll operator,
it can be shown that there cannot be any other rule in the lists that matches. The (a⊕S b) case can
be ruled out by contradiction. In the other two cases, it can be shown that the matching rule of the
second list must necessarily be the same one.

ACKNOWLEDGEMENTS

This work was partially funded by BT Group plc and by the Digiteo Foundation.

REFERENCES

[1] J.-R. Abrial. Modeling in Event-B: System and Software Design. Cambridge University Press, New York, NY, USA,
2009.

[2] P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth through Proof. Kluwer Academic
Publishers, Dordrecht, 2nd edition, 2002.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of
Inductive Constructions. Springer-Verlag, Heidelberg, 2004.

[4] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wansbrough. Engineering with logic: HOL
specification and symbolic-evaluation testing for TCP implementations. In J. G. Morrisett and S. L. P. Jones,
editors, POPL, pages 55–66. ACM Press, 2006.

[5] A. D. Brucker and B. Wolff. A verification approach for applied system security. International Journal on Software
Tools for Technology (STTT), 7(3):233–247, 2005. doi: 10.1007/s10009-004-0176-3.

[6] A. D. Brucker and B. Wolff. Test-sequence generation with HOL-TESTGEN – with an application to firewall testing.
In B. Meyer and Y. Gurevich, editors, TAP 2007: Tests And Proofs, number 4454 in Lecture Notes in Computer
Science, pages 149–168. Springer-Verlag, 2007. doi: 10.1007/978-3-540-73770-4_9.

[7] A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of Computing (FAC), 25(5):683–721,
2013. doi: 10.1007/s00165-012-0222-y.

[8] A. D. Brucker, L. Brügger, and B. Wolff. Model-based firewall conformance testing. In K. Suzuki and T. Higashino,
editors, Testcom/FATES 2008, number 5047 in Lecture Notes in Computer Science, pages 103–118. Springer-Verlag,
2008. doi: 10.1007/978-3-540-68524-1_9.

[9] A. D. Brucker, L. Brügger, and B. Wolff. Verifying test-hypotheses: An experiment in test and proof. Electronic
Notes in Theoretical Computer Science, 220(1):15–27, 2008. doi: 10.1016/j.entcs.2008.11.003. Proceedings of the
Fourth Workshop on Model Based Testing (MBT 2008).

[10] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. Verified firewall policy transformations for test-case
generation. In Third International Conference on Software Testing, Verification, and Validation (ICST), pages 345–
354. IEEE Computer Society, 2010. doi: 10.1109/ICST.2010.50.

[11] A. D. Brucker, L. Brügger, M. P. Krieger, and B. Wolff. HOL-TESTGEN 1.5.0 user guide. Technical Report 670,
ETH Zurich, Apr. 2010.

[12] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. An approach to modular and testable security models of
real-world health-care applications. In ACM symposium on access control models and technologies (SACMAT),
pages 133–142. ACM Press, 2011. doi: 10.1145/1998441.1998461.

[13] A. D. Brucker, L. Brügger, and B. Wolff. HOL-TESTGEN/FW: An environment for specification-based firewall
conformance testing. In Z. Liu, J. Woodcock, and H. Zhu, editors, International Colloquium on Theoretical Aspects
of Computing (ICTAC), number 8049 in Lecture Notes in Computer Science, pages 112–121. Springer-Verlag, 2013.
doi: 10.1007/978-3-642-39718-9_7.

[14] L. Brügger. A Framework for Modelling and Testing of Security Policies. PhD thesis, ETH Zurich, 2012. ETH
Dissertation No. 20513.

[15] V. Capretta, B. Stepien, A. Felty, and S. Matwin. Formal correctness of conflict detection for firewalls. In
Proceedings of the 2007 ACM workshop on Formal methods in security engineering, FMSE ’07, pages 22–30,
New York, NY, USA, 2007. ACM. doi: 10.1145/1314436.1314440.

[16] Center for Strategic and International Studies. Securing cyberspace for the 44th presidency, Dec. 2008.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1007/s10009-004-0176-3
http://dx.doi.org/10.1007/978-3-540-73770-4_9
http://dx.doi.org/10.1007/s00165-012-0222-y
http://dx.doi.org/10.1007/978-3-540-68524-1_9
http://dx.doi.org/10.1016/j.entcs.2008.11.003
http://dx.doi.org/10.1109/ICST.2010.50
http://dx.doi.org/10.1145/1998441.1998461
http://dx.doi.org/10.1007/978-3-642-39718-9_7
http://dx.doi.org/10.1145/1314436.1314440

38 A.D. BRUCKER, L. BRÜGGER AND B. WOLFF

[17] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):56–68, June 1940.

[18] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan and J. Rehof, editors,
TACAS, volume 4963 of Lecture Notes in Computer Science, pages 337–340, Heidelberg, 2008. Springer-Verlag.
doi: 10.1007/978-3-540-78800-3_24.

[19] R. Dssouli, K. Karoui, K. Saleh, and O. Cherkaoui. Communications software design for testability: specification
transformations and testability measures. Information and Software Technology, 41(11-12):729–743, 1999. doi:
10.1016/S0950-5849(99)00033-6.

[20] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer. Policy segmentation for intelligent firewall testing. In NPSec
05, pages 67–72. IEEE Computer Society, Nov. 2005.

[21] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li. An automated framework for validating
firewall policy enforcement. In POLICY ’07, pages 151–160. IEEE Computer Society, 2007.

[22] M. C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and M. I. Schwartzbach, editors,
TAPSOFT’95: Theory and Practice of Software Development, number 915 in Lecture Notes in Computer Science,
pages 82–96. Springer-Verlag, Heidelberg, 1995.

[23] A. Gawanmeh and S. Tahar. Domain restriction based fromal model for firewall configurations. International
Journal for Information Security Research (IJISR), 2, March/June 2012.

[24] M. Harman. Open problems in testability transformation. In Software Testing Verification and Validation Workshop,
2008. ICSTW ’08. IEEE International Conference on, pages 196–209, April 2008. doi: 10.1109/ICSTW.2008.30.

[25] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper. Testability transformation.
IEEE Trans. Softw. Eng., 30(1):3–16, 2004. doi: 10.1109/TSE.2004.1265732.

[26] M. Harman, A. Baresel, D. Binkley, R. M. Hierons, L. Hu, B. Korel, P. McMinn, and M. Roper. Testability
transformation - program transformation to improve testability. In R. M. Hierons, J. P. Bowen, and M. Harman,
editors, Formal Methods and Testing, volume 4949 of Lecture Notes in Computer Science, pages 320–344,
Heidelberg, 2008. Springer-Verlag. doi: 10.1007/978-3-540-78917-8_11.

[27] R. M. Hierons, M. Harman, and C. Fox. Branch-coverage testability transformation for unstructured programs.
Comput. J., 48(4):421–436, 2005. doi: 10.1093/comjnl/bxh093.

[28] J. Hwang, T. Xie, F. Chen, and A. Liu. Systematic structural testing of firewall policies. Network and Service
Management, IEEE Transactions on, 9(1):1–11, march 2012. doi: 10.1109/TNSM.2012.012012.100092.

[29] International Organization for Standardization. ISO/IEC DIS 29119: Software and Systems Engineering—Software
Testing. ISO Draft International Standard, July 2012.

[30] J. Jürjens and G. Wimmel. Specification-based testing of firewalls. In D. Bjørner, M. Broy, and A. V. Zamulin,
editors, Ershov Memorial Conference, volume 2244 of Lecture Notes in Computer Science, pages 308–316.
Springer-Verlag, 2001.

[31] A. X. Liu, E. Torng, and C. Meiners. Firewall compressor: An algorithm for minimizing firewall policies. In
Proceedings of the the 27th Annual IEEE Conference on Computer Communications (Infocom), Phoenix, Arizona,
April 2008.

[32] R. Marmorstein and P. Kearns. Firewall analysis with policy-based host classification. In Large Installation System
Administration Conference, pages 4–4. USENIX Association, 2006.

[33] S. Matsumoto and A. Bouhoula. Automatic verification of firewall configuration with respect to security
policy requirements. In Proceedings of the International Workshop on Computational Intelligence in
Security for Information Systems (CISIS), pages 123–130, Heidelberg, 2008. Springer-Verlag. doi: 10.1007/
978-3-540-88181-0_16.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-Order Logic, volume 2283
of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2002. doi: 10.1007/3-540-45949-9.

[35] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’93, pages 71–84, New York, NY USA, 1993.
ACM Press. doi: 10.1145/158511.158524.

[36] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Internet Standard), Oct. 1985.

[37] R. Sandhu, V. Bhamidipati, and Q. Munawer. The arbac97 model for role-based administration of roles. ACM
Transactions on Information and System Security, 2(1):105–135, 1999. doi: 10.1145/300830.300839.

[38] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition,
1992.

[39] N. B. Youssef and A. Bouhoula. Dealing with stateful firewall checking. In H. Cherifi, J. M. Zain, and E. El-
Qawasmeh, editors, DICTAP (1), volume 166 of Communications in Computer and Information Science, pages
493–507, Heidelberg, 2011. Springer-Verlag. doi: 10.1007/978-3-642-21984-9_42.

Copyright c© 2014 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2014)
Prepared using stvrauth.cls DOI: 10.1002/stvr

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1016/S0950-5849(99)00033-6
http://dx.doi.org/10.1016/S0950-5849(99)00033-6
http://dx.doi.org/10.1109/ICSTW.2008.30
http://dx.doi.org/10.1109/TSE.2004.1265732
http://dx.doi.org/10.1007/978-3-540-78917-8_11
http://dx.doi.org/10.1093/comjnl/bxh093
http://dx.doi.org/10.1109/TNSM.2012.012012.100092
http://dx.doi.org/10.1007/978-3-540-88181-0_16
http://dx.doi.org/10.1007/978-3-540-88181-0_16
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1145/158511.158524
http://dx.doi.org/10.1145/300830.300839
http://dx.doi.org/10.1007/978-3-642-21984-9_42

	1 Introduction
	2 Formal and Technical Background
	2.1 Isabelle and higher-order logic
	2.2 The HOL-TestGen workflow and system architecture
	2.3 The unified policy framework

	3 Stateless Firewalls
	3.1 An introduction to stateless firewalls
	3.2 A model of networks
	3.2.1 Network addresses.
	3.2.2 Networks.
	3.2.3 Packets.

	3.3 A model of stateless firewall policies
	3.3.1 Stateless packet filtering rules.
	3.3.2 Network address translation rules.
	3.3.3 Combining policies.

	3.4 Testing stateless firewalls

	4 Normalizing Policies
	4.1 Reification of policies and correct policy transformations
	4.2 Technique of normalization
	4.3 Elementary transformation rules
	4.4 A transformation procedure
	4.5 The normalization procedure
	4.6 Example
	4.7 Distributivity of transformations
	4.8 Excursion: test coverage, test size and policy normalization effects

	5 Stateful Firewalls
	5.1 Sequence testing in hol
	5.2 A stateful firewall model
	5.3 Modelling the file transfer protocol (ftp)
	5.4 Test purposes for FTP
	5.5 Testing FTP

	6 A Domain-specific Test Tool for Firewall Policies
	7 Empirical Results
	7.1 Packet filter with varying number of rules and networks
	7.2 Effect of address representation
	7.3 Packet filter and nat
	7.4 A non-uniform policy
	7.5 Normalization

	8 Conclusion and Related Work
	8.1 Related work
	8.2 Conclusion and future work

@Article{	 brucker.ea:formal-fw-testing:2014,
 author	= {Achim D. Brucker and Lukas Br{\"u}gger and Burkhart Wolff},
 journal	= {Software Testing, Verification \& Reliability (STVR)},
 publisher	= pub-wiley,
 address	= pub-wiley:adr,
 language	= {USenglish},
 categories	= {holtestgen},
 title		= {Formal Firewall Conformance Testing: An Application of
		 Test and Proof Techniques},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014}
		 ,
 year		= {2014},
 classification= journal,
 areas		= {security, formal methods},
 public	= {yes},
 doi		= {10.1002/stvr.1544},
 keywords	= {model-based testing; conformance testing; security
		 testing; firewall; specification-based testing; testing
		 cloud infrastructure, transformation for testability;
		 HOL-TestGen; test and proof; security configuration
		 testing},
 abstract	= {Firewalls are an important means to secure critical ICT
		 infrastructures. As configurable off-the-shelf prod\-ucts,
		 the effectiveness of a firewall crucially depends on both
		 the correctness of the implementation itself as well as the
		 correct configuration. While testing the implementation can
		 be done once by the manufacturer, the configuration needs
		 to be tested for each application individually. This is
		 particularly challenging as the configuration, implementing
		 a firewall policy, is inherently complex, hard to
		 understand, administrated by different stakeholders and
		 thus difficult to validate. This paper presents a formal
		 model of both stateless and stateful firewalls (packet
		 filters), including NAT, to which a specification-based
		 conformance test case gen\-eration approach is applied.
		 Furthermore, a verified optimisation technique for this
		 approach is presented: starting from a formal model for
		 stateless firewalls, a collection of semantics-preserving
		 policy transformation rules and an algorithm that optimizes
		 the specification with respect of the number of test cases
		 required for path coverage of the model are derived. We
		 extend an existing approach that integrates verification
		 and testing, that is, tests and proofs to support
		 conformance testing of network policies. The presented
		 approach is supported by a test framework that allows to
		 test actual firewalls using the test cases generated on the
		 basis of the formal model. Finally, a report on several
		 larger case studies is presented. },
 pdf		= {http://www.brucker.ch/bibliography/download/2014/brucker.ea-formal-fw-testing-2014.pdf}
}

%0 Journal Article
%T Formal Firewall Conformance Testing: An Application of Test and Proof Techniques
%A Brucker, Achim D.
%A Brügger, Lukas
%A Wolff, Burkhart
%J Software Testing, Verification & Reliability (STVR)
%D 2014
%I pub-wiley
%C pub-wiley:adr
%G USenglish
%F brucker.ea:formal-fw-testing:2014
%X Firewalls are an important means to secure critical ICT infrastructures. As configurable off-the-shelf prod\-ucts, the effectiveness of a firewall crucially depends on both the correctness of the implementation itself as well as the correct configuration. While testing the implementation can be done once by the manufacturer, the configuration needs to be tested for each application individually. This is particularly challenging as the configuration, implementing a firewall policy, is inherently complex, hard to understand, administrated by different stakeholders and thus difficult to validate. This paper presents a formal model of both stateless and stateful firewalls (packet filters), including NAT, to which a specification-based conformance test case gen\-eration approach is applied. Furthermore, a verified optimisation technique for this approach is presented: starting from a formal model for stateless firewalls, a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage of the model are derived. We extend an existing approach that integrates verification and testing, that is, tests and proofs to support conformance testing of network policies. The presented approach is supported by a test framework that allows to test actual firewalls using the test cases generated on the basis of the formal model. Finally, a report on several larger case studies is presented.
%K model-based testing; conformance testing; security testing; firewall; specification-based testing; testing cloud infrastructure, transformation for testability; HOL-TestGen; test and proof; security configuration testing
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
%U http://www.brucker.ch/bibliography/download/2014/brucker.ea-formal-fw-testing-2014.pdf
%U http://dx.doi.org/10.1002/stvr.1544

TY - JOUR
AU - Brucker, Achim D.
AU - Brügger, Lukas
AU - Wolff, Burkhart
PY - 2014//
TI - Formal Firewall Conformance Testing: An Application of Test and Proof Techniques
JO - Software Testing, Verification & Reliability (STVR)
PB - pub-wiley
CY - pub-wiley:adr
KW - model-based testing; conformance testing; security testing; firewall; specification-based testing; testing cloud infrastructure, transformation for testability; HOL-TestGen; test and proof; security configuration testing
N2 - Firewalls are an important means to secure critical ICT infrastructures. As configurable off-the-shelf prod\-ucts, the effectiveness of a firewall crucially depends on both the correctness of the implementation itself as well as the correct configuration. While testing the implementation can be done once by the manufacturer, the configuration needs to be tested for each application individually. This is particularly challenging as the configuration, implementing a firewall policy, is inherently complex, hard to understand, administrated by different stakeholders and thus difficult to validate. This paper presents a formal model of both stateless and stateful firewalls (packet filters), including NAT, to which a specification-based conformance test case gen\-eration approach is applied. Furthermore, a verified optimisation technique for this approach is presented: starting from a formal model for stateless firewalls, a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage of the model are derived. We extend an existing approach that integrates verification and testing, that is, tests and proofs to support conformance testing of network policies. The presented approach is supported by a test framework that allows to test actual firewalls using the test cases generated on the basis of the formal model. Finally, a report on several larger case studies is presented.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
L1 - http://www.brucker.ch/bibliography/download/2014/brucker.ea-formal-fw-testing-2014.pdf
UR - http://dx.doi.org/10.1002/stvr.1544
ID - brucker.ea:formal-fw-testing:2014
ER -

 brucker.ea:formal-fw-testing:2014
 ArticleInAPeriodical
 pub-wiley:adr
 pub-wiley
 2014
 Software Testing, Verification & Reliability (STVR)

 Brucker Achim D
 Brügger Lukas
 Wolff Burkhart

 Formal Firewall Conformance Testing: An Application of Test and Proof Techniques
 Firewalls are an important means to secure critical ICT infrastructures. As configurable off-the-shelf prod\-ucts, the effectiveness of a firewall crucially depends on both the correctness of the implementation itself as well as the correct configuration. While testing the implementation can be done once by the manufacturer, the configuration needs to be tested for each application individually. This is particularly challenging as the configuration, implementing a firewall policy, is inherently complex, hard to understand, administrated by different stakeholders and thus difficult to validate. This paper presents a formal model of both stateless and stateful firewalls (packet filters), including NAT, to which a specification-based conformance test case gen\-eration approach is applied. Furthermore, a verified optimisation technique for this approach is presented: starting from a formal model for stateless firewalls, a collection of semantics-preserving policy transformation rules and an algorithm that optimizes the specification with respect of the number of test cases required for path coverage of the model are derived. We extend an existing approach that integrates verification and testing, that is, tests and proofs to support conformance testing of network policies. The presented approach is supported by a test framework that allows to test actual firewalls using the test cases generated on the basis of the formal model. Finally, a report on several larger case studies is presented.

