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Abstract We present an abstract framework for sequence testing that
is implemented in Isabelle/HOL-TestGen. Our framework is based on
the theory of state-exception monads, explicitly modelled in HOL, and
can cope with typed input and output, interleaving executions including
abort, and synchronisation.
The framework is particularly geared towards symbolic execution and
has proven effective in several large case-studies involving system models
based on large (or infinite) state.
On this basis, we rephrase the concept of test-refinements for inclusion,
deadlock and IOCO-like tests, together with a formal theory of its rela-
tion to traditional, IO-automata based notions.
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1 Introduction

Automata-based theoretical foundations for test and model-checking techniques
are omnipresent; it can be safely stated that a huge body of literature [7, 16,
19, 20, 22] uses them as a framework for conceptual argument, comparison,
and scientific communication. Usually based on naïve set-theory (in the sense
of Halmos [14]) and paper and pencil notations, they proved as a very intuitive
and flexible framework. In our view, this omnipresence overshadows the fact that
automata theory is a kind of mould into which not everything fits. This is to a
lesser extent a burden on the purely theoretical side: naïve set theory is known
to be inconsistent, and the sheer number of variants of automata notions makes
comparisons more delicate as one might think.

Modelling communication via an automata-product is simple and tempting,
but is the resulting CSP-style, synchronous communication paradigm really what
we want? The automata-paradigm becomes a problem when it comes to formal,
machine-checked presentations and automated reasoning over them. In settings
for the latter, underlying set-theories need either to be typed or axiomatised in
a system like ZFC [11]. Applications based on automated reasoning over these
formalisations turn out to be so difficult that successful tool implementations
exist only for particular special-cases such as symbolic regular expression rep-
resentations [17, 27]. In our view, it is not a coincidence that implementations
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of symbolic versions of test-systems like TGV (e. g., STG [16]) or SIOCO [12]
remained in a prototypical stage.

In this paper, we present an alternative to the automata-paradigm, as far
as their application in the field of testing of behavioural models are concerned.
Motivated by several projects aiming at the synthesis of test-algorithms for be-
havioural models with very large and usually infinite state-spaces, we developed
aMonadic Sequence Testing Framework (MST). It is formalised in Isabelle/HOL
and has been used in several major case-studies [2, 4, 5]. While the framework
is tuned for mechanised deduction, in particular symbolic execution based on
derived rules, it provides a number of theoretic properties which are interesting
in its own. MST combines 1. generalised forms of non-deterministic automata
with input and output, 2. generalises the concept of Mealy-Machines, 3. gener-
alises the concept of extended finite state machines [13], and 4. generalises some
special form of IO Automata, IO LTS’s, etc. [19]. Overall, MST shares with [26]
the vision of a unified framework for generalising and analysing formalism for
symbolic test case generation. Due to shallow representations of programs and
pre-post-condition-based program specifications, the MST approach is intrin-
sic symbolic; no complicated “lifting” of IO Automata or IO LTS’s to symbolic
versions thereof like IOSTS’s is necessary.

We will introduce paper-and-pencil notions for basic automata constructions
(Sec. 2), the general concept of test theories (Sec. 3). In Sec. 4, we introduce
higher-order logic (HOL) Sec. 4 and sketch our formalization of Sec. 2 in HOL.
Finally we introduce our monadic framework, which is demonstrated in Sec. 4.4
on a small example based on an extended infinite automata. In Sec. 5, we gen-
eralise the key-concepts of the MST one step further to a formal definition of
test-refinements; it is shown that this definition is powerful enough to capture
a family of widely known, but up to now unrelated concepts of (sequence) test
conformance. We will show that this is of pragmatic interest for proven correct
test-optimisations as well as theoretic interest due to its link to IO-automata.

2 A Guided Tour on Automata Notions for Testing

In this section, we provide a brief overview of behavioural automata models,
focusing on on symbolic versions of automata concepts.

The Mealy-machine. A Mealy Machine (MM) [20] is a 6-tuple (S, S0, Σin,
Σout, T,G) consisting of the following: – a finite set of states S – a start state
(initial state) S0 which is an element of S – a finite set of, the input alphabet Σin
– a finite set of symbols, the output alphabet Σout – a transition function T :
S×Σin → S mapping pairs of a state and an input symbol to the corresponding
next state. – an output function G : S×Σin → Σout mapping pairs of a state and
an input symbol to the corresponding output symbol. In some formulations, the
transition and output functions are coalesced into a single function T : S×Σin,→
S ×Σout. In the literature, also non-deterministic versions are discussed, where
the coalesced T has the form T : S ×Σin,→ P(S ×Σout). Mealy machines are
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related to Moore machines [21] which are equivalent. If the finiteness constraints
are removed, one speaks of a Generalised Mealy Machine (GMM).

The Deterministic Automata. The deterministic finite automaton (DFA)
M is a 5-tuple, (S, S0, Σ, T, F ), consisting of – a finite set of states S, – an
initial or start state S0 ∈ S, – a finite set of symbols, the alphabet Σ, – a
transition function T : S × Σ → S, and – a set of accept states F ⊆ S. If the
finiteness-constraints are lifted, we speak of a deterministic automaton (DA). If
T is generalised to a relation P(S ×Σ → S), one speaks of a non-deterministic
finite automaton (NDFA) or a non-deterministic automaton (NDA) respectively.
If the alphabet Σ is structured as a set of pairs Σin ×Σout of input-and output
labels, we speak of input-output-tagging of the automata versions. The astute
reader will notice that input-output-tagged NDFA’s and NDA’s can be mapped
to generalised Mealy machines GMM and vice versa.

The interest into symbolic versions of these automata notions was raised
surprisingly recently: Veanes et al. presented Finite Symbolic Automata as a
tool (REX [27]) and investigated their theoretic properties [9].

The Input/Output Automata Input-output labelled transition systems are
going back to the notions of Lynch and Tuttle [19]. This line of automata defini-
tions, which were later on referred as “labelled transition systems,” emphasises
the annihilation of the difference between input and output to enable some form
of asynchronous communication between tester and the system under test SUT
as well as some rudimentary form of time (the concept supports silent τ ac-
tions to express time elapsing while some internal action in the machine is per-
formed). The theory supports in principle that a SUT can non-deterministically
decide either to accept input or to emit output; in practical testing scenar-
ios, this possibility is usually ruled out. Formally, an IO-automata is defined
as a 5-tuple (S, S0, Σ, T,Task) consisting of: – a (not necessarily finite) set of
states S, – a start state (initial state) S0 which is an element of S, – an al-
phabet, the signature Σ which is partitioned into three disjoint sets of symbols
Σ = inIOA∪out IOA∪out IOA∪int IOA are called input actions, output actions, and
internal actions, – a transition relation T ⊆ S ×Σ × S, and – a task-partition
Task which is defined as an equivalence relation on out IOA ∪ out IOA ∪ int IOA.
In contrast to input-output tagged NDA’s, where Σ is the Cartesian product of
input and output, IO Automata construct Σ as disjoint union.

The task partition is used to define fairness conditions on an execution of the
automaton. These conditions require the automaton to continue giving fair turns
to each of its tasks during its execution. This component of the original formula-
tion is often dropped and replaced by other ones in related approaches [15, 24].

Symbolic IO Transition Systems. A Symbolic IO Transition System (IOSTS)
[22] is a tuple (D,Θ, S, S0, Σ, T ) where – D is a finite set of typed data, parti-
tioned into a set V of variables and a set P of parameters. For d ∈ D, type(d)
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denotes the type of d. – Θ is the initial condition, a Boolean expression on V ,
– S is a nonempty,finite set of states and S0 ∈ S is the initial state. – Σ is a
nonempty, finite set of symbols, which is the disjoint union of a set Σ? of input
actions and a set Σ! of output actions. For each action a ∈ Σ, its signature
sig(a) = (p1, . . . , pk) ∈ P k(k ∈ N) is a tuple of parameters. – T is a set of tran-
sitions. Each transition is a tuple (s, a,G,A, s) made of: a location s ∈ S, called
the origin of the transition, an action a ∈ Σ, called the action of the transition,
a Boolean expression G on V ∪ sig(a), called the guard, an assignment A, which
is a set of expressions of the form (x := Ax)x∈V such that, for each x ∈ V , the
right-hand side Ax of the assignment x := Ax is an expression on V ∪ sig(a),
a location s ∈ S called the destination of the transition. Similar attempts to
generalise IO Automata to symbolic versions of IO-LTL’s are [12].

Extended Finite State Machines. An extended finite state machine (EFSM)
[7] is a 7-tupleM = (S,D, I,O, F, U, T ) where – S is a set of symbolic states, – I
is a set of input symbols, – O is a set of output symbols, – D is an n-dimensional
linear space D1 × · · · ×Dn, – F is a set of enabling functions fi : D → {0, 1},
– U is a set of update functions ui : D → D, – T is a transition relation,
T : S × F × I → S × U × O EFSM’s have been motivated from the very
beginning by (symbolic) testing techniques [7].

Many variants have been discussed in the literature that attempt to give a
concrete syntax (e. g., a term-language, just assignments) for F and U ; however,
we will refrain from this and try to keep our MST framework abstract on the
level of functions and not their syntactic representations.

Some Common Notions of Automatons. We distinguish the notion of a
trace: Traces(A) contains the set of lists of symbols [a1, a2, a3, . . .] in A (which
is an arbitrary automaton DA, NDA, DFA, NDFA, . . . ), which describe a path
in A. Here, we consider the case of an ESFM similar to an input-output tagged
DA or NDA. A run is a list of triples [(s1, a1, s2), (s2, a2, s3), . . .] which describes
a path in A; Run(A) contains the set of runs in A. With StatesA(t) we denote
the set of reachable states after a trace t ∈ Trace(A). If t ∈ Trace(A) (A is an
input-output tagged DA or NDA, IO Automaton, IOSTS, EFSM), we denote
with InA(t) the set of possible input symbols after t; with OutA(t) the set of
possible output symbols. We call an automaton IO-deterministic, iff for each
trace t ∈ Trace(A), there is at most one reachable state after t : |StatesA(t)| ≤ 1.

For automata A (which is again an input-output tagged DA or NDA, IO
Automaton, IOSTS, EFSM), we define the notion of input-sequences of a trace as
projection of traces into its input components: if t = [(i1, o1), (i2, o2), (i3, o3), . . .]
is in Trace(A), then [i1, i2, i3, . . .] is the corresponding input-sequence of t.

In other words, the relation between a sequence of input-output pairs and
the resulting system state must be a function.

There is a large body of theoretical work replacing the latter testability hy-
pothesis by weaker or alternative ones (and avoiding the strict alternates of input
and output, adding asynchronous communication between tester and SUT, or
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(b) IO-Deterministic SUT.
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(c) Non-IO-Deterministic SUT.
Fig. 1. IO-Determinism and Non-IO-Determinism

adding some notion of time), but most practical approaches do assume it as we
do throughout this paper. There are approaches (including our own [3]) that
allow at least a limited form of access to the final (internal) state of the SUT.

A sequence of input-output pairs through an automaton A is called a trace,
the set of traces is written Trace(A). The function In returns for each trace
the set of inputs for which A is enabled after this trace; in Fig. 1c for example,
In [(“a”, 1)] is just {“b”}, in Fig. 1a, just {“a”, “b”}. Dually, Out yields for a trace
t and input ι ∈ In(t) the set of outputs for which A is enabled after t; in Fig. 1b
for example, Out([(“a”, 1)], “a”) this is just {1, 2}.

3 A Gentle Introduction to Sequence Testing Theory

Sequence testing is a well-established branch of formal testing theory having its
roots in automata theory. The methodological assumptions (sometimes called
testability hypothesis in the literature) are summarised as follows:
1. The tester can reset the system under test (SUT ) into a known initial state,
2. the tester can stimulate the SUT only via the operation-calls and input of a

known interface; while the internal state of the SUT is hidden to the tester,
the SUT is assumed to be only controlled by these stimuli,

3. the SUT behaves deterministic with respect to an observed sequence of input-
output pairs (it is IO-deterministic).

The latter two assumptions assure the reproducibility of test executions. The
latter condition does not imply that the SUT is deterministic: for a given input
ι, and in a given state σ, the SUT may non-deterministically choose between
the successor states σ′ and σ′′, provided that the pairs (o′, σ′) and (o′′, σ′′) are
distinguishable. Thus, a SUT may behave non-deterministically, but must make
its internal decisions observable by appropriate output.

Equipped with these notions, it is possible to formalise the intended con-
formance relation between a system specification (given as automaton SPEC
labelled with input-output pairs) and a SUT. The following notions are known
in the literature: – inclusion conformance [18]: all traces in SPEC must be pos-
sible in SUT, – deadlock conformance [10]: for all traces t ∈ Traces(SPEC)
and b /∈ In(t), b must be refused by SUT, and – input/output conformance
(IOCO) [25]: for all traces t ∈ Traces(SPEC) and all ι ∈ In(t), the observed
output of the SUT must be in Out(t, ι).
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4 Monadic Sequence Testing Framework

4.1 Higher-Order Logic and Isabelle/HOL

Higher-order logic (HOL) [1, 8] is a classical logic based on a simple type sys-
tem. Types have been extended by Hindley/Milner style polymorphism: they
consist of type variables ′α,′ β,′ γ, . . . and and type constructors such as _ ⇒
_,_set,_list,_ × _,_ + _,bool,nat, . . . (for function space, typed sets, lists,
Cartesian products, disjoint sums, Boolean, natural numbers, etc) with type
classes similar to Haskell: (′α : : linorder)list constrains the set of possible types,
for example, to those types that posses an ordering symbol which satisfies the
properties of a linear order. The simple-typed λ-calculus underlying Isabelle en-
forces that any λ-expression e must be typed by a type-expression τ ; we write
e : : τ for e is well-typed and has type τ . Being based on a polymorphically
typed λ-calculus, HOL can be viewed as a combination of a programming lan-
guage such as SML or Haskell, and a specification language providing powerful
logical quantifiers ranging over elementary and function types.

HOL provides the usual logical connectives, e. g., _∧_, _→ _, ¬_ as well as
the object-logical quantifiers ∀x. P x and ∃x. P x; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : α⇒ β.
HOL is centred around extensional equality _ = _ : : α⇒ α⇒ bool.

Isabelle/HOL offers support for extending theories in a logically safe way:
a theory extension is conservative if the extended theory is consistent provided
that the original theory was consistent. Conservative extensions can be constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well-founded recursive definitions.

For example, the polymorphic option-type is defined as:
datatype ’α option = None | Some(the: ’α)

which implicitly introduces the constructors None and Some, the selector the as
well as a number of lemmas over this data-type (e. g., None 6=Some x,the (Some
x)= x, induction). The option type is also used to model partial functions ’α⇀’β
which is synonym to ’α⇒’β option.

4.2 Formal Presentations of Automata: Direct Approach

A record of n fields is an n-ary Cartesian where the components have names.
Equipped with this machinery, it is for example simple to formalise the concepts
of, e. g., NA, NDA, ESFM, as introduced semi-formally in Sec. 2. For example,
we can define NA by:
record (’α, ’ σ ) DA = init :: "’ σ "

step :: "’ σ × ’α ⇒ ’ σ "
accept :: "’ σ set"

The record specification construct implicitly introduces constructor functions
(we may write L init = 0, step = λ(s,a). s + a mod 4, accept = {1,3} M for a an de-
terministic automaton implicitly typed: (nat, nat) DA) as well as selector and
update functions enabling us to write: daLaccept = (accept da) − {1} M.
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Constraining the (general, infinite) DA to the more common DFA is straight-
forward: One can define the type-class of “all finite types” in Isabelle/HOL by

class fin = assumes finite: " finite ({x ::’ α set . True})"

where the carrier-set of a type ’α is restricted to be finite ( finite is a library con-
cept). Thus, it is possible to formalise the DFA by adding type class constraints
such as (’α:: fin ,’ σ :: fin )DA.

4.3 Formal Presentations of Automata: The Monadic Approach

As shown before, the obvious way to model the state transition relation T of an
NDA is by a relation of the type (σ×(ι×o)×σ) set, (or, for the case of the partial
DA: (σ × ι(→ o × σ) option). Now, types can be isomorphic, i. e.there exists a
bijection of the underlying carrier-sets. This is the case for types like ’α×’β to
’β×’α (Cartesian isomorphism) as well as: ’α×’β⇒’γ to ’α⇒’β⇒’γ (Currying)
as well as ’α set to ’α⇒bool (foundational in HOL). Thus, one can also model
the transition relation isomorphically via:

ι⇒ (σ ⇒ (o× σ) set)
or for a case of a partial deterministic transition function:

ι⇒ (σ ⇒ (o× σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the dis-
tinction between “deterministic” and “non-deterministic” is actually much more
subtle than one might think, and a more detailed discussion is necessary here.
First, even in an (infinite) DA setting where the transition is a function, the
modelled SUT is not necessarily deterministic with respect to its input sequence,
as the difference between Fig. 1b and Fig. 1c reveals. Actually, provided that
sufficient information can be drawn from the output (recall that we assume the
SUT to be input-output deterministic), an arbitrary pre-post-condition style
specification modelling the input-output relation of a system transition is possi-
ble. This is the “usual” kind of non-determinism we need in a specification of a
program. We argue therefore that a framework like IOLTS, where systems may
non-deterministically decide to accept input or to omit output were an over-
generalisation of little use. Second, a transition function can be under-specified
via the Hilbert-choice operator built-in the HOL-logic and ZFC. This classical
operator, written SOME x. P(x) chooses an arbitrary element x for which P holds
true. We can only infer for y = SOME x. x∈{a,b,c} that y must be a or b or c.

From the above said, it follows that transition function T in NA or NDA can
be isomorphically represented by:

step ι σ = {(o, σ′)|post(σ, o, σ′)}
or respectively:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))
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for some post-condition post. In the former “truly non-deterministic” case step
can and will at run-time choose different results, the latter “under-specified de-
terministic” version will decide in a given model always the same way: a choice
that is, however, unknown at specification level and only declaratively described
via post. For many systems (like system scheduler [4], processor models [3], etc.)
it was possible to opt for an under-specified deterministic stepping function.
The generalisation to a partial deterministic transition paves the way to cover
EFSM’s; their enabling function F , practically equivalent of a pre-condition of
the transition, can be represented in a partial function by their non-applicability:
F (x) ≡ x /∈ dom(step).

We abbreviate functions of type σ ⇒ (o × σ) set or σ ⇒ (o × σ) option
MONSBE(o, σ) or MONSE(o, σ), respectively; thus, the aforementioned state
transition functions of NDA and DA can be typed by ι→ MONSBE(o, σ) for the
general and ι→ MONSE(o, σ) for the deterministic setting.

If these function spaces were extended by the two operations bind and unit
satisfying three algebraic properties, they form the algebraic structure of a
monad that is well known to functional programmers as well as category theo-
rists. Popularised by [28], monads became a kind of standard means to incorpo-
rate stateful computations into a purely functional world.

Throughout this paper, we will choose as basis for our Monadic Testing
Framework under-specified deterministic stepping functions. Consequently, we
will concentrate on the MONSE(o, σ) monad which is called the state-exception
monad in the literature.

The algebraic structure of a Monad comes with two operations bind and unit ;
like functional or relational compositions f◦g resp. ROS, bind can be seen as the
"glue" between computations, while unit represents a kind of neutral element.
bind generalizes sequential composition by adding value passing; together with
unit, which embeds a atomic value into a computation, it can be defined for the
special-case of the state-exception monad in HOL as follows:

definition bindSE :: "(’o ,’ σ )MONSE ⇒(’o ⇒(’o ’,’ σ )MONSE) ⇒(’o’,’σ )MONSE"
where "bindSE f g = (λσ . case f σ of None ⇒None

| Some (out, σ ’) ⇒ g out σ ’)"
definition unitSE :: "’o ⇒ (’o, ’ σ )MONSE" ("(return _)" 8)
where "unitSE e = (λσ . Some(e,σ))"

Generalizing f ◦ g, bindSE takes input and output also into account (in the
sense that a later computation may have the output of prior computations as
input, and that a prior computation may fail (case None in the case distinction).
Following Haskell notation, we will will write x ← m1; m2 equivalently for
bindSEm1(λx.m2). Moreover, we will write return for unitSE.

This definition of bindSE and unitSE satisfy the required monad laws:

bind_left_unit: (x ← return c; P x) = P c
bind_right_unit: (x ← m; return x) = m
bind_assoc: (y ← (x ←m; k x); h y) = (x ←m; (y ←k x; h y))

The concept of a valid monad execution, written σ |= m, can be expressed as
follows: an execution of a monad computation m of type (bool, σ) MONSE is
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valid iff its execution is performed from the initial state σ, no exception occurs
and the result of the computation is true. More formally, σ |= m holds iff (m σ 6=
None∧ fst(the(m σ))), where fst and snd are the usual first and second projection
into a Cartesian product.

We define a valid test-sequence as a valid monad execution of a particular
format: it consists of a series of monad computationsm1 . . .mn applied to inputs
ι1 . . . ιn and a post-condition P wrapped in a return depending on observed
output. It is formally defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

Since each individual computation mi may fail, the concept of a valid test-
sequence corresponds to a feasible path in an NDA, (partial) DA, ESFM or a
GMM, that leads to a state in which the observed output satisfies P .

The notion of a valid test-sequence has two facets: On the one hand, it is
executable, i. e., a program, iff m1, . . . ,mn, P are. Thus, a code-generator can
map a valid test-sequence statement to code, where the mi where mapped to
operations of the SUT interface. On the other hand, valid test-sequences can be
treated by a particular simple family of symbolic executions calculi, characterised
by the schema (for all monadic operations m of a system, which can be seen as
the its step-functions):

(σ |= returnP ) = P

Cm ι σ m ι σ = None

(σ |= ((s← m ι;m′ s))) = False
(1)

Cm ι σ m ι σ = Some(b, σ′)

(σ |= s← m ι;m′ s) = (σ′ |= m′ b)
(2)

This kind of rules is usually specialised for concrete operations m; if they contain
pre-conditions Cm (constraints on ι and state), this calculus will just accumulate
them and construct a constraint system to be treated by constraint solvers used
to generate concrete input data in a test.

4.4 Example: Bank

To present the effect of the symbolic rules during symbolic execution, we present
a model of toy bank that allows for checking the account balance as well as for
depositing and withdrawing money. State of the bank system is modelled as a
map from client and account information to the account balance:

type_synonym client = string
type_synonym account_no = int
type_synonym data_base = ( client× account_no) ⇀ int

Our Bank example provides only three input actions for checking the balance as
well as deposit and withdraw money. Our model can be viewed as a transaction
system, in which a series of atomic operations caused by different subjects can
be executed in an interleaved way.
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event :  deposit(c,no,m) 
guard : (c,no) dom(var_tab) ∈
send :   deposit_ok!
action : var_tab[c,no]+=m

event :  balance(c,no) 
guard : (c,no) dom(var_tab) ∈
send :   balance_ok(n)!
action : n=var_tab[c,no]

event :  release(c,no,m) 
guard : (c,no) dom(var_tab) ∈
                ⋀ var_tab[c,no]>m
send :   release_ok!
action : var_tab[c,no]-=m var_tab

Fig. 2. SPEC: An Extended Finite State Machine for they toy Bank

datatype in_c = deposit client account_no nat
| withdraw client account_no nat
| balance client account_no

The output symbols are:

datatype out_c = deposit_ok | withdraw_ok | balance_ok nat

Fig. 2 shows an extended finite state-machine (EFSM), the operations of our
system model SPEC. A transcription of an EFSM to HOL is straight-forward
and omitted here. However, we show a concrete symbolic execution rule derived
from the definitions of the SPEC system transition function, e. g., the instance
for Equation 2:

(c,no) ∈ dom(σ) SPEC (deposit c no m) σ = Some(deposit_ok, σ′)

(σ |= s← SPEC (deposit c no m);m′ s) = (σ′ |= m′ deposit_ok)

where σ = var_tab and σ′ = σ((c,no) := (σ(c,no)+m)). Thus, this rule allows
for computing σ, σ′ in terms of the free variables var_tab, c, no and m. The
rules for withdraw and balance are similar. For this rule, SPEC (deposit c no m)
is the concrete stepping function for the input event deposit c no m, and the
corresponding constraint CSPEC of this transition is (c,no) ∈ dom(σ).

The symbolic execution is deterministic in the processing of valid test-sequences
and computes in one sweep all the different facets: checking enabling conditions,
computing constraints for states and input and computing symbolic representa-
tions for states and output. Since the core of this calculus is representable by a
matching process (rather than a unification process), the deduction aspects can
be implemented in systems supporting HOL particularly efficiently.

A Simulation of Test-Driver Generation by Symbolic Execution. We
state a family of test conformance relations that link the specification and ab-
stract test drivers. The trick is done by a coupling variable res that transport
the result of the symbolic execution of the specification SPEC to the attended
result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])
−→ σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])
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Successive applications of symbolic execution rules allow to reduce the premise
of this implication to CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res = [a1 · · · an]
(where the ai are concrete terms instantiating the bound output variables oi),
i. e., the constrained equation res = [a1 · · · an]. The latter is substituted into the
conclusion of the implication. In our previous example, case-splitting over input-
variables ι1, ι2 and ι3 yields (among other instances) ι1 = deposit c1 no1 m,
ι2 = withdraw c2 no2 n and ι3 = balance c3 no3, which allows us to derive
automatically the constraint:

(c1,no1) ∈ dom(σ) −→ (c2,no2) ∈ dom(σ′) ∧ n < σ′(c2,no2) −→
(c3,no3) ∈ dom(σ′′) −→ res = [alloc_ok, release_ok, status_ok(σ′′(c3,no3)]

where σ′ = σ((c1,no1) := (σ(c1,no1)+m))) and σ′′ = σ′((c2,no2) := (σ(c2,no2)−
n))).

In general, the constraint CSPECi
ιi σi can be seen as an symbolic abstract

test execution; instances of it (produced by a constraint solver such as Z3 inte-
grated into Isabelle) will provide concrete input data for the valid test-sequence
statement over SUT, which can therefore be compiled to test driver code. In our
example here, the witness c1 = c2 = c3 = 0, c1 = c2 = c3 = 5, m = 4 and
n = 2 satisfies the constraint and would produce (predict) the output sequence
res = [deposit_ok,withdraw_ok,balance_ok 2] for SUT according to SPEC.
Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; o2 ← SUT ι2; o3 ← SUT ι3;

return([alloc_ok, release_ok, status_ok 2] = [o1, o2, o3])

A code-generator setup of HOL-TestGen compiles this abstract test-driver to
concrete code in C (for example), that is linked to the real SUT implementation.

Experimental Results gathered from the Example. The traditional way
to specify a sequence test scenario in HOL-TestGen looks like this:

test_spec test_balance:
assumes account_def : "(c0,no) ∈dom σ0"
and accounts_pos : " init σ 0" and test_purpose : "test_purpose c0 no S"
and sym_exec_spec : "σ0 |=(s ←mbindFailStop S SYS; return (s = x))"
shows "σ 0 |=(s ←mbindFailStop S PUT; return (s = x))"

where the assumptions of this scenario (also called test purposes) are:
– account_def that the initial system state σ 0 is a map that contains at least

a client cO with an account no,
– the constraint init σO constrains the tests to those σO where all accounts

have a positive balance, and
– test_purpose constrains the set of possible input sequences S to those that

contain only operations of client c) and two of his accounts.
We skip the formal definitions of init and test_purpose due to space reasons.

Using explicit test-refinement statements as introduced in Sec. 5, we can state
the above scenario equivalently as as inclusion test as follows:
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test_spec test_balance3:
"PUT vIT 〈{σ. init σ∧ (c0,no) ∈dom σ},{ιs . test_purpose c0 no ιs}〉 SYS"
apply(rule inclusion_test_I_opt, simp, erule conjE) (∗ 1 ∗)
using[[no_uniformity]] apply(gen_test_cases 4 1 "PUT") (∗ 2 ∗)
apply(tactic "ALLGOALS(TestGen.REPEAT’(ematch_tac
[@{thm balance.exec_mbindFStop_E},@{thm withdraw.exec_mbindFStop_E},
@{thm deposit.exec_mbindFStop_E},@{thm valid_mbind’_mt}]))") (∗ 3 ∗)

apply(auto simp: init_def) (∗ 4 ∗)
using[[no_uniformity=false]]
apply(tactic "ALLCASES(uniformityI_tac @{context} [\"PUT\"])") (∗ 5 ∗)
mk_test_suite "bank_simpleNB3" (∗ 6 ∗)
(∗ ... ∗)
gen_test_data "bank_simpleNB3" (∗ 7 ∗)

The HOL-TestGen generation process in itself has been described in detail in [6]
to which the interested reader is referred. For space reasons, we can only high-
light the above test-generation script in the Isar language. It starts with the
stages of a test generation from the explicit test-refinement statement over ele-
mentary massage involving the test optimisation theorem inclusion_test_I_opt
(see Sec. 5) labelled (∗ 1 ∗), the splitting-phase of the input sequence labelled
(∗ 2 ∗), the symbolic execution phase labelled (∗ 3 ∗), a simplification of the
resulting constraints in (∗ 4 ∗), the separation of the constraint systems and
test-hypothesises (∗ 5 ∗) and the generation of the resulting test-theorem. Re-
call that a test-theorem captures both abstract test-cases and test-hypothesises
and links them to the original test specification (see [6]). In (∗ 6 ∗), an inter-
nal data-structure called test container—named "bank_simpleNB3" where this
choice has no particular importance—is created into which the test-theorem is
stored.

The call of the command gen_test_data performs the test-data selection
phase (in our example by using Z3) for the test-container "bank_simpleNB3",
i. e. it converts abstract test cases in concrete tests by finding ground solutions
for the constraints in the abstract test cases. We omit the further phases that
compile the test cases to concrete test-oracles in C, which were linked to the im-
plementation of PUT which is just an uninterpreted constant in this specification.

For example, we pick from the list of the abstract test cases:

∀ x ∈ dom σ0. 0 ≤the(σ 0 x) −→σ 0 (c0, no) = Some y −→int n’ ≤y + int n −→
σ 0 |=os← mbindFailStop[deposit c0 no n, withdraw c0 no n’, balance c0 no] PUT;

unitSE(os=[deposit_ok, withdraw_ok, balance_ok(nat(y+ int n − int n’))])

This abstract test case says: for any σ 0 which has only positive values, and a
y with the balance of the account of client c0 on his account no, and sufficient
money on the account such that the deposit and withdraw operations can both
be effectuated (mind the precondition of withdraw that the balance must be suf-
ficiently large for the withdraw), a test-sequence deposit-withdraw-balance must
lead to the observable result that all three operations succeed and produce the
result value nat(y + int n − int n’)), where nat and int are HOL-library coersions
between nats and integers. They are a result of our operations in the model that
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Table 1. Run-time and number of test cases of the bank example.

(∗ 2 ∗) (∗ 3 ∗) (∗ 4 ∗) (∗ 5 ∗) (∗ 7 ∗)

n sec no sec no sec no sec no sec no

3 15.1 · 100 7 0.9 7 0.1 7 0.8 7 0.7 7
4 63.3 · 100 15 1.7 15 2.1 15 2.5 15 1.8 15
5 7.2 · 103 42 6.1 42 10.3 42 28.0 42 3.8 42
6 > 88.0 · 103 - - - - - - - - -

requires at some points natural numbers and at integers on others; this kind of
complication is very common in constraints generated from programs or models.

The test-selection phase chooses, e. g., the following concrete tests from the
abstract test shown above:

(λa. Some 15) |=os ←mbindFailStop [deposit c0 6 (nat 17), withdraw c0 6 (nat 30),
balance c0 6] PUT;

unitSE (os = [deposit_ok, withdraw_ok, balance_ok(2)]))

This concrete test states: if we start with a system state where any account of
any client has the balance 15, then we can run on PUT the sequence: deposit 17
for client c0 on his account no 6, withdraw 30, and we should observe that all
three operations went well and the result of the final one is 2. This concrete test
is now finally a computable function,i. e. a program; the reader interested in the
technical process that compiles it into a test driver in C is referred to Bank.thy
in the HOL-TestGen distribution.

In the following, we are interested in a few experimental measurements that
we did on a conventional laptop with 2.5 Ghz i7 processor and 16 Mb Ram, using
Isabelle/HOL-TestGen version 1.8.0. We omit the phases (∗ 1 ∗) and the test-
oracle generation, which were more or less constant and small in the experimental
range. We vary over the first parameter of the test-splitting phase, which is 4 in
the above test-script and n in the following. It defines the length of the input
sequences that were result of the splitting. Since we have 3 different input events
in our model (deposit, withdraw, balance), the space of abstract test-cases grows
asymptotically with this length by 3n. We count the number of seconds and the
number of abstract/concrete tests found (see Tab. 1).

The splitting phase was not optimised—this is what we usually do in larger
case-studies, where we use a number of switches and screws in HOL-TestGen
to basically prune the splitting process early 3. The standard pruning catches
already the constraint stemming from test_purpose that a balance-operation has
to appear at the end and that clients and account numbers are restricted; this
explains why the abstract tests indicated here are below 3n. Note furthermore
that the example is somewhat atypical since the generated abstract tests are all
feasible and all together represent an easy game for the constraint solver.

3 The core-example of [4] can be decomposed into 70000 abstract test-cases in less
than two hours on a conventional laptop in HOL-TestGen [6].
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5 A Formal Theory on Conformance Relations

This schema of a test-driver synthesis can be refined and optimised: we show
three examples of the formalisation of conformance relations as well as formal
proofs of their connection possible in our framework. All notions and lemmas
mentioned here are formally proven in Isabelle/HOL.

Preliminaries and Observations. First, for iterations of stepping functions
an mbind operator can be defined, which is basically a fold over bindSE. It takes
a list of inputs ιs = [i1, . . . , in], feeds it subsequently into SPEC and stops when
an error occurs. The standard definition looks as follows:

fun mbind :: "’ ι list ⇒ (’ ι ⇒ (’o ,’ σ ) MONSE) ⇒(’o list ,’ σ ) MONSE"
where "mbind [] iostep σ = Some([], σ )"

| "mbind (a#S) iostep σ =
(case iostep a σ of

None ⇒ Some([], σ )
| Some (out, σ ’) ⇒ (case mbind S iostep σ ’ of

None ⇒ Some([out],σ ’)
| Some(outs, σ ’’) ⇒ Some(out#outs, σ ’’)))"

When generalising bindSE to sequences of computations over an input sequence,
three different variants are possible:
1. The failsave mbind (our default; written mbindFailSave if necessary). This

operator has a similar semantics than a sequence of method-calls in Java with
a catch-clause at the end: If an exception occurs, the rest of the sequence is
omitted, but the state is maintained, and all depends on the computations
afterwards in the catch clause.

2. The failstop mbind (written mbindFailStop). This operator corresponds to a
C-like exception handling: System haltand the entire sequence is treated as
error. This variant is gained from the above by replacing Some([], σ ) in the
5th line of the definition above by None.

3. The failpurge mbind. This variant, which we do not detail further in this pa-
per, ignores the failing computations and executes a stuttering step instead.
In the modelling of some operating system calls, we found this behaviour use-
ful in situations when atomic actions may fail, report an error, and certain
subsequent atomic actions have to be ignored to avoid error-avalanches.

With these mbind operators, valid test sequences for a stepping-function (be it
from the specification SPEC or the SUT) evaluating an input sequence ιs and
satisfying a post-condition P can be reformulated to:

σ |= os← mbind ιs SPEC; return(P ιs os)

Second, revisiting the animation Sec. 4.4 and abstracting the pattern of
the initial test specification, we can now formally define the concept of a test-
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conformance notion between an implementation I and a specification S:

(I v〈Init,CovCrit,conf〉 S) ≡ (∀σ0 ∈ Init . ∀ιs ∈ CovCrit . ∀res.
σ0 |= os ← mbind ιs S; return(conf ιs os res)

−→ σ0 |= os ← mbind ιs I; return(conf ιs os res))

Here, Init is a set of initial states, CovCrit a super-set constraining the input
sequences (this set can be either considered as “test purpose” or as “coverage cri-
terion”), a coupling variable res establishing the link between the possible results
of the symbolic execution and their use in a test-oracle of the test-execution. We
call conf a conformance characterisation which represents the exact nature of
the test-refinement we want to characterise.

Inclusion Tests and Proven Correct Test-Optimisations. This means
we have a precise characterisation of inclusion conformance introduced in the
previous section: We constrain the tests to the test sequences where no exception
occurred (as result of a violated enabling condition) in the symbolic execution
of the model. It suffices to choose for the conformance characterisation:

confIT ιs os res ≡ (length(ιs) = length(os) ∧ res = os)

With this conformance characterization, we can define our first explicit test-
refinement notion formally by instantiating the test-refinement schema above:

(I vIT〈Init,CC 〉 S) ≡ (I v〈Init,CC ,confIT〉 S)

The setting for confIT (IT for inclusion test) has the consequence that our sym-
bolic executions were only successful iff possible output-sequence are as long as
the input sequence. This implies that no exception occurred in possible symbolic
runs with possible inputs, i. e., all enabling conditions have to be satisfied.

Now, it can be formally proven by induction that:

σ |= os← mbindFailSave ιs f ; return(length(ιs) = length(os)∧P ιs os) =

σ |= os← mbindFailStop ιs f ; return(P ιs os)

This means that in inclusion test-refinements, both mbindFailSave-occurrences
can be replaced by mbindFailStop. This has a minor and a major advantage:
– At test-execution time, the generated code is slightly more efficient (less

cases to check, simpler oracle).
– At symbolic execution time, drastically simpler constraints can be generated:

While mbindFailSave generates disjunctions for both normal behaviour (en-
abling condition satisfied) as well as exceptional behaviour (enabling condi-
tion violated) were generated, while mbindFailStop generates constraints only
for normal behaviour, which are therefore simpler to solve in the test-data
selection phase by a constraint solver.
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A consequence is the following theorem inclusion_test_I_opt, which reads
presented as natural deduction rule as follows:

[σ0 ∈ Init , ιs ∈ CC ,
σ0 � os ← mbindFailStop ιs S; unitSE(os = res)

]
σ0 ιs res

···
σ0 � os ← mbindFailStop ιs I; unitSE(os = res)

I vIT 〈Init,CC 〉 S

Deadlock-Inclusion. Using pre-and postcondition predicates, it is straight-
forward to characterise deadlock conformance: in this kind of test, we investigate
that the SUT blocks (in the sense: enabling condition violated) exactly when it
should according to the specification. Such test scenarios arise, for example, if
a protocol is checked that it only does what the specification admits. In other
words, we test the absence of back-doors in the implementation of a protocol.

This kind of test is expressed in our framework by the conformance charac-
terisation:

confDF pre ιs os res = (length(ιs) = length(os)− 1 ∧ res = os ∧ ¬pre(last(ιs))

With this conformance characterisation, we can define our second explicit test-
refinement notion formally by instantiating the test-refinement schema:

(I vDF〈Init,CC 〉 S) ≡ (I v〈Init,CC ,confDF preS〉 S)

where preS ι is the enabledness condition of S for some input ι. Here, we assume
that preS only depends on the input and not on the state after the execution
of the input sequence. However, this can be easily remedied by a slightly more
powerful pattern.4

The Connection to “traditional” IO Conformance. Another application
of our formalisation is the possibility to actually put standard notions based on
automata-theoretic notion into relation with our MST Framework. Of natural
interest is the IO-Conformance relation mentioned earlier. We pick from a wealth
of alternative definitions [23].

However, recall that our framework assumes synchronous communication be-
tween tester and SUT; and so far ignores concepts such as quiescence. An equiv-
alence between a ioco in the sense of [23] and IOCO in the sense of our MST
Framework is therefore only possible for IO-LTS specifications of a particular
form. Formalising an IO-LTS in this sense results in:

record (’ι, ’o, ’ σ ) io_lts =
init :: "’ σ set"
trans :: "(’ σ × (’ ι + ’o) × ’ σ ) set"

4 The Monads.thy-library provides the assertSE-operator for this purpose.
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This version of [23] just possesses a disjoint sum of input and output actions;
other versions of the same author provide also one or several internal actions ’τ ;
this would result in (’ ι + ’o + ’τ).

We skip the straight-forward definitions for “Straces”, “out” and “after” (syn-
onym to “States” in Sec. 2) and define:

definition out :: " [(’ ι ,’ o ,’ σ ) io_lts ,’ σ set ] ⇒ (’o ) set"
where "out TS ss ≡{a. ∃ s ∈ ss . ∃ s ’. (s , Inr a,s ’) ∈ (trans TS)}"

definition ioco :: " [(’ ι ,’ o ,’ σ )io_lts ,(’ ι ,’ o ,’ σ )io_lts ] ⇒ bool" ( infixl"ioco" 200)
where "i ioco s ≡ (∀ t ∈ Straces(s ). out i ( i after t) ⊆out s (s after t))"

On the other hand, we may formalise our own notion of IOCO conformance and
relate these two. To this end we specify a conformance characterisation and the
resulting third explicit test-refinement notion:

confIOCO post ιs os res ≡ (res = os∧ length(ιs) = length(os)∧post (last ιs))
(I vIOCO〈Init,CC 〉 S) ≡ (I v〈Init,CC ,confIOCO postS〉 S)

For the following main result of this paper, we introduce an auxiliary notion:
we call an io_lts A strictly IO-alternating iff all t ∈ Straces(A) that finish in an
input action ι all prolongations in t′ (that is: t@t′ ∈ Straces(A) start with an
output action5). Moreover, we define a function two_step that serves essentially
as wrapper interface to SUT that sends an input action, waits for the returned
output-action and binds the latter to the rest of the computation (rather than
comparing them to a pre-conceived o and stating “inconclusive” if the observed
output does not match to the pre-computed one as in [23].) This enables us to
prove the following theorem that links Tretmanns ioco with ours by:

theorem ioco_VS_IOCO:
assumes "strictly_IO_alternating S" and "io_deterministic S"
shows "∃ S’. I ioco S = ((two_step I) vIOCO〈{x.True},{x.True}〉 S’"

Proof Sketch: We give an existential witness for S’ by defining a conversion
function convert2SE that converts S into its monadic counterpart. This is done by
constructing the Runs of S which must have the form [...,( σ n, ιm, σn+1), (σn+1,
’om+1,σn+2),...]. Thus, from the set of Runs, the relation (’ ι × (’ σ ⇀ (’o ×
’ σ ))set can be reconstructed, which under the assumptions strictly_IO_alternating
and io_deterministic represents a function.

6 Conclusion and Future Work

We see several conceptual and practical advantages of a monadic approach to
sequence testing, the MST Framework:
1. MST’s generalise GMM’s, io-tagged DA’s and NDA’s, as well as EFSM’s;

they are equivalent to particular forms of IO-LTL’s and IO-STS’s in IOCO
conformance settings.

5 In a definition variant with ′τ , these actions must be skipped
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2. MST’s can cope with non-deterministic system models (provided they are
input-output-deterministic, which we consider a reasonable requirement for
system testability).

3. In case of under-specification-non-determinism, substantial case-studies of
substantial complexities show the feasibility of our approach [4].

4. the monadic theory models explicitly the difference between input and out-
put, between data under control of the tester and results under control of
the SUT,

5. the theory lends itself for a theoretical and practical framework of numerous
conformance notions, even non-standard ones, and which gives

6. ways to new calculi for efficient symbolic evaluation enabling symbolic states
(via invariants) and input events (via constraints) as well as a seamless,
theoretically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal theory
of sequence testing should be further explored and extended. It is particularly
tempting to incorporate in our MST theory partial-order reduction techniques
for further test refinement optimisations.
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