

Technical Report

 Nr. TUD-CS-2015-1268

November 24th, 2015

Authors
Lotfi ben Othmane, Fraunhofer SIT, Germany
Golriz Chehrazi, Fraunhofer SIT, Germany

Eric Bodden, Fraunhofer SIT, Germany

Petar Tsalovski, SAP SE, Germany

Achim D.~Brucker, SAP SE, Germany

Time for Addressing Software Security Issues:
Prediction Models and Impacting Factors

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, including reprinting/republishing this material for advertising or promotional purposes,

collecting new collected works for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without

notice, after which this version may no longer be accessible.

1

Time for Addressing Software Security Issues:
Prediction Models and Impacting Factors
Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D. Brucker

Abstract—Finding and fixing software vulnerabilities has be-
come a major struggle for most software-development companies.
While generally without alternative, such fixing efforts are a
major cost factor, which is why companies have a vital interest
in focusing their secure software development activities such that
they obtain an optimal return on this investment.

We investigate, in this paper, quantitatively the major factors
that impact the time it takes to fix a given security issue based
on data collected automatically within SAP’s secure development
process and we show how the issue fix time could be used
to monitor the fixing process. We use three machine-learning
methods and evaluate their predictive power in predicting the
time to fix issues. Interestingly, the models indicate that the
impact of vulnerability type has a small impact on issue fix time.
The time it takes to fix an issue instead seems much more related
to the component in which the potential vulnerability resides, the
project related to the issue, the development groups that address
the issue, and the closeness of the software release date. This
indicates that the software structure, the fixing processes, and
the development groups are the dominant factors that impact
the time spent to address security issues.

SAP can use the models to implement a continuous improve-
ment of its secure software development process and to measure
the impact of individual improvements. Other companies can use
similar models and mechanisms an be a learning organization.

Index Terms—Human factors, secure software, issue fix time.

I. INTRODUCTION

F IXING vulnerabilities, before and after a release, is one
of the most costly and unproductive software-engineering

activities. Yet, it comes with few alternatives, as code-level
vulnerabilities in the application code are the basis of in-
creasingly many exploits [1]. Large software development
enterprises, such as SAP, embed in their development process
activities for identifying vulnerabilities early, such as dynamic
and static security testing [2]. Next to that, SAP’s security
development lifecycle (see, e.g., [3] for Microsoft’s security
development lifecycle) includes a process for fixing vulnerab-
ilities after a software release.

Analyzing and fixing security issues is a costly undertaking
that impacts a software’s time to market and increases its
overall development and maintenance cost. In result, software
development companies have an interest to determine the
factors that impact the effort, and thus, the time it takes to
fix security issues, in particular to:

• identify time-consuming factors in the secure develop-
ment process,

• better understand affecting factors,

Lotfi ben Othmane, Golriz Chehrazi, and Eric Bodden are with Fraunhofer
Institute for Secure Information Technology, Darmstadt, Germany.

Petar Tsalovski, Achim D. Brucker are with SAP SE, Walldorf, Germany.

• focus on important factors to enhance software’s security
level,

• accelerate secure software development processes, and to
• enhance security-cost planning for software development

projects.
In a previous study [4] we conducted expert interviews

at SAP to identify factors that impact the effort of fixing
vulnerabilities. SAP collects data about fixing security issues
(potential vulnerabilities that need to be analyzed further
manually to ensure whether they are vulnerabilities or false
positive issues) both during a software’s development and
after its release. With this study we supplement the previous
qualitative, interview-based results with objectively gathered
system data. In this study, we used this data to identify and
quantify, using machine learning, to what extent automatically
measured factors impact a given issue’s fix time. By issue
fix time we mean the duration between the time at which a
security issue is reported to SAP and the time at which the
issue is marked as closed in number of days. For simplicity, we
use the term issue to refer to a security issue in the remaining
of the paper.

For the analysis we use five data sources based on distinct
system tools available at SAP. The first three main data sources
relate to security issues; issues found by code scanners for the
programming language ABAP [5] (Data source 1) and for Java,
JavaScript, and C (Data source 2), as well as issues found in
already released code, which are communicated through so-
called security messages, for instance reported by customers,
security experts or SAP’s own security team (Data source
3). The other two data sources comprise support data. They
describe the components, i.e., a group of applications that
performs a common business goal such as sales order or
payroll (Support data 1), and the projects (Support data 2).

After cleaning the data, we used three methods to de-
velop prediction models, based on (1) linear regression, (2)
Recursive PARTitioning (RPART), and (3) Neural Network
Regression (NNR). Next, we measured the models’ accuracy
using three different metrics. Interestingly, the models indicate
that the impact of a vulnerability’s type (buffer overflow, cross-
side-scripting, etc.) has a less dominant impact than previously
believed. Instead, the time it takes to fix an issue is more
related to the component in which the vulnerability resides,
the project related to the issue, to the development groups
that address the issue, and to the closeness of the software
release date.

SAP can use the results of this study to identify costly pain
points and important areas in the secure development process,
and to prioritize improvements to this process. Such models
can be used to establish a learning organization, which learns

2

Table I
EXAMPLES OF TIME REQUIRED FOR FIXING VULNERABILITIES [7].

Vulnerability type Average fix time (min)
Dead Code (unused methods) 2.6
Lack of authorization check 6.9
Unsafe threading 8.5
XSS (stored) 9.6
SQL injection 97.5

and improves its processes based on the company-specific
actual facts reflected in the collected data [6]. Since SAP
collects the models’ input data continuously, the models can
be used to analyze the company’s processes and measure the
impact of enhancements over time.

This paper is organized as follows. First, we give an
overview of related work (Section II), discuss SAP’s approach
to secure software development (Section III), and provide
an overview of the regression methods and model accuracy
metrics that we use in the study (Section IV). Next, we de-
scribe the research methodology that we applied (Section V),
report about our findings (Section VI) and analyze the factors
that impact the issue fix time (Section VII). Subsequently,
we discuss the impacts and the limitations of the study
(Section VIII), the main lessons (and surprises) that we learned
(Section IX) and conclude the paper.

II. RELATED WORK

The are related work on prediction models for development
efforts and time to fix bugs but work in the area of effort
estimation for fixing security issues is scarce. Thus, we discuss
in this section related work that investigate influencing factors
on issue fix time or vulnerability fix time and also the
development of prediction models for effort estimations, and
differentiate them from our work.

Cornell measured the time that the developers spent fixing
vulnerabilities in 14 applications [7]. Table I shows the average
time the developers in the study take to fix vulnerabilities
for several vulnerability types. Cornell found that there are
vulnerability types that are easy to fix, such as dead code,
vulnerability types that require applying prepared solutions,
such as a lack of authorization, and vulnerability types that,
although simple conceptually, may require a long time to fix
for complex cases, such as SQL injection. The vulnerability
type is thus one of the factors that indicates the vulnerability
fix time but is certainly not the only one [4].

In previous work [4] we reported on a qualitative study
conducted at SAP to identify the factors that impact the
effort of fixing vulnerabilities and thus, the vulnerability fix
time. The study involved interviews with 12 security experts.
Through these interviews we identified 65 factors that include,
beside the vulnerabilities characteristics, the structure of the
software involved, the diversity of the used technologies,
the smoothness of the communication and collaboration, the
availability and quality of information and documentation, the
expertise and knowledge of developers and security coordin-
ators, and the quality of the code-analysis tools.

Several studies aim at predicting the time to fix bugs [8],
[9], [10], [11], [12], [13], [14]. Zhang et al. [15] conducted

an empirical study on three open-source software to examine
what factors affect the time between bug assignment to a
developer and the time bug fixing starts, that is the developer’s
delay (when fixing bugs), along three dimensions: bug reports,
source code, and code changes. The most influencing factor
found was the issue’s level of severity. Other factors are of
technical nature, such as sum of code churn, code complexity
or number of methods in changed files as well as the maximum
length of all comments in a bug report. Similar to our study,
Zhang et al. were interested in revealing factors that impact
time, but as opposed to them we focus on security issues,
not on bugs, and include in our analysis not only automat-
ically collected information about security issues before and
after release, but additionally component- and project-related
factors from which human-based and organizational factors
can be derived. In contrast to Zhang et al., we consider the
overall fix time that starts at the time when a security issue is
reported and ends when the issue is marked as closed.

Menzies et al. [16] estimated projects development-effort,
using project related data, such as the type of teams involved,
the development time of the projects, and the number of
high-level operations within the software. They found that it
is better to use local data based on related projects instead
of global data, which allows to account for project-related
particularities that impact the development effort. Their data
sample is a “global dataset” that includes data from several
research software projects conducted by different entities.
Instead, our study uses only data sets from one company, SAP.

In another study, Menzies et al. [17] reassured the usefulness
of static code attributes to learn defect predictors. They showed
that naive-Bayes machine-learning methods outperform rule-
based or decision-tree learning methods and they showed, on
the other hand, that the choice of learning methods used for
defect predictions can be much more important than used
attributes. Unlike this previous work, we use static code
attributes to predict issue fix time and we use neural networks
as additional method for prediction.

Following the objective to reduce effort for security inspec-
tion and testing, Shin et al. [18] used in their empirical study
code complexity, code churn, and developer activity metrics
obtained to predict vulnerable code locations with logistic
regressions. They also used J48 decisions trees, random forest,
and Bayesian network classification techniques based on data
obtained from two large-scale open source projects using code
characteristics and version control data. They found out that
the combination of these metrics is effective in predicting
vulnerable files. Nevertheless, they state that further effort
is necessary to characterize differences between faults and
vulnerabilities and to enhance prediction models. Unlike Shin
et al., our empirical research focuses on predictions using
system-based data to predict vulnerability fix time.

Hewett and Kijsanayothin [14] developed models for defect
repair time prediction using seven different machine learning
algorithms, e.g. decision trees and support vector machines.
Their predictive models are based on a case study with data
from a large medical software system. Similar to our approach
they consider the whole repair time including all phases of
a defect lifecycle. They use twelve defect attributes selected

3

by domain experts for their estimations such as component,
severity, start and end date, and phase. Unlike them we are
interested in estimating vulnerability fix time not defect fix
time.

In contrast to prior work, which often is based on open-
source software, we estimate the vulnerability fix time based
on an industrial case study of a major software development
company, based on distinct data sets that include security
issues before and after release and combine them with project
and component-related data. Our objective is to identify the
impacting strength of the factors on vulnerability fix time as
well as to predict issue fix time in general.

III. SECURE SOFTWARE DEVELOPMENT AT SAP

To ensure a secure software development, SAP follows
the SAP Security Development Lifecycle (S2DL). Figure 1
illustrates the main steps in this process, which is split into four
phases: preparation, development, transition, and utilization.

To allow the necessary flexibility to adapt this process to the
various application types (ranging from small mobile apps to
large-scale enterprise resource-planning solutions) developed
by SAP as well as the different software-development styles
and cultural differences in a worldwide distributed organisa-
tion, SAP follows a two-staged security-expert model:

1) a central security team defines the global security pro-
cesses, such as the S2DL, provides security trainings,
risk identification methods, offers security testing tools,
or defines and implements the security response process;

2) local security experts in each development area/team are
supporting the developers, architects, and product owners
in implementing the S2DL and its supporting processes.

For this study, the development and utilization phases of the
S2DL are the most important ones, as the activities carried out
during these phases detect most of the vulnerabilities that need
to be fixed:

• during the actual software development (in the steps
secure development and security testing) vulnerabilities
are detected, e.g., by using manual and automated as
well as static and dynamic methods for testing application
security [19], [2]. Most vulnerabilities detected are found
during this step, i.e., most vulnerabilities are fixed in
unreleased code (e.g., in newly developed code that is
not yet used by customers);

• security validation is an independent quality control that
acts as “first customer” during the transition from soft-
ware development to release, i.e., security validation finds
vulnerabilities after the code freeze, (called correction
close) and the actual release;

• security response handles issues reported after the release
of the product, e.g., by external security researchers or
customers.

If an issue is confirmed (e.g., by an analysis of a security
expert), from a high-level perspective developers and their
local security experts implement the following four steps:
1) analyze the issue, 2) design or select a recommended
solution, 3) implement and test a fix, and 4) validate (e.g., by
re-testing the fixed solution) and release this fix. Of course,

the details differ depending of the development model of the
product team and, more importantly, depending on whether
the issue is detected in code that is used by customers or not.

While the technical steps for fixing an issue are the same
regardless of whether the issue is in released code or currently
developed code, the organizational aspects differ significantly:
for vulnerabilities in unreleased development code, detecting,
confirming, and fixing vulnerabilities is a lightweight process
defined locally by the development teams. Vulnerabilities
detected by security validation, e.g., after the code freeze,
even if in unreleased code, involve much larger communication
efforts across different organisations for explaining the actual
vulnerabilities to development as well as ensuring that the vul-
nerability is fixed before the product is released to customers.

Fixing vulnerabilities in released code requires the involve-
ment of yet more teams within SAP, as well as additional steps,
e.g., for back-porting fixes to older releases and providing
patches (called SAP Security Notes) to customers.

Let us have a closer look on how an externally reported
vulnerability in a shipped software version is fixed: First,
an external reporter (e.g., customer or independent security
researcher) contacts the security response team, which assigns
a case manager. The case manager is responsible for driving
the decision if a reported problem is a security vulnerability
that needs to be fixed, and for ensuring that the confirmed
vulnerability is fixed and that a patch is released. After a
vulnerability is confirmed, the case manager contacts the
development team and often also a dedicated maintenance
team (called IMS) to ensure that a fix is developed and back-
ported to all necessary older releases (according to SAP’s
support and maintenance contracts). The developed fixes are
subject to a special security test by the security validation team
and, moreover, the response teams reviews the SAP Security
Note. If the technical fix as well as the resulting Security Note
pass the quality checks, the Security Note is made available
to customers individually and/or in form of a support package
(usually on the first Tuesday of a month). Support packages are
functional updates that also contain the latest security notes.

IV. BACKGROUND

Assume a response variable y and a set of independent
variables xi such that y = f(x1, x2, . . . , xn) where f repres-
ents the systematic information that the variables xi provide
about y [20]. Statistical learning approaches can be seen as a
means to infer f in such a way that its input/output-relation
is consistent with those observed during learning [20]. In
machine learning, regression models relate the quantity of
a response factor, i.e., dependent variable, of a given object
to other prediction factors, i.e., independent variables, of that
same object.

Different regression models have different capabilities, e.g.,
in terms of their resistance to outliers, their fit for small data-
sets, and their fit for a large number of predicting factors [21].
However, in general, a regression model is assumed to be
good, or useful, if it predicts responses close to the actual
values observed in reality. In this study, a model’s performance
(i.e., indicated by the accuracy of the predictions) is judged

4

Preparation Development Utilization Transition

Training
Risk

Identification
Plan Security

Measures
Secure

development
Security
testing

Security
Validation

Security
Response

Figure 1. Overview of the SAP Security Development Lifecycle (S2DL)

by determining its prediction errors, and the goal must be to
minimize those errors.

This section provides background about the regres-
sion methods, possible performance metrics for generated-
regression models, and a metric for measuring the relative
importance of the prediction factors used in the models.

A. Overview of used regression methods

We give next an overview of the three methods used in this
study.

Linear regression. This method assumes that the regression
function is linear in the input [22], i.e., in the prediction
factors. The linear method has the advantage of being simple
and allows for an easy interpretation of the correlations
between the input and output variables, i.e., of how the output
of the function relates to the predicting variables.

Tree-based regression. This method recursively partitions the
observations, i.e., the data records of the object being analyzed,
for each of the prediction factors (aka features) such that it
reduces the value of a metric that measures the information
quantity of the splits [23]. In this study we use the method
recursive partitioning and regression trees (RPART) [24], a
commonly used tree-based method.

Neural-networks regression. This method represents func-
tions that are non-linear in the prediction variables. It uses a
multi-layer network that relates the input to the output through
intermediate nodes. The output of each intermediate node is
the sum of weighted input of the nodes of the previous layer.
The data input is the first layer [25].

These three regression methods are the basic ones that are
commonly used in data analytics. In this study, we use their
implementations in packages for the statistics language R:1

rpart2 for RPART, and nnet3 for NNR. The implementation
“lm” of the Linear Regression (LR) is already contained within
the core of R.

B. Model performance metrics

Regression methods infer prediction models from a given
set of training data, such that prediction errors are minimized.
Several metrics have been developed to compare the perform-
ance of the models in terms of accuracy of the generated
predictions, also known as goodness-of-fit [26]. The metrics
indicate how well the models predict accurate responses for
future inputs. Next, we describe the three metrics that we used

1https://www.r-project.org/about.html
2https://cran.r-project.org/web/packages/rpart/rpart.pdf
3https://cran.r-project.org/web/packages/nnet/nnet.pdf

in this work, the Coefficient of determination (R2) [27], the
Akaike Information Criterion (AIC) [26] and the Prediction at
a given level (PRED) [27].4

Coefficient of determination (R2). This metric “summarizes”
how well the generated regression model fits the data. It
compares the residues’ deviance to the null deviance (deviance
from the mean value); it computes the proportion of the
variation of the response variable as estimated using the
generated regression compared to the variation of the response
variable computed using the null model, i.e., the mean of the
values [26]. The following equation formulates the metric.

R2 = 1 −
∑n

k=0 (xi − x̂i)
2

∑n
k=0 (xi − x̄i)2

(1)

R2 is commonly used to evaluate linear regression models;
it measures how the regression line fits the data. We use it
for the three regression methods to measure how, in general,
a given regression function fits the data. An R2 of 1 indicates
that the model perfectly fits the data and R2 of 0 indicates
that the model does not explain the data. A value such as 0.5
indicates that about half of the variation in the data can be
predicted or explained using the model [26].

The LR method focuses on minimizing R2. Thus, Spiess
and Neumeyer, for example, consider that the metric is not
appropriate for evaluating non-linear regression models [29].
Nevertheless, the metric is often used to compare models,
e.g., [26]. In this study we use the metric to evaluate the
performance of the prediction models in predicting the test
dataset and not the training dataset. The metric provides a
“summary” of the errors of the predictions.

Akaike Information Criterion. This metric estimates the
information loss when approximating reality. The following
equation formulates the metric [26].

AIC = N × log(

n∑

k=0

(xi − x̂i)
2/N) + 2(k + 2) (2)

Here N is the number of observations and k is the number
of variables. A smaller value indicates a better model.

Prediction at a given level. This metric computes the per-
centage of prediction falling within a threshold h [30]. The
following equation formulates the metric

PRED(h) =
n∑

i=1

{
1 if xi−x̂i

xi
≤ h

0 otherwise
(3)

4We avoided the metric Mean of the Magnitude of the Relative Error
(MMRE) as it was shown to be misleading [28].

5

Here N is the number of observations, xi is the response
variable for observation i and h is the threshold, e.g., 25%.

The perfect value for the metric is 100%.

C. Variable importance

This metric measures the relative contributions of the dif-
ferent predicting factors used by the regression method to the
response variable. For statistical use, such metric could be,
for example, the statistical significance while for business use,
the metric could be the “impact on the prediction factor” on
the (dependent) response variable. In addition, the metric is
often tailored to regression methods, although the metrics may
exhibit similarities [31].

In this work we use the variable-importance metric em-
ployed in the RPART regression method. The metric measures
the sum of the weighted reduction in the impurity method (e.g.
the Shannon entropy and the variance of response variable)
attributed to each variable [32], [33].5 It associates scores to
each variable, which can be used to rank the variables based
on their contribution to the model.

V. METHODOLOGY

Figure 2 depicts the process that we used in this study; a
process quite similar to the one used by Bener et al. [34]. First,
we define the goal of the data-analytics activity, which is: de-
velop a function for predicting the issue fix time using the data
that SAP collects on it’s processes for fixing vulnerabilities in
pre-release and post-release software. The following steps are:
collect data that could help achieve the goal; prepare the data
to be used to derive insights using statistical methods; explore
the collected data sets to understand the used coding scheme,
its content, and the relationships between the data attributes;
develop prediction models for each of the collected datasets;
compute metrics on the model and try to find explanations
and arguments for the results. The results of the models
analysis were used to identify ways to improve the models.
The improvements included the collection of new datasets for
dependent information, e.g., about projects. We discuss next
the individual steps in more details.

A. Data collection

SAP maintains three data sets on fixing security vulnerabil-
ities, which we refer to as our main data sources. In addition,
it maintains a data set about components, and a dataset about
projects, which we call support data. Table II lists the different
datasets we use. The datasets used in our study span over
distinct time periods for each dataset (e.g., about 5 years).

The security-testing process records data about fixing issues
in two data sets. First, ABAP developers use SLINT for
security code analysis. In Data source 1, the tool records data
related to a set of attributes about each of the issues it discovers
and the tasks performed on these issues. Table III lists these
attributes.

5The common approach for evaluating the importance of prediction factors
for LR is based on Pearson correlations. This may not apply for the categorical
variables, which are common in this study.

Develop

models

Analyze the

models

Collect data
Prepare the

data

Explore the

data

Set research

goal

Figure 2. Analysis method.

Table II
DATASETS COLLECTED FROM SAP’S TOOLS

Dataset Description
Data source 1 Vulnerabilities found in ABAP code
Data source 2 Vulnerabilities found in Java and C++ code
Data source 3 Security messages
Support data 1 Components
Support data 2 Projects
Extended data source 2 Extend data source 2 with information about

the projects (support data 2)
Extended data source 3 Extend data source 3 with information about

the components (support data 1)

Second, Java and JavaScript developers use Fortify6 and
C++ developers use Coverity to analyze software for security
issues. In Data source 2, these tools record data related to a
set of attributes about each of the vulnerabilities they discover
and the tasks performed on these vulnerabilities. Table IV lists
these attributes.

In Data source 3, the security response process maintains
data about fixing issues discovered in released software. The
data is collected and maintained through a Web form; it is not
collected automatically as in the case of data sources 1 and 2.
The attributes of this data source are listed in Table V.

Each issue can relate to a concrete component. Components
are groups of applications that perform a common business
goal. A system consists of a set of components. Table VI lists
the components attributes.

A software is developed in the context of a project.
Table VII lists the attribute of the projects dataset (support

6Since 2013, SAP uses Checkmarx for analyzing JavaScript. Thus, the use
of Fortify by JavaScript developers declines since then.

Table III
LIST OF THE ATTRIBUTES OF ABAP ISSUE FIXING (DATA SOURCE 1).

Attribute Description
Date found Date on which the issue was found
Date solved Date on which the issue was closed
Vulnerability name Vulnerability types such as memory corruption

and buffer overflow
Project ID Project identifier
Priority The priority of fixing the vulnerability. Range: 1

to 4, with 1 highest, 4 lowest priority.

6

Table IV
LIST OF THE ATTRIBUTES OF JAVA AND C++ ISSUE FIXING (DATA SOURCE

2).

Attribute Description
Date found Date on which the issue was found
Date solved Date on which the issue was closed
Vulnerability name Vulnerability types such as memory corruption

and buffer overflow
Scan source Tool that performed the scan, i.e., Coverity (for

C++ code) or Fortify (for Java code)
Project name Project identifier
Folder name Indicates the required behavior of the developer

towards the issue, e.g., must fix, fix one of the a
set, optional, etc.

Scan status Status of the issues, i.e., new, updated, removed
and reintroduced (i.e. removed but reopened). It
allows to identify whether the issue is addressed
or not, and is a false positive or not.

Vulnerability count Number of issues of the same vulnerability found
at once. This indicates that the issues might be
related to the same problem.

Priority The priority of fixing the vulnerability. Range: 1
to 4, with 1 highest, 4 lowest priority.

Table V
LIST OF THE ATTRIBUTES FOR SECURITY MESSAGES (DATA SOURCE 3).

Attribute Description
CVSS Score Common Vulnerability Scoring System (CVSS).

The score indicates also the urgency of fixing the
vulnerability.

Processor Identifier of development team/area and, thus,
implicitly for the local instantiation of the S2DL

Reporter Identifier of the external researcher/company who
reported the issue

Source The source of the reported issue such as internal,
security testing tool, customers

Vulnerability type Vulnerability type
Priority Priority of the issue to be fixed: low, medium, or

high
Component Group of applications that perform a common

business goal such as sales order or payroll

data 2). We extended data source 2 with project descriptions
data; we joined data source 2 and support data 2. We also
added three computed fields to the data set:

1) FixtoRelease period: The time elapsed from fixing the
given issue to releasing the software.

2) Dev period: The time elapsed from starting the devel-
opment to closing the development of the software that
contains the issue.

3) FoundtoRelease period: The time elapsed from discover-
ing the issue to the releasing of the software that contains

Table VI
LIST OF THE ATTRIBUTES FOR THE COMPONENTS (SUPPORT DATA 1).

Attribute Description
PTU area The area of the component, e.g., CRM, IMS, ERP
Gr component Component group, i.e., semantic aggregation of

components based on superordinate level
Language The language(s) used to develop the component:

ABAP, Java, ABAP and Java, or unknown
PPMS product The name of product that the component is part

of, as stated in PPMS (Projects Management
System)

Comp owner The component’s development group
Product owner The product’s development group

Table VII
LIST OF THE ATTRIBUTES FOR PROJECTS (SUPPORT DATA 2).

Attribute Description
Int prg name The unofficial known name of the project (In-

ternal program name)
Prg typ id Release related vs release unrelated (RR / UR)
Rel type id Project type (standard, etc.)
Rel typ id Release type ID (standard, pilot, etc.)
Delivery mode id Mode of delivery to the customer. Values are on

premise, on demand, on mobile, etc.
Maintstrategy id Maintenance strategy. There is a codification for

the strategies.
Deploy type Deployment type. There is a codification for the

deployment
D2t date Planned end of the test period. The period starts

after the development closes
Devclose date Closing date of the development
P2d date Planned development starting date
P2r date Planned release date
Prg lead resp Development team responsible for the project
Risk expert Identifier of risk expert (anonymized data).

P
ro

po
rt

io
n

of
 m

is
si

ng
s

0.
0

0.
1

0.
2

0.
3

0.
4

Ye
ar

P
rio

rit
yC

P
at

ch
D

ay

R
O

P
ro

je
ct

pr
oc

es
so

r

nd
ur

at
io

n

C
om

bi
na

tio
ns

Ye
ar

P
rio

rit
yC

P
at

ch
D

ay

R
O

P
ro

je
ct

pr
oc

es
so

r

nd
ur

at
io

n

Figure 3. Plot that visualizes missing data for data source 3.

the issue.
The number of records for each of the basic data sets range

from thousands of records to hundred of thousands of records.
We did not provide the exact numbers to avoid their misuse
(in combination with potentially other public data) to derive
statistics about vulnerabilities in SAP products, which would
be out of the scope of this work.

B. Data preparation

Using the collected data required us to prepare them for
the model-generation routines. The preparation activities re-
quired cleaning the data and transforming them as needed for
processing.

Data cleaning. First, we identified the data columns where
data are frequently missing. Missing values impact the results

7

Table VIII
COEFFICIENTS OF THE LINEAR REGRESSION OF ISSUE FIX TIME TO

SECURITY MESSAGE SOURCE.

Message source Coefficient p-value
(Intercept) 249.17 < 0.001
Code scan tool -50.04 < 0.001
Central security department -38.05 < 0.001
Customers -60.68 < 0.001
External research organizations -102.78 < 0.001
Internal development departments -12.21 0.304
Test services -124.74 < 0.001
Validation services -21.88 0.136

of the regression algorithms because these algorithms may
incorrectly assume default values for the missing ones. We
used plots such as the one of Figure 3 to identify data columns
that require attention.

Second, we developed a set of plots to check outliers –
values that are far from the common range of the values of
the attributes. We excluded data rows that include semantically
wrong values, e.g., we removed records from Data source 1
where the value of ”Date found” is 1 Dec. 0003.

Third, we excluded records related to issues that are not
addressed yet; we cannot deduce issue fix time of such records.

Fourth, we excluded records that include invalid data. For
example, the vulnerability type attribute of Data source 2
includes values such as “not assigned”, “?”, and “&novuln.”
The records that have these values are excluded. There is no
interpretation of prediction results that include these values.

Fifth, we excluded non-useful data attributes. These include,
for example, the case where the attribute is derived from other
attributes that are considered in the models.

Data transformation. First, we transformed the data of some
columns from type text to appropriate types. For instance,
we transformed the data of the CVSS column to numeric.
Next, we computed new data columns from the source (ori-
ginal) data. For example, we computed the issue fix time
from the issue closing date and issue discovery date or we
performed some attributes’ value transformations to obtain
machine readable data for model generation. Some attributes
contain detailed information that reduces the performance
of the regression algorithms. We addressed this issue by
developing a good level of data aggregation for the prediction
algorithm. For example, the original dataset included 511
vulnerability types. We grouped the vulnerabilities types in
vulnerability categories, which helps to derive better prediction
models. Also, we aggregated the “component” variable to
obtain ”Gr component” to include in our regression.

C. Data exploration

We developed a set of plots and statistics about the frequen-
cies of values for the factors and the relationship between the
issue fix time and some of the prediction factors. For example,
Figure 4 shows the relationship between the issue fix time in
days and vulnerability type. This gives us a first impression
of the relations among the attributes of a given data set. Also,
Table VIII shows the coefficients of the Linear Regression
(LR) of the issue fix time using the factor message source, that

? CDR−1 INF−1 MEM SQL TRV XSS

0
50

0
10

00
15

00

Vulnerability type

V
ul

ne
ra

bi
lit

y
fix

 ti
m

e

Figure 4. Relationship between issue fix time (in days) and vulnerability
types in the context of Data source 3. CDR-1, INF-1, MEM, SQL, TRV, XSS
are internal codes for vulnerabilities types and code “?” indicates unknown
or uncategorized type of reported vulnerabilities. (Some vulnerability types
do not appear on the X axis to ensure clarity.)

identifies the source of the reported issue. The table shows that
the coefficients in this categorical factor indicate the different
contributions of the factor on the issue fix time. The results
indicate different impacting strengths of the different sources
of security messages (e.g., external parties, customers or the
security department) on the issue fix time.

D. Models development
We partitioned each prepared data source into a training

set that includes 80% of the data and a test set that includes
the remaining 20%. We used the training set to develop
the prediction models, or fits, and the test set to assess the
goodness of the generated models. The selection of the records
for both sets is random.

Next, we performed three operations for each of the main
data sources. First, we generated three prediction models using
the training set, one using the linear regression method, one
using the RPART method, and one using the NNR method.
The three data sources have different data attributes and cannot
be combined. Thus, we cannot use them together to develop
a generic prediction model.

E. Models analysis
We used the variable-importance metric described in Sec-

tion IV-C to assess the impact of the different prediction

8

 84) vulnerabilitytype=,&OTHER,ACI-1,CDR-1,INF-1,MAC-1,MEM,XSS,XS

S-2 270 5063771.00 286.53700

 168) Component=AP-RC-ANA-UI-XLS,BC-BSP,BC-CST-DP,BC-C

ST-IC,BC-CTS-SDM,BC-CTS-TMS,BC-DOC-HLP,BC-DOC-TTL,BC-I18,BC

-JAS-ADM-MON,BC-JAS-DPL,BC-SEC,BC-SEC-DIR,BC-SRV-ARL,BC-SR

V-FSI,BC-UPG-SLM,BC-UPG-TLS-TLJ,BC-WD-CMP-FPM,BC-XI-CON-AX

S,BC-XI-IBD,BC-XI-IBF,BI-BIP-AUT,BI-OD-STW,BI-RA-WBI,BW-BEX-OT-

MDX,CA-GTF-IC-BRO,CA-GTF-IC-SCR,CA-GTF-RCM,CRM-BF,CRM-BF-

SVY,CRM-CIC,CRM-IC-EMS,CRM-IC-FRW,CRM-IPS-BTX-APL,CRM-ISA,

CRM-ISA-AUC,CRM-ISE,CRM-LAM-BF,CRM-MD-PRO,CRM-MKT-DAM,C

RM-MKT-MPL,CRM-MSA,FS-CM,FS-SR,IS-A-DP,IS-U-CS-ISS,LO-AB-BS

P,LO-GT,MFG-ME,MOB-APP-EMR-AND,PA-GE,PLM-PPM-PDN,PLM-WUI

-RCP,PSM-GPR-SN,SBO-INT-B1ISN,SCM-EWM-RF,XAP-IC-IDM,XX-PRO

J-CDP-TEST-296 119 1015233.00 205.82350 *

 169) Component=AP-CFG,AP-LM-MON-HC,AP-LM-SUP,AP-RC-

ANA-RT-MDA,AP-RC-RSP,AP-RC-UIF-RT,AP-SDM-EXC,BC-CCM-MON-

OS,BC-CCM-SLD-JAV,BC-CST,BC-CUS-TOL-CST,BC-DB-ORA-INS,BC-D

OC-TER,BC-ESI-WS-ABA,BC-ESI-WS-JAV-RT,BC-FES-BUS-RUN,BC-JA

S-ADM-ADM,BC-JAS-COR,BC-JAS-SEC-UME,BC-MID-RFC,BC-SEC-SA

L,BC-SRV-COM,BC-SRV-COM-FTP,BC-SRV-KPR-CS,BC-SRV-MCM,BC-

SRV-SSF,BC-WD-ABA,BC-WD-

Figure 5. Part of the prediction model generated from data source 3 using
RPART method.

factors on the issue fix time for each of the three data sources.
The metric indicates that the factor “project name” is very
important for Data source 2 and the factor “component”
is very important forDdata source 3. The results and their
appropriateness were discussed with the security experts at
SAP. We extended Data source 2 with Support data 2 (i.e.,
projects data set) and we extended Data source 3 with Support
data 1 (i.e., components data set). Next, we performed the
model development phase (section V-D) using the extended
datasets. Then, we used each of the prediction models to
predict the issue fix time for the test data set and computed
the performance metrics (see subsection IV-B) for each model.
We discuss the results in the next section.

VI. STUDY RESULTS

This section discusses the developed prediction models
addressing issue fix time and their performance, the relative
importance of the prediction factors, and the evolution of mean
vulnerability fix time over time.

A. Issue fix time prediction models

This section aims to address the question: How well do the
chosen models (LR, RPART, and NNR) predict the issue fix
time from a set of given factors?

Most of the data that we use are not numeric; they are
categorical variables, e.g., vulnerability types and component
IDs. The number of categories in each of these variables can be
very high, for instance there are about 2300 components. The
regression algorithms cluster the elements of these categorical
variables automatically. However, the clustering does not fol-
low a given semantics, such as aggregation on superordinate
component level, i.e., Gr component in support data 1.

In addition, the prediction models are large, e.g., in the order
of a couple of hundred of nodes for the tree-based model and
few thousands for the neural-network model. Because of this,
it was impractical to plot the prediction models. Figure 5, for
instance, shows a prediction model that we generated from

data source 3 by using the RPART method. It shows that
there is a long list of component IDs (among a set of 2300
components) for the selection of nodes 168 and 169 while
also the parent node uses a set of vulnerability types. The
dependency on all those values makes it difficult to clearly
visualize the generated models.

Nevertheless, it is interesting to observe that the component
factor is built upon a set of distinct component classes (i.e.
the first three digits indicate the superordinate component
level, e.g. CRM for Customer Relationship Management). An
investigation of underlying reasons for such kind of automated
clustering might reveal project or process-based issue fix time
related coherences between these.

B. Performance of selected regression methods on the predic-
tion of issue fix time

This subsection addresses the question: Which of the
developed regression models gives the most accurate pre-
dictions? It reports and discusses the measurements of the
performance-metrics (introduced in Section IV-B) that we
performed on the models that we generated for predicting the
issue fix time. Table IX summarizes the measurements that we
obtained.

Coefficient of determination metric. We observe that the
LRs method outperforms the RPART and NNR methods for
the five data sets. The metric values indicate that the prediction
models generated using LR explain about half of the variation
of the real values for data source 1 and for data source 2
and explains most of the variations for the remaining data
sources. Indeed, the estimates of the model for the extended
data source 2 perfectly match the observed values. We note
also that the residues metric values indicate that the prediction
models generated using the NNR perform worse than the null
model, that is, taking the average of the values.

AIC metric. We observe that the LR method outperforms
the RPART and NNR methods for two data sets and that the
RPART method outperforms the LR and NNR methods for the
remaining three data sets. Thus, this metric gives mixed results
with respect to performance of the three regression methods.

PRED metric. We observe that the LR method outperforms
the RPART and NNR methods for two data sets, the RPART
method outperforms the LR and NNR methods for one data
set, and the NNR method outperforms the RPART and LR
methods for two datasets. This gives mixed results with respect
to performance of the three regression methods. However, the
NNR performance improves when the data set is extended
with related data. For instance, the PRED value increased from
0.73% in the case of Data source 3 to 65.05% for the case of
the Extended data source 3. We acknowledge that the PRED
value improved also for the LR method for the case of Data
source 2 and Extended data source 2. However, the number of
records (N) for the Extended data source 2 is low (N = 380);
the result should be taken with caution.

Different regression methods have shown conflicting per-
formance measurements towards the problem of effort estim-
ation. For example, Gray and MacDonell [21] compared a set

9

Table IX
MEASUREMENT OF THE PERFORMANCE METRICS OF THE PREDICTION MODELS.

Data set LR RPART NN Best method
Residuals metric
Data source 1 0.526 0.498 -1.252 LR (0.526)
Data source 2 0.461 0.44 -0.294 LR (0.461)
Extended data source 2 1 0.956 -0.587 LR(1)
Data source 3 0.944 0.6585 1.944 LR(0.944)
Extended data source 3 0.909 0.701 1.97 LR(0.909)
AIC metric
Data source 1 122465 123157 141462 LR(122465)
Data source 2 334565 335936 365665 LR(334565)
Extended data source 2 -4877 463 793 RPART(463)
Data source 3 6632 6507 6958 RPART(6507)
Extended data source 3 6581 6421 7057 RPART(6421)
PRED metric
Data source 1 31.81% 31.74% 0.156% LR(31.81%)
Data source 2 14.93% 13.96% 33.81% NN(33.81%)
Extended data source 2 100% 30.32% 39.40% LR(100%)
Data source 3 33.98% 34.71% 0.73% RPART(34.71%)
Extended data source 3 35.41% 34.52% 65.05% NN(65.05%)

of regression approaches using MMRE and PRED metrics.
The methods have shown conflicting results; their rank change
based on the used performance metrics. For example, they
found that based on the MMRE metric, LR outperforms NNR
and based on the PRED metric, NNR outperforms LR. This
finding was confirmed by Wen et al. [35] who analyzed
the performance of several other regression methods. The
regression methods have different strengths and weaknesses.
Most importantly they perform differently in the presence of
small datasets, outliers, categorical factors, and missing values.
We found in this study that it is not possible to claim that a
regression method is better than the other in the context of
predicting the issue fix time. This result supports the findings
of Gray and MacDonell [21] and of Wen et al. [35].

C. Relative importance of the factors contributing to issue fix
time

This section aims to address the question: What are the
main factors that impact the issue fix time? To answer this
question, we used RPART [36] to develop prediction models
for the five data sources. Given that the factors used in the
datasets are different, we present and shortly discuss each
dataset separately. In the next chapter, we analyze the factors
impact in depth.

Data source 1. Table X reports the importance of the factors
used in Data source 1 on issue fix time. The most important
factor in this dataset is “Project ID.” followed by “Vulnerab-
ility name”. This implies that there is a major contribution
of the project characteristics to issue fix time. Unfortunately,
there was no additional metadata available on the projects that
could have been joined with data source 1 to allow us to further
investigate aspects of projects that impact the fixing time.

Data source 2. Table X reports the importance of the factors
used in data source 2 on issue fix time. The most important
factor in this dataset is “Scan status.” This shows that depend-
ing on whether the issue is false positive or not impacts the

issue fix time.7 The second ranking factor is “Project name”,
followed by “Vulnerability name.” This results support the
observation we had with data source 1. We observe also
that the factor “Scan source,” which indicates the static code-
analysis tool used to discover the vulnerabilities (i.e., Fortify
or Coverity) is ranked at place 5.

Extended data source 2. We extended data source 2 with
data that describe the projects and computed three additional
variables: the time elapsed between fixing the vulnerability
and releasing the software, called FixtoRelease period; the
development period, called Dev period; and the time elapsed
between discovering the vulnerability and releasing the soft-
ware, called FoundtoRelease period.

Table X reports the importance of the factors used in the
extended data source on issue fix time. We observe that the
most important factor is FixRelease period while a related
factor, FoundtoRelease period has less importance (rank 6).
The other main important factors include the development
period, the program name, the program development team,
the risk expert, and the vulnerability name. We observe that
vulnerability name is ranked only at the seventh position.

Data source 3. Table X reports the importance of the factors
used in data source 3 on the issue fix time. The most important
factor in this dataset is the development team who addresses
the issue (processor) followed by the software component that
needs to be changed. We observe that the vulnerability name
(i.e., vulnerability type) has a moderate importance, ranked
4th, while the CVSS score is ranked on the 6th position.

Extended data source 3. We extended data source 3 with data
that describe the components. Table X reports the importance
of the factors used in data source 3 on the issue fix time.
The most important factors in this extended dataset is the
component, followed by the development team (processor), the
development team responsible for the component, the reporter
of the vulnerability, and a set of other factors. We observe that

7As indicated before, issues marked as e.g., new and updated are not
considered in the models; they are for issues that are not addressed yet.

10

Table X
IMPORTANCE FACTORS.

Data source 1 Data source 2 Extended data source 2 Data source 3 Extended data source 3
RankFactor Metric Factor Metric Factor Metric Factor Metric Factor Metric
1 Project ID 0.819 Scan status 0.962 FixtoRelease period 0.929 Processor 2.917 Component 2.843
2 Vulnerability name 0.122 Project name 0.727 Dev period 0.638 Component 2.756 Processor 2.661
3 Priority 0.089 Vulnerability name 0.513 Int prg name 0.638 Reporter 1.769 Dev comp owner 1.677
4 Vulnerability count 0.058 Folder name 0.327 Prg lead resp 0.638 Vulnerability type 1.709 Reporter 1.630
5 Scan source 0.245 Risk expert 0.638 Source 0.671 Vulnerability type 0.827
6 Vulnerability count 0.070 FoundtoRelease period 0.541 CVSS score 0.186 Dev product owner 0.375
7 Priority 0.053 Vulnerability name 0.488 Source 0.172
8 Folder name 0.061 PPMS product 0.133
9 Priority 0.061
10 Vulnerability count 0.048

the vulnerability name (i.e., vulnerability type) has a moderate
importance, ranked 5th, and the importance of the factor CVSS
score decreased considerably.

D. Evolution of the issue fix time

This section aims to address the question: Is the company
improving in fixing security issues? The tendency of the issue
fix time could be used as “indicator” of such improvement.
For instance, increasing time indicates deteriorating capab-
ilities and decreasing time indicates improving process. The
information should not be used as an evidence but as indicator
of a fact that requires further investigation.

We modeled the evolution of the mean issue fix time for
the resolving (closing) issue month8 for the three data sources
using the Linear Regression (LR), which shows the trend of the
response variable over time. Figure 6 depicts respectively the
mean issue fix time for (a) data source 1 (pre-release ABAP-
based code), (b) data source 2 (pre-release Java, C++, and
JavaScript-based code), and (c) data source 3 (post-release
security issues).

The figure indicates a fluctuation of the mean issue fix time
but with an increasing trend. This trend indicates a deteri-
orating performance with respect to fixing security issues. A
close look at the figure shows that there is a recent reverse
in the tendency, which indicates a response to specific events
such as dedicated quality releases or the development of new
flag ship products. So called quality releases are releases that
focus on improving the product quality instead of focusing on
new features. To ensure a high level of product quality and
security of SAP products, top level managements plans, once
in a while, for such quality releases. Also the development of
new flag shop products that change the development focus of
a large fraction of all developers at SAP can have an influence.
Such a shift might result in significant code simplifications of
the underlying frameworks.

Figure 6 shows that the increasing global trend applies for
pre-release as well as post-release issues. We believe that this
indicates that the causes of the increase of the mean issue fix
time applies to both cases. We again see that the management
actions impacted both cases.

8Compute the mean issue fix time for the vulnerabilities resolved (ad-
dressed) in the specified month.

Berner et al. [34] advice that models are sensitive to time.
This work supports the claim because it shows that the issue
fix time is sensitive to the month of closing the issue.

VII. ANALYSIS OF THE IMPACTING FACTORS

We observe from Data source 1 and Data source 2 that
projects (represented by e.g., Project ID, and Project name
data attributes) have major contributions to issue fix time for
the case of pre-release issue fixing. The extension of Data
source 2 with project-related data confirmed our observation:
the most impacting factors of pre-release issues on the time to
fix are project characteristics. Among these characteristics we
find the time between issue fixing and software release, project
development-duration, and the development team (data attrib-
ute Int prg name). We believe that the factor time between
issue fixing and software release indicates that developers tend
to fix vulnerabilities as the release date becomes close. This is
not surprising, since they must address all open issues before
the software can pass the quality gate to be prepared for
release. We expect that the factor project development-duration
is related to e.g., the used development models, and the
component-related characteristics. Further data analysis shall
provide insights about the impact of the factors related to the
project development-duration, such as component complexity.
For instance, updating smaller component could be easy and
be performed in short development cycles while updating
complex components requires long development cycles. In
addition, we believe that the factor development team indicates
the level of expertise of the developers and the smoothness
of communication and collaboration among the team. Nev-
ertheless, it is interesting to observe that the influence of
vulnerability type decreases when project-related factors are
included.

There are two additional dominant factors for the issue fix
time, based on the analysis of Data source 2: scan status and
folder name. We believe that the factor scan status indicates
that the developers address issues based on their perception of
whether the given issue is a false positive or not and whether
it is easy to address or not. For example, they may close
false positive issues that are easy to analyze and postpone
addressing issues that are difficult to analyze and/or fix to
e.g., when the time for the quality gates becomes close. We
also expect that the factor “folder name” indicates that the
developers behave differently towards issues flagged must fix,
fix one of the set, or optional to fix.

11

0

25

50

75

10 12 14 16
Month of vulnerability closing
 (from Apr. 2014 to Apr. 2015)

m
ea

n_
D

ur
at

io
n

(a) Data source 1

0

100

200

10 20 30 40 50
Month of vulnerability closing
 (from Sep. 2011 to Apr. 2015)

m
ea

n_
D

ur
at

io
n

(b) Data source 2

0

200

400

600

50 100
Month of vulnerability closing
 (From Jan. 2005 to Sep. 2015)

m
ea

n_
D

ur
at

io
n

(c) Data source 3

Figure 6. Trend of the issue fix effort by closing month. The x axis indicates the number of months elapsed since the start date of the data. The y axis
indicates the mean issue fix time in number of days.

The analysis of Data source 2 reveals that the security
scan tools (represented by the data attribute Scan source) is
not a leading factor of issue fix time. It is possible that the
developers rely on their expertise in analyzing security issues
and not on the tool features as they get experts in addressing
security issues. Further analysis may explain the finding better.

The results obtained from the analysis of Data source 3
(and its extension) suggests that the software structure and
development-team characteristics are the dominant factors that
impact the issue fix time for the case of post-release issue
fixing. (Note that issues for post-release are not related to
projects but to released components.). The analysis results
show that the component factor is among the most impacting
factors on the issue fix time, which indicates the impact of
software structure characteristics. Unfortunately, we do not
have, at this moment, data that describe the components, such
as the component’s complexity, which could be used to get
detailed insights about these characteristics.

The results obtained from the analysis of Data source 3
shows the dominance of the impact of processor and re-
porter on the issue fix time, and thus, the importance of the
human-related factors. The importance of the reporter factor
is aligned with the results of Hooimeijer and Weimer [37],
who found a correlation between a bug reporter’s reputation
and triaging time: we confirm the importance of the reporting
source on vulnerability fix time. Just as Zhang et al. [15],
we identified severity as an impacting factor, represented by
the ”CVSS score” in our study. The higher the score is, the
faster the vulnerability gets fixed. However, in their study, the
severity level was found to be the most influencing factor on a
developer’s delay before fixing. As opposed, the priority factor
in our study–which represents the issue’s severity level–has
only a minor contribution on the issue fix time.

Our previous qualitative study [4], which was based on
expert interviews at SAP, revealed several factors that impact

the issue/vulnerability fix time, such as communication and
collaboration issues, experience and knowledge of the involved
developers and security coordinators, and technology diversi-
fication. The results of this study confirm the impact of some
of these factors–and shows their importance. For example,
the category technology diversification included factors related
to technologies and libraries supported by the components
associated with the given vulnerability. The impact of the
component, found in our current study, might reflect these
underlying factors. Unfortunately, it was only possible to relate
components’ attributes to security messages, i.e. post-release
issues, not to pre-release issues to further investigate the
components’ impact on these. The impact of the development
groups might reflect the importance of the experience and
vulnerability- and software-related knowledge of the teams as
well as the importance of the smoothness of communication
and collaboration between the involved stakeholders.

At SAP, the project development-teams work independently;
e.g., they choose their own development model and tools, as
long as they confirm to the corporate requirements, such as the
global security policies. Further investigation of component-
, project-, human-, and process-related characteristics of the
development teams might reveal more insights on the under-
lying factors that impact the issue fix time. Such investigation
may reveal why certain products/teams are more efficient than
others. Reasons may, for example, include the local setup of
the communication structures, the used development model–
SCRUM, DevOps, etc.–and the security awareness of teams.
Another potential factor to check the impact of is the number
of people involved in fixing the given issue. This factor was
found to impact the fix time of bugs [38], [12]. Controlling
these factors allows to control the issue fix time, and thus, the
cost of addressing security issues.

A question worth also investigating is: Are the factors that
impact the time for addressing pre-release and post-release

12

issues similar? We argued in Section III that the processes
for fixing pre- and post-release issues are different, which
shall impact the issue fix time for both cases. Nevertheless,
acquiring evidence to answer this question requires using the
same data attributes for both cases, which may not be possible,
at the moment, with data collected at SAP.

VIII. STUDY VALIDITY AND IMPACTS

This section discusses the impacts of the finding and the
limitations of the study.

A. Impacts of the findings

This study showed that the models generated using the
LR, RPART, and NNR methods have conflicting accuracy
measurements in predicting the issue fix time. This implies that
the conflict in the performance measurements in estimating
software development effort, e.g., in [35], applies to security
issues. We infer from this result that there is no better
regression method, from the analyzed ones, when it comes
to predicting security issue time. We believe that more work
needs to be done to develop regression methods appropriate
for predicting issue fix time.

The second main finding of this study is that vulnerability
type is not the dominant impacting factors for issue fix time.
Instead, the dominant factors are the component in which
the vulnerability resides, the project related to the issue, the
development groups that address the issue, and the closeness
of the software release date, a process-related information.
This result implies that we should focus on the impact of
software structure, developers’ expertise and knowledge, and
secure software development process when investigating ways
to reduce the cost of fixing issues.

The third main finding is that the monthly mean issue fix
time changes with the issue closing month. We can infer from
this result that the prediction models are time sensitive; that
is, they depend on the data collection period. This supports
Berner et al. advice to consider recently collected data when
developing prediction models [34]. We infer, though, that
prediction models are not sufficient for modeling issue fix time
since they provide a static view. We believe that prediction
methods should be extended to consider time evolution; that
is, combine prediction and forecasting.

Finally, SAP can use the models to implement a continuous
improvement of its secure software development process and
to measure the impact of individual improvements. Other
companies can use similar models and mechanism to realize
a learning organization.

B. Limitations

There is a consensus among the community that there are
many “random” factors involved in software development that
may impact the results of data analytics experiments [34]. This
aligned with Menzies et al.’s [16] findings about the necessity
to be careful about generalization of results related to effort
estimations in a global context.

The data analysis described in this report suffers from the
two common threats to validity that apply to effort estima-
tion [17]. First, the conclusions are based on the data that SAP
collects about fixing vulnerabilities in its software. Changes to
the data-collection processes, such as changes to the attributes
of the collected data, could impact the predictions and the
viability of producing predictions in the first place. Second,
the conclusions of this study are based on the regression
methods we used, i.e., LR, RPART, and NNR. There are many
other single and ensemble regression methods that we did not
experiment with. We note that performance issues due to the
size of the datasets inhibit us from using random forest [20]
and boosting [20], two ensemble regression methods.

In addition, the data is collected over 5 years. During that
time SAP refined and enhanced its secure software develop-
ment processes. This could bias our results. The identification
of major process changes along with the times of the changes
and a partitioning of the data accordingly might reduce such
bias and reveal measurable insights about impacts of process
changes on issue fix time.

On the positive side, the conclusions are not biased by the
limited data size and the subjectivity in the responses. First the
number of records of each of the data set was high enough
to derive meaningful statistics. Second, the data is generated
automatically and do not include subjective opinions, except
the CVSS score of datasource 3. This score is generated based
on issue related information that is assessed by the security
coordinator responsible for the issue.

Our findings are based on particular data sets of SAP and
might mirror only the particularities of time to fix issues for
this organization. However, SAP has a diversified software
portfolio, the development teams are highly independent in
using development processes and tools (as long as they follow
generic guidelines such as complying with corporate security
requirements), teams are located in different countries, and
software are developed using several programming languages
(e.g., ABAP, C++, and Java). These characteristics encourage
us to believe that the findings apply to industrial companies
in general and therefore contribute to the discussion about
predicting the issue fix time.

IX. LESSONS LEARNED

Data analytics methods are helpful tools to make generaliza-
tions about past experience [34]. These generalizations require
considering the context of the data being used. In our study
we learned few lessons in this regard.

Anonymization. Companies prefer provide anonymized data
for data analytics experiments and keep the anonymization
map to trace the results to the appropriate semantics. There
is a believe that the analyst would develop models and the
data expert (from the company) would interpret them using the
anonymization map. We initially applied the technique and we
found that it prevents the analyst from even cleaning the data
correctly. We worked closely with the owner of the data to
understand them, interpret the results, and correct or improve
the models. The better the data analyst understands the data,
the more they are able to model them.

13

Table XI
PREDICTED VALUES FOR AUTOMATICALLY CLUSTERED COMPONENT

FACTOR AND GR COMPONENT.

Error
Metric

LR RPART NNR

AC MC AC MC AC MC
RSQ 0.98 0.76 0.80 0.7045 2.02 1.92
AIC 6586 6187 6461 6139 7033 6733
PRED 33.88 34.12 33.48 32.6915 0.48 0.67

Note: AC is for automatic clustering of components
and MC is for manual clustering of components

Prediction using time-series data. We initially sliced the
data sequentially into folds (sliced them based on their order
in the dataset) and used the cross-validation method in the
regression.9 We found that the performance metrics of the
generated prediction models deviate considerably. To explore
this further, we developed the tendency of the mean issue fix
time shown by Figure 6. The figure shows a fluctuation of
the issue fix time over time. This leads to believe that the
prediction models are of temporal relevance as claimed by
Berner et al. [34]. The lesson warns to check whether the
data are time series or not when using cross-validation with
sequential slicing of the data in the regression.

A more generic lesson that we learned concerns Attribute
values clustering. We found in this study an insignificant
small difference in the performance of the prediction models
that automatically cluster components and the ones that use
semantically clustered components instead. The latter aggreg-
ates components based on a semantic based on superordinate
level, i.e. Gr component. Manual investigation is necessary to
infer the component characteristics that the algorithms silently
used in the clustering. Table XI, for example, shows that the
performance of the prediction models using the automated
clustering and using the manual clustering are similar. This
implies that manual clustering does not provide additional
information.

X. CONCLUSIONS

We developed in this study prediction models for issue fix
time using data that SAP, one of the largest software vendors
worldwide, and the largest in Germany, collects about fixing
security issues in the software development phase and also
after release. The study concludes that none of the regression
methods that we used (Linear Regression (LR), Recursive
PARTitioning (RPART), Neural Network Regression (NNR))
outperforms the others in the context of predicting issue
fix time. Second, it shows that vulnerability type does not
have a strong impact on the issue fix time. In contrast, the
development groups involved in processing the issue, the
component, the project, and the closeness of the release date
have strong impact on the issue fix time.

We also investigated in this study the evolution of the mean
issue fix time as time progresses. We found that the issue fix
time fluctuates over time. We suggest that better models for

9This slicing method allows for easily splitting all the data among the folds.

predicting issue fix time should consider the temporal aspect
of the prediction models; they shall combine both prediction
technique and forecasting techniques.

ACKNOWLEDGMENTS

This work was supported by SAP SE, the BMBF within EC
SPRIDE, and a Fraunhofer Attract grant.

REFERENCES

[1] G. McGraw, Software Security: Building Security In, ser. Addison-
Wesley Software Security Series. Boston, MA, USA: Pearson Education
Inc, 2006.

[2] R. Bachmann and A. D. Brucker, “Developing secure software: A
holistic approach to security testing,” Datenschutz und Datensicherheit
(DuD), vol. 38, no. 4, pp. 257–261, apr 2014.

[3] M. Howard and S. Lipner, The Security Development Lifecycle: SDL: A
Process for Developing Demonstrably More Secure Software. Microsoft
Press, 2006.

[4] L. ben Othmane, G. Chehrazi, E. Bodden, P. Tsalovski, A. Brucker,
and P. Miseldine, “Factors impacting the effort required to fix security
vulnerabilities,” in Proc. Information Security Conference (ISC 2015),
Trondheim, Norway, Sep. 2015, pp. 102–119.

[5] H. Keller and S. Krüger, ABAP Objects. SAP PRESS, 2007.
[6] G. Chehrazi, C. Schmitz, and O. Hinz, “QUANTSEC - ein

modell zur nutzenquantifizierung von it-sicherheitsmaßnahmen,”
in Smart Enterprise Engineering: 12. Internationale Tagung
Wirtschaftsinformatik, WI 2015, Osnabrück, Germany, March
4-6, 2015., 2015, pp. 1131–1145. [Online]. Available:
http://www.wi2015.uni-osnabrueck.de/Files/WI2015-D-14-00049.pdf

[7] D. Cornell, “Remediation statistics: What does fixing application
vulnerabilities cost?” in RSAConference, San Fransisco, CA, USA,
Feb. 2012. [Online]. Available: http://www.rsaconference.com/writable/
presentations/file upload/asec-302.pdf

[8] H. Zeng and D. Rine, “Estimation of software defects fix effort using
neural networks,” in Proc. of the 28th Annual International Computer
Software and Applications Conference (COMPSAC 2004), vol. 2, Hong
Kong, China, Sept 2004, pp. 20–21 vol.2.

[9] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proc. of the Fourth International Workshop
on Mining Software Repositories, ser. MSR ’07, Washington, DC, USA,
2007, pp. 1–.

[10] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings of the
Fourth International Workshop on Mining Software Repositories, ser.
MSR ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
29–. [Online]. Available: http://dx.doi.org/10.1109/MSR.2007.25

[11] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction models:
Can we do better?” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR ’11. New York,
NY, USA: ACM, 2011, pp. 207–210. [Online]. Available: http:
//doi.acm.org/10.1145/1985441.1985472

[12] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time
of bugs,” in Proceedings of the 2Nd International Workshop on
Recommendation Systems for Software Engineering, ser. RSSE ’10.
New York, NY, USA: ACM, 2010, pp. 52–56. [Online]. Available:
http://doi.acm.org/10.1145/1808920.1808933

[13] M. Hamill and K. Goseva-Popstojanova, “Software faults fixing effort:
Analysis and prediction,” NASA Goddard Space Flight Center, Green-
belt, MD United States, Tech. Rep. 20150001332, Jan. 2014.

[14] R. Hewett and P. Kijsanayothin, “On modeling software defect repair
time,” Empirical Software Engineering, vol. 14, no. 2, pp. 165–186,
2009.

[15] F. Zhang, F. Khomh, Y. Zou, and A. Hassan, “An empirical study on
factors impacting bug fixing time,” in 19th Working Conference on
Reverse Engineering (WCRE), Kingston, Canada, Oct 2012, pp. 225–
234.

[16] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok, “Local
vs. global models for effort estimation and defect prediction,” in Proc.
of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’11, Washington, DC, USA, 2011, pp.
343–351.

[17] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 2–13, Jan 2007.

14

[18] Y. Shin, A. Meneely, L. Williams, and J. Osborne, “Evaluating complex-
ity, code churn, and developer activity metrics as indicators of software
vulnerabilities,” Software Engineering, IEEE Transactions on, vol. 37,
no. 6, pp. 772–787, Nov 2011.

[19] A. D. Brucker and U. Sodan, “Deploying static application security
testing on a large scale,” in GI Sicherheit 2014, ser. Lecture Notes in
Informatics, vol. 228, mar 2014, pp. 91–101. [Online]. Available: http://
www.brucker.ch/bibliography/abstract/brucker.ea-sast-expierences-2014

[20] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning with Applications in R. New York, US: Springer-
Verlag, 2013.

[21] A. R. Gray and S. G. MacDonell, “A comparison of techniques for
developing predictive models of software metrics,” Information and
Software Technology, vol. 39, no. 6, pp. 425 – 437, 1997.

[22] R. F. J. Hastie, Trevor; Tibshirani, The Elements of Statistical Learning,
2nd ed. Springer, 2013.

[23] T. Menzies, “Data mining: A tutorial,” in Recommendation Systems in
Software Engineering, M. P. Robillard, W. Maalej, R. J. Walker, and
T. Zimmermann, Eds. Springer Berlin Heidelberg, 12 2013, pp. 39–
75.

[24] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classiffication and
Regression Trees. Belmont, CA: Chapman and Hall/CRC, 1984.

[25] D. F. Specht, “A general regression neural network,” Neural Networks,
IEEE Transactions on, vol. 2, no. 6, pp. 568–576, Nov 1991.

[26] R. Hyndman and G. Athanasopoulos, Forecasting: principles and prac-
tice. Otexts, 2014.

[27] E. K. T. Menzies; and E. Mendes, “Transfer learning in effort estima-
tion, empirical software engineering,” Empirical Software Engineering,
vol. 20, no. 3, pp. 813–843, June 2015.

[28] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion mmre,” IEEE Transactions on
Software Engineering, vol. 29, no. 11, pp. 985–995, Nov 2003.

[29] A.-N. N. Spiess and N. Neumeyer, “An evaluation of R2 as an
inadequate measure for nonlinear models in pharmacological and
biochemical research: a Monte Carlo approach.” BMC pharmacology,
vol. 10, no. 1, pp. 6+, Jun. 2010. [Online]. Available: http:
//dx.doi.org/10.1186/1471-2210-10-6

[30] E. Kocaguneli, T. Menzies, and J. Keung, “On the value of ensemble
effort estimation,” Software Engineering, IEEE Transactions on, vol. 38,
no. 6, pp. 1403–1416, Nov 2012.

[31] U. Grmping, “Variable importance assessment in regression: Linear
regression versus random forest,” tO FINISH.

[32] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, “Understanding
variable importances in forests of randomized trees,” in Advances in
Neural Information Processing Systems 26, C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, Eds., 2013, pp. 431–
439. [Online]. Available: http://media.nips.cc/nipsbooks/nipspapers/
paper files/nips26/281.pdf

[33] K. M. Eisenhardt, “Building theories from case study research,”
Academy of Management Review, vol. 14, no. 4, pp. 532–550, October
1989.

[34] A. Bener, A. Misirli, B. Caglayan, E. Kocaguneli, and G. Calikli, The
Art and Science of Analyzing Software Data, 1st ed. Waltham, USA:
Elsevier, Aug. 2015, ch. Lessons Learned from Software Analytics in
Practice, pp. 453–489.

[35] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature
review of machine learning based software development effort estimation
models,” Information and Software Technology, vol. 54, no. 1, pp. 41 –
59, 2012.

[36] T. M. Therneau and E. J. Atkinson, “An introduction to recursive
partitioning using the rpart routines,” Mayo Foundation for Medical
Education and Research; Mayo Clinic; and Regents of the University
of Minnesota, Minneapolis, USA, Tech. Rep. 61., Oct. 2011. [Online].
Available: http://r.789695.n4.nabble.com/attachment/3209029/0/zed.pdf

[37] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’07. New York,
NY, USA: ACM, 2007, pp. 34–43. [Online]. Available: http:
//doi.acm.org/10.1145/1321631.1321639

[38] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“”not my bug!” and other reasons for software bug report
reassignments,” in Proceedings of the ACM 2011 Conference on
Computer Supported Cooperative Work, ser. CSCW ’11. New
York, NY, USA: ACM, 2011, pp. 395–404. [Online]. Available:
http://doi.acm.org/10.1145/1958824.1958887

Lotfi ben Othmane is currently the head of the
Secure Software Engineering group at Fraunhofer
SIT. He received his Ph.D. degree from Western
Michigan University (WMU), USA, in 2010; the
M.S. degree from University of Sherbrooke, Canada,
in 2000; and the B.S degree from University of
Sfax, Tunisia, in 1995. He worked for 13 years in
the industry in Tunisia, Canada, and USA. Dr ben
Othmane has about 30 peer-reviewed publications.
He is currently investigating the use of data science
in secure software development and the development

of secure systems using the agile approach.

Golriz Chehrazi is a PhD candidate at the de-
partment of Information Science, i.e. Electronic
Markets, at TU Darmstadt and works as research
assistant at the Secure Software Engineering depart-
ment at Fraunhofer SIT, Germany. She received her
Diploma-degree in Wirtschaftsinformatik (Business
Information Systems) at the Technische Universitt
Darmstadt, Germany, in 2009 and her Master of Sci-
ence in Computer Science at Linkping Universitet,
Sweeden, in 2006. She is currently investigating the
use of empirical analyses of IT security issues in

open source projects and the measurement of economic impacts of security
in software development.

Eric Bodden is professor for Software Engineering
at the University of Paderborn and at Fraunhofer
IEM. At the time this research was conducted he was
cooperative professor for Secure Software Engineer-
ing at Fraunhofer SIT and Technische Universität
Darmstadt. Bodden received his Ph.D. in 2009 from
McGill University, Montréal, Québec, Canada. His
research has been honored with numerous awards,
including the Heinz Maier-Leibnitz-Price of the
Deutsche Forschungsgemeinschaft (DFG) and two
ACM Distinguished Paper Awards. In 2014, the

magazine Capital elected him one of the top 40 researchers under 40.

Petar Tsalovski is a security expert and developer
at SAP SE. He is a graduate from the University of
Mannheim and is has been working in the area of
Security Testing, Validation & Dependency Analysis
since 2011. His interest and main area of expertise
are security testing and data analysis. He is currently
working on the research of security testing KPI’s and
developing an S2DL-enabling service tool.

Achim D. Brucker is a Research Expert and Se-
curity Testing Strategist at SAP SE. He holds a
PhD from ETH Zurich, Switzerland and his research
areas are security, software engineering, and formal
methods. He is interested in tools and methods
for modelling, building, validating, and verifying
secure and reliable systems. He also participates
in the OCL standardisation process of the OMG.
Further information can be found on his website:
http://www.brucker.ch.

