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Abstract. Model inference from system traces, e.g. for analysing legacy
components or generating security tests for distributed components, is
a common problem. Extended Finite State Machine (EFSM) models,
managing an internal data state as a set of registers, are particularly
well suited for capturing the behaviour of stateful components however
existing inference techniques for (E)FSMs lack the ability to infer the
internal state and its update functions.
In this paper, we present the underpinning formalism for an EFSM infer-
ence technique that involves the merging of transitions with updates to
the internal data state. Our model is formalised in Isabelle/HOL, allow-
ing for the machine-checked validation of transition merges and system
properties.
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1 Introduction

Accurate behavioural models of software systems are very valuable for develop-
ment and maintenance. They are particularly useful during the testing phase
where they have acted as oracles for regression testing [9] and can be used to
automatically generate tests [10]. Such models are also useful in requirements
engineering [5], aiding the understanding of systems.

Despite their value, models are often neglected during development. It is
therefore useful to reverse engineer them from existing systems. There is sub-
stantial work on reverse engineering Finite State Machine (FSM) models from
observations of systems including [11,13,18,20]. Most modern inference approaches
begin by building a Prefix Tree Acceptor (PTA) [18], a tree-shaped automaton
accepting exactly the traces observed. States and transitions are then merged
where they are thought to represent the same system component.

The models produced by classical FSM inference struggle with complex sys-
tems, especially those exhibiting behaviour dependant on an internal state. Ex-
tended Finite State Machine (EFSM) inference is a promising solution to this
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problem. EFSM models extend traditional FSMs by providing control flow de-
cisions based on input values as well as persistent data storage [17]. Current
EFSM inference approaches [15,19] tend to focus on guard expressions – func-
tions that make control flow decisions based on input or data-state values – but
overlook how individual transitions mutate the data state. The inference of data
update functions is a key technical challenge in EFSM inference but significantly
complicates the merging process.

The primary contributions of this work are as follows:
1. A formal process by which EFSM transitions with update functions may be

merged.
2. The introduction of contexts, a scheme by which constraints on data values

may be traced through EFSMs.
3. The use of contexts to prove properties and equivalence of EFSM models.

The rest of the paper is structured as follows: After a brief motivating exam-
ple, Section 2 fixes our definition of EFSMs. Our formalism for merging EFSM
transitions with update functions is introduced in Section 3, as is the concept of
contexts. Section 4 discusses transition subsumption and how it is used in the
merging process. Section 5 shows how contexts may be used to analyse proper-
ties of EFSM models. Finally, Section 6 concludes the paper, discussing related
and future work.

1.1 Motivating Example

The inference process starts with a black-box system and observes its behaviour
when presented with different inputs. From these observations, a model can be
produced which reflects the observed behaviour. For example, consider a simple
vending machine whose traces are exemplified in Figure 1.

In the actual system the select operation takes one parameter: the desired
drink. The coin operation allows the user to insert coins to pay for their drink.
The output of each coin operation is the total amount inserted so far. Once
the value reaches 100, the vend operation triggers the drink to be dispensed.
Pressing vend when the total coinage inserted is less than 100 yields no output.

select(coke)→ coin(50)/[50]→ coin(50)/[100]→ vend()/[coke]

select(coke)→ coin(100)/[100]→ vend()/[coke]

select(pepsi)→ coin(50)/[50]→ vend()→ coin(50)/[100]→ vend()/[pepsi ]

Fig. 1: Some observed traces of a drinks machine in which an event has the format
label(arguments)/[outputs]1.

FSM inference processes use traces to construct a candidate model. This is
done by constructing an initial PTA and iteratively merging states and transi-
tions until an FSM model of the system similar to the one in Figure 2 is obtained.

1 The output component is omitted if none is produced.
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Fig. 2: A classical FSM model reflecting the traces in Figure 1

The problem with FSM inference: Classical FSM inference processes produce
models of the system like the one in Figure 2. Note that transition labels are
atomic so, for example, the select(coke) transition does not represent an event
with label select and input coke, rather the transition is labelled by the literal
string “select(coke)” making it a completely separate entity from the transition
“select(pepsi)”. This is a major problem as it means that information such as the
selected drink and accrued funds must be encoded as part of the control state.
Increasing product choice or the coins accepted quickly causes an explosion in
model size disproportionate to the change in observable behaviour.

EFSM inference: The FSM in Figure 2 looks promising but is flawed because
of its atomic labels. It is preferable to generate an EFSM model such as the
one in Figure 3. Here, the selected drink is stored in a register r1 for later use
in the output of the vend transition. A second register r2 (initialised with 0 by
the select transaction) keeps track of the money inserted so far. Drinks are only
dispensed once this value reaches 100. This enables customers to pay for their
drink with any coin in any order. This is a much more concise and faithful model
of the real system.

q0 q1 q2
select : 1/[r1 := i1, r2 := ‘0’ ]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’ ]/o1 := r1

Fig. 3: An EFSM model of the simple vending machine in which transitions have
the general form label : arity [guards]/outputs[updates]2

2 Where a particular transition lacks guards, outputs, or updates, the relevant com-
ponents are omitted.
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State of the art: EFSM inference techniques have been developed to produce
models with parameterised guarded inputs and a separate data state. Notable
works include the GK-tails algorithm [15] and the MINT algorithm [19].

GK-tails builds on top of the well established k-tails [2] algorithm. Each
transition is annotated with a set of variable values at the current point of
execution. When transitions are merged, their sets of variable values are also
merged. The algorithm uses Daikon [9] to infer properties of variables which are
used to ascertain whether a pair of states is compatible for merging.

The MINT approach [19] also has strong foundations but uses classifiers to
determine, based on current data values, the labels of subsequent events. A
key difference to GK-tails is that here data values are globally accessible so the
classifiers have more data to work with. Classifiers are used not only to determine
the validity of transition merges, but to detect and resolve nondeterminism.

While these techniques are valuable contributions and perform well for cer-
tain tasks, both fall short in that they fail to capture how data values are changed
by individual transitions and are therefore unable to generate the EFSM in Fig-
ure 3. Including data update functions as part of each transition significantly
complicates the process of transition merging. This work presents a method of
comparing two transitions to assess their compatibility for merging. The actual
inference process is the intended subject of future work.

2 Extended Finite State Machines

To define our method, we first need to fix the format of our EFSM model. Var-
ious EFSM models are presented in the literature [4,14] as well as similar ideas
under different names [3,8]. Since the aim is to automatically infer data update
functions, our model affords them a more detailed treatment, combining desir-
able aspects of various existing models. As with classical FSM models, EFSMs
are usually presented graphically like in Figure 3.

Definition 1. An EFSM is a tuple, (S, s0, T ) where S is a finite non-empty
set of states, s0 ∈ S is the initial state, and T is the transition matrix T :
(S × S) → P(L × N × G × F × U) with rows representing origin states and
columns representing destination states. In T , L is a set of transition labels. N
gives the transition arity (the number of input parameters) which may be zero.
G is a set of Boolean guard functions G : (I × R) → B. F is a set of output
functions F : (I ×R)→ O. U is a set of update functions U : (I ×R)→ R.

In G, F , and U , I is a tuple [i1, i2, . . . , im] of values, representing the inputs
of a transition which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1, r2, . . .], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [o1, o2, . . . , on]
of values, which may be empty, representing the outputs of a transition.
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A little syntactic sugar allows an EFSM transition from anterior state Sm to
posterior state Sn to take the general form

Sm
label:arity[g1,...,gn]/f1,...,fn[u1,...,un]−−−−−−−−−−−−−−−−−−−−−−−−→ Sn

The first part of the transition is an atomic label which is the name of the
event. This is followed by a colon and the arity of the transition, a natural
number indicating the number of input parameters taken. Guard expressions g1
to gn are enclosed in square brackets. Next comes a slash, after which expressions
f1 to fn define the outputs. Finally, update expressions u1 to un, enclosed in
square brackets, define the posterior data state. There should be at most one
update function per register per transition in order to maintain consistency. For
transitions without guards, outputs, or updates, the corresponding components
are omitted.

Guard expressions take the current data state and a tuple of inputs and
are satisfied if the specified conditions are met. If this is the case, the EFSM
is said to have accepted the input. A transition cannot be taken if its guard is
not satisfied. Guards operate over literals, inputs, and registers, the latter two
collectively being referred to as “variables”. Literals are enclosed in single quotes
in order to distinguish them from variable names. Numeric values are assumed
to be parsed automatically when required. Absence of a guard corresponds to
the literal guard true which accepts any input with any data state.

Functions to compute the outputs and updates use expressions over literals
and variables evaluated from the anterior data state. Assignment syntax _ := _
is used to identify the value being computed. As with guards, literal values are
enclosed in single quotes and numeric values are parsed automatically. Regis-
ters not explicitly updated by a transition remain unchanged and are initially
undefined, so cannot be used before they have been assigned.

3 A Formalism for Merging EFSM Transitions

During the inference process, a PTA is generated containing fragments such
as in Figure 4a. States with similar outgoing transitions are then merged to
create a more concise model. This will likely introduce nondeterminism to the
model, which can be resolved by merging the destination states of offending
transitions and then the transitions themselves, arriving at something like the
fragment shown in Figure 4b. This section describes a method for merging EFSM
transitions, introducing the concept of contexts as a record of constraints on the
possible values of variables and expressions.

3.1 Method Overview

Our method uses the idea of subsumption (adapted from [15]) together with
contexts, our scheme for recording constraints on the data state of EFSMs. The
method of merging transitions with identical origin and destination states can be
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q0

q1

q2

q3

q4

select
: 1[i1 = ‘coke’ ]

select : 1[i1 = ‘pepsi ’ ]

coin : 1[i1 = ‘50’ ]/o1 := ‘50’

coin : 1[i1 = ‘50’ ]/o1 := ‘50’

(a) A fragment of the PTA built from the traces in Figure 1

q0 q{1,2} q{3,4}
select : 1/[r1 := i1] coin : 1[i1 = ‘50’ ]/o1 := ‘50’

(b) After merging state q1 with q2. The resulting nondeterminism is resolved by
merging q3 with q4 and then merging the coin transitions.

Fig. 4: An EFSM model fragment before and after merging states and transitions

roughly described as follows. Firstly, the transitions must have the same label and
arity, otherwise they represent different behaviours and cannot be merged. Next,
the guard of one transition should be implied by that of the other. In this way, one
transition accepts a subset of inputs of the other. In cases where both transitions
may be taken, their output should be identical otherwise there is an observable
difference between the transitions and they cannot be merged. Additionally, the
data updates performed by the two transitions should be consistent with each
other such that the output of subsequent transitions is not affected by the merge.
If these conditions are met, the transition with the more specific guard is said
to be an instance of the one with the more general guard. It can therefore be
trivially deleted without affecting the observable behaviour of the model.

To implement this method, we need to define a way to determine when tran-
sitions are merged. Subsumption allows us to do this but it is necessary to
introduce the idea of contexts to relate the internal data state of the system to
observable output values of transitions.

3.2 Contexts

One may be tempted to use observational equivalence when merging transitions
since two transitions exhibiting the same observable behaviour can be thought of
as equivalent. Two transitions are observationally equivalent if, when presented
with the same input, they produce the same output. The transitions may make
different updates to the data state but register values are not directly observable
so the difference is hidden. Since registers may be used as part of the output of
subsequent transitions, the use of observational equivalence on a per-transition
basis is likely to cause an observable difference at a later point in model execu-
tion. While observational equivalence must certainly be maintained, it is not a
strong enough criterion for transition merging.

A stronger test would be trace equivalence. Trace equivalence extends obser-
vational equivalence to a sequence of inputs. If two EFSMs produce identical



7

output sequences for all given sequences of inputs, they are trace equivalent.
Since more than one transition is considered, differences in update functions
may manifest themselves if affected register values are used in subsequent out-
put. The problem is that trace equivalence is only in terms of concrete traces so
is not conducive to the generalisation of transitions.

What needs to be used is contextual equivalence. This relates possible register
values to observable output and is a generalisation of trace equivalence. Consider
the transitions vend : 0/o1 := ‘coke’ and vend : 0/o1 := r1. At first glance, the
two transitions look quite different, but there is a circumstance where they are
observationally equivalent: when r1 holds the value ‘coke’ . In this context, there
is no observable difference between the two transitions.

In our EFSM inference method, transitions have three contexts during their
evaluation. The exact values of registers may not always be known but guard
and update expressions allow certain constraints to be inferred. If a transition is
taken then its guard must have been satisfied. A transition with guard i1 = 50
may only be taken when i1 holds the value fifty. If an update expression then
assigns the value of i1 to a register, it is now known that the value of that register
is fifty. Similarly, if the value of a register is known to be greater than five before
a transition is taken and an update function increments it by five then it is now
known that the value of that register must be greater than ten.

Definition 2. A context is a mapping from expressions in terms of inputs and
registers to constraints on their values.

The exact typing is dependent on the types of the inputs and registers. For
integers, a context is a mapping from operations on integers (addition, multipli-
cation, etc.) to constraints such as less than, greater than, and equality. When
working with lists, contexts map operations such as concatenation, length, and
folding to appropriate constraints.

Contexts are written as maps enclosed in double square brackets and use
“curried” notation to record constraints on the values of expressions. For example
Jr1 + i1 7→= 6K represents the context where the value of r1 + i1 is equal to six.
The key is “r1 + i1” and the constraint is “= 6”. This corresponds to the guard
r1 + i1 = 6. Most constraints can be viewed as guards, the exceptions being
the literals true and false which represent unrestrictedness and inconsistency
respectively.

Uninitialised register values map to a special “undefined” constraint. This
constraint is not satisfiable as it is impossible to access a register without a value,
but cannot lead to inconsistent reasoning, since unassigned registers cannot be
used in computation. This is not the same as having an explicitly unrestricted
register which has been assigned a value about which nothing is known. Inputs
which are not explicitly constrained map to literal true since nothing about their
value is known but if presented, they are known to have a value.

A transition t will have three contexts during its evaluation. The anterior
context, A(t), is the set of constraints which is known before the transition is
taken. This context contains only expressions concerned with registers since the
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transition has not yet received any input. The medial context, M(t), is the set
of constraints immediately after the guard has been applied. This includes con-
straints on input values as these are currently in scope. The posterior context,
P (t), is the set of constraints after the update function has been executed. This
does not include constraints on inputs since they do not persist. This context
forms the anterior context for the next transition. In this way, contexts flow
through an EFSM tracing constraints on register values.

Constraints do not relate variables. The reason for this is best illustrated
with an example. If r1 is known to be greater than i1 for a particular transition,
but nothing is known about the value of i1 then nothing meaningful is known
about r1 either. To say that it is greater than an unknown value is meaningless
since there is always a possible valuation of the pair such that the property holds.
Only when something more concrete about one of the two variables is known
can this constraint be of use.

3.3 Computing Contexts

Algorithm 1 describes how to compute the posterior context of a transition. Line
2 applies the guards of the transition to the anterior context to form the medial
context. If the medial context is consistent, the update functions can be applied,
looking up constraints from the medial context as necessary. Any constraints
on expressions involving input values are then removed. To say that a context
is consistent is to say that all of the constraints are satisfiable simultaneously.
An inconsistent medial context means that the guard was not satisfied and the
transition cannot be taken with the given anterior context.

Algorithm 1 Computing the posterior context
1: function posterior(Transition t, AnteriorContext c)
2: c′ ← medial(c, t.guards)
3: if consistent(c′) then
4: return applyUpdates(c′, t.updates)
5: else
6: return false
7: end if
8: end function

A key step when building the medial context is the rearrangement of expres-
sions. If a guard states that r1 must be greater than i1 then it is also the case
that i1 is less than r1. Both must be added to the context at this stage as the
constraint affects both variables. Similarly, if it is known that r1 = i1 + r2 then
it is also known that i1 = r1 − r2 and that r2 = r1 − i1. If constraints on two of
the variables are known then constraints on the third can be calculated.



9

4 Subsumption and Generalisation

In this section we use contexts to solve the problem of merging transitions in
EFSMs. The inference process begins by observing the outputs of a system when
presented with particular inputs. An initial PTA is constructed to reflect this
behaviour and states are iteratively merged to create a more concise and general
model of the system.

States with similar outgoing transitions, such as q1 and q2 in Figure 4a, are
good candidates for merging but the resulting model is often nondeterministic.
This can be resolved by merging subsequent states and transitions, however
this requires some notion of transition equality and generalisation. The idea of
subsumption presented in [15] deals nicely with guards but does not consider data
update functions. With the help of a running example, this section uses contexts
to extend the idea of subsumption to output and update functions, ensuring that
observational equivalence is maintained when transitions are merged.

Observe the EFSM in Figure 5 and note transitions q1 → q2 and q2 → q2
labelled with coin which will be referred to as c1 and c2 respectively. The merg-
ing process now merges state q1 with state q2 into a new state, q{1,2}, which
introduces nondeterminism to the model since there are two outgoing coin tran-
sitions, c1 and c2, from q{1,2} either of which may be taken when i1 is 50. This
can be resolved by merging the two transitions into one.

q0 q1 q2 q3
select : 1/[r1 := i1] coin : 1[i1 = ‘50’ ]/o1 := ‘50’ [r2 := ‘50’ ]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’ ]/o1 := r1

Fig. 5: An EFSM with a transition to be merged

Transitions may not always be compatible for merging so how exactly do
we know if two transitions are compatible? Firstly they must have the same
label and arity, otherwise they represent different behaviour. Lorenzoli et al. [15]
discuss the idea of subsumption of guards, where one transition subsumes an-
other if its guard is more general. Applying this principle to the example has the
transition with no guard (corresponding to the literal guard true) subsuming
the transition with guard i1 = ‘50’ . This looks promising but the outputs and
updates need to be considered too. The principle of subsumption must therefore
be extended to take these into account.

Definition 3. Transition t2 can be said to subsume transition t1 if

1. The guard of t1 implies that of t2
2. In the cases where it is possible to take t1, the output of t2 is identical
3. The posterior data state of t2 is consistent with that of t1
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The general idea is similar to refinement [6], the aim being to widen the
precondition and reduce nondeterminism. Subsuming transitions are allowed to
accept more inputs but under circumstances where either transition may be
taken, it is important that the output of both is identical. If this is not the case,
the two transitions are observably different and cannot be merged. Even though
data registers are not directly observable – it is not possible to ask “what is the
value of register r?” – they may be used as part of output functions so have
the potential to affect observable behaviour of future transitions. It is therefore
important that any register updates performed by the subsuming transition are
consistent with those performed by the one being subsumed.

Contexts are used in our inference method when determining if one transi-
tion subsumes another because they help to place restrictions on the values of
expressions. Algorithm 2 describes the conditions which must be satisfied for
transition t2 to subsume t1. Line 2 checks to see if each condition in the medial
context of t2 is implied by that of t1. In other words, that each condition in
M(t2) is more general than its counterpart in M(t1). The second conjunct, on
line 3, ensures that the output of both transitions is equal in every case where
it is possible to take t1. This is the check for observational equivalence. The
conjunct on line 4 ensures that the posterior context of t2 is more specific than
that of t1 in the cases where t1 may be taken. This means that the restrictions
on the values of expressions in P (t2) are at least as tight as those in P (t1). The
final conjunct, on line 5, enforces that the posterior context of the subsuming
transition is consistent whenever that of the subsumed transition is. This ensures
that subsuming transitions don’t perform spurious updates involving previously
uninitialised registers.

Algorithm 2 Transition subsumption in context
1: function subsumes(Transition t2, t1, AnteriorContext c)
2:
3:
4:

return ∀x. medial(t1, c)[x] =⇒ medial(t2, c)[x] ∧
∀i r. canTake(t1, i, r) =⇒ outputs(t1, i, r) = outputs(t2, i, r) ∧
∀x. posterior(t2,medial(t1, c))[x] =⇒ posterior(t1, c)[x] ∧
consistent(posterior(t1, c)) =⇒ consistent(posterior(t2, c))5:

6: end function

The concept of subsumption is used in our method when merging transitions
since, in a given pair of nondeterministic transitions, one will often subsume the
other. Algorithm 3 describes the process in detail. Lines 1 - 4 describe the sim-
plest merging case. If one transition subsumes the other directly, the subsumed
transition can be trivially deleted without causing a contextual difference.

Lines 5 - 10 describe the case where one transition subsumes the other
in a different context, for example if a register held a particular value. The
obtainAnterior function tries to modify update functions of incoming transi-
tions to accommodate this. Usually this involves assigning a value to a previously
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Algorithm 3 Merging two transitions
Input: Transition t1, t2, AnteriorContext c, EFSM e, State s
1: if subsumes(t1, t2, c) then
2: t2 can simply be deleted, leaving t1 as the result of the merge
3: else if subsumes(t2, t1, c) then
4: t1 can be deleted, leaving t2 as the result of the merge
5: else if ∃c′. subsumes(t2, t1, c′) ∨ subsumes(t1, t2, c′) then
6: if obtainAnterior(c′, e, s) then
7: Delete either t1 or t2 as appropriate
8: else
9: The transitions cannot be merged
10: end if
11: else
12: The transitions cannot be merged
13: end if

undefined register. If this is achieved, one transition then subsumes the other and
we are back to the simple case.

If it is not possible to modify update functions of incoming transitions, for
example if a relevant register value is already set by an update function, then
no subsumption exists and the merge fails. This is also the case if no anterior
context exists in which one transition may subsume the other directly.

Example 1. Let us now apply our method to the running drinks machine ex-
ample from Figure 5 and carry out the process with the nondeterministic coin
transitions from state q{1,2}. Intuitively, c2 should subsume c1 because it has no
guard. Running Algorithm 3 should verify this.

The anterior context of both transitions is Jr1 7→ trueK since the only way
to reach state q{1,2} from the initial state is to take the select transition which
assigns a value to r1 but places no restriction on it. The guard of c1 givesM(c1) =
Jr1 7→ true, i1 7→= 50K. Since there is only one guard expression which restricts
a single variable, i1, to a literal value, there is no rearranging step here.

The medial context of c2 is equal to the anterior context since c2 has no
guard. There is no explicit restriction on i1 in this context so, as discussed in
Section 3, it’s constraint is literal true. In this case, since true =⇒ true and
= 50 =⇒ true condition one of Algorithm 2 has been met.

Now to investigate condition two. The only case where it is possible to take
c1 is when i1 = 50. In this case the output of c1 is literal 50. Transition c2 cannot
produce an output since r2 has not been initialised, hence condition two fails.
This means that c2 does not subsume c1 directly.

If, in the anterior context, r2 was equal to zero then the outputs of the two
transitions would be identical in the case where i1 = 50. The posterior contexts
of the two transitions would also be identical and consistent, satisfying conditions
three and four of Algorithm 2. In this case, the addition of the update r2 := ‘0’
to the select transition produces the desired anterior context, allowing transition
c2 to subsume c1. This may take place without breaking contextual equivalence
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since r2 was previously undefined in the posterior context of select. With the
new anterior context, c2 subsumes c1 directly meaning that c1 may be trivially
deleted, resulting in the EFSM in Figure 3. �

When faced with two transitions to merge, it may be the case that nei-
ther subsumes the other directly but there exists a transition which subsumes
both. Consider the transitions coin : 1[i1 = ‘20’ ]/o1 := ‘20’ [r2 := ‘20’ ] and
c1. Clearly they are instances of the same behaviour but neither subsumes the
other. If presented with a candidate for a subsuming transition, contexts may
be applied in the same way to establish the validity of the candidate. How such
candidates are obtained is outside the scope of this paper and is the intended
subject of future work but the method presented here can be used to validate
such candidates.

5 Analysing System Properties

Another benefit of introducing contexts is the following. Having created an
EFSM model of a system, it is possible to use it to prove properties of that
model. With the drinks machine example, it is desired that a user will always
receive the drink they originally selected. Another desirable property, for the pro-
prietors at least, is that customers only receive their drinks if they have inserted
enough money. Contexts allow us to prove properties like these.

Example 2. Consider the drinks machine model in Figure 3. Looking only at
the labels, as would be provided by a classical FSM model, it appears to be
possible to go straight from q1 to q2 without inserting any coins. The trace
select(coke) → vend()/[coke] seems like a valid option, meaning that a user
could get their drink for free. Contexts help to show that this is not the case.

The vend transition can only be triggered from state q1. The only way to
reach this state from the initial state is to do a select transition. This transition
produces a posterior context of Jr1 7→ true, r2 7→= 0K. Triggering vend with this
anterior context will only allow the one which dispenses nothing to fire, since r2
holds value zero which is less than 100. The only way to obtain a drink from
vend is if r2 holds a value greater than or equal to 100. The only transition from
q1 with an update function which increases r2 is the coin transition. This means
that the customer must insert at least one coin to receive their drink. �

The exact proof strategy varies depending on the property being proven but
the general idea is to use the constraints of a particular context to prove that
a transition may or may not be taken. In the case of Example 2, the guard of
the vend transition with the desired output cannot be satisfied with an anterior
context in which the value of r2 is less than 100.

Another technique is to analyse update functions to see if any have the poten-
tial to affect variables of interest in the desired way. In Example 2, the variable
of interest is r2 and needs to be increased. The coin transition has no guard so
may be taken with any anterior context and produces a posterior context with
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r2 incremented by the value of the input. Assuming that coins have a positive
value, this increases the value of r2. The destination state is equal to the origin,
so the transition may be taken again if the input value was insufficient.

Contexts can also help prove observable equivalence of EFSM models. Con-
sider the EFSM shown in Figure 6, an alternative model of the drinks machine
in Figure 3. Contexts can be used to prove equivalence of the two models.

q0 q1 q2 q3
select : 1/[r1 := i1]

vend : 0

coin : 1/o1 := i1[r2 := i1]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’ ]/o1 := r1

Fig. 6: A model which is observationally equivalent to the one in Figure 3

The idea here is similar to bisimulation with the aim being to form a relation
between the states of two machines such that for all inputs, if one machine in
a given state can accept an input, the other machine accepts the same input
and produces the same output. The models must not only be trace equivalent
but also contextually equivalent since register values may be used as part of
output functions, potentially exposing differences in the data state. The model
in Figure 6, M1, can be proven to be contextually equivalent to the model in
Figure 3, M2, as follows.

Example 3. Starting both machines off in their respective initial states, it is only
possible to do a select transition. Both machines are now in their respective q1
states from which it is possible to do a coin or a vend transition. The context of
M1 at this point is Jr1 7→ trueK and the context of M2 is Jr1 7→ true, r2 7→= 0K.
Both machines can do an unguarded coin transition to produce the context
Jr1 7→ true, r2 7→ trueK. Both may do a vend transition which outputs nothing
and leaves the context and state unchanged. M1 also has a second outgoing vend
transition but this may not be taken as r2 is less than 100.

After having done a coin transition, M1 is in state q2 and M2 is in state
q1. Subsequent coin transitions leave the state and context unchanged but allow
a choice of either vend transition since nothing is known about the value of
r2. The guards on the two transitions are mutually exclusive so determinism
is maintained. If r2 is greater than or equal to 100 then adding further coins
is futile but continues to be observationally equivalent. Alternatively, the vend
transition which outputs the selected drink may be taken. This is the value of
r1 in both machines, set as the input of the select transition and not changed so
identical inputs produce identical outputs. If r2 is less than 100 then the vend
transition in both cases leaves the state unchanged but produces a posterior
context of Jr1 7→ true, r2 7→< 100K. Subsequently, the same vend transition may
be repeated indefinitely or another coin transition may be taken. �
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These are just some of the ways context can be used to prove properties of
systems. A full methodological breakdown is left for future work.

6 Conclusions

This paper presents contexts, a way of recording constraints on data values at
different points during the execution of an EFSM model. The concept of sub-
sumption is extended to EFSM transitions which include data update functions
and is used as part of a technique to merge EFSM transitions. Contexts also aid
in proving certain properties of EFSM models, notably equivalence of models.
Algorithms 1 and 2 have been formalised in Isabelle/HOL [16] and together with
representations of EFSMs and contexts have been used to validate possible tran-
sition merges and prove the properties of the drinks machine example discussed
in Section 5. It is the intention of the authors to submit these theory files to the
AFP (https://www.isa-afp.org/).

The task of inferring a model from a set of software execution traces has been
an active area of research since the 1960s [11]. Most inference algorithms fit into
one of two categories: active and passive. Active techniques such as [1,7,12] allow
the user to guide the inference process by categorising possible actions as possible
or impossible from the current state. Most modern techniques (including the one
presented in this work) tend to be more passive, inferring a generalised system
model from observed system traces without reference to the user.

Classical FSM inference techniques produce models with atomic labels which
struggle with systems exhibiting value-dependent behaviour. EFSM models fea-
ture parametrised inputs and a separate data state which solves this problem.
EFSM inference techniques such as [14,19] build on classical techniques to infer
EFSMs from program execution traces by state and transition merging. These
approaches do not attempt to infer register update functions so do not have to
consider the merging of transitions which feature them. The inference of register
update functions is a key challenge in EFSM inference, so a technique to merge
such transitions is required. This work presents such a technique.

Future work includes the identification and prioritisation of potential EFSM
state and transition merges as well as the provision of candidate transitions as
discussed in Section 4. The inference of register and input types from traces is
also an area of interest.
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