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Abstract. A common problem in the certification of highly safety or
security critical systems is the consistency of the certification documen-
tation in general and, in particular, the linking between semi-formal and
formal content of the certification documentation.
We address this problem by using an existing framework, Isabelle/DOF,
that allows writing certification documents with consistency guarantees,
in both, the semi-formal and formal parts. Isabelle/DOF supports the
modeling of document ontologies using a strongly typed ontology defini-
tion language. An ontology is then enforced inside documents including
formal parts, e. g., system models, verification proofs, code, tests and val-
idations of corner-cases. The entire set of documents is checked within
Isabelle/HOL, which includes the definition of ontologies and the editing
of integrated documents based on them. This process is supported by an
IDE that provides continuous checking of the document consistency.
In this paper, we present how a specific software-engineering certifi-
cation standard, namely CENELEC 50128, can be modeled inside Is-
abelle/DOF. Based on an ontology covering a substantial part of this
standard, we present how Isabelle/DOF can be applied to a certification
case-study in the railway domain.
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1 Introduction

The initial motivation of this work lies in a failure: the second author was part
of the theorem proving team of the EUROMILS project which attempted to cer-
tify the commercial operating system PikeOS 3.4 according to CC EAL5+ [12].
When the project came to an end, it became clear that the project would not
achieve this goal.3 The evaluator informed us about an embarrassing number of
3 The company SYSGO/Thales behind this initiative finally abandoned the approach
and restarted a certification on a later version.
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inconsistencies in the provided documents (written in Word, Excel, LATEX, and
documents generated from 3 000 lines of proof code written in Isabelle/HOL).
While impressed by the proof work done, he pointed out that the overall incon-
sistency in the documents provided made an evaluation impossible. For example,
he highlighted a number of informal definitions of the security target that did
not fit to what was modeled, or that the implementation model did not fit to
what was tested. He also made accurate comments on inconsistent references
and terminologies.

This failure led the authors of this paper to the following insight: For a suc-
cessful formal certification process, it is by far not enough to have abstract models
and corresponding refinement proofs to some implementation model (or even, as
is the case in [13] or the seL4 initiative [20], to realistic C code). Certification pro-
cesses targeting higher-levels of assurance such as CENELEC 50128/SIL 4 [11]
or CC EAL7 [12] are all requiring the use of formal methods. Therefore, they
are a rewarding target for research in this domain. Their core concern, however,
is the traceability of requirements, assumptions, application constraints of vari-
ous nature, and the demonstration of evidence for their satisfaction. Proofs, as
a means to connect models, are part of the solution; however the underlying
notion of evidence in certifications comprises also tests, informal arguments or
just references to an expert opinion.

In a wider perspective, it turns out to be a substantial problem in large, dis-
tributed development processes, to keep track of the evolution of project specific
knowledge and to control the overall documentation effort.

In this paper, we present a methodology together with a set of mechanisms
and techniques for an automated impact analysis of document changes in order
to achieve coherence as well as to maintain it during evolution. For this purpose,
we present
1. the formal development in Isabelle/HOL of an industrial case-study: the

odometric function measuring position, speed, and acceleration of a train,
2. an ontology formalizing parts of the CENELEC 50128 standard in ODL, for

which we use Isabelle/DOF [8, 10], and
3. the methodology to annotate an Isabelle formal development with the con-

cepts of this CENELEC in order to enforce coherence.

With respect to the formal development, we restrict ourselves to core aspects of
this development, ranging from modeling the physics of a train over the physics
of a measuring device down to a C implementation running on a Sabre-Light
Card using seL4.

2 Background

In this section, we provide a guided tour through the underlying technologies
of this paper: 1. Isabelle and Isabelle/HOL, 2. Isabelle/DOF and its Ontology
Definition Language (ODL).
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2.1 Isabelle and HOL

While still widely perceived as an interactive theorem proving environ-
ment, Isabelle [22] has become a generic system framework providing an in-
frastructure for plug-ins. This comprises extensible state components, extensi-
ble syntax, code-generation, and advanced documentation support. The plugin
Isabelle/HOL offers a modeling language similar to functional programming lan-
guages extended by a logic and automated proof and animation techniques.

2.2 The Isabelle/DOF Framework

Isabelle/DOF [8–10] is a document ontology framework that extends
Isabelle/HOL. We understand by a document ontology structured meta-data
attached to an integrated document allowing classifying text-elements, connect
them to typed meta-data, and establishing typed links between text- and formal
elements (such as definitions, proofs, code, test-results, etc).

Isabelle/DOF offers basically two things: a language called ODL to specify
a formal ontology, and ways to annotate an integrated document written in
Isabelle/HOL with the specified meta-data. Additionally, Isabelle/DOF gener-
ates from an ontology a family of semantic macros—called antiquotations that
may appear in text or code—allowing establishing machine-checked links be-
tween classified entities. Not unlike the UML/OCL meta-model, ODL offers class
invariants as well as means to express structural constraints in documents. Un-
like UML, however, Isabelle/DOF allows for integrated documents with informal
and formal elements including the necessary management of logical contexts.

The perhaps most attractive aspect of Isabelle/DOF is its deep integration
into the IDE of Isabelle (PIDE), which allows hypertext-like navigation as well as
fast user-feedback during development and evolution of the integrated document.
This includes rich editing support, including on-the-fly semantics checks, hinting,
or auto-completion. Isabelle/DOF supports LATEX-based document generation
as well as ontology-aware “views” on the integrated document, i. e., specific ver-
sions of generated PDF addressing, for example, different stake-holders.

2.3 A Guided Tour Through ODL

Isabelle/DOF provides a strongly typed Ontology Definition Language
(ODL) that provides the usual concepts of ontologies such as
– document class (using the doc_class keyword) that describes a concept,
– attributes specific to document classes (attributes might be initialized with

default values),
– a special link, the reference to a super-class, establishes an is-a relation

between classes;
– classes may refer to other classes via a regular expression in an optional

where clause (a class with a where clause is called monitor);
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The types of attributes are HOL-types. Thus, ODL can refer to any pre-
defined type from the HOL library, e. g., string, int as well as parameterized
types, e. g., option, list. As a consequence of the Isabelle document model,
ODL definitions may be arbitrarily mixed with standard HOL type definitions.
Document class definitions are HOL-types, allowing for formal links to and be-
tween ontological concepts. For example, the basic concept of requirements from
CENELEC 50128 [11] is captured in ODL as follows:

doc_class requirement = text_element + (* derived from text_element *)
long_name ::string option (* an optional string attribute *)
is_concerned::role set (* roles working with this req. *)

This ODL class definition maybe part of one or more Isabelle theory–files cap-
turing the entire ontology definition. Isabelle’s session management allows for
pre-compiling them before being imported in the actual target documentation
required to be compliant to this ontology.

(a) A Text-Element as Requirement. (b) Referencing a requirement.

Fig. 1: Referencing a Requirement.

Fig. 1 shows an ontological annotation of a requirement and the referencing
via an antiquotation @{requirement 〈req1〉} generated by Isabelle/DOF from
the above class definition. Undefined or ill-typed references were rejected, the
high-lighting displays the hyperlinking which is activated on a click. Revising the
actual definition of requirement, it suffices to click on its keyword: the IDE will
display the class-definition and its surrounding documentation in the ontology.

Isabelle/DOF’s generated antiquotations are part of a general mechanism of
Isabelle’s standard antiquotations heavily used in various papers and technical
reports. For example, in the following informal text, the antiquotation @{thm
refl} refers to the reflexivity axiom from HOL:

text〈According to the reflexivity axiom @{thm refl}, we obtain in Γ
for @{term 〈fac 5〉} the result @{value 〈fac 5〉}.〉

In the PDF output, this is represented as follows:

According to the reflexivity axiom x = x, we obtain in Γ for fac 5 the result 120.

The antiquotation @{value 〈fac 5〉} refers to a function that is defined in the
preceding logical context (and parsed as inner syntax) to compute the value
of 5!, i. e., 120. Summing up, antiquotations can refer to formal content, can
be type-checked before being displayed and can be used for calculations before
actually being typeset. All these features can be used for the calculation of
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attribute values (as in Fig. 1, observe the value UNIV used to set the attribute
is_concerned is a HOL-constant denoting the universal set).

Finally, for each ontological concept, a custom representation, using LATEX-
notation, for the generated PDF document can be defined. The latter includes,
e. g., the possibility to automatically generated glossaries or lists of concepts.

3 The Underlying Methodology

We assume that all documentation, models, proofs, test-execution scripts,
and code are managed in an integrated document ; Isabelle/DOF supports this
approach by admitting an acyclic graph of sub-documents consisting of different
type of files. We are well aware that this precondition will raise the question of
scalability; however, the Isabelle system is based on a document model allowing
for efficient, parallelized evaluation and checking of its document content (cf. [5,
24, 25] for the fairly innovative technologies underlying the Isabelle architecture).
These technologies allow for scaling up to fairly large documents: we have seen
documents with 150 files be loaded (excluding proof-checking) in about 4 min,
and individual files—like the x86 model generated from Antony Fox’s L3 specs—
can have 80 kLOC and were loaded in about the same time.

Only inside an integrated document Isabelle/DOF can manage and check
the mutual dependencies and give automated and fast feedback to the validity
of ontological dependencies; document boundaries imply a drastically reduced
information flow and the need for complex round-engineering techniques.

Methodologically, the integrated document is central; subsequent versions
evolve from the informal to the formal, from unstructured to structured text.

We will use the odometry case-study as a show-case of our methodology,
which consists of four (not necessarily sequential) phases:
1. Textual Elicitation of informal pre-documents into an integrated source,
2. Formal Enrichment of the integrated source with definitions in HOL, cap-

turing the lexicon of concepts and notions concerning system environment,
architecture, and required performances,

3. Verification of the theory resulting from these definitions; in our case, this
comprises formal proofs of safety properties or refinements from high-level
system models to design and from design to the code-level, and

4. Ontological Embedding of text-, model-, and evidence-elements in the inte-
grated source into a concrete target ontology of a certification standard.

In the following, we will present selected snapshots of the document evolution
covering the phases 1 to 3, while phase 4 is presented in Sect. 6.

4 A Case-Study: An Odometer-Subsystem

In our case study, we will follow the phases of analysis, design, and implemen-
tation of the odometry function of a train. This software processes data from an
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odometer to compute the position, speed, and acceleration of a train. This sys-
tem provides the basis for many safety critical decisions, e. g., the opening of the
doors. Due to its relatively small size, it is a manageable, albeit realistic target
for a comprehensive formal development: it covers a physical model of the en-
vironment, the physical and architectural model of the odometer including the
problem of numerical sampling, and the boundaries of efficient computations.
The interplay between environment and measuring-device as well as the imple-
mentation problems on a platform with limited resources makes the odometer a
fairly typical safety critical embedded system.

We start with our phase called textual elicitation of a number of informal
documents available at the beginning of the development; since our approach
assumes an integrated document for the entire project—only inside these doc-
uments, the checking if coherence is possible—all initial texts must be brought
into this format. We selected a few text snippets from original documents and
their treatment during this phase.

4.1 System Requirements Specification as an Integrated Source

Textual Elicitation of “Basic Principles of Motion and Motion Measurement.”
The motion of a train and the method for measuring the motion is textually
described as follows: “A rotary encoder measures the motion of a train. To achieve
this, the encoder’s shaft is fixed to the trains wheels axle. When the train moves,
the encoder produces a signal pattern directly related to the trains progress.
By measuring the fractional rotation of the encoders shaft and considering the
wheels effective ratio, relative movement of the train can be calculated.”

Fig. 2: Motion sensing via
an odometer.

Fig. 2 shows that we model a train, seen from
a pure kinematics standpoint, as physical system
characterized by a one-dimensional continuous dis-
tance function, which represents the observable of
the physical system. Concepts like speed and accel-
eration were derived concepts defined as their (gra-
dient) derivatives. We assume the use of the meter,
kilogram, and second (MKS) system.

This model is already based on several fundamental assumptions relevant for
the correct functioning of the system and for its integration into the system as
a whole. In particular, we need to make the following assumptions explicit:

– that a perfectly circular wheel profile is assumed, with constant radius,
– that the slip between the trains wheel and the track is negligible,
– the distance between all teeth of a wheel is the same and constant, and
– the sampling rate of positions is a given constant.

These assumptions have to be traced throughout the certification process as
derived requirements (or, in CENELEC terminology, as exported constraints),
which is also reflected by their tracing throughout the body of certification doc-
uments. This may result in operational regulations, e. g., regular checks for tol-
erable wheel defects. As for the no slip-assumption, this leads to the modeling of
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constraints under which physical slip can be neglected: the device can only pro-
duce reliable results under certain physical constraints (speed and acceleration
limits). Moreover, the no slip-assumption motivates architectural arrangements
for situations where this assumption cannot be assured (as is the case, for exam-
ple, of an emergency breaking) together with error-detection and error-recovery.

Fig. 3: An odometer with three sensors C1, C2, and C3.

Textual Elicitation of “System Architecture.” The requirements analysis also con-
tains a sub-document interface data which can be subsumed into the CENELEC
notion system architecture description. It contains technical drawing of the
odometer, a timing diagram (see Fig. 3), and tables describing the encoding
of the position for the possible signal transitions of the sensors C1, C2, and C3.

Textual Elicitation of “System Interfaces.” The initial document contains a sec-
tion Interface data which is subsumed under the CENELEC notion functions
and interfaces required as part of the requirements analysis. It describes the
technical format of the output of the odometry function, e. g., specifies the out-
put speed as given by a int_32 to be the “Estimation of the speed (in mm/sec)
evaluated over the latest Navg samples” where the speed refers to the physical
speed of the train and Navg a parameter of the sub-system configuration.

Textual Elicitation of “Required Performances.” The analysis documents were
relatively implicit on the expected precision of the measurements; however, cer-
tain interface parameters like Odometric_Position_TimeStamp (a counter on
the number of samplings) and Relative_Position are defined by an unsigned
32 bit integer. The textual elicitation phase even revealed minor errors in the
consistent spelling of parameter names and a more severe ontological confusion
between the physical time (i. e., time in the sense of the physical environment
model) and the time measured by the device, which is not identical under all cir-
cumstances. These parameter definitions imply exported constraints (CENELEC
notion) concerning the acceptable time of service as well the maximum distance
before a necessary reboot of the subsystem. For our case-study, we assume max-
imum deviation of the Relative_Position to the theoretical distance.
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The requirement analysis document describes the physical environment, the
architecture of the measuring device, and the required format and precision of
the measurements of the odometry function as represented (see Fig. 4).

Fig. 4: Real distance vs. discrete distance vs. shaft-encoder sequence

Textual Elicitation of the “Software Design Spec” (Resume). The design provides
a function that manages an internal first-in-first-out buffer of shaft-encodings and
corresponding positions. Central for the design is a step-function analyzing new
incoming shaft encodings, checking them and propagating two kinds of error-
states (one allowing recovery, another one, fatal, signaling, e. g., a defect of the
receiver hardware), calculating the relative position, speed and acceleration.

Textual Elicitation of the “Software Implementation” (Resume). While the design
is executable on a Linux system, it turns out that the generated code from an
Isabelle model is neither executable on resource-constraint target platform, an
ARM-based Sabre-light card, nor certifiable, since the compilation chain via ML
to C implies the inclusion of a run-time system and quite complex libraries. We
adopted therefore a similar approach as used in the seL4 project [21]: we use a
hand-written implementation in C and verify it via AutoCorres [17] against the
design model. The hand-written C-source is integrated into the Isabelle/HOL
technically by registering it in the build-configuration and logically by a trusted
C-to-HOL compiler included in AutoCorres.

4.2 Formal Enrichment of the Software Requirements Specification

After the eliciation-phase, we turn now to formal enrichment phase. For ex-
ample, the assumptions in the system architecture were formalized by the
Isabelle/HOL definitions, which were added as close as possible to the infor-
mal text:

definition teeth_per_wheelturn::nat (tpw) where tpw ≡ SOME x. x > 0
definition wheel_diameter::real (wd) where wd ≡ SOME x. x > 0
definition wheel_circumference::real (wcirc) where wcirc ≡ pi * wd
definition δsres::real where δsres ≡ wcirc / (2 * 3 * tpw)

Here, real refers to the real numbers as defined in the HOL-Analysis library,
which provides concepts such as Cauchy Sequences, limits, differentiability, and
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a very substantial part of classical Calculus. SOME is the Hilbert choice operator
from HOL; the definitions of the model parameters admit all possible positive
values as uninterpreted constants. Our perfect-wheel assumption is translated
into a calculation of the circumference of the wheel, while δsres, the resolution
of the odometer, can be calculated from the these parameters. HOL-Analysis
permits to formalize the fundamental physical observables:

type_synonym distance_function = real⇒real
definition Speed::distance_function⇒real⇒real where Speed f ≡ deriv f
definition Accel::distance_function⇒real⇒real

where Accel f ≡ deriv (deriv f)

which permits to constrain the central observable distance_function in a way
that they describe the space of “normal behavior” where we expect the odometer
to produce reliable measurements over a distance_function df.

The essence of the physics of the train is covered by the following definition:

definition normally_behaved_distance_function :: (real ⇒ real) ⇒ bool
where normally_behaved_distance_function df =

( ∀ t. df(t) ∈ R≥0 ∧ (∀ t ∈ R≤0. df(t) = 0)
∧ df differentiable onR ∧ (Speed df)differentiable onR
∧ (Accel df)differentiable onR
∧ (∀ t. (Speed df) t ∈ {-SpeedMax .. SpeedMax})
∧ (∀ t. (Accel df) t ∈ {-|AccelMax| .. |AccelMax|}))

which constrains the distance functions in the bounds described of the infor-
mal descriptions and states them as three-fold differentiable function in certain
bounds concerning speed and acceleration. Violations, in particular of the con-
straints on speed and acceleration, do occur in practice. In such cases, the global
system adapts recovery strategies that are out of the scope of our model. Con-
cepts like shaft_encoder_state (a triple with the sensor values C1, C2, C3) were
formalized as types, while tables were defined as recursive functions:

fun phase0 :: nat ⇒ shaft_encoder_state where
phase0 (0) = (| C1 = False, C2 = False, C3 = True |)

|phase0 (1) = (| C1 = True, C2 = False, C3 = True |)
|phase0 (2) = (| C1 = True, C2 = False, C3 = False|)
|phase0 (3) = (| C1 = True, C2 = True, C3 = False|)
|phase0 (4) = (| C1 = False, C2 = True, C3 = False|)
|phase0 (5) = (| C1 = False, C2 = True, C3 = True |)
|phase0 x = phase0(x - 6)

definition Phase ::nat⇒shaft_encoder_state where Phase(x) = phase0(x-1)

We express the shaft encoder sequences as a translations of distance functions:

definition encoding::distance_function⇒nat⇒real⇒shaft_encoder_state
where encoding df initpos ≡ λx. Phase(natbdf(x) / δsresc + initpos)

where initpos is the initial position of the wheel. sampling’s were constructed
from encoding sequences over discretized time points:

definition sampling::distance_function⇒nat⇒real⇒nat⇒shaft_encoder_state
where sampling df initpos δt ≡ λn::nat. encoding df initpos (n * δt)
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The sampling interval δt (the inverse of the sampling frequency) is a critical
parameter of the configuration of a system.

Finally, we can formally define the required performances. From the inter-
face description and the global model parameters such as wheel diameter, the
number of teeth per wheel, the sampling frequency etc., we can infer the max-
imal time of service as well the maximum distance the device can measure. As
an example configuration, choosing 1 m for wd, 100 for tpw, 80 km/h SpeedMax,
and 14400 Hz for the sampling frequency, results in an odometer resolution of
2.3 mm, a maximum distance of 9878 km, and a maximal system up-time of
123.4 h. The required precision of an odometer can be defined by a constant
describing the maximally allowed difference between df(n*δt) and sampling
df initpos δt n for all initpos ∈{0..5}.

4.3 Verification of the Software Requirements Specification

The original documents contained already various statements that motivate cer-
tain safety properties of the device. For example, the Phase-table excludes sit-
uations in which all sensors C1, C2, and C3 are all “off” or situations in which
sensors are “on,” reflecting a physical or electrical error in the odometer. It can be
shown by a very small Isabelle case-distinction proof that this safety requirement
follows indeed from the above definitions:

lemma Encoder_Property_1:(C1(Phase x) ∧ C2(Phase x) ∧ C3(Phase x))=False
proof (cases x)

case 0 then show ?thesis by (simp add: Phase_def)
next

case (Suc n) then show ?thesis
by(simp add: Phase_def,rule_tac n = n in cycle_case_split,simp_all)

qed

for all positions x. Similarly, it is proved that the table is indeed cyclic:
phase0 x = phase0(x mod 6) and locally injective: ∀x<6. ∀y<6. phase0 x
= phase0 y → x = y. These lemmas, building the “theory of an odometer,”
culminate in a theorem that we would like to present in more detail.

theorem minimal_sampling :
assumes * : normally_behaved_distance_function df

and ** : δt * SpeedMax < δsres
shows ∀ δX≤δt. 0<δX →

∃f. retracting (f::nat⇒nat) ∧
sampling df initpos δX = (sampling df initpos δt) o f

This theorem states for normally_behaved_distance_functions that there is a
minimal sampling frequency assuring the safety of the measurements; samplings
on some df gained from this minimal sampling frequency can be “pumped up”
to samplings of these higher sampling frequencies; they do not contain more in-
formation. Of particular interest is the second assumption, labelled “**,” which
establishes a lower bound from wcirc, tpw, SpeedMax for the sampling frequency.
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Methodologically, this represents an exported constraint that can not be repre-
sented inside the design model: it means that the computations have to be fast
enough on the computing platform in order to assure that the calculations are
valid. It was in particular this exported constraint that forced us to give up the
original plan to generate the code from the design model and to execute this
directly on the target platform.

For our example configuration (1m diameter, 100 teeth per wheel, 80 km/h
max), this theorem justifies that 14,4 kHz is indeed enough to assure valid sam-
plings. Such properties are called “internal consistency of the software require-
ments specification” in the CENELEC standard [11], 7.2.4.22 and are usually
addressed in an own report.

5 The CENELEC Ontology

Modeling an ontology from a semi-formal text such as [11] is, like any other
modeling activity, not a simple one-to-one translation of some concepts to some
formalism. Rather, implicit and self-understood principles have to be made ex-
plicit, abstractions have to be made, and decisions about the kind of desirable
user-interaction may have an influence similarly to design decisions influenced
by strengths or weaknesses of a programming language.

5.1 Tracking Concepts and Definitions

Isabelle/DOF is designed to annotate text elements with structured meta-
information and to reference these text elements throughout the integrated
source. A classical application of this capability is the annotation of concepts
and terms definitions—be them informal, semi-formal or formal—and their con-
sistent referencing. In the context of our CENELEC ontology, e. g., we can trans-
late the third chapter of [11] “Terms, Definitions and Abbreviations” directly into
our Ontology Definition Language (ODL). Picking one example out of 49, con-
sider the definition of the concept “traceability” in paragraphs 3.1.46 (a notion
referenced 31 times in the standard), which we translated directly into:

Definition*[traceability::concept]〈 degree to which relationship
can be established between two or more products of a development
process, especially those having a predecessor/successor or
master/subordinate relationship to one another. 〉

In the integrated source of the odometry study, we can reference in a text element
to this concept as follows:

text*[ ... ]〈 ... to assure @{concept traceability} for
@{requirement bitwiseAND}, we prove ... 〉

The presentation of this document element inside Isabelle/DOF is immediately
hyperlinked against the Definition* element shown above; this serves as docu-
mentation of the standard for the development team working on the integrated
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source. The PDF presentation of such links depends on the actual configurations
for the document generation; We will explain this later. CENELEC foresees also
a number of roles, phases, safety integration levels, etc., which were directly
translated into HOL enumeration types usable in ontological concepts of ODL.

datatype role =
PM (* Program Manager *) | RQM (* Requirements Manager *)

| DES (* Designer *) | IMP (* Implementer *) |
| VER (* Verifier *) | VAL (* Validator *) | ...

datatype phase =
SYSDEV_ext (* System Development *) | SPl (* Software Planning *)

| SR (* Software Requirement *) | SA (* Software Architecture *)
| SDES (* Software Design *) | ...

Similarly, we can formalize the Table A.5: Verification and Testing of [11]: a
classification of verification and testing techniques:

datatype vnt_technique =
formal_proof thm list | stat_analysis

| dyn_analysis dyn_ana_kind | ...

In contrast to the standard, we can parameterize formal_proof with a list of
theorems, an entity known in the Isabelle kernel. Here, Isabelle/DOF assures for
text elements annotated with theorem names, that they refer indeed to estab-
lished theorems in the Isabelle environment. Additional checks could be added
to make sure that these theorems have a particular form, for example.

While we claim that this possibility to link to theorems (and test-results) is
unique in the world of systems attempting to assure traceability, referencing a
particular (proven) theorem is definitively not sufficient to satisfy the claimed
requirement. Human evaluators will always have to check that the provided
theorem adequately represents the claim; we do not in the slightest suggest that
their work is superfluous. Our framework allows to statically check that tests or
proofs have been provided, at places where the ontology requires them to be,
and both assessors and developers can rely on this check and navigate through
related information easily. It does not guarantee that intended concepts for, e. g.,
safety or security have been adequately modeled.

5.2 Major Ontological Entities: Requirements and Evidence

We introduce central concept of a requirement as an ODL doc_class based on
some generic basic library text_element providing basic layout attributes.

doc_class requirement = text_element +
long_name :: string option
is_concerned :: role set

where the roles are exactly the ones defined in the previous section and
represent the groups of stakeholders in the CENELEC process. Therefore,
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the is_concerned-attribute allows expressing who “owns” this text-element.
Isabelle/DOF supports a role-based presentation, e. g., different presentation
styles of the integrated source may decide to highlight, to omit, to defer into
an annex, text entities according to the role-set.

Since ODL supports single inheritance, we can express sub-requirements and
therefore a style of requirement decomposition as advocated in GSN [19]:

doc_class sub_requirement =
decomposes :: requirement
relates_to :: requirement set

5.3 Tracking Claims, Derived Requirements and Evidence

As an example for making explicit implicit principles, consider the following
statement [11], pp. 25.:

The objective of software verification is to examine and arrive at a judgment
based on evidence that output items (process, documentation, software or
application) of a specific development phase fulfill the requirements and plans
with respect to completeness, correctness and consistency.

The terms judgment and evidence are used as a kind of leitmotif throughout
the CENELEC standard, but they are neither explained nor even listed in the
general glossary. However, the standard is fairly explicit on the phases and the
organizational roles that different stakeholders should have in the process. We
express this key concept "judgment", by the following class:

doc_class judgement =
refers_to :: requirement
evidence :: vnt_technique list
status :: status
is_concerned :: role set <= {VER,ASR,VAL}

As one can see, the role set is per default set to the verification team, the assessors
and the validation team.

There are different views possible here: an alternative would be to define
evidence as ontological concept with vnt_technique’s (rather than an attribute
of judgement) and consider the basis of judgments as a relation between require-
ments and relation:

doc_class judgement =
based_on :: (requirement × evidence) set
status :: status
is_concerned :: role set <= {VER,ASR,VAL}

More experimentation will be needed to find out what kind of ontological
modeling is most adequate for developers in the context of Isabelle/DOF.
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6 Ontological Embedding and Compliance

From the variety of different possibilities for adding CENELEC annotations to
the integrated source, we will, in the following, point out three scenarios from
the phase ontological embedding (cf. Sect. 3).

Internal Verification of Claims in the Requirements Specification. In our case,
the SR-team early on detected a property necessary for error-detection of the
device (c.f. Sect. 4.3):

text*[encoder_props::requirement]〈 The requirement specification team ...
C1 & C2 & C3 = 0 (bitwise logical AND operation)
C1 | C2 | C3 = 1 (bitwise logical OR operation) 〉

After the Isabelle proofs shown in Sect. 4.3, we can register the theorems directly
in an evidence statement:

text*[J1::judgement, refers_to=@{docitem 〈encoder_props〉},
evidence=[formal_proof[@{thm 〈Encoder_Property_1〉},

@{thm 〈Encoder_Property_2〉}]]]
〈The required encoder properties are in fact verified to be consistent
with the formalization of @{term phase0}.〉

The references @{ ... }, called antiquotation, allow us not only to reference to
formal concepts, they are checked for consistency and there are also antiquota-
tions that print the formally checked content (e. g., the statement of a theorem).

Exporting Claims of the Requirements Specification. By definition, the main
purpose of the requirement specification is the identification of the safety re-
quirements. As an example, we state the required precision of an odometric
function: for any normally behaved distance function df, and any representable
and valid sampling sequence that can be constructed for df, we require that
the difference between the physical distance and distance calculable from the
Odometric-Position-Count is bound by the minimal resolution of the odometer.

text*[R5::safety_requirement]〈We can now state ... 〉

definition
Odometric_Position_Count_precise::(shaft_encoder_state list⇒output)⇒bool
where Odometric_Position_Count_precise odofunction ≡

(∀ df. ∀S. normally_behaved_distance_function df
→ representable S
→ valid_sampling S df
→ (let pos = uint(Odometric_Position_Count(odofunction S))

in |df((length S - 1)*δtodo) - (δsres * pos)| ≤ δsres))

update_instance*[R5::safety_requirement,
formal_definition:=[@{thm 〈Odometric_Position_Count_precise_def〉}]]

By update_instance*, we book the property Position_Count_precise_def as
safety_requirement, a specific sub-class of requirements requesting a formal
definition in Isabelle.
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Exporting Derived Requirements. Finally, we discuss the situation where the
verification team discovered a critical side-condition for a major theorem neces-
sary for the safety requirements; this was in our development the case for the
condition labelled “**” in Sect. 4.3. The current CENELEC standard clearly sep-
arates “requirement specifications” from “verification reports,” which is probably
motivated by the overall concern of organizational separation and of document
consistency. While this document organization is possible in Isabelle/DOF, it
is in our experience often counter-productive in practice: organizations tend to
defend their documents because the impact of changes is more and more dif-
ficult to oversee. This effect results in a dramatic development slow-down and
an increase of costs. Furthermore, these barriers exclude situations where devel-
opers perfectly know, for example, invariants, but can not communicate them
to the verification team because the precise formalization is not known in time.
Rather than advocating document separation, we tend to integrate these docu-
ments, keep proof as close as possible to definitions, and plead for consequent
version control of the integrated source, together with the proposed methods to
strengthen the links between the informal and formal parts by anti-quotations
and continuous ontological checking. Instead of separation of the documents, we
would rather emphasize the separation of the views of the different document
representations. Such views were systematically generated out of the integrated
source in different PDF versions and for each version, document specific consis-
tency guarantees can be automatically enforced.

In our case study, we define this condition as predicate, declare an explana-
tion of it as SRAC (CENELEC notion for: safety-related application condition;
ontologically, this is a derived class from requirement.) and add the definition
of the predicate into the document instance as described in the previous section.

7 Generating Document Variants

Often in certification processes, traditional documents are required. Rea-
sons for this include that traditional documents can ensure long-term archiv-
ability (which is much harder to ensure for a interactive document that requires
Isabelle/HOL). Moreover, the requirements for reading and checking traditional
documents are much smaller and no Isabelle expertise is required. To address
these needs, Isabelle/DOF can generate a static certification document in the
PDF/A format (i. e., the variant of PDF for archiving as defined in the ISO
standard 19005)—reading these documents only requires a PDF reader, which
one can expect to be available even 50 years from now.

In the context of the CENELEC 50128, we generate one document containing
all sub-documents (including all formal proofs) and one document for reach role.
The latter only contain the aspects relevant for this particular role (based on the
is_concerned attribute). For each of the document variants, both semantical
and syntactical consistency is checked and the PDF generation fails if these
checks (e. g., due to dangling references in a sub-document) are not successful.
In addition, we also generate role-specific (hyper-linked) glossaries and tables of
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relevant concepts (e. g., a table of all SRACs). The latter helps validators that
either prefer to work with the final PDF instead of working with the interactive
Isabelle/DOF system directly.

8 Related Work

Already in 1993, the need for an integrated and ontological under-pinned
document model that are able to integrate formal verification aspects has been
motivated by Rushby [23]. More recent reports on the industrial practice of
high-assurance safety certifications, e. g., [14, 16, 18], show that not much has
happened since the report from Rushby: certification processes still rely on a
plethora of tools managing different aspects of the same system and/or model,
and ensuring the consistency between the different tools and documents is a risk
(and a significant cost factor in a certification).

The support for modeling ontologies in Isabelle/DOF shares similarities with
existing ontology editors such as Protégé [4], Fluent Editor [1], NeOn [2], or
OWLGrEd [3]. These editors allow for defining ontologies and also provide cer-
tain editing features such as auto-completion. In contrast, Isabelle/DOF does not
only allow for defining ontologies, directly after defining an ontological concept,
they can also be instantiated and their correct use is checked immediately.

Existing works on using ontologies as part of safety-critical (e. g., [7, 26])
or security-critical (e. g., [15]) focus on using ontologies for structuring queries
on the set of specifications documents. While not discussed in this paper,
Isabelle/DOF supports this time of knowledge management as well: the Is-
abelle/DOF editor allows for interactively querying for instances of concepts
defined in the underlying ontologies as well as for the formal artifacts (formal
definitions, proofs, etc.). To our knowledge, none of the existing works provides
a deep integration of formal and semi-formal content of certification documents.

9 Conclusion

We presented a methodology for developing certification documents including
semi-formal and formal content by using Isabelle/DOF, a framework for onto-
logical modeling and document enforcement. Isabelle/DOF is deeply integrated
into Isabelle/PIDE, which allows for a particularly fluid development, immediate
ontological feedback and a strong and efficient impact-analysis (already known
from developments in interactive theorem proving).

We demonstrate the methodology by a) modeling a non-trivial part of the
CENELEC certification standard [11] in Isabelle/DOF ODL, and apply this b)
to a non-trivial formal development of a safety-critical component in railways
systems. The study consists of five theories with about 4 000 LOC, consisting
of documentation, definitions, proofs and test-executions of the model. Various
PDF presentations of the integrated source were generated, depending on the
different roles assumed in the process. The target C-code is about 300 LoC’s, and
has been integrated in an experimental continuous build-continuous integration
environment on top of seL4 [6].
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The approach offers mechanical checking of the links between formal and
informal parts, technically assured traceability and, last but not least, fast impact
analysis on changes, which is usually in the order of a few seconds. Experiments
with the entire seL4-stack (100 theories, 200 000 LOC and 10 000 LOC of C
code show that our approach can scale up to the size of integrated, medium-size
critical software-subsystems [6].

Availability. The Isabelle/DOF framework [9], the discussed ontology defi-
nitions, and examples are available at https://git.logicalhacking.com/Isabelle_
DOF/Isabelle_DOF/. Isabelle/DOF is licensed under a 2-clause BSD license
(SPDX-License-Identifier: BSD-2-Clause).
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