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Communication networks like the Internet form a large distributed systemwhere a huge number of components

run in parallel, such as security protocols and distributed web applications. For what concerns security, it is

obviously infeasible to verify them all at once as one monolithic entity; rather, one has to verify individual

components in isolation.

While many typical components like TLS have been studied intensively, there exists much less research

on analyzing and ensuring the security of the composition of security protocols. This is a problem since the

composition of systems that are secure in isolation can easily be insecure. The main goal of compositionality

is thus a theorem of the form: given a set of components that are already proved secure in isolation and that

satisfy a number of easy-to-check conditions, then also their parallel composition is secure. Said conditions

should of course also be realistic in practice, or better yet, already be satisfied for many existing components.

Another benefit of compositionality is that when one would like to exchange a component with another one,

all that is needed is the proof that the new component is secure in isolation and satisfies the composition

conditions—without having to re-prove anything about the other components.

This paper has three contributions over previous work in parallel compositionality. First, we extend the

compositionality paradigm to stateful systems: while previous approaches work only for simple protocols that

only have a local session state, our result supports participants who maintain long-term databases that can be

shared among several protocols. This includes a paradigm for declassification of shared secrets. This result is in
fact so general that it also covers many forms of sequential composition as a special case of stateful parallel

composition. Second, our compositionality result is formalized and proved in Isabelle/HOL, providing a strong

correctness guarantee of our proofs. This also means that one can prove, without gaps, the security of an

entire system in Isabelle/HOL, namely the security of components in isolation, the composition conditions,

and thus derive the security of the entire system as an Isabelle theorem. For the components one can also

make use of our tool PSPSP that can perform automatic proofs for many stateful protocols. Third, for the

compositionality conditions we have also implemented an automated check procedure in Isabelle.
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2 Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

1 INTRODUCTION
The typical use of communication networks like the Internet is to run a wide variety of security

protocols in parallel. While the security properties of many of these protocols, e.g., TLS, have been

analyzed in great detail, much less research has been devoted to their parallel composition.

It is far from self-evident that the parallel composition of secure protocols is still secure, in fact

one can systematically construct counter-examples. One such problem is if protocols have similar

message structures of different meaning, so that an attacker may be able to abuse messages, or parts

thereof, that they have learned in the context of one protocol, and use them in the context of another

where the same structure has a different meaning. Thus, we have to exclude that the protocols in

some sense “interfere” with each other. However, it is unreasonable to require that the developers

of the different protocols have to work together and synchronize with each other. Similarly, we do

not want to reason about the composition of several protocols as a whole, neither in manual nor

automated verification. Instead, we want a set of sufficient conditions and a composition theorem of

the form: every set of protocols that satisfies the conditions yields a secure composition, provided

that each protocol is secure in isolation. The conditions should be realistic so that many existing

protocols like TLS actually satisfy them, and they should be simple, in the sense that checking them

is a static task that does not involve considering the reachable states.

One main contribution of this paper is the extension of the compositionality paradigm to

stateful protocols, where participants may maintain a database (e.g., a list of valid public keys).

Such databases do not necessarily grow monotonically during protocol execution—we allow, e.g.,

negative membership checks and deletion of elements from databases. Moreover, we allow databases

to be shared between the protocols to be composed. For instance, in the example of public keys,

there could be several protocols for registering, certifying, and revoking keys that all work on

the same public-key database. Since such a shared database can potentially be exploited by the

intruder to trigger harmful interference, an important part of our result is a clear coordination

of the ways in which each protocol is allowed to access the database. This coordination is based

on assumptions and guarantees on the transactions that involve the database. Moreover, this also

allows us to support protocols with the declassification of long-term secrets (e.g., that the private

key to a revoked public key may be learned by the intruder without breaking the security goals).

The result is so general that it actually also covers many forms of sequential composition as a special

case, since one can for instance model that one protocol inserts keys into a database of fresh session

keys, and another protocol “consumes” and uses them. In more detail, our main contributions are:

(1) We extend the compositionality paradigm to stateful protocols. In particular, our result supports
participants who maintain long-term databases that can be shared among several protocols,

and a paradigm for declassification of shared secrets. Our result is so general that it also covers
various forms of sequential composition as a special case.

(2) Our compositionality result is formalized and proved in the interactive theorem prover

Isabelle/HOL, providing a strong correctness guarantee of our proofs. This means that one

can prove the security of a composed protocol in Isabelle by proving the security of the

components in isolation and checking the compositionality conditions, and thus derive the

security of the composition as an Isabelle theorem.

(3) We implemented checks for the compositionality conditions in Isabelle/HOL, so that they

can be checked automatically.

(4) We have connected the compositionality result to our tool PSPSP [25] that can perform

automatic proofs for many stateful protocols in Isabelle. This extends PSPSP (for protocols

supported by PSPSP) with a composable verification method.
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All of our theory and proofs are published and maintained in the Archive of Formal Proofs (AFP) [28,

30]. The overall formalization is over 27000 lines of code (over 8000 more lines than the conference

version) and took about 36 person months to develop.

The main advancements of this paper over the underlying conference version [31] are: Firstly,

we have extended the Isabelle proofs; the result is now completely formalized in Isabelle. Secondly,

we generalized our formalization to use an arbitrary set of labels, providing improved support for

composing more than two protocols. Thirdly, we added support for a transaction-based protocol

model and its protocol specification language by connecting our work to PSPSP [25]. Fourthly, we

implemented automated checks in Isabelle/HOL of the compositionality requirements. Moreover,

there are numerous smaller enhancements such as supporting a more general constraint syntax

and an improved leakage definition.

The rest of the paper is organized as follows. In Sec. 2 we introduce our specification language for

stateful protocols and define its semantics via intruder constraints. In Sec. 3 we summarize a typing

result, namely that every satisfiable constraint has a well-typed model, provided that the protocol

fulfills some simple conditions. In Sec. 4, we introduce composition of security protocols by an

example. In Sec. 5 we formally define protocol composition, in particular the concept of shared

terms, declassification, and the requirements on disjointness. We then present our main result for

parallel composition. The idea is to show that, if an intruder constraint of a composition is satisfiable,

then the projections to each component are satisfiable, again provided that the components fulfill a

number of easy-to-check conditions. In Sec. 6, we explain how checking these compositionality

conditions can be automated. As a last contribution of the paper, we discuss in Sec. 7 how our result

for parallel composition can also be applied to other forms of protocol composition—in particular,

sequential composition. Finally, we conclude in Sec. 8 and discuss related work.

2 LANGUAGE AND MODEL
We start with the first contribution: a slight generalization of the specification language for stateful

protocols that we introduced in [25, 31]. With stateful we mean that the protocols do not necessarily

consist of independent sessions but that participants may maintain databases that are modeled as

sets of messages. In every transaction, besides sending and receiving messages, one can retrieve

messages from the databases, or modify the databases. In [25] we have developed a first version

of this language for automated verification in Isabelle/HOL. This first version was tailored to the

needs of automated verification, in particular, it requires to fix the number of sets, and the elements

of the sets have to be atomic values. For the present work, we do not need these restrictions and

thus generalize the language. We also introduce some additional notation that is later useful for

the parallel composition.

We now first define this language by example and then give its semantics by translating to a

symbolic transition systemwith intruder constraints (which we also formally define). The constraint

representation is in fact a key idea to proving the compositionality result.

A protocol specification consists of the following elements:

• Enumerations, which are named (potentially infinite) sets of constants like user = {a, b, i}.
• A set of atomic types like pkey. The types are initially only an annotation and the semantics

does not take them into account. We will, however, in Sec. 3 use them in a typing result.

• A declaration of the available function symbols, e.g., sign. With every function symbol we

also specify the arity, whether the function symbol is public or private (informally, public
function symbols can be applied by the intruder, if they know the necessary arguments; in

contrast, private function symbols cannot be applied), and an analysis theory (i.e., under

, Vol. 1, No. 1, Article . Publication date: December 2022.



4 Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

outOfBand1 (𝑈 : hon, 𝑆 : ser)
new PK : pkey
insert PK ring(𝑈 )

★ insert PK valid(𝑈 , 𝑆 )
★ insert PK begin

1
(𝑈 , 𝑆 )

★ insert PK end1 (𝑈 , 𝑆 )
★ send PK .

outOfBandD1 (
𝑈 : dis, 𝑆 : ser, PK : pkey)

receive PK
★ PK notin valid(_)
★ insert PK valid(𝑈 , 𝑆 ) .

intruderKeygen
1
( )

new PK : pkey
★ send PK, inv(PK ) .

keyUpdateServer
1
(

𝑈 : hon, 𝑆 : ser, PK,NPK : pkey)
receive sign(inv(PK ), pair(𝑈 ,NPK ) )

★ PK in valid(𝑈 , 𝑆 )
★ NPK notin valid(_)

NPK notin revoked(_)
★ NPK in begin

1
(𝑈 , 𝑆 )

★ NPK notin end1 (𝑈 , 𝑆 )
★ delete PK valid(𝑈 , 𝑆 )
★ insert NPK valid(𝑈 , 𝑆 )

insert PK revoked(𝑈 , 𝑆 )
★ insert NPK end1 (𝑈 , 𝑆 )
★ send inv(PK ) .
attackDef1 (𝑈 : hon, 𝑆 : ser, PK : pkey)

receive inv(PK )
★ PK in valid(𝑈 , 𝑆 )

attack1 .

keyUpdateUser
1
(𝑈 : hon, 𝑆 : ser, PK : pkey)

PK in ring(𝑈 )
new NPK : pkey
delete PK ring(𝑈 )
insert NPK ring(𝑈 )

★ insert NPK begin
1
(𝑈 , 𝑆 )

★ send NPK
send sign(inv(PK ), pair(𝑈 ,NPK ) ) .

keyUpdateServerD
1
(𝑈 : dis, 𝑆 : ser, PK,NPK : pkey)

receive sign(inv(PK ), pair(𝑈 ,NPK ) )
★ PK in valid(𝑈 , 𝑆 )
★ NPK notin valid(_)

NPK notin revoked(_)
★ delete PK valid(𝑈 , 𝑆 )
★ insert NPK valid(𝑈 , 𝑆 )

insert PK revoked(𝑈 , 𝑆 ) .

Fig. 1. A keyserver protocol consisting of seven transactions.

what circumstances the intruder can obtain parts of such messages). This will be defined in

detail below in Sec. 2.2.2.

• A declaration of sets that the protocol participants can insert messages into, remove from,

and check for containment. In order to allow an infinite number of such sets, e.g. key set

ring(𝑎) for every agent 𝑎, we declare a number of function symbols with their arities here

(e.g. ring/1). While PSPSP [25] is limited to enumeration constants as parameters to the

set function symbols, the compositionality result allows for arbitrary messages, both as

arguments of the set function symbols and as contents of the sets.

• Last but not least, we have to specify a set of transactions.

A transaction consists of any combination of the following: input messages to receive, checks on

the sets, modifications of the sets, and output messages to send. A transaction can only be executed

atomically, i.e., it can only fire when input messages are present, such that the checks are satisfied,

and then they produce all changes and the output messages in one state transition. Security goals

are formulated by a special kind of attack transactions: they consist only of receiving messages and

checks on sets and then reveal a special constant attack to the intruder. (In fact, later in protocol

composition, we will instead have attack𝑝 where 𝑝 is the name or index of the protocol specifying

the attack rule, so we can easily talk about which protocol’s goal has been violated.) We say a

protocol is secure if the intruder cannot obtain attack in any protocol run.

2.1 A Keyserver Example
Before we proceed with the formal definitions we illustrate the transaction language through a

simple keyserver example (adapted from [25, 31]) shown in Fig. 1. Here users can register public

keys at trusted keyservers and these keys can later be revoked. The users are modeled with two

enumerations: one named hon containing the honest users, and dis containing the dishonest users.

The set of keyservers is defined as the enumeration ser. Each honest user 𝑈 has an associated

, Vol. 1, No. 1, Article . Publication date: December 2022.
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keyring ring(𝑈 ) with which it keeps track of its keys. (The elements of ring(𝑈 ) are actually public

keys; we implicitly assume that the user𝑈 knows the corresponding private key.)

First, in the protocol, we model a mechanism outOfBand1 by which an honest user𝑈 can register

a new key PK at the keyserver 𝑆 out-of-band, e.g., by physically visiting the keyserver. The user

𝑈 first constructs a fresh public key PK and inserts PK into its keyring ring(𝑈 ). We model that

the keyserver—in the same transaction—learns the key and adds it to its database of valid keys

for user𝑈 , i.e., into a set valid(𝑈 , 𝑆). Finally, PK is published. There are also several gray-shaded

actions in the protocol; we explain these later in Sec. 4 when we compose the keyserver protocol

with another protocol—similarly, we defer the explanation of the ★ annotations until later (in

a nutshell, the ★-labeled actions are those that are relevant to all component protocols because

they act on shared sets or terms). There is also a corresponding rule of outOfBand1 for dishonest

users: outOfBandD1. Dishonest users may register in their name any key they know (hence the

receive PK action), so the key is not necessarily freshly created; also we do not model a key ring

for them. However, dishonest users can only register a key PK out of band if it is not yet known as

valid at the server. The same check is not necessary in the honest out-of-band rule, because there

the key is guaranteed to be freshly created. This rule allows the dishonest agents to use any known

key that is currently not valid and register it, but so far they could only use keys that others have

created; we thus enter also a rule that allows the dishonest agents to generate arbitrarily many

fresh key pairs: intruderKeygen
1
.

Note that there is no built-in notion of set ownership, or who exactly is performing an action: we

just specify with such transactions what can happen. The intuition in this example is that ring(𝑈 )
is a set of public keys controlled by 𝑈 (and 𝑈 has the corresponding private key of each) while

valid(𝑈 , 𝑆) is controlled by server 𝑆 . By putting it into a single transaction we model that this

happens in collaboration between a user and a server.

We model a key update mechanism that allows for registering a new key while simultane-

ously revoking an old one. Here we model this as three transactions, one for the (honest) users

keyUpdateUser
1
and two for the servers keyUpdateServer

1
and keyUpdateServerD

1
(one for each

kind of user), since here we model a scenario where user and server communicate via an asynchro-

nous network controlled by the intruder. To initiate the key revocation process with transaction

keyUpdateUser
1
the honest user 𝑈 first picks and removes a key PK from its keyring to later

revoke, then freshly generates a new key NPK and stores it in its keyring. (Again the corresponding

private key inv(NPK) is known to𝑈 , but this is not explicitly described.) As a final step the user

signs the new key with the private key inv(PK) of the old key and sends this signature to the

server 𝑆 by transmitting it over the network. The check PK in ring(𝑈 ) represents here a non-

deterministic choice of an element of ring(𝑈 ). (A user can register any number of keys with the

outOfBand1 transaction.) For keyUpdateUser1
there is no equivalent for the dishonest agents, since

the intruder’s ability to craft update request messages from their knowledge already subsumes this.

Continuing in the protocol execution with keyUpdateServer
1
(which is defined for honest users—

keyUpdateServerD
1
is the pendant for dishonest users), when server 𝑆 receives the signed message,

it checks that PK is indeed a valid key, that NPK has not been registered earlier, and then revokes

PK and registers NPK . To keep track of revoked keys, 𝑆 maintains another database revoked(𝑈 , 𝑆)
containing the revoked keys of𝑈 at 𝑆 . In this transaction the notation 𝑥 notin 𝑠 (_) expresses that
𝑥 must not be in any set of the form 𝑠 (𝑐). As a last action, the old private key inv(PK) is revealed.
This is of course not what one would do in a reasonable implementation, but it allows us to prove

that the protocol is correct even if the intruder obtains all private keys to revoked public keys. (This

could also be separated into a rule that just leaks private keys of revoked keys.) The difference in

the dishonest-user version, keyUpdateServerD
1
, is only in the goals (that we will discuss later in

Sec. 4) and that we do not reveal inv(PK) (because it is a key associated to the intruder anyway).
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Finally, we define that there is an attack if the intruder learns a valid key of an honest user. This,

again, can be modeled as a sequence of actions in which we check if the conditions for an attack

hold, and, if so, transmit the constant attack1 that acts as a signal for goal violations. This is all

defined in attackDef1 where the last action attack1 is just syntactic sugar for send attack1.

2.2 Symbolic Constraints and Intruder Model
We now define our formal model in a bottom-up fashion, starting with the intruder constraints and

conclude with a formal definition of the transactions we have seen in the previous section.

2.2.1 Terms and Substitutions. A transaction specification gives rise to a set Σ of function symbols

with their arities (where constants are function symbols of arity 0): these are the functions and

constants explicitly declared, the countable set of constants that arise from infinite enumerations

like user = {..}, and freshly generated constants during protocol execution. Disjoint from Σ, we
have a countable setV of variables (that includes the ones from the specification). By convention,

in protocol specifications, elements of Σ start with a lower-case letter and are written in sans serif
style, and elements of V start with an upper-case letter.

A term is either a variable 𝑥 ∈ V or a composed term of the form 𝑓 (𝑡1, . . . , 𝑡𝑛) where 𝑓 ∈ Σ𝑛 and
𝑡𝑖 are terms and Σ𝑛 denotes the symbols in Σ of arity 𝑛. We also write C for Σ0

, the set of constants.

The set of variables of a term 𝑡 is denoted by fv(𝑡) and if fv(𝑡) = ∅ then 𝑡 is ground. Both of these

notions are extended to sets of terms. By ⊑ we denote the subterm relation.

Substitutions are defined as functions from variables to terms. The domain of a substitution 𝛿

is denoted by dom(𝛿) and is defined as the set of variables that are not mapped to themselves

by 𝛿 : dom(𝛿) ≡ {𝑥 ∈ V | 𝛿 (𝑥) ≠ 𝑥}. The substitution range, ran(𝛿), is then defined as the

range of dom(𝛿) under 𝛿 : ran(𝛿) ≡ 𝛿 (dom(𝛿)). If the range of 𝛿 is ground then 𝛿 is said to be

ground. If ran(𝛿) ⊆ V and 𝛿 is injective then 𝛿 is a variable-renaming. Additionally, we define an
interpretation to be a substitution that assigns a ground term to every variable: I is an interpretation

iff dom(I) = V and ran(I) is ground. We extend substitutions to functions on terms and sets of

terms as expected. The substitution composition 𝛿 · 𝜎 of two substitutions 𝛿 and 𝜎 is defined as

(𝛿 · 𝜎) (𝑡) ≡ 𝜎 (𝛿 (𝑡)). For 𝛿 with finite domain we usually use the common value mapping notation:

𝛿 = [𝑥1 ↦→ 𝑡1, . . . , 𝑥𝑛 ↦→ 𝑡𝑛]. Finally, a substitution 𝛿 is a unifier of terms 𝑡 and 𝑡 ′ iff 𝛿 (𝑡) = 𝛿 (𝑡 ′).

2.2.2 The Intruder Model. We use a Dolev-Yao-style intruder model, i.e., the intruder can encrypt

and decrypt terms where they have the respective keys, but they cannot break the cryptography.

We define the intruder deduction relation ⊢ as the least relation satisfying the rules of Definition 2.1:

Definition 2.1 (Intruder model).

𝑀 ⊢ 𝑡
(Axiom),
𝑡 ∈ 𝑀

𝑀 ⊢ 𝑡1 · · · 𝑀 ⊢ 𝑡𝑛
𝑀 ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑛)

(Compose),
𝑓 ∈ Σ𝑛pub

𝑀 ⊢ 𝑡 𝑀 ⊢ 𝑘1 · · · 𝑀 ⊢ 𝑘𝑛
𝑀 ⊢ 𝑟

(Decompose),Ana(𝑡) = (𝐾, 𝑅),
𝑟 ∈ 𝑅, 𝐾 = {𝑘1, . . . , 𝑘𝑛} □

Here 𝑀 ⊢ 𝑡 means that an intruder who knows the set of terms 𝑀 can derive the term 𝑡 . The

rule (Axiom) simply says that the intruder can derive any term that is already in their knowledge

𝑀 . For composing messages it is common to give a rule for each operator, like encryption, that is

available to the intruder. In order to have a result that is parameterized over an arbitrary signature

Σ of functions—so one does not need to adapt the proofs of the compositionality result whenever a

new operator shall be added—the modeler should simply declare a subset of Σ to be public functions,
and we write Σ𝑛pub for the public functions that take 𝑛 arguments. The rule (Compose) now says
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that the intruder can apply public functions to any derivable terms and the result is also derivable.

In fact most functions on messages, like encryption and signing, will be public, while we will have

a private function inv that maps public keys to their corresponding private keys. Obviously if inv
were a public function, then the (Compose) rule would allow the intruder to know all private keys

to which they know the public keys and trivially break all asymmetric cryptography.

For decryption, (Decompose), things are a bit more involved. Many approaches use algebraic

reasoning here, e.g. with equations like dcrypt(inv(𝑥), crypt(𝑥,𝑦)) = 𝑦, but this is rather complex

to formalize in Isabelle and it is not really necessary for many standard operators. The idea is that

one does not necessarily use an explicit decryption operator, but rather has further decryption

rules of the form: if the intruder knows crypt(𝑥,𝑦) and inv(𝑥), then they also know 𝑦. To formulate

such rules without specializing to particular operators, we ask the modeler to define a function

Ana such that Ana(𝑡) = (𝐾, 𝑅) means: the given term 𝑡 allows for decryption if the intruder knows

all the keys in 𝐾 , then they obtain every message in 𝑅. This is formalized by the rule (Decompose).

Example 2.2. For most of the paper, we will use the public function symbols crypt, sign, upd,
and pair and the private symbol inv. In addition, we model the set-family symbols—ring, valid, and
revoked—as private symbols. Decomposition of terms we model with the following Ana theory:

Ana(crypt(𝑘,𝑚)) = ({inv(𝑘)}, {𝑚}),
Ana(sign(𝑘,𝑚)) = (∅, {𝑚}),

Ana(upd(𝑠, 𝑡, 𝑢, 𝑣)) = (∅, {𝑠, 𝑡, 𝑢, 𝑣}),
Ana(pair(𝑡, 𝑡 ′)) = (∅, {𝑡, 𝑡 ′}),

and where Ana(𝑡) = (∅, ∅) for all other terms 𝑡 .

This means that for decrypting a message encrypted with public key 𝑘 , one needs the corresponding

private key inv(𝑘). In a signature sign(𝑘,𝑚), 𝑚 can directly be retrieved without knowing any

key. This models signature schemes where𝑚 is provided in clear along with the signed hash of

𝑚. Note that this is independent of signature verification which is done by pattern matching in

the transaction rules like in all free-algebra approaches. Consider for instance in the keyserver

example the rule keyUpdateServer, where 𝑆 receives sign(inv(PK), pair(𝑈 ,NPK)): here the server
𝑆 accepts only a signature with some private key inv(𝑃𝐾) of a cleartext that has to be a pair and

the components are any values 𝑈 and NPK . Then the server checks that PK in valid(𝑈 , 𝑆) and
that NPK is not yet known. Note that operationally, the server would first obtain the cleartext of

the signature, obtain every public key PK associated with the (claimed) user𝑈 , and check if the

signature verifies with some PK . With upd and pair we have transparent functions: they are public

and one can obtain all their arguments without knowing a key. □

Our results rely on the following requirements on Ana:
(1) Ana(𝑡) = (∅, ∅) for 𝑡 ∈ V ∪ C, i.e. for variables and constants,

(2) Ana(𝑓 (𝑡1, . . . , 𝑡𝑛)) = (𝐾, 𝑅) implies 𝑅 ⊆ {𝑡1, . . . , 𝑡𝑛}, finite 𝐾 , and fv(𝐾) ⊆ fv(𝑓 (𝑡1, . . . , 𝑡𝑛)),
(3) Ana(𝑓 (𝑡1, . . . , 𝑡𝑛)) = (𝐾, 𝑅) implies Ana(𝛿 (𝑓 (𝑡1, . . . , 𝑡𝑛))) = (𝛿 (𝐾), 𝛿 (𝑅)).

Ana must be defined for arbitrary terms, including terms with variables (while the standard Dolev-

Yao deduction is typically applied to ground terms). The three conditions regulate that Ana is also
meaningful on symbolic terms. The first requirement says that we cannot analyze a variable or a

constant. The second requirement says that the results of the analysis are immediate subterms of

the term being analyzed, and the keys can be any finite set of terms (including composed terms,

e.g., inv(𝑘)), but built with only variables that occur in the term being analyzed. We use the fact

that for most constructor-destructor theories it holds that the intruder cannot learn something new

from encrypting a term and then decrypting it again. Without the second condition, we would

however allow for theories that violate this principle, e.g., Ana(𝑓 (𝑔(𝑥))) = (∅, {𝑥}), an intruder

who knows 𝑔(𝑐) could obtain 𝑐 by first applying 𝑓 . The third requirement says that analysis does

not change its behavior when instantiating a term (that is not a variable).
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2.2.3 Symbolic Constraints. To reason about protocol executions, we use symbolic constraints
which essentially are a sequence of transactions (with their variables appropriately renamed to

avoid clashes) from the point of view of the intruder: every message sent by a transaction is received

by the intruder, and every message received by a transaction is sent by the intruder. This is a

constraint in that every message the intruder sends must be generated from the messages that

the intruder has received before that point. An attack is defined by satisfiability of a constraint in

which the intruder produces a special secret.

Formally, symbolic constraints are defined as finite sequencesA of actions built from the following

grammar where 𝑡 and 𝑡 ′ range over terms and 𝑥 over finite variable sequences 𝑥1, . . . , 𝑥𝑛 :

A ::= send 𝑡1, . . . , 𝑡𝑛 · A | receive 𝑡1, . . . , 𝑡𝑛 · A | 𝑡 � 𝑡 ′ · A | 𝑡 in 𝑡 ′ · A |
(∀𝑥 . 𝜙neg) · A | insert 𝑡 𝑡 ′ · A | delete 𝑡 𝑡 ′ · A | 0

𝜙neg ::= 𝑡 ̸� 𝑡 ′ | 𝑡 notin 𝑡 ′ | 𝜙neg ∨ 𝜙 ′
neg

Instead of ∀𝑥 . 𝜙neg we may write 𝜙neg whenever 𝑥 is the empty sequence. We may also write

𝑡 notin 𝑓 (_) for 𝑓 ∈ Σ𝑛 as an abbreviation of ∀𝑥1, . . . , 𝑥𝑛 . 𝑡 notin 𝑓 (𝑥1, . . . , 𝑥𝑛) where the 𝑥𝑖 do not

occur in 𝑡 . The intruder knowledge of a constraint A, denoted by ik(A), is defined as the set of

those terms that occur in receive actions of A. The bound variables of A consist of its variable

sequences while the remaining variables, fv(A), are the free variables. Also, by trms(A) we denote
the set of terms occurring in A and the set of set operations of A, called setops(A), is defined as

follows where (·, ·) ∈ Σ2

pub is a fixed function symbol:

setops(A) ≡ {(𝑡, 𝑠) | insert 𝑡 𝑠 or delete 𝑡 𝑠 or 𝑡 in 𝑠 occurs in A, or there exists
𝜙neg and 𝑥 such that 𝑡 notin 𝑠 occurs in 𝜙neg and ∀𝑥 . 𝜙neg occurs in A}

For the semantics of constraints we first define a predicate J𝑀,𝐷 ;AK I, where𝑀 is a ground

set of terms (the intruder knowledge), 𝐷 is a ground set of tuples (the state of the sets), A is a

constraint, and I is an interpretation as follows:

J𝐷 ; 𝑡 ̸� 𝑡 ′K I iff I(𝑡) ≠ I(𝑡 ′)
J𝐷 ; 𝑡 notin 𝑠K I iff I((𝑡, 𝑠)) ∉ 𝐷
J𝐷 ;𝜙1 ∨ 𝜙2K I iff J𝐷 ;𝜙1K I or J𝐷 ;𝜙2K I

J𝑀,𝐷 ; 0K I iff true
J𝑀,𝐷 ; send 𝑡1, . . . , 𝑡𝑛 · AK I iff 𝑀 ⊢ I(𝑡𝑖 ) for all 𝑖 ∈ {1, . . . , 𝑛}, and J𝑀,𝐷 ;AK I

J𝑀,𝐷 ; receive 𝑡1, . . . , 𝑡𝑛 · AK I iff J{I(𝑡1), . . . ,I(𝑡𝑛)} ∪𝑀,𝐷 ;AK I
J𝑀,𝐷 ; 𝑡 � 𝑡 ′ · AK I iff I(𝑡) = I(𝑡 ′) and J𝑀,𝐷 ;AK I

J𝑀,𝐷 ; insert 𝑡 𝑠 · AK I iff J𝑀, {I((𝑡, 𝑠))} ∪ 𝐷 ;AK I
J𝑀,𝐷 ; delete 𝑡 𝑠 · AK I iff J𝑀,𝐷 \ {I((𝑡, 𝑠))};AK I

J𝑀,𝐷 ; 𝑡 in 𝑠 · AK I iff I((𝑡, 𝑠)) ∈ 𝐷 and J𝑀,𝐷 ;AK I
J𝑀,𝐷 ; (∀𝑥 . 𝜙) · AK I iff J𝐷 ;𝜙K (𝛿 · I) for all ground substitutions 𝛿 with domain 𝑥,

and J𝑀,𝐷 ;AK I

We then define that I is a model of A, written I |= A, iff J∅, ∅;AK I.
It is common in symbolic approaches to require a form of well-formedness for constraints. First,

one typically requires that the intruder knowledge grows monotonically over time. This is already

built-in in our formalism: observe that the intruder knowledge𝑀 in the above semantics has indeed

this property. Second, we require that every variable first occurs in a message the intruder sends,

or in a positive check like 𝑡 � 𝑡 ′ or 𝑡 in 𝑠 . This is formalized as follows:

Definition 2.3 (Constraint well-formedness). A constraintA iswell-formed w.r.t. the set of variables
𝑋 (or just well-formed if 𝑋 = ∅) iff the free variables and the bound variables of A are disjoint and
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wf 𝑋 (A) holds where:
wf 𝑋 (0) iff true
wf 𝑋 (receive 𝑡1, . . . , 𝑡𝑛 · A) iff fv({𝑡1, . . . , 𝑡𝑛}) ⊆ 𝑋 and wf 𝑋 (A)
wf 𝑋 (send 𝑡1, . . . , 𝑡𝑛 · A) iff wf 𝑋∪fv ({𝑡1,...,𝑡𝑛 }) (A)

wf 𝑋 (𝑡 � 𝑡 ′ · A) iff

{
wf 𝑋∪fv (𝑡 ) (A) if fv(𝑡 ′) ⊆ 𝑋
wf 𝑋 (A) otherwise

wf 𝑋 (insert 𝑡 𝑡 ′ · A) iff fv(𝑡) ∪ fv(𝑡 ′) ⊆ 𝑋 and wf 𝑋 (A)
wf 𝑋 (𝑡 in 𝑡 ′ · A) iff wf 𝑋∪fv (𝑡 )∪fv (𝑡 ′ ) (A)
wf 𝑋 (𝔞 · A) iff wf 𝑋 (A) otherwise □

This allows to “introduce” variables in a send action, on the left-hand side of an equation, or in a

positive set-membership check. In this paper, we will work only with well-formed constraints.

Example 2.4. The constraints send 𝑥 · receive 𝑓 (𝑥) and receive 𝑐 · 𝑥 � 𝑓 (𝑐) · send 𝑥 and 𝑥 in
𝑠𝑒𝑡 · send 𝑥 are all well-formed, while receive 𝑥 is not: it would correspond to the intruder receiving

an arbitrary (unconstrained) value. □

2.3 Syntax and Semantics of Protocols
We now define the syntax of transactions in our transaction-based language as follows:

Definition 2.5. A transaction has the form 𝔱(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) 𝜙𝑡 where 𝜙𝑡 is a transaction strand
built from the following grammar where 𝑡, 𝑡 ′, 𝑡𝑖 range over terms, 𝜏 over atomic types, 𝑥 over

variables, 𝑥 over variable sequences, and where (𝜓 )∗ denotes finite sequences of the form𝜓 · . . . ·𝜓 :
𝜙𝑡 ::= 𝜙𝑟 · 𝜙𝑐 · 𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠
𝜙𝑟 ::= ( receive 𝑡1, . . . , 𝑡𝑛 )∗
𝜙𝑐 ::= ( 𝑡 � 𝑡 ′ | 𝑡 in 𝑡 ′ | ∀𝑥 . 𝜙𝑛 )∗
𝜙𝑛 ::= 𝑡 ̸� 𝑡 ′ | 𝑡 notin 𝑡 ′ | 𝜙𝑛 ∨ 𝜙 ′

𝑛

𝜙 𝑓 ::= ( new 𝑥 : 𝜏 )∗
𝜙𝑚 ::= ( insert 𝑡 𝑡 ′ | delete 𝑡 𝑡 ′ )∗
𝜙𝑠 ::= ( send 𝑡1, . . . , 𝑡𝑛 )∗

The prefix 𝔱(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) gives the transaction a name 𝔱 and declares parameters 𝑥𝑖 . The

corresponding 𝑇𝑖 are either enumerations or types from the type system we define in the following

section. In the case of types, this is just an annotation irrelevant for the semantics for now, but in

the case of enumerations, we consider the instantiation of the transaction with any substitution 𝜎

such that 𝜎 (𝑥𝑖 ) ∈ 𝑇𝑖 for those 𝑖 where 𝑇𝑖 is an enumeration. The functions trms(·) and setops(·) are
extended to transactions, rules, and protocols as expected. □

Example 2.6. Consider the keyUpdateServer
1
transaction from Sec. 2.1. With the transaction

syntax just defined, it could be written as follows:

keyUpdateServer
1
(𝑈 : hon, 𝑆 : ser, PK : pkey,NPK : pkey) 𝜙𝑟 · 𝜙𝑐 · 𝜙𝑚 · 𝜙𝑠

where its transaction strand 𝜙𝑟 · 𝜙𝑐 · 𝜙𝑚 · 𝜙𝑠 consists of the following action sequences:

𝜙𝑟 = receive sign(inv(PK), pair(𝑈 ,NPK))
𝜙𝑐 = PK in valid(𝑈 , 𝑆) · ∀𝑋,𝑌 . NPK notin valid(𝑋,𝑌 ) · ∀𝑋,𝑌 . NPK notin revoked(𝑋,𝑌 ) ·

NPK in begin
1
(𝑈 , 𝑆) · NPK notin end1 (𝑈 , 𝑆)

𝜙𝑚 = delete PK valid(𝑈 , 𝑆) · insert PK revoked(𝑈 , 𝑆) · insert NPK valid(𝑈 , 𝑆) ·
insert NPK end1 (𝑈 , 𝑆)

𝜙𝑠 = send inv(PK) □

Note that the actions that 𝜙𝑡 is composed of are very similar to the intruder constraints we have

introduced before. In fact, we will now define the semantics of transactions in terms of the intruder
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constraints that they induce: to execute a transaction, we will add a copy (with variables freshly

renamed) to the intruder constraint with just two alterations: for every new 𝑥 : 𝜏 , we instantiate

𝑥 with a fresh constant (by default, our model is untyped, and the use of typing is discussed in

the next section). Every message that is sent by the transaction is received by the intruder and

vice-versa. For that purpose, we define the dual of a transaction strand or constraint 𝑆 , written

dual(𝑆), as “swapping” the direction of the sent and received messages of 𝑆 :

dual(send 𝑡1, . . . , 𝑡𝑛 · 𝑆) = receive 𝑡1, . . . , 𝑡𝑛 · dual(𝑆),
dual(receive 𝑡1, . . . , 𝑡𝑛 · 𝑆) = send 𝑡1, . . . , 𝑡𝑛 · dual(𝑆), and

dual(𝔰 · 𝑆) = 𝔰 · dual(𝑆) otherwise.
Note that we impose an order on the kind of actions in a transaction: we start with receiving

terms (𝜙𝑟 ), then perform checks (𝜙𝑐 ), then generate fresh constants (𝜙 𝑓 ), then manipulate sets (𝜙𝑚),

and finally send out some messages (𝜙𝑠 ). In fact, transactions are atomic in the sense that if any

of the requirements fail, the transaction is not performed at all (so the state of all sets remains

unchanged), otherwise it is performed as a whole.

Definition 2.7. Given a protocol P, the semantics is a transition relation⇒P where states are

constraints, the initial state is the empty constraint 0, and the transition relation ⇒P is defined as

follows: A ⇒P A · dual(𝛼 (𝜎 (𝜙𝑟 · 𝜙𝑐 · 𝜙𝑚 · 𝜙𝑠 ))) holds iff there exist 𝔱, 𝑥𝑖 , 𝑇𝑖 , 𝜙 𝑓 such that:

(1) 𝔱(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) 𝜙𝑟 · 𝜙𝑐 · 𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠 ∈ P,

(2) 𝜎 has the following properties:

(a) For every 𝑥𝑖 : 𝑇𝑖 for which 𝑇𝑖 is an enumeration set it holds that 𝜎 (𝑥𝑖 ) ∈ 𝑇𝑖 .
(b) For every new 𝑦 : 𝜏 occurring in 𝜙 𝑓 it holds that 𝜎 (𝑦) is a fresh constant of type 𝜏 .

(c) No other variables are in the domain of 𝜎 .

(3) 𝛼 is a variable-renaming of the variables of fv(𝜙𝑟 · 𝜙𝑐 · 𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠 ) \ dom(𝜎) such that the

variables in ran(𝛼) do not occur in 𝜎 (𝜙𝑟 · 𝜙𝑐 · 𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠 ), and that preserves the type of

variables (i.e., it is “well-typed”) in a typed model. □

According to this semantics, each transition can only perform a transaction in its entirety (by

being augmented to the intruder constraint accordingly). Thus, there cannot occur any race-

conditions between transactions that are working on the same sets: every transaction first imposes

constraints on the sets and then performs updates without other transactions disturbing it. This

is equivalent to process calculi where each transaction first locks the sets it wants to access, and

unlocks the sets at the end of the transaction. Note that each transaction rule can be executed

arbitrarily often and so we support an unbounded number of “sessions”. For instance, the transaction

outOfBand1 (𝑈 : hon, 𝑆 : ser) of the keyserver example models that each honest agent 𝑎 ∈ hon can

register one fresh key at server 𝑠 ∈ ser during each application of the transaction by inserting the

fresh key into its keyring ring(𝑎) while the server inserts it into the set of valid keys valid(𝑎, 𝑠). The
transaction can be executed any number of times with any agent 𝜎 (𝑈 ) ∈ hon, server 𝜎 (𝑆) ∈ ser,
and a fresh value 𝜎 (PK) for the key PK each time.

We say that a constraint A is reachable in protocol P iff 0 ⇒∗
P A where ⇒∗

P denotes the

transitive reflexive closure of ⇒P .
We need to ensure that these constraints are well-formed and we will therefore always assume

the following sufficient requirements on the protocols P that we work with:

Definition 2.8 (Transaction well-formedness). For any transaction 𝔱(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) 𝜙𝑟 · 𝜙𝑐 ·
𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠 of P the constraint dual(𝜙𝑟 · 𝜙𝑐 · 𝜙𝑚 · 𝜙𝑠 ) must be well-formed w.r.t. the variables

{𝑧1, . . . , 𝑧𝑘 , 𝑦1, . . . , 𝑦𝑚} where 𝑧1, . . . , 𝑧𝑘 are exactly those variables among 𝑥1, . . . , 𝑥𝑛 declared as

ranging over enumerations, and 𝑦1, . . . , 𝑦𝑚 are those variables that occur in 𝜙 𝑓 .
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Additionally, we require that the variables 𝑥1, . . . , 𝑥𝑛 in the transaction prefix are all distinct, and

that the variables of 𝜙 𝑓 are all distinct and that they do not occur in 𝜙𝑟 , 𝜙𝑐 , and {𝑥1, . . . , 𝑥𝑛} (i.e.,
they first occur in 𝜙 𝑓 ). Note also that well-formedness implies that the free variables and the bound

variables of the transaction are disjoint. □

The first requirement means that each free variable must either first occur in a receive step

or a positive check, be declared as ranging over an enumeration, or occur in a new action. Note

that this still allows for non-determinism: for instance the check 𝑥 in 𝑠 allows for choosing an

arbitrary element from 𝑠 (that is compatible with the rest of the transaction); the requirement only

forbids that variables can stand for completely arbitrary terms. The second requirement is just for

convenience of further definitions and comes at no loss of generality.

Example 2.9. Continuing Example 2.6 we have for keyUpdateServer
1
that dual(𝜙𝑟 ·𝜙𝑐 ·𝜙𝑚 ·𝜙𝑠 ) =

send sign(inv(PK), pair(𝑈 ,NPK)) · 𝜙𝑐 · 𝜙𝑚 · receive inv(PK). This is a well-formed constraint w.r.t.

{𝑈 , 𝑆}. The other well-formedness requirements are also satisfied for keyUpdateServer
1
. As another

example, the constraint receive PK, inv(PK) is well-formed w.r.t. {PK}, and so the transaction

intruderKeygen
1
of Fig. 1 is well-formed. In fact, all transactions of Fig. 1 are well-formed. □

To model goal violations of a protocol P we first fix a special private constant unique to P, e.g.,

attackP . These attack constants are supposed to be used only to signal that a goal violation has

occurred, and so we require that they only occur in actions of transactions of the form send attackP .
The protocol then has a (well-typed) attack if there exists a reachable constraint A such that

A · send attackP is (well-typed) satisfiable. A protocol with no attacks is secure.
With sets we can also model events, e.g., asserting an event 𝑒 amounts to inserting 𝑒 into a

distinguished set of events while checking whether 𝑒 has previously occurred (or not) corresponds

to a positive (respectively negative) set-membership check. We therefore support all security

properties expressible in the geometric fragment [2]. This covers many standard reachability goals

such as authentication. It seems that any significantly richer fragment of first-order logic would be

incompatible with our result. We do not currently support privacy-type properties, i.e., where goal

violations occur if the observable behavior of protocols can be distinguished.

3 A TYPING RESULT
Type-flaw attacks are a nuisance in many formal arguments and there are relatively cheap ways to

get rid of them once and for all. For instance, a classical example is in the Otway-Rees protocol [40]:

here 𝐴 sends first a message of the form

𝑀,𝐴, 𝐵, scrypt(sk(𝐴, 𝑠),NA, 𝑀,𝐴, 𝐵)

to the server 𝑠 containing a fresh session identifier𝑀 , a fresh nonce NA, the name 𝐵, and a shared

key sk(𝐴, 𝑠) of 𝐴 and 𝑠 . Note that the names and session identifier are also transmitted in clear text.

The only other action that 𝐴 is involved in is receiving a message from the server of the form

𝑀,𝐴, 𝐵, scrypt(sk(𝐴, 𝑠),NA,KAB)

containing a new shared key KAB for use with 𝐵. Due to the similarity of the messages, if pure

string concatenation is used and if the key KAB can have the same length as 𝑀,𝐴, 𝐵, there is a

simple reflection attack where the intruder just sends back the message that 𝐴 sent in the first step,

so that 𝐴 would accept as KAB the concatenation𝑀,𝐴, 𝐵 which the intruder knows.

An easy way to prevent this is to use simple tags in the encrypted messages, e.g.,

scrypt(sk(𝐴, 𝑠), 1,NA, 𝑀,𝐴, 𝐵) and scrypt(sk(𝐴, 𝑠), 2,NA,KAB) .
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This is for instance suggested by [5]. This, however, does not consider many other problems of

plaintext structuring, e.g., pure string concatenation is associative and so it is not in general clear

how to parse a string unless all terms have fixed size (which we do not have in practice). Moreover,

this form of tagging is imposing a particular way of preventing type-flaw attacks, and there may be

other ways to do it such as ASN.1 or XML. For this reason, we like to use a more general concept

of formats, i.e., free function symbols that represent arbitrary real-world structuring mechanisms.

Under the assumption that these are unambiguous (any string can be parsed in only one way for a

given format) and pairwise disjoint (any string can be parsed for at most one format), there is a

soundness result for this modeling [37]. The function symbols are transparent, i.e., they are both

public and the intruder can destruct them like a pair. For instance, for Otway-Rees we may define

formats 𝑓1 (NA, 𝑀,𝐴, 𝐵) and 𝑓2 (NA,KAB). In this generality, many existing protocols (like TLS) do

not require any changes in order to satisfy the type-flaw resistance requirement we define below.

After this definition we can show a typing result: a type-flaw resistant protocol that has an attack

has a so-called well-typed attack, i.e., where the intruder did not send any ill-typed messages. Thus,

it is sound to verify the protocols under the restriction to a typed model: if they do not have a

well-typed attack, then they have no attack at all. In this way we simply get rid of a lot of “garbage”.

Type Expressions. Type expressions are terms built over the function symbols of Σ \ C and a finite

set 𝔗𝑎 of atomic types like enum and pkey. Further, we define a typing function Γ that assigns to

every variable a type, to every constant an atomic type, and that is extended to composed terms as

follows: Γ(𝑓 (𝑡1, . . . , 𝑡𝑛)) = 𝑓 (Γ(𝑡1), . . . , Γ(𝑡𝑛)) for every 𝑓 ∈ Σ𝑛 \ C and terms 𝑡𝑖 . We also require

that {𝑐 ∈ Cpub | Γ(𝑐) = 𝛽} is infinite for each 𝛽 ∈ 𝔗𝑎 , thus giving the intruder access to an infinite

supply of terms of each atomic type.
1

We furthermore fix an atomic type attacktype ∈ 𝔗𝑎 and assign this type to all attack constants:

Γ(attack𝑖 ) = attacktype. For the transactions 𝑇 = 𝔱(𝑥1 : 𝑇1, . . . , 𝑥𝑛 : 𝑇𝑛) 𝜙𝑟 · 𝜙𝑐 · 𝜙 𝑓 · 𝜙𝑚 · 𝜙𝑠 that we
consider in this paper we will assume that they satisfy the following conditions:

(1) For each new 𝑦 : 𝜏 action occurring in 𝑇 the type 𝜏 is an atomic type.

(2) For each declared variable 𝑥𝑖 : 𝑇𝑖 the following two conditions hold:

(a) If 𝑇𝑖 is a type then Γ(𝑥𝑖 ) = 𝑇𝑖 .
(b) If 𝑇𝑖 is an enumeration set then Γ(𝑇𝑖 ) = {Γ(𝑥𝑖 )} and Γ(𝑥𝑖 ) must be an atomic type.

(3) No variable of 𝑇 contains in its type the atomic type attacktype.
The sufficient condition for a protocol to satisfy the typing result is now based on the following

notions. A substitution 𝛿 is well-typed iff Γ(𝑥) = Γ(𝛿 (𝑥)) for all 𝑥 ∈ V . Given a set of messages

that occur in a protocol we define the following set of sub-message patterns, intuitively the ones

that may occur during constraint reduction:

Definition 3.1 (Sub-message patterns). The sub-message patterns SMP (𝑀) for a set of messages𝑀

is defined as the least set satisfying the following rules:

(1) 𝑀 ⊆ SMP (𝑀).
(2) If 𝑡 ∈ SMP (𝑀) and 𝑡 ′ ⊑ 𝑡 then 𝑡 ′ ∈ SMP (𝑀).
(3) If 𝑡 ∈ SMP (𝑀) and 𝛿 is a well-typed substitution then 𝛿 (𝑡) ∈ SMP (𝑀).
(4) If 𝑡 ∈ SMP (𝑀) and Ana(𝑡) = (𝐾, 𝑅) then 𝐾 ⊆ SMP (𝑀). □

The sufficient condition for the typing result is now that non-variable sub-message patterns

have no unifier unless they have the same type:

1
Note that [27] in contrast considers only public function symbols; one can simulate, however, a private function symbol of

arity 𝑛 by a public function symbol of arity 𝑛 + 1 where the additional argument is used with a special constant that is

never given to the intruder; in this way all results can be lifted to a model with both private and public function symbols.

For instance, we can encode inv ∈ Σ1
in terms of a public symbol inv′ ∈ Σ2

and a special secret constant secinv.
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Definition 3.2 (Type-flaw resistance). We call a term 𝑡 generic for a set of variables 𝑋 , iff 𝑡 =

𝑓 (𝑥1, . . . , 𝑥𝑛) for some public 𝑓 , 𝑛 > 0, and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 . We say that a set 𝑀 of messages is

type-flaw resistant iff ∀𝑡, 𝑡 ′ ∈ SMP (𝑀) \V . (∃𝛿. 𝛿 (𝑡) = 𝛿 (𝑡 ′)) −→ Γ(𝑡) = Γ(𝑡 ′). We may also apply

the notion of type-flaw resistance to a constraint A to mean that:

(1) trms(A) ∪ setops(A) is type-flaw resistant, and

(2) for all 𝑡 � 𝑡 ′ occurring in A, if 𝑡 and 𝑡 ′ are unifiable then Γ(𝑡) = Γ(𝑡 ′), and
(3) for all ∀𝑥 . 𝜙neg occurring in A, and for all 𝑡 ̸� 𝑡 ′ and 𝑡 notin 𝑡 ′ occurring in 𝜙neg, no subterm

of (𝑡, 𝑡 ′) is generic for 𝑥 .2

Type-flaw resistance is extended to transactions as expected. A protocol P is type-flaw resistant iff

trms(P) ∪ setops(P) is type-flaw resistant and all transactions of P are type-flaw resistant. □

The main type-flaw resistance condition states that matching pairs of messages that might occur

in a protocol run must have the same type. For equality checks 𝑡 � 𝑡 ′ the terms 𝑡 and 𝑡 ′ must have

the same type if they are unifiable. For negative checks ∀𝑥 . 𝜙neg we only need to require that there

are no composed subterms of set-operations and inequalities in 𝜙neg whose immediate parameters

are all bound variables (i.e., generic for 𝑥 ). Together with the requirements on the typed model, this

ensures that there always exist well-typed models of satisfiable type-flaw resistant negative checks.

Note that the remaining actions on sets—insert, delete, and in—are also covered by condition 3.2(1):

by requiring that the set trms(A) ∪ setops(A) is type-flaw resistant we have that unifiable set

operations in A must have the same type.

Example 3.3 (Type-flaw resistance of the keyserver protocol). As an example we show that the

keyserver protocol is type-flaw resistant. That is, we show that the set of terms and set-operations of

the keyserver protocol is type-flaw resistant (condition 3.2(1)), and that the actions of its transactions

are type-flaw resistant. Condition 3.2(2) is vacuously satisfied since there are no equality checks in

the protocol. For the last condition notice that each negative check in the protocol is either of the

form 𝑥 notin 𝑓 (𝑐) or of the form ∀𝑦. 𝑥 notin 𝑓 (𝑦), where 𝑓 is one of the set-family symbols. The

only subterm of (𝑥, 𝑓 (𝑦)) or (𝑥, 𝑓 (𝑐)) that could potentially be generic is 𝑓 (𝑦). Recall, however,
from Example 2.2 that all set-family symbols are defined as private function symbols; thus the term

𝑓 (𝑦) cannot be generic for 𝑦. Hence condition 3.2(3) is satisfied for the keyserver protocol.

To prove the main condition 3.2(1) one approach is to compute a finite set that subsumes the

sub-message patterns of the protocol as well-typed instances. In fact, we will later show how to

automatically compute such a set and prove that checking type-flaw resistance of this set is indeed

sufficient. For the keyserver protocol notice that all terms and set-operations occurring in the

protocol are well-typed instances of terms from the following set:

𝑀 = {attack,𝑈 , 𝑆, PK,NPK, ring(𝑈 ), valid(𝑈 , 𝑆), revoked(𝑈 , 𝑆), (PK, ring(𝑈 )), (PK, valid(𝑈 , 𝑆)),
(PK, revoked(𝑈 , 𝑆)), sign(inv(PK), pair(𝑈 ,NPK)), inv(PK), pair(𝑈 ,NPK)}

where Γ(PK) = pkey, Γ(NPK) = pkey, Γ(𝑈 ) = enum, and Γ(𝑆) = enum.

Since 𝑀 is closed under subterms, and all variables in 𝑀 are atomic, and since no term in 𝑀

requires keys to analyze, then 𝑀 subsumes all the sub-message patterns of the protocol as well-

typed instances of terms in𝑀 . What remains to be shown is that each pair of matching composed

terms in𝑀 (after sufficient variable-renaming) have the same type, and this is trivial to verify. Thus,

the keyserver protocol is type-flaw resistant. □

2
In fact, we have also proved in Isabelle that our typing result also works when allowing additionally the following form of

negative checks: 𝜙neg is of the form 𝑡1 ̸� 𝑡 ′
1
∨ · · · ∨ 𝑡𝑛 ̸� 𝑡 ′𝑛 and Γ (fv (𝜙neg ) \ 𝑥 ) ⊆ 𝔗𝑎 . While this is in specifications of

relatively little value, it may be helpful in other contexts.
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With this definition we can now state and prove the actual typing result: that for type-flaw

resistant protocols it is safe to only verify that no well-typed attack exists. A recurrent idea (that we

also employ when proving the compositionality result) is to first prove the result on the constraint-

level and then lift it to the protocol-level. One of the benefits of our constraint-based protocol model

is actually that performing this lifting is relatively straightforward. The constraint-level typing

result then says that satisfiable type-flaw resistant constraints always have well-typed models:

Theorem 3.4 (The typing result on the constraint level). If A is a well-formed, type-flaw
resistant constraint, and if I |= A, then there exists a well-typed interpretation I𝜏 such that I𝜏 |= A.

This constraint-level theorem is then lifted to the protocol-level. First, a type-flaw resistance

preservation lemma needs to be proven:

Lemma 3.5 (Well-formedness and type-flaw resistance preservation). If P is a well-
formed and type-flaw resistant protocol, and if A is a reachable constraint of P, then both A and
A · send attackP are well-formed and type-flaw resistant.

Finally, the protocol-level theorem follows from Lemma 3.5 and Theorem 3.4:

Theorem 3.6 (The typing result, for protocols). Let P be a well-formed and type-flaw
resistant protocol. If P is well-typed secure then P is also secure in the untyped model.

Discussion. In contrast to with most other type-flaw prevention results like [5], we do not

prescribe a particular tagging scheme but merely require that (sub-)messages of different types are

always discernible. This makes the result directly applicable to many protocols without changes

and the use of formats also takes care of most problems of parsing. Our result requires formats

also on the top-level, i.e., unencrypted plaintext messages. Obviously tagging at that level does not

give any additional security (nor does it hurt) since the intruder can easily manipulate plaintext

messages, e.g., changing tags. We do this for uniformity: we do not build an exception into our

definition, and in fact it is good practice to be clear also on the cleartext level how the message is

meant. Note that [13] uses an idea similar to our typing system, except that they do not require

formats on the plaintext level. Moreover, [13] can handle equivalence properties. On the other

hand, our result supports protocols that use databases.

4 COMPOSITION: EXAMPLE AND ILLUSTRATION
In this section, we extend and adapt our keyserver example (Sec. 2.1) to illustrate the composition

of security protocols: we define two keyserver protocols that share the same database of valid

public keys registered at the keyserver. In a nutshell, the first protocol Pks,1 allows users to register

public keys out of band and to update an existing key with a new one (revoking the old key in the

process), while the second protocol Pks,2 uses a different mechanism to register new public keys.

Thus, both protocols use the shared database valid.
There are three atomic types used in the example: the type of agents enum (which is also the type

of the enumeration constants), public keys pkey, and the type attacktype of the attack𝑖 constants.
We partition the constants of type enum into the honest users hon, the dishonest users dis, and the

keyservers ser. There are sets for authentication goals named begin
1
, end1, begin2

, and end2, and

all protocol actions related to these sets are highlighted in gray; let us first ignore these.

Protocol Pks,1. The protocol Pks,1 is an extension of the keyserver example from Sec. 2.1 and

includes the transactions from Fig. 1. Observe that some actions in the transactions of Fig. 1 are

labeled with a ★. In a nutshell those actions are relevant also to the other protocol in composition:

this is because the set valid, e.g., will be shared with the other protocol, so an insertion is relevant;
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passwordGenD
2
(𝐴 : dis, 𝑆 : ser)

send pw(𝐴, 𝑆 ) .
intruderKeygen

2
(𝐴 : dis)

new PK : pkey
★ send PK, inv(PK ) .

pubkeysGen
2
(𝑆 : ser)

new PK : pkey
insert PK pubkeys(𝑆 )

★ send PK .
updateKeyPw

2
(𝐴 : hon, 𝑆 : ser, PK : pkey)

PK in pubkeys(𝑆 )
new NPK : pkey

★ insert NPK begin
2
(𝐴, 𝑆 )

★ send NPK
send crypt(PK, upd(𝐴, 𝑆,NPK, pw(𝐴, 𝑆 ) ) ) .

updateKeyServerPw
2
(

𝐴 : hon, 𝑆 : ser, PK,NPK : pkey)
receive crypt(PK, upd(𝐴, 𝑆,NPK, pw(𝐴, 𝑆 ) ) )
PK in pubkeys(𝑆 )
NPK notin pubkeys(_)
NPK notin seen(_)

★ NPK in begin
2
(𝐴, 𝑆 )

★ NPK notin end2 (𝐴, 𝑆 )
★ insert NPK end2 (𝐴, 𝑆 )
★ insert NPK valid(𝐴, 𝑆 )

insert NPK seen(𝐴) .
attackDef2 (𝐴 : hon, 𝑆 : ser, PK : pkey)

receive inv(PK )
★ PK in valid(𝐴, 𝑆 )

attack2 .

updateKeyServerPwD
2
(

𝐴 : dis, 𝑆 : ser, PK,NPK : pkey)
receive crypt(PK, upd(𝐴, 𝑆,NPK, pw(𝐴, 𝑆 ) ) )
PK in pubkeys(𝑆 )
NPK notin pubkeys(_)
NPK notin seen(_)

★ insert NPK valid(𝐴, 𝑆 )
insert NPK seen(𝐴) .

Fig. 2. The second keyserver protocol Pks,2. In addition to the transactions shown in this figure the protocol
also contains transactions for authentication goals.

similarly, in outOfBand1, all newly created keys like PK are by default secret, and by the★ label we

declare that it is immediately declassified (as it is expected for a public key), while the corresponding

private key inv(PK) remains a secret. This will be explained in more detail below (as well as

the gray-shaded actions related to the authentication goals). Note also that the intruder learns

in outOfBandD1 both PK and inv(PK) and they are both declassified, i.e., it does not count as

an attack that the intruder knows key pairs that dishonest users generated. Also, we reveal in

keyUpdateUser
1
the private key inv(PK), in order to specify that the protocol must ensure forward

secrecy: even when old private keys are leaked, none of the security goals are violated. In fact, that

this action is labeled ★ is a textbook example for declassification of a secret: after this transaction,

the intruder does know inv(PK) and this does not count as an attack.

Protocol Pks,2. The second protocol—Fig. 2—has another mechanism to register new keys: every

user has a password pw(𝐴, 𝑆) with the server. The intruder gets the password of every dishonest

agent 𝐴 with rule passwordGenD
2
.

Instead of using a (possibly weak) password for an encryption, the registration message is

encrypted with the public key of the server. For honest agents this is defined in rule updateKeyPw
2
.

For uniformity, we model the server’s public keys in a set pubkeys(𝑆) that is initialized with

rule pubkeysGen
2
(in fact, 𝑆 may thus have multiple public keys), and as in the first protocol we

also have a rule in Pks,2 that gives the intruder arbitrarily many fresh key pairs. Note that thus

pubkeys(𝑆) is a set that is shared in the sense that all honest agents can read it, and 𝑆 can insert

new keys into it. This is an easy way to abstract from how the public key of the server itself is

securely distributed. However, this set is local to Pks,2: the other keyserver protocol does not use it.

Similar to Pks,1 we give the dishonest agents the ability to generate their own fresh key pairs

with rule intruderKeygen
2
. This is necessary since we want to be able to run Pks,2 also in isolation.

Rule updateKeyServerPw
2
models how the server receives a registration request (in case of

honest users—updateKeyServerPwD
2
is the pendant for the dishonest users). To protect against

replay, the server uses a set seen of seen keys (this may in a real implementation be a buffer-

timestamp mechanism). The difference to the honest-agent version is in the goal sets.
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Secrecy. If a valid private key of an honest agent becomes known to the intruder then there is an

attack. Such a secrecy goal is defined with rule attackDef𝑖 , where 𝑖 = 1 in Pks,1 and 𝑖 = 2 in Pks,2.

Authentication. Besides the secrecy goal attackDef𝑖 that no valid private key of an honest agent

may ever be known by the intruder, the crucial authentication goal is that all insertions into

valid(𝐴, 𝑆) for honest 𝐴 are authenticated. This authentication goal is in particular relevant for the

composition, because the valid set family is shared, and thus neither protocol can work properly if

the other would insert unauthenticated keys into valid. Actually, compositionality requires even

more about the shared sets, but at least some form of authentication is obviously needed.

We shall now look at the gray-shaded lines in all the previous rules that we skipped in previous

explanations. First, in every rule where an honest agent 𝐴 intends to introduce a key PK , they will

insert this key into a special set begin𝑖 (𝐴, 𝑆) (for 𝑖 being the protocol identifier). This is a set that
would not exist in a real implementation and that we simply use here to formulate the security

goals: in other words the begin𝑖 (𝐴, 𝑆) set contains the keys that𝐴 would like to use with 𝑆 as public

keys of𝐴. We will never delete from this set, so it contains also past keys that𝐴 has actually already

deleted. Note that for dishonest 𝐴 we do not have any such sets, since the goals are concerned with

guarantees for the honest agents only.

Symmetrically, the set end𝑖 (𝐴, 𝑆) represents the keys that server 𝑆 has accepted as (apparently)

coming from an honest agent 𝐴. In the out-of-band rule outOfBand1, we have that the key is

directly inserted into both begin𝑖 (𝐴, 𝑆) and end𝑖 (𝐴, 𝑆), because this rule formalizes that 𝐴 and 𝑆

by some other means (e.g. physical visit) directly agree on a public key for 𝐴. In all other rules,

the insertion into end𝑖 (𝐴, 𝑆) happens when the server receives a message that seems to indicate

that 𝐴 wants to introduce some key, and all conditions for accepting it are met. Observe, however,

that these requirements include also some conditions on the authentication-sets themselves: for

instance, the rule keyUpdateServer
1
requires that the received NPK that 𝐴 apparently wants to use

as her new public key shall both be in begin𝑖 (𝐴, 𝑆) and not be in end𝑖 (𝐴, 𝑆). Suppose the situation
that all conditions of rule keyUpdateServer

1
were met, except that NPK ∉ begin𝑖 (𝐴, 𝑆). That would

mean that the server were to accept at this moment NPK (since, as far as the server can see, the

key is legitimate) while 𝐴 has never meant to use this key in this way. We would regard this as

an authentication attack, more precisely as a violation of the goal of non-injective agreement

in Lowe’s hierarchy [35]. We formalize this by the following attack rules (rule authAttack1 and

rule authAttack2 for the analogous situation of protocol 2):

authAttack1 (𝐴 : hon, 𝑆 : ser, PK,NPK : pkey)
receive sign(inv(PK), pair(𝐴,NPK))

★ PK in valid(𝐴, 𝑆) .
★ NPK notin valid(_)

NPK notin revoked(_)
★ NPK notin begin

1
(𝐴, 𝑆)

attack1 .

authAttack2 (𝐴 : hon, 𝑆 : ser, PK,NPK : pkey)
receive crypt(PK, upd(𝐴, 𝑆,NPK, pw(𝐴, 𝑆)))
PK in pubkeys(𝑆)
NPK notin pubkeys(_)
NPK notin seen(_)

★ NPK notin begin
2
(𝐴, 𝑆)

attack2 .

Going back to keyUpdateServer
1
, there is also the condition NPK ∉ end𝑖 (𝐴, 𝑆). Suppose now

that all other conditions of the rule were met but NPK ∈ end𝑖 (𝐴, 𝑆). This would mean that, as far

as the server 𝑆 can tell, the key is legitimate and 𝑆 would accept it, and indeed 𝐴 at some point in

the past has meant to use this key (and thus NPK ∈ begin𝑖 (𝐴, 𝑆)). However, 𝑆 has already accepted

it before, because it is already in end𝑖 (𝐴, 𝑆). This would be a violation of injective agreement: the

server has been made to accept a key more often than it was meant to be used. We can only do this,

because the keys of an update request message are supposed to be fresh, i.e., an honest agent will

never request an update to an old key; thus, when a server is made to accept the same key twice
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from an honest agent it must be a replay attack. This is captured by the following two rules:

authInjAttack
1
(𝐴 : hon, 𝑆 : ser, PK,NPK : pkey)

receive sign(inv(PK), pair(𝐴,NPK))
★ PK in valid(𝐴, 𝑆)
★ NPK notin valid(_)

NPK notin revoked(_)
★ NPK in begin

1
(𝐴, 𝑆)

★ NPK in end1 (𝐴, 𝑆)
attack1 .

authInjAttack
2
(𝐴 : hon, 𝑆 : ser, PK,NPK : pkey)

receive crypt(PK, upd(𝐴, 𝑆,NPK, pw(𝐴, 𝑆)))
PK in pubkeys(𝑆)
NPK notin pubkeys(_)
NPK notin seen(_)

★ NPK in begin
2
(𝐴, 𝑆)

★ NPK in end2 (𝐴, 𝑆)
attack2 .

Observe that for protocol 1, the rules keyUpdateServer
1
, authAttack1, and authInjAttack

1
to-

gether handle all cases where the server would accept the incoming public key NPK : either every-
thing is fine as far as the authentication goals are concerned (keyUpdateServer

1
) or there is a non-

injective agreement violation (authAttack1), or an injective agreement violation (authInjAttack
1
)

(and similarly for the second protocol). Notice that our rules thus do not allow for an unauthen-

ticated key to be inserted into the shared set valid: if the protocol due to a security flaw could

insert an unauthenticated key, then only the attack rule can fire. This is crucial for composition as

this allows us a kind of “contract” between the protocols that they comply with certain rules, e.g.

inserting only authenticated keys into the valid set and the verification of this compliance is then a

problem we can check for each protocol in isolation.

5 THE COMPOSITIONALITY RESULT
The core definition of this section is rather simple: We define the parallel composition P1 ∥ P2 of

two protocols P1 and P2 as their union: P1 ∥ P2 ≡ P1 ∪ P2. Protocols P1 and P2 are also referred

to as the component protocols of the composition P1 ∥ P2. To express composition of more than

two protocols we parameterize our theory over a set L of indices. The only requirement on the set

L is that it has at least two elements and we usually use natural numbers to denote the elements of

L. The parallel composition of all protocols indexed by L is then denoted by ∥𝑖∈L P𝑖 and is again

defined as the union of the component protocols: ∥𝑖∈L P𝑖 ≡
⋃
𝑖∈L P𝑖 . If L = {1, . . . , 𝑁 } for some

𝑁 (i.e., if L is finite) then we may also use the notation P1 ∥ · · · ∥ P𝑁 .
For composed protocols ∥𝑖∈L P𝑖 the reachable constraints will in general contain actions originat-

ing from multiple component protocols. To keep track of where an action in a constraint originated

we assign to each action a label ℓ , and we use the notation ℓ : 𝑎 to denote that action 𝑎 has label ℓ .

The actions that are exclusive to the 𝑖-th component are marked with 𝑖 . For that reason we also

refer to the indices L as the protocol-specific labels. In addition to the protocol-specific labels L
we also have the special label ★. Labels ℓ then range over L ∪ {★} unless otherwise specified. The
formal transaction language defined in Sec. 2.3 is also extended to allow labeling of actions.

Let A be a constraint with labels and ℓ be a label. We define A|ℓ to be the projection of A to

the steps labeled ℓ or ★ (so the ★-steps are kept in every projection). We extend projections to

transaction rules and protocols as expected. We may also write P★
instead of P|★.

Example 5.1. In the composed keyserver example we have two protocol specific labels:L = {1, 2}.
Note that we omitted the protocol-specific labels when defining the transactions. This is because

each protocol has a unique protocol-specific label and so it is unambiguous which label to assign

to the actions that do not carry the ★-label. Note also that all new actions are implicitly labeled

with a ★: it is necessary for our compositionality result that they occur in all projections, and

so we usually omit explicitly labeling them. For instance, in the formal transaction syntax the

pubkeysGen
2
transaction is written as follows, and its projection pubkeysGen′

2
to label 1 preserves
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only the first and the last of its actions:

pubkeysGen
2
(𝑆 : ser) ★ : new PK : pkey · 2 : insert PK pubkeys(𝑆) ·★ : send PK

pubkeysGen′
2
(𝑆 : ser) ★ : new PK : pkey ·★ : send PK □

An important property of projections is that projected reachable constraints are reachable in

projected protocols:

Lemma 5.2. If A is a constraint reachable in the protocol P and ℓ is a label, then the projected
constraint A|ℓ is reachable in the projected protocol P|ℓ .

With stateful protocols and parallel composition defined we can now formally define the concepts

underlying our results and state our compositionality theorems. We first provide a result on the

level of constraints and afterwards show our main theorems for stateful protocols.

5.1 Protocol Abstraction
All actions containing the valid set family in our keyserver example have been labeled with ★.

Labeling operations on the shared sets with ★ is an important part of our compositionality result.

Essentially, compositionality results aim to prevent that attacks can arise from the composition

itself, i.e., attacks that do not similarly work on the components in isolation. Thus, we want to

show that attacks on the composed system can be sufficiently decomposed into attacks on the

components. This, however, cannot directly work if the components have shared sets like valid in

the example: if one protocol inserts something into a set and the other protocol reads from the set,

then this trace in general does not have a counter-part in the second protocol alone. We thus need a

kind of interface to how the two protocols can influence their shared sets. In the keyserver example,

both protocols can insert public keys into the shared set valid; the first protocol can even remove

them. The idea is now that we develop from each protocol an abstract version that subsumes all the

modifications that the concrete protocol can perform on the shared sets. This can be regarded as a

“contract” for the composition: each protocol guarantees that it will not make any modifications

that are not covered by its abstract protocol, and it will assume that the other protocol only makes

modifications covered by the other protocol’s abstraction. We will still have to verify that each

individual protocol is also secure when running together with the other abstract protocol, but this

is in general much simpler than the composition of the two concrete protocols.

In general, the abstraction of a component protocol P is defined by restriction to those steps

that are labeled★, i.e., P★
. We require that at least the modifications of shared sets are labeled★. In

the keyserver example we have also labeled the operations on the authentication-related sets with

a ★ (everything highlighted in gray): we need to ensure that we insert into the set of valid keys of

an honest agent only those keys that really have been created by that agent and that have not been

previously inserted. So the contract between the two protocols is that they only insert keys that are

properly authenticated, but the abstraction ignores how each protocol achieves the authentication

(e.g., signatures vs. passwords and seen-set). Some outgoing messages are also labeled with★which

we discuss later.

Example 5.3. Consider the abstractions of rules updateKeyPw
2
and updateKeyServerPw

2
:

updateKeyPw
2
(𝐴 : hon, 𝑆 : ser)

new NPK : pkey
★ insert NPK begin

2
(𝐴, 𝑆)

★ send NPK .

updateKeyServerPw
2
(𝐴 : hon, 𝑆 : ser,NPK : pkey)

★ NPK in begin
2
(𝐴, 𝑆)

★ NPK notin end2 (𝐴, 𝑆)
★ insert NPK valid(𝐴, 𝑆)
★ insert NPK end2 (𝐴, 𝑆).

The gray actions prevent unauthenticated key registration because keys can only be registered if

inserted into begin
2
by an honest agent. If we did not ensure such authenticated key-registration
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then the intruder would be able to register arbitrary keys in P★
ks,2. This would lead to an attack on

secrecy in the protocol Pks,1 ∥ P★
ks,2.

One may wonder why there is no similar specification for secrecy, i.e., that inv(NPK) is secret for
every key NPK that is being inserted into valid. In fact, below we will declare all private keys to be

secret by default. Thus, unless explicitly declassified, they are (implicitly) required to be secret. □

5.2 Shared Terms
The main restriction that most compositionality results require is that the messages of the compo-

nent protocols are sufficiently disjoint, so that the intruder cannot use messages (or sub-messages)

of one component in another. (As discussed in Sec. 3, one can achieve this using formats.) One

typically needs to make at least some exceptions from disjointness, e.g., agent names and fixed

long-term keys. However, as we have seen in the previous examples, we want in this work to also

(for instance) consider freshly generated keys that are part of shared sets. In fact, any kind of data

shared via the sets cannot be unique to a component. Therefore, our approach uses a generalized

way of handling such shared terms.

First, let us call basic public terms those that the intruder can derive without any prior knowledge:

∅ ⊢ 𝑡 . This could for instance contain agent names. Second, the modeler shall choose a set of ground

terms S, called the shared terms, and S is a parameter of our compositionality result. In fact, our

only requirement is that every ground protocol message is either unique to a single protocol, or it

is a basic public term, or it is in S. For our keyserver example, we have the freshly generated public

and private keys as part of S, while the more complex messages like signatures are unique to one

component. Note that one may well have also more complex terms in S, e.g., key certificates if they
are used by several protocols. For reasons that we explain below in more detail, one may want to

keep S as small as possible, because all messages in there require special care in the composition.

In Sec. 6 we discuss how a suitable representation of S can be computed automatically.

More formally, we first define the ground sub-message patterns (GSMP) of a set of terms 𝑀 as

GSMP (𝑀) ≡ {𝑡 ∈ SMP (𝑀) | fv(𝑡) = ∅}. This definition is extended to constraints A as the set

GSMP (A) ≡ GSMP (trms(A) ∪ setops(A)) and similarly for protocols.

Example 5.4. We will typically study the ground subterms of each individual protocol in parallel

with the abstraction of the other. For the example, the set GSMP (Pks,1 ∥ P★
ks,2) is the closure under

subterms of the following set:

{attack1, sign(inv(pk), pair(a, npk)), (pk, ring(a)), (pk, 𝑓 (a, s)) | pk, npk, a, s ∈ C,
Γ({pk, npk}) = {pkey}, Γ({a, s}) = {enum}, 𝑓 ∈ {valid, revoked, begin𝑖 , end𝑖 }, 𝑖 ∈ {1, 2}}

and GSMP (P★
ks,1 ∥ Pks,2) is the closure under subterms of the following set:

{attack2, inv(pk), crypt(pk, upd(a, s, npk, pw(a, s))), (pk, pubkeys(s)), (pk, 𝑓 (a, s)) | pk, npk ∈ C,
a, s ∈ C, Γ({pk, npk}) = {pkey}, Γ({a, s}) = {enum}, 𝑓 ∈ {valid, seen, begin𝑖 , end𝑖 }, 𝑖 ∈ {1, 2}}

□

Let S be a set of ground terms disjoint from the set of basic public terms. For composition we

will require that component protocols are disjoint in their ground sub-message patterns except for

basic public terms and shared terms:

Definition 5.5 (GSMP disjointness). Given two sets of terms𝑀1 and𝑀2, and a ground set of terms

S, we say that 𝑀1 and 𝑀2 are S-GSMP disjoint iff GSMP (𝑀1) ∩ GSMP (𝑀2) ⊆ S ∪ {𝑡 | ∅ ⊢ 𝑡}.
Furthermore, given two constraints A1 and A2 we say that they are S-GSMP disjoint iff the sets

trms(A1) ∪ setops(A1) and trms(A2) ∪ setops(A2) are S-GSMP disjoint. This is similarly extended

to protocols as expected. □
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5.3 Declassification and Leaking
As the public and private keys in the keyserver example illustrate, we want in general that some of

the shared terms S are secret from the intruder, while others may be known to the intruder, and in

fact it can be crucial for the interplay of the components which ones are which. Also one may want

to allow in some cases that the intruder may learn old keys, e.g., the private keys to a revoked key in

the keyserver example. To allow for such a dynamic secrecy status, we define the following policy

about the secrecy of terms in S: initially, all elements of S are considered secret, and a protocol can

explicitly declassify elements of S. It is considered a leak if the intruder can find out an element of

S that has not been declassified, and we will require as part of the composition that no component

protocol (in isolation) leaks. In the keyserver example, all public keys are immediately declassified

in the transition where they are created. If the creator is dishonest, then also the corresponding

private key is declassified. Finally, when keys are revoked, then also the private key to the revoked

key is declassified.

The notation for such declassification of a message𝑀 is simply ★ send𝑀 : the message is sent

out, so the intruder can see it, and the ★ label ensures that all declassifications that occur in a

protocol (or in a constraint) are visible in its abstraction. This means that all declassifications

are part of the interface that the protocol provides to other protocols, and the proof of security

thus ensures that each component is secure in the presence of all declassifications that the other

protocols may perform. In the keyserver example, P★
ks,1 guarantees that it will only declassify

private keys (via intruderKeygen
1
) where they are freshly created and not member of any set and

(via keyUpdateUser
1
) in a transition where they have been in valid for an honest 𝑈 before and

are just removed. Together with the abstraction of the other transactions we get an interface that

allows to verify in P★
ks,1 ∥ Pks,2 that no private key can ever be leaked while the corresponding

public key is in the valid set of an honest agent.

Observe that this leakage policy can play a crucial role in the goals of a protocol composition,

but we may have secrecy goals that are “local” to a protocol, i.e., that affect data that is not in S.
This would in fact be the case for the secrecy goal of classical parallel protocol composition where

all messages are disjoint and no shared sets are used.

For a constraint A with model I we formally define the set of terms that has been declassified

in A under I:

Definition 5.6 (Declassification). Let A be a labeled constraint and I a model of A. Then the set

of declassified secrets of A under I is defined as follows:

declassified (A,I) ≡ {𝑡 | {𝑠1, . . . , 𝑠𝑛 | ★ : receive 𝑠1, . . . , 𝑠𝑛 occurs in I(A)} ⊢ 𝑡} □

Given a protocol P, a reachable constraint A (i.e., 0 ⇒∗
P A), and a model I of A, then I(A)

represents a concrete protocol run and the set declassified (A,I) represents those terms that are

derivable from the messages that have been declassified by honest agents during the protocol run.

By definition the basic public terms are therefore also declassified. Note also that in this definition

we have reversed the direction of the declassification transmission, because the send and receive
steps of reachable constraints are duals of the transaction rules they originated from.

Declassification also allows us to share terms that have secrets from S as subterms but which are

not themselves meant to be secret. For instance, public key certificates have as subterm the private

key of the signing authority, and such certificates can be shared between protocols by modeling

them as shared secrets that are declassified when first published.

Finally, if the intruder learns a shared term that has not been declassified then it counts as an

attack. We say that protocol P leaks a secret 𝑠 if there is a reachable satisfiable constraint A where

the intruder learns 𝑠 before it is declassified:
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Definition 5.7 (Leakage). Let A be a labeled constraint with model I and let S be a set of

shared terms. A leaks a secret from S under I iff there exists 𝑠 ∈ S \ declassified (A,I) and a

protocol-specific label ℓ ∈ L such that I |= A|ℓ · send 𝑠 . □

Our notion of leakage requires that one of the components in isolation leaks a secret. This may

seem like an undue restriction (that it counts only as a leakage if one protocol alone can leak), but

we will make this as one of the prerequisites of composition, i.e., a quite weak requirement that

can be checked for each protocol in isolation. Then the compositionality result ensures that the

composition does not leak the shared terms. Note also that the set declassified (A,I) is unchanged
during projection of A, and so it suffices to pick the leaked 𝑠 from the set S \ declassified (A,I)
instead of S \ declassified (A|𝑖 ,I).

Example 5.8. The terms occurring in the GSMP intersection of the two keyserver protocols are

(a) public keys pk, (b) private keys of the form inv(pk), (c) agent names, and (d) operations on the

shared set families valid, begin𝑖 , and end𝑖 . Agent names are basic public terms in our example, i.e.,

∅ ⊢ a for all constants a of type agent. The public keys are initially secret, but we immediately

declassify them whenever they are generated. To satisfy GSMP disjointness of Pks,1 ∥ P★
ks,2 and

P★
ks,1 ∥ Pks,2 it thus suffices to choose the following set as the set of shared terms:

S = {pk, inv(pk), (pk, 𝑓 (a, s)), 𝑓 (a, s) | Γ({a, s}) = {enum}, Γ(pk) = pkey,
𝑓 ∈ {valid, begin

1
, end1, begin2

, end2}, pk, a, s ∈ C}
Note that we want the set symbols like valid to be private. This is because terms like (pk, valid(a, s))
occurs as a GSMP term in both component protocols, and so we have to prevent the intruder from

constructing such terms even after declassification of keys pk. Hence, we model the set expressions

like valid(a, s) as secrets to prevent the intruder from constructing (pk, valid(a, s)) when the

intruder knows the constants pk, a, and s. □

5.4 Parallel Compositionality for Constraints
With these concepts defined we can list the requirements on constraints that are necessary to apply

our result on the constraint level:

Definition 5.9 (Parallel composability). Let A be a constraint and let S be a ground set of terms

disjoint from the set of basic public terms. Then (A,S) is parallel composable iff
(1) for all protocol-specific labels ℓ, ℓ ′ ∈ L, if ℓ ≠ ℓ ′ then A|ℓ and A|ℓ ′ are S-GSMP disjoint,

(2) for all ℓ : (𝑡, 𝑠), ℓ ′ : (𝑡 ′, 𝑠′) ∈ labeledsetops(A), if (𝑡, 𝑠) and (𝑡 ′, 𝑠′) are unifiable then ℓ = ℓ ′,
(3) A is type-flaw resistant and well-formed,

where labeledsetops(A) ≡ {ℓ : (𝑡, 𝑠) | ℓ : insert 𝑡 𝑠 or ℓ : delete 𝑡 𝑠 or ℓ : 𝑡 in 𝑠 occurs in A or

there exists 𝜙neg and 𝑥 such that 𝑡 notin 𝑠 occurs in 𝜙neg and ℓ : ∀𝑥 . 𝜙neg occurs in A}. □

The first requirement is at the core of our compositionality result and states that the protocols

can only share basic public terms and shared terms. The second condition is our requirement on

stateful protocols; it implies that shared sets must be labeled with a ★. Finally, the third and last

condition is needed to apply the typing result and it is orthogonal to the other conditions; it is

indeed only necessary so that we can apply Theorem 3.4 and restrict ourselves to well-typed attacks.

Typing results with different requirements could potentially be used instead.

With the composability requirements defined we can state our main result on the constraint-level:

Theorem 5.10 (Parallel Compositionality on the Constraint-Level). If (A,S) is parallel
composable and I |= A then there exists a well-typed interpretation I𝜏 such that either I𝜏 |= A|ℓ for
all protocol-specific labels ℓ ∈ L or some prefix A′ of A, that ends in a receive action, leaks a secret
from S under I𝜏 .

, Vol. 1, No. 1, Article . Publication date: December 2022.



22 Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

That is, we can obtain a well-typed model of all projections A|ℓ , ℓ ∈ L, for satisfiable parallel

composable constraints A—or one of the projections has leaked a secret. In other words, if we

can verify that a parallel composable constraint A does not have any well-typed model of all

protocol-specific projections, and no prefix of A leaks a secret under any well-typed model, then it

is unsatisfiable, i.e., there is no “attack”.

5.5 Proving Parallel Compositionality on the Constraint-Level (Theorem 5.10)
In the following, we present a high-level proof of Theorem 5.10 (for the detailed proof in Isabelle,

see [28]). Readers not interested in the proof details might want to continue directly with Sec. 5.6.

As an intermediate result we first prove the theorem for “stateless” constraints, i.e., for constraints

that do not contain any inserts, deletes, and positive and negative set-membership actions. Then

the theorem is established by lifting the intermediate result to stateful constraints using a variant

of a constraint reduction technique from [27].

5.5.1 Proving Parallel Compositionality on the Constraint-Level for “Stateless” Constraints. For
Theorem 5.10 we need to show that for satisfiable parallel composable constraints A with shared

terms S we can obtain a well-typed model of all projectionsA|ℓ , ℓ ∈ L, orA has leaked a secret in

one of the projections. In a nutshell we show that any term 𝑡𝑖 occurring in a ℓ : send 𝑡1, . . . , 𝑡𝑛 action
of A needs only to be constructed from terms of protocol ℓ , unless leakage has occurred previously.

Given a constraint A and a set of shared terms S we now define a useful variant ⊢A
GSMP

of the

intruder deduction relation ⊢ as the restriction of ⊢ to the GSMP terms of A only. This relation has

a useful property:

Lemma 5.11. Let 𝑡 ∈ GSMP (A) and let𝑀 ⊆ GSMP (A). Then𝑀 ⊢ 𝑡 iff𝑀 ⊢A
GSMP

𝑡 .

Note that for well-typed I the intruder knowledge I(ik(A)) is a subset of GSMP (A), and for all
send 𝑡1, . . . , 𝑡𝑛 actions occurring inA the ground messages I(𝑡𝑖 ) are also in GSMP (A). Lemma 5.11

is therefore useful because we can prove that, under well-typed models, all terms occurring in

send actions can be derived purely through derivation of other GSMP terms, without ever deriving,

as an intermediate step, a term outside of the GSMP set. In other words, for parallel composable

constraints under well-typed models we can reduce the intruder derivation problem to ⊢A
GSMP

.

One of the most difficult parts of the parallel compositionality proof is to show that the messages

that the intruder must produce in a constraint can be derived under all projections or are leaked,

and this part we can—thanks to the previous lemma—state as a property of ⊢A
GSMP

:

Lemma 5.12. Let (A,S) be parallel composable. Furthermore, let I be a well-typed model of A. If
I(ik(A)) ⊢A

GSMP
𝑡 , then either

(𝐶1) 𝑡 ∉ S \ declassified (A,I), and
(𝐶2) for all 𝑖 ∈ L, if 𝑡 ∈ GSMP (A|𝑖 ) then I(ik(A|𝑖 )) ⊢A

GSMP
𝑡 ,

or there exists 𝑠 ∈ S \ declassified (A,I) and 𝑗 ∈ L such that I(ik(A| 𝑗 )) ⊢A
GSMP

𝑠 .

With Lemma 5.11 we can then prove the following easily-established but important consequence

of Lemma 5.12:

Lemma 5.13. Let (A,S) be parallel composable, I be a well-typed model of A, 𝑖 ∈ L be a label,
and 𝑡 a term such that 𝑡 ∈ GSMP (A|𝑖 ). If I(ik(A)) ⊢ 𝑡 then either I(ik(A|𝑖 )) ⊢ 𝑡 or there exists
𝑠 ∈ S \ declassified (A,I) and 𝑗 ∈ L such that I(ik(A| 𝑗 )) ⊢ 𝑠 .

Now we can use Lemma 5.13 to show that the models I of parallel composable constraints A
are also models of the projections A|𝑖 , or some secret is leaked:
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Lemma 5.14. Let (A,S) be parallel composable and let I be a well-typed model of the stateless
constraint A. Then either I |= A|ℓ , for all ℓ ∈ L, or some prefix A′ · 𝑖 : receive 𝑡1, . . . , 𝑡𝑛 of A leaks
a secret from S under I.

Finally, we can use Theorem 3.4 (the typing result) to relax the well-typedness assumption of

Lemma 5.14 and prove the result on the level of “stateless” constraints:

Lemma 5.15. Let (A,S) be parallel composable and let I be a model of the stateless constraint A.
Then there exists a well-typed interpretation I𝜏 of A such that either I𝜏 |= A|ℓ for all ℓ ∈ L or some
prefix A′ · 𝑖 : receive 𝑡1, . . . , 𝑡𝑛 of A leaks a secret from S under I𝜏 .

5.5.2 Proving Parallel Compositionality on the Constraint-Level for Stateful Constraints. For stateful
constraints the proof idea is to use a variant of a reduction technique introduced in [27] to reduce

the compositionality problem for stateful constraints to the compositionality problem for “stateless”

constraints, i.e. constraints without set-operations:

Definition 5.16 (Translation of symbolic constraints). Given a set 𝐷 = {ℓ1 : (𝑡1, 𝑠1), . . . , ℓ𝑛 : (𝑡𝑛, 𝑠𝑛)},
where 𝐷 is finite, each 𝑡𝑖 and 𝑠𝑖 are terms, and ℓ𝑖 ∈ L ∪ {★} are labels, we define the projection of
𝐷 to ℓ , written |𝐷 |ℓ , as follows: |𝐷 |ℓ = {ℓ ′ : 𝑑 ∈ 𝐷 | ℓ = ℓ ′}. For a constraint A its translation into

(finitely many) stateless constraints is denoted by tr (A) = tr∅ (A) where:
tr𝐷 (0) = {0}
tr𝐷 (ℓ : insert 𝑡 𝑠 · A) = tr𝐷∪{ℓ : (𝑡,𝑠 ) } (A)
tr𝐷 (ℓ : delete 𝑡 𝑠 · A) = {
ℓ : (𝑡, 𝑠) � 𝑑1 · . . . · ℓ : (𝑡, 𝑠) � 𝑑𝑖 · ℓ : (𝑡, 𝑠) ̸� 𝑑𝑖+1 · . . . · ℓ : (𝑡, 𝑠) ̸� 𝑑𝑛 · A′ |
|𝐷 |ℓ = {ℓ : 𝑑1, . . . , ℓ : 𝑑𝑖 , . . . , ℓ : 𝑑𝑛}, 0 ≤ 𝑖 ≤ 𝑛,A′ ∈ tr𝐷\{ℓ : 𝑑1,...,ℓ : 𝑑𝑖 } (A)}

tr𝐷 (ℓ : 𝑡 in 𝑠 · A) = {ℓ : (𝑡, 𝑠) � 𝑑 · A′ | ℓ : 𝑑 ∈ |𝐷 |ℓ ,A′ ∈ tr𝐷 (A)}
tr𝐷 (ℓ : (∀𝑥 . 𝜙 ∨ 𝑡1 notin 𝑠1 ∨ · · · ∨ 𝑡𝑛 notin 𝑠𝑛) · A) = {
ℓ : (∀𝑥 . 𝜙 ∨𝜓1) · . . . · ℓ : (∀𝑥 . 𝜙 ∨𝜓𝑘 ) · A′ |
𝜓1 ∧ · · · ∧𝜓𝑘 is the conjunctive normal form of

∨
𝑖∈{1,...,𝑛}

∧
ℓ : 𝑑∈ |𝐷 |ℓ (𝑡𝑖 , 𝑠𝑖 ) ̸� 𝑑,

𝜙 = 𝑡 ′
1
̸� 𝑠′

1
∨ · · · ∨ 𝑡 ′𝑚 ̸� 𝑠′𝑚,A′ ∈ tr𝐷 (A)}

tr𝐷 (ℓ : 𝔞 · A) = {ℓ : 𝔞 · A′ | A′ ∈ tr𝐷 (A)} otherwise □

tr (A) reduces A into a finite set of constraints without set-operations, and these constraints

have together exactly the same models as A. The idea is, in a nutshell, that for a given A, only

finitely many set updates have occurred, and so one can convert each set-operation that occur inA
into finitely many � and ̸� actions that together preserve the meaning of the original set-operation.

Note that we apply projections |𝐷 |ℓ when translating set operations with label ℓ . Hence, we

never “mix” two set operations with different labels in the reduction. A crucial point here is that

the parallel compositionality conditions make such mixing unnecessary, and this enables us to

prove a strong relationship between translated constraints and projections:

Lemma 5.17. Let 𝑖 ∈ L be a label. If B ∈ tr𝐷 (A) then B|𝑖 ∈ tr |𝐷 |𝑖∪|𝐷 |★ (A|𝑖 ).

By a straightforward induction proof over the structure of constraints we can also prove that tr
preserves the properties we need for our compositionality result:

Lemma 5.18 (Preservation of well-formedness and compositionality). If A is well-formed
and parallel composable, and if B ∈ tr (A), then B is well-formed and parallel composable.

Now the core idea is to reduce the compositionality problem for stateful constraints to stateless

constraints using the translation tr . For that reason we need to show that the translation is correct,

i.e., that the set of models of the input constraint is exactly the set of models of the translation:
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Lemma 5.19 (Semantic eqivalence of constraint reduction). Let A be a constraint and
let 𝐷 = {ℓ1 : (𝑡1, 𝑠1), . . . , ℓ𝑛 : (𝑡𝑛, 𝑠𝑛)}. Assume that all unifiable set operations occurring in A and 𝐷
carry the same label, i.e., if ℓ : (𝑡, 𝑠), ℓ ′ : (𝑡 ′, 𝑠′) ∈ labeledsetops(A) ∪𝐷 and ∃𝛿. 𝛿 ((𝑡, 𝑠)) = 𝛿 ((𝑡 ′, 𝑠′))
then ℓ = ℓ ′. Assume also that the set of variables occurring in 𝐷 is disjoint from the bound variables of
A. Then the models of A are the same as the models of tr (A), i.e., J𝑀,I(𝐷);AK I iff there exists
B ∈ tr𝐷 (A) such that J𝑀, ∅;BK I.
5.5.3 Putting Everything Together. For proving Theorem 5.10 we now only need to lift Lemma 5.15

to stateful constraints. That is, given I |= A we obtain B ∈ tr (A) such that I |= B. For B we

can apply Lemma 5.15; either I𝜏 |= B|𝑖 for all 𝑖 ∈ L or B leaks, under some well-typed model I𝜏 .
Finally, with Lemma 5.19 and 5.17 we can show that either I𝜏 |= A|𝑖 for all 𝑖 ∈ L or A leaks. Thus,

the compositionality result on the constraint-level is established.

5.6 The Main Result and Proof: Parallel Compositionality for Protocols
Until now our parallel compositionality result has been stated on the level of constraints. As a

final step we now explain how we can use Theorem 5.10 to prove a parallel compositionality result

for protocols. We first define our compositionality requirement on protocols that ensures that all

reachable constraints are parallel composable:

Definition 5.20 (Parallel composability). Let P = ∥𝑖∈L P𝑖 be a composed protocol and let S be a

ground set of terms disjoint from the basic public terms. Then (P,S) is parallel composable iff
(1) for all protocol-specific labels ℓ, ℓ ′ ∈ L, if ℓ ≠ ℓ ′ then P|ℓ and P|ℓ ′ are S-GSMP disjoint,

(2) for all ℓ : (𝑡, 𝑠), ℓ ′ : (𝑡 ′, 𝑠′) ∈ labeledsetops(P), if (𝑡, 𝑠) and (𝑡 ′, 𝑠′), after having their variables

renamed apart, are unifiable then ℓ = ℓ ′,
(3) P is type-flaw resistant and well-formed,

(4) for each transaction 𝑇 of P, only the first send action occurring in 𝑇 may carry the ★ label,

(5) for each transaction 𝑇 of P and for each action ℓ : 𝑎 of 𝑇 , if an attack constant of the form

attack𝑖 occurs in 𝑎 then ℓ = 𝑖 . □

Note that, for a protocol P, the terms occurring in P★
is a subset of the terms occurring in P. So

for composed protocols ∥𝑖∈L P𝑖 and any protocol-specific label ℓ ∈ L the terms occurring in the

projected protocol ∥𝑖∈L P𝑖 |ℓ is equal to the terms occurring in the protocol Pℓ ∥ P★
1
∥ · · · ∥ P★

ℓ−1
∥

P★
ℓ+1

∥ P★
ℓ+2

∥ · · · . When L = {1, 2} the first condition of Definition 5.20 becomes the requirement

that P1 ∥ P★
2
and P★

1
∥ P2 are S-GSMP disjoint.

Note also that we in condition two need to ensure that the set-operations we are checking have

disjoint sets of variables. The reason is that set-operations occur alpha-renamed in the reachable

constraints, and so we have to consider that here as well.

For protocols we also need to require that their composition is type-flaw resistant. It is not

sufficient to simply require it for the components in isolation; unifiable messages from different

components might break type-flaw resistance otherwise. Note also that type-flaw resistance of a

protocol P implies that the constraints reachable in P are type-flaw resistant, because SMP (A) ⊆
SMP (P) for any constraint A reachable in P and because these constraints consist of instances of

the duals of transactions occurring in P; likewise for GSMP disjointness. Thus if (∥𝑖∈L P𝑖 ,S) is
parallel composable then (A,S) is parallel composable for any constraint A reachable in ∥𝑖∈L P𝑖 .
Condition four is technically not required to establish the compositionality result, but it is

beneficial as it allows for a simpler requirement on leakage than what is given in Theorem 5.10,

namely one for which we do not need to involve prefixes of constraints, as the following illustrates:

Example 5.21. Let S be the set {𝑠} for a ground term 𝑠 that is not a basic public term. Consider

two protocols P and P′
, both consisting of a single transaction: P contains the transaction with
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the transaction strand 1 : send 𝑠 ·★ : send 𝑠 while P′
contains the reversed transaction ★ : send 𝑠 ·

1 : send 𝑠 . The first protocol P does not satisfy condition four of Definition 5.20 because the second

send action is labeled with ★, but the second protocol P′
does. Since transactions are executed

atomically the ordering of the send actions in transactions makes no difference. However, the

constraint 1 : receive 𝑠 ·★ : receive 𝑠 is reachable in P, and has a proper prefix that leaks 𝑠 , namely

1 : receive 𝑠 . This leakage can never occur in an actual run of P since the prefix is not reachable in P.

The prefix is also not reachable in P′
—in fact, no prefix of a reachable constraint in P′

leaks 𝑠 . Thus

it is sufficient—and beneficial—to only require that reachable constraints of parallel composable

protocols do not leak, rather than requiring it for all prefixes of the reachable constraints. □

Note that condition four is not a restriction; since transactions are executed atomically the

ordering of the send actions has no effect on the result of taking a transaction.

Finally, condition five states that each attack constant is supposed to carry within it the label of

the component protocol it occurs in. This is so that we can later express, by using the appropriate

attack constant, that a particular component protocol has an attack. We therefore require that

attack constants share the labels of the actions they occur in. Note that, by well-formedness, attack

constants can only occur in actions of the form send attack𝑖 , and condition five then implies that for

composed protocols attack constants can only occur in actions of the form 𝑖 : send attack𝑖 . While

this condition restricts where attack constants can occur, note that those constants exist solely to

express when an attack has happened and condition five still allows for that.

Example 5.22. Continuing Example 5.8 we now show that Pks,1 ∥ Pks,2 is parallel composable, i.e.,

that it satisfies the conditions of Definition 5.20. We have previously shown type-flaw resistance

and well-formedness for a similar keyserver protocol in Example 3.3 and so we focus on the

remaining conditions here. GSMP disjointness of the composed keyserver protocol was explained in

Example 5.8. Hence the first condition of Definition 5.20 is satisfied. Note that labeledsetops(Pks,1 ∥
Pks,2) consists of instances of labeled terms from the following set:

{1 : (PK0, ring(𝐴0)), 1 : (PK1, revoked(𝐴1, 𝑆1)), 2 : (PK2, seen(𝐴2, 𝑆2)),
★ : (PK3, valid(𝐴3, 𝑆3)),★ : (PK𝑖

4
, begin𝑖 (𝐴𝑖4, 𝑆𝑖4)),★ : (PK𝑖

5
, end𝑖 (𝐴𝑖5, 𝑆𝑖5)) | 𝑖 ∈ {1, 2}}

For all pairs ℓ : (𝑡, 𝑠), ℓ ′ : (𝑡 ′, 𝑠′) in this set we have that ℓ = ℓ ′ if (𝑡, 𝑠) and (𝑡 ′, 𝑠′) are unifiable

(note that we do not need to apply variable-renaming because each pair of distinct elements in the

set already have disjoint variables). Hence condition two is satisfied. Finally, the fourth and fifth

conditions are satisfied since for each 𝑖 ∈ {1, 2} the constant attack𝑖 only occurs in Pks,𝑖 and each

transaction with send actions only has the first of those labeled with ★. □

Two useful properties of parallel composable protocols are that their reachable constraints are

also parallel composable and that attack constants actually denote that attacks have happened in

those component protocols that share their labels:

Lemma 5.23. If (P,S) is parallel composable then all constraints reachable in P are parallel
composable.

Lemma 5.24. If (P,S) is parallel composable, A is reachable in P, and if I(ik(A)) ⊢ attackℓ ,
then the action ℓ : receive attackℓ occurs in A (and therefore also occurs in A|ℓ ).

Coming back to the problem of leakage on the protocol-level we now define a notion of leakage

for protocols that does not involve prefixes of constraints, but only those constraints that are

reachable in the given protocol:

Definition 5.25 (Well-typed leakage-free protocol). Let S be a set of ground terms and let P
be a protocol. Then P is well-typed leakage-free iff for all reachable constraints A in P of the
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form A = A′ · 𝑖 : receive 𝑡1, . . . , 𝑡𝑛 , there does not exist a well-typed interpretation I𝜏 and a

𝑠 ∈ S \ declassified (A,I𝜏 ) such that I𝜏 |= A · send 𝑠 .

This is compatible with the notion of leakage on the constraint-level, as the following two

lemmata show:

Lemma 5.26. Let (∥𝑖∈L P𝑖 ,S) be parallel composable, and let P be either the composed protocol
∥𝑖∈L P𝑖 or a projection ∥𝑖∈L P𝑖 |ℓ for a ℓ ∈ L. Let furthermore A be reachable in P, A′ be a prefix of
A, I an interpretation, and let 𝑠 ∈ S \ declassified (A′,I), such that I |= A′ · send 𝑠 . Then there
exists a prefix B of A with the following properties:

• B is reachable in P.
• B ends in a receive action.
• declassified (B,I) = declassified (A′,I).
• I |= B · send 𝑠 .

Lemma 5.27. Let P = ∥𝑖∈L P𝑖 be a composed protocol, S be a set of shared terms, and let (P,S)
be parallel composable. If all projections P|ℓ , ℓ ∈ L, are well-typed leakage free then no prefix of a
constraint reachable in P leaks a secret from S under any well-typed model.

As a consequence of Theorem 5.10 and Lemma 5.27 we have that any protocol P𝑘 , where
𝑘 ∈ L, can be safely composed with any number of other protocols ∥𝑖∈L\{𝑘 } P𝑖 provided that

P𝑘 ∥ (∥𝑖∈L\{𝑘 } P★
𝑖 ) = ∥𝑖∈L P𝑖 |𝑘 is secure and that none of the projected protocols ∥𝑖∈L P𝑖 |ℓ , where

ℓ ∈ L, leak a secret:

Theorem 5.28. Let P = ∥𝑖∈L P𝑖 be a composed protocol and let 𝑘 ∈ L. If (P,S) is parallel
composable, P|𝑘 is well-typed secure in isolation, and if for all ℓ ∈ L the protocol P|ℓ is well-typed
leakage-free, then all goals of P𝑘 hold in P (even in the untyped model).

Note that the only requirement on the projected protocols ∥𝑖∈L P𝑖 |ℓ is that they do not leak

any shared terms (before declassifying), but we do not require that they are completely secure.

This means that, if we have a secure protocol P1, then the goals of P1 continue to hold in any

composition with another protocol P2 that satisfies the composability conditions and does not leak

shared terms, even if P2 has some attacks. This is in particular interesting if we run a protocol P1

in composition with numerous other protocols that are too complex to verify in all detail.

As a corollary we have that the composition of composable and secure protocols is secure:

Corollary 5.29. If (P1 ∥ · · · ∥ P𝑁 ,S) is parallel composable and if for all 𝑖 ∈ {1, . . . , 𝑁 } the
protocol P★

1
∥ · · · ∥ P★

𝑖−1
∥ P𝑖 ∥ P★

𝑖+1
∥ · · · ∥ P★

𝑁
is well-typed secure in isolation and well-typed

leakage-free then the composition P1 ∥ · · · ∥ P𝑁 is also secure (even in the untyped model).

5.7 Discussion & Limitations
Our result requires that the messages shared between protocols are either public or initially secret

(but can be declassified at a later point). Our result allows both keys and even more complex

messages to be shared between protocols, and these messages can even be declassified dynamically.

Additionally, we allow for sharing of sets. This is already much more general than the existing

works, but of course there are requirements on the shared sets that are necessary for the composition

to work, e.g., the protocol designer has to provide the right interface to the sets and the component

protocols must adhere to this interface.

One limitation of our result lies in the supported primitives. With Anawe can model the standard

decryption operations, which allows us to model and analyze a wide range of protocols. Still, there

are also relevant and important protocols that we cannot model: since we are working in the free
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algebra, terms are equal if and only if they are syntactically equal, and so we cannot directly model,

for instance, that some operators are commutative, which is needed for Diffie-Hellman or blind

signatures. We are currently working on a result that supports algebraic properties; this requires

generalizations at every level of the Isabelle formalization, e.g., from terms to equivalence classes of
terms.

6 CHECKING THE CONDITIONS AUTOMATICALLY
While the results established in the previous section comprise our main compositionality theorems,

actually applying them in practice requires a bit more work: GSMP disjointness and type-flaw

resistance, in particular, are non-trivial to prove. In this section we show how these syntactic checks

can be fully automated. As with all the other theory in this paper, everything has been formalized

in Isabelle/HOL and integrated with PSPSP [25]. But note that the following is not limited by the

restrictions of the automated verification approach of PSPSP: we can still model protocols and

check the compositionality conditions even if we cannot automatically verify their security goals.

6.1 Finite SMP Representations
We first tackle the issue of automatically checking type-flaw resistance. The only difficulty with

checking type-flaw resistance of a protocol P (and of transactions) is that the set of its sub-message

patterns, SMP (trms(P) ∪ setops(P)), is usually infinite. One solution [27] is to instead compute

a finite set that represents, as well-typed instances, all the sub-message patterns of P, and then

substitute this set for the set of sub-message patterns when checking type-flaw resistance. To that

end we first define what it means for a term to be a well-typed instance:

Definition 6.1 (Well-typed term instance). A term 𝑡 is a well-typed instance of 𝑠 iff 𝑠 matches 𝑡 and

Γ(𝑡) = Γ(𝑠) (i.e., there exists a well-typed substitution 𝜃 such that 𝑡 = 𝜃 (𝑠)). Moreover, if 𝑁 and𝑀

are sets of terms then 𝑁 is a well-typed-instance subset of 𝑀 iff for all 𝑡 ∈ 𝑁 there exists an 𝑠 ∈ 𝑀
such that 𝑡 is a well-typed instance of 𝑠 . □

One issue with finding a finite set to represent the sub-message patterns of a protocol P is that

the set of sub-message patterns is closed under both subterms and well-typed instances. Since there

may be variables with composed type in P, all proper subterms of well-typed instances of those

variables occur in SMP (P) as well. To actually cover these terms we need to ensure that there exist

instances of the composed-typed variables that are “as general as possible”, and for that reason we

define the following notion of a set being closed under such instances:

Definition 6.2 (Composed-type-instance closed). A set of terms 𝑀 is composed-type-instance

closed iff for all 𝑥 ∈ fv(𝑀) with a composed type of the form Γ(𝑥) = 𝑓 (𝜏1, . . . , 𝜏𝑛) there exists a
term 𝑓 (𝑦1, . . . , 𝑦𝑛) ∈ 𝑀 where the variables 𝑦1 . . . , 𝑦𝑛 are distinct and where each 𝑦𝑖 has type 𝜏𝑖 . □

Now we can define what it means for a finite set 𝑀 to represent the sub-message patterns of

a protocol. Since the SMP set is closed under both subterms and analysis keys we need to, in

particular, require that those terms are covered by the set 𝑀 . In addition, the set needs to be

composed-type-instance closed. We call such sets finite SMP representations:

Definition 6.3 (Finite SMP representations). A finite set of terms𝑀 is called an SMP representation
iff the following conditions are satisfied:

(1) subterms(𝑀) and {𝑘 ∈ 𝐾 | Ana(𝑡) = (𝐾, 𝑅), 𝑡 ∈ 𝑀} are well-typed-instance subsets of𝑀 .

(2) 𝑀 is composed-type-instance closed.

Furthermore,𝑀 is called an SMP representation for the protocol P iff𝑀 is an SMP representation

and trms(P) ∪ setops(P) is a well-typed-instance subset of𝑀 . □
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The following lemma states that such finite SMP representations are indeed sufficient for checking

type-flaw resistance:

Lemma 6.4 (Computable type-flaw resistance of sets). Let𝑀 be a finite set of terms and let 𝛿
be a well-typed variable-renaming such that fv(𝑀) ∩ fv(𝛿 (𝑀)) = ∅. Then𝑀 is type-flaw resistant if
the following conditions hold:
(1) 𝑀 is a finite SMP representation.
(2) For all 𝑡, 𝑠 ∈ 𝑀 \ V , if 𝑡 and 𝛿 (𝑠) are unifiable then Γ(𝑡) = Γ(𝑠).
A simple algorithm for computing SMP representation sets is to compute the following inductively

defined set whose rules mimic those for the SMP set but restricts instantiation to only those terms

that are needed to ensure that composed-typed variables are sufficiently instantiated:

Definition 6.5 (Computing SMP representation sets). Let𝑀 be a finite set of terms and let 𝔳𝜏
𝑖
, for

any 𝑖 , be a distinct variable of type 𝜏 that does not occur in𝑀 (i.e., 𝔳𝜏
𝑖
≠ 𝔳𝜏

𝑗
whenever 𝑖 ≠ 𝑗 ). Then

SMP0 (𝑀) is defined as the least set closed under the following rules:

(1) 𝑀 ⊆ SMP0 (𝑀).
(2) If 𝑡 ∈ SMP0 (𝑀) and 𝑠 ⊑ 𝑡 then 𝑠 ∈ SMP0 (𝑀).
(3) If 𝑡 ∈ SMP0 (𝑀) and Ana(𝑡) = (𝐾, 𝑅) then 𝐾 ⊆ SMP0 (𝑀).
(4) If 𝑥 ∈ SMP0 (𝑀) ∩ V and Γ(𝑥) = 𝑓 (𝜏1, . . . , 𝜏𝑛), 𝑛 > 0, then 𝑓 (𝔳𝜏1

1
, . . . , 𝔳

𝜏𝑛
𝑛 ) ∈ SMP0 (𝑀). □

Note that SMP0 is closed under analysis keys and so SMP0 (𝑀) is not guaranteed to be finite. For

instance, the rule Ana(𝑓 (𝑥)) = ({𝑓 (𝑓 (𝑥))}, 𝑅) would technically lead to an infinite SMP0 (𝑀) set if
a term of the form 𝑓 (𝑥) occurs in𝑀 . Besides such artificial examples, however, the set will be finite.

6.2 Automating the Parallel Composability Conditions
With type-flaw resistance solved we can now consider the remaining conditions that are needed for

parallel compositionality. Here there are two issues that need to be solved. First, the set of shared

terms is—like the set of sub-message patterns—an infinite set in general, and we again want to

instead consider a symbolic finite set that represents the set of shared terms. For such a finite set 𝑆

a reasonable choice is to consider it a representation of the set of shared terms consisting of all the

well-typed ground instances of terms in 𝑆 that are not basic public terms:

Definition 6.6 (Finite shared terms representation). Let 𝑆 be a finite set of symbolic terms and let 𝑓

be the function defined as 𝑓 (𝑡) ≡ {𝛿 (𝑡) | fv(𝛿 (𝑡)) = ∅, Γ(𝛿 (𝑡)) = Γ(𝑡)} for all terms 𝑡 . Then 𝑆 is a

finite shared terms representation of the set S𝑆 defined as S𝑆 ≡ {𝑡 ∈ 𝑓 (𝑠) | 𝑠 ∈ 𝑆} \ {𝑡 | ∅ ⊢ 𝑡}. □

Second, we need to finitely represent GSMP sets as well. Fortunately, we can here directly reuse

the notion of finite SMP representations since GSMP sets consist, after all, of ground SMP terms. To

automate the GSMP disjointness condition we then need to define a variant of GSMP disjointness

that works on finite SMP representations:

Definition 6.7 (Computable GSMP disjointness). Let 𝑆 be a finite shared terms representation of

S𝑆 , let𝑀1 and𝑀2 be two sets of terms, and let P1 and P2 be two protocols. Then P1 and P2 satisfy

the computable GSMP disjointness conditions w.r.t. 𝑆 ,𝑀1, and𝑀2 iff the following conditions hold:

(1) fv(𝑀1) ∩ fv(𝑀2) = ∅, and
(2) 𝑀1 is a finite SMP representation for P1 and𝑀2 is a finite SMP representation for P2, and

(3) for all 𝑡1 ∈ 𝑀1 and 𝑡2 ∈ 𝑀2, if 𝑡1 and 𝑡2 are of the same type and unifiable then either ∅ ⊢ 𝑡1
and ∅ ⊢ 𝑡2 or there exists a 𝑠 ∈ 𝑆 such that 𝑡1 and 𝑡2 are well-typed term instances of 𝑠 . □

Note that determining if a term is a basic public term, i.e. if ∅ ⊢ 𝑡 , is easy: since the intruder
knowledge is here empty, and since nothing new can be derived by decomposing something that has
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just been composed, deriving 𝑡 can be accomplished solely by repeatedly applying the (Compose)
rule of Definition 2.1. In other words, ∅ ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑛) iff 𝑓 ∈ Σ𝑛pub and ∅ ⊢ 𝑡𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}.
Finally, we can now prove the following lemma that gives sufficient conditions for checking

GSMP disjointness:

Lemma 6.8 (Automated GSMP disjointness). Let 𝑆 be a finite shared terms representation of
S𝑆 , let𝑀1 and𝑀2 be two sets of terms, and let P1 and P2 be two protocols. If P1 and P2 satisfy the
computable GSMP disjointness conditions w.r.t. 𝑆 ,𝑀1, and𝑀2, then P1 and P2 are S𝑆 -GSMP disjoint.

The remaining parallel compositionality conditions are trivially automated, and so we have the

following lemma that gives sufficient computable conditions for parallel compositionality to hold:

Lemma 6.9 (Sufficient parallel compositionality conditions). Let 𝑆 be a finite shared terms
representation of S𝑆 . Let P be a composed protocol and let 𝐿 ⊆ L, |𝐿 | ≥ 2, be the set of protocol-specific
labels occurring in P. For each ℓ ∈ 𝐿 let𝑀ℓ be a finite set of terms. If
(1) for all ℓ, ℓ ′ ∈ 𝐿, if ℓ ≠ ℓ ′ then P|ℓ and P|ℓ ′ satisfy the sufficient GSMP disjointness conditions

w.r.t. 𝑆 ,𝑀ℓ , and𝑀ℓ ′ , and
(2) conditions (2), (3), (4), and (5) of Definition 5.20 hold for P,

then (P,S𝑆 ) is parallel composable.

7 OTHER FORMS OF COMPOSITION
There have been several works that consider other forms of composition, e.g., [11] for sequential

composition, i.e., where one protocol, say, exchanges a session key, and another protocol uses that

key. The generality of our result—that we can compose protocols that share sets—allows to simply

express this as a special case of parallel composition (with shared sets): one protocol performs a key

exchange and puts the key into a set (on the sender and receiver side), the other protocol obtains

the key from there. The particular advantage is that we can support, in fact, arbitrary interactions

of the protocols, not necessarily strictly sequential ones, without having to prove a new result for

that form of composition.

As an example, we have modeled a simplified version of TLS 1.2 for an unauthenticated user

negotiating shared keys with a web server. (TLS 1.3 requires algebraic properties, support for which

we are currently working on.) Moreover, we have modeled the SAML Single-Sign On protocol, that

assumes two unilaterally authenticated channels like TLS provides them: 1. between a user and an

identity provider on which the user authenticates themselves using a password, 2. between the

user and a relying party on which the user forwards a credential from the identity provider. As

an interface between the two protocols we use shared sets where TLS delivers negotiated keys,

and SSO picks them up. We have checked in Isabelle that they satisfy the requirements of our

compositionality result.

The specifications are too long to present here in full; it is found in the additional material [29].

Instead, we give a simpler example of a key exchange with unilateral authentication (a trivialized

TLS if you will) and compose it with a simple login. This still allows for illustrating the essentials

of sequential-style composition.

7.1 A Sequential Composition Example
The first protocol is shown in Fig. 3. Let the set of shared terms S consist of all private constants of

type skey (since they will represent shared keys) and the private keys inv(pk(𝐴)) of every agent

𝐴. We also consider pk as a public function here, so that all public keys are public terms. We

will also consider passwords, pw, but they are not part of S since they only occur in the second

protocol. The initialKnowledge rule is releasing the private key of every dishonest agent 𝐵 and,
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initialKnowledge(𝐵 : dis)
★ send inv(pk(𝐵) ) .
clientHello(𝐴 : hon, 𝐵 : hon)

new 𝐾 : skey
★ insert 𝐾 clientSessionKeys(𝐴, 𝐵)

send crypt(pk(𝐵), newSession(𝐴, 𝐵,𝐾 ) ) .
serverRcv(𝐴 : agent, 𝐵 : hon, 𝐾 : skey)

receive crypt(pk(𝐵), newSession(𝐴, 𝐵,𝐾 ) )
★ insert 𝐾 serverSessionKeysUnauth(𝐵) .
authGoal(𝐴, 𝐵 : hon, 𝐵′ : agent, 𝐾 : skey)
★ 𝐾 in clientSessionKeys(𝐴, 𝐵)
★ 𝐾 in serverSessionKeysUnauth(𝐵′ )
★ 𝐵 ̸� 𝐵′

attack.

intruderGen( )
new 𝐾 : skey

★ insert 𝐾 dishonest
★ send 𝐾.
clientHelloD(𝐴 : hon, 𝐵 : dis)

new 𝐾 : skey
★ insert 𝐾 clientSessionKeys(𝐴, 𝐵)
★ send 𝐾

send crypt(pk(𝐵), newSession(𝐴, 𝐵,𝐾 ) ) .
secrecyGoal(𝐴 : hon, 𝐵 : hon, 𝐾 : skey)

receive 𝐾
★ 𝐾 in clientSessionKeys(𝐴, 𝐵)

attack.

Fig. 3. A key-exchange protocol without client authentication

in the login protocol, every password that 𝐵 has with an honest agent 𝐴. The rule intruderGen
allows the intruder to create fresh keys and insert them into a special set dishonest that contains
all intruder-generated keys.

Next, the rule clientHello defines how an honest sender 𝐴 can start the protocol with an honest

𝐵: 𝐴 generates a fresh key 𝐾 and inserts it into its clientSessionKeys set, and this step is labeled ★

as we use this set as an interface to the subsequent protocol. Finally, 𝐴 sends a message encrypted

with the public key of 𝐵 and containing 𝐾 under a format newSession. The rule clientHelloD is the

same for the case that 𝐵 is dishonest. The difference to the previous rule is only that 𝐾 is released

here. Note that one could have unified this rule with the previous clientHello by simply setting

𝐵 : agent; the intruder can obtain the 𝐾 from the encrypted message since they have inv(pk(𝐵)) for
every dishonest 𝐵. However, the ★-labeled step send 𝐾 means 𝐾 is explicitly declassified; without

this, the protocol would actually be leaking a secret (since all keys are in S).
Note that these rules do not authenticate 𝐴, but intuitively in some sense 𝐵 is authenticated,

because only the intended recipient can read the key generated by 𝐴. This is best observed in the

following rule serverRcv: here an honest server 𝐵 receives a message from any client 𝐴 (honest or

dishonest) and stores it in the set serverSessionKeysUnauth(𝐵). Note that this set is parameterized

only over the name 𝐵, in contrast to its counter-part clientSessionKeys(𝐴, 𝐵) that has both names

as parameters. This is because the server cannot be sure about the identity of 𝐴, and the server

does not even note the name that the sender claims to be. (We could, in fact, omit the sender-name

in the encrypted message without introducing a vulnerability.)

This models an almost trivial key-exchange protocol without client authentication; note it does

not even prevent replay. It is somewhat similar to what old TLS up to version 1.2 did, i.e., the client

generating a (basis for) the symmetric key, and encrypting it with the public key of the server.

We define two goals here: secrecyGoal simply states that the intruder must not obtain the session

key that an honest 𝐴 has generated for an honest 𝐵; note this goal expresses basically 𝐴’s point

of view. That this corresponds also to 𝐵’s view then follows from the authGoal, namely that if an

honest 𝐴 has generated a key for an honest 𝐵, then no other honest agent 𝐵′ ≠ 𝐵 can receive this

key. This is a variant of standard non-injective (i.e., not counting replay as an attack) authentication,

adapted to unilateral authentication.

As protocol to sequentially compose, we consider now the login protocol shown in Fig. 4. It has

the same intruder rules as the key-exchange protocol. The first step of this protocol is sendPW,

where an honest client 𝐴 who wants to log in to the server 𝐵 (who could be honest or dishonest)
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initialKnowledge′ (𝐴 : hon, 𝐵 : dis)
★ send inv(pk(𝐵) )

send pw(𝐵,𝐴) .
sendPW(𝐴 : hon, 𝐵 : agent, 𝐾 : skey)
★ 𝐾 in clientSessionKeys(𝐴, 𝐵)

send scrypt(𝐾, login(𝐴, 𝐵, pw(𝐴, 𝐵) ) ) .
authenticateKey(𝐴 : hon, 𝐵 : hon, 𝐾 : skey)

receive scrypt(𝐾, login(𝐴, 𝐵, pw(𝐴, 𝐵) ) )
★ 𝐾 in serverSessionKeysUnauth(𝐵)
★ 𝐾 in clientSessionKeys(𝐴, 𝐵)
★ delete 𝐾 serverSessionKeysUnauth(𝐵)
★ insert 𝐾 serverSessionKeysAuth(𝐴, 𝐵) .
agreementLogin1(𝐴 : hon, 𝐵 : hon, 𝐾 : skey)

receive scrypt(𝐾, login(𝐴, 𝐵, pw(𝐴, 𝐵) ) )
★ 𝐾 in serverSessionKeysUnauth(𝐵)
★ 𝐾 notin clientSessionKeys(𝐴, 𝐵)

attack.

intruderGen′ ( )
new 𝐾 : skey

★ insert 𝐾 dishonest
★ send 𝐾.
authenticateKeyD(𝐴 : dis, 𝐵 : hon, 𝐾 : skey)

receive scrypt(𝐾, login(𝐴, 𝐵, pw(𝐴, 𝐵) ) )
★ 𝐾 in serverSessionKeysUnauth(𝐵)
★ delete 𝐾 serverSessionKeysUnauth(𝐵)
★ insert 𝐾 serverSessionKeysAuth(𝐴, 𝐵) .
secrecyLogin(𝐴 : hon, 𝐵 : hon, 𝐾 : skey)

receive 𝐾
★ 𝐾 in serverSessionKeysAuth(𝐴, 𝐵)

attack.
agreementLogin2(𝐴 : hon, 𝐵 : hon, 𝐾 : skey)
★ 𝐾 in serverSessionKeysAuth(𝐴, 𝐵)
★ 𝐾 notin clientSessionKeys(𝐴, 𝐵)

attack.

Fig. 4. A login protocol for sequential composition with the key-exchange from Fig. 3.

takes one of the clientSessionKeys(𝐴, 𝐵) (i.e., that were negotiated by the key-exchange protocol)

and encrypts its password pw(𝐴, 𝐵) with it (and structure the message with the format login).
There are several rules that describe how an honest server 𝐵 can receive such a message. First,

authenticateKey checks that there is a key 𝐾 in serverSessionKeysUnauth(𝐵) (i.e., that has been
negotiated previously with somebody). Before this transaction, the key 𝐾 is unauthenticated, i.e., 𝐵

cannot be sure who created 𝐾 (the person claiming to be 𝐴). Decisive for the authentication is that

this message contains the password pw(𝐴, 𝐵) (and, if the protocol works correctly, it is not known
to the intruder unless 𝐴 or 𝐵 is dishonest). The rule authenticateKey is for a particular case only:

that 𝐴 is honest and 𝐾 in clientSessionKeys(𝐴, 𝐵). Recall that clientSessionKeys is actually a set

maintained by 𝐴 (containing the keys 𝐴 has created for use with 𝐵), so the server 𝐵 would not be

able to check this condition. However, observe that in the case 𝐾 notin clientSessionKeys(𝐴, 𝐵) the
rule agreementLogin1 is applicable, i.e., then we would have a violation of authentication, because

𝐵 would be accepting at this point a key 𝐾 as authenticated by 𝐴 while 𝐴 has actually not created

this key for use with 𝐵. Since the case 𝐾 notin clientSessionKeys(𝐴, 𝐵) triggers an attack, it is

without loss of attacks to restrict the authenticateKey rule to the case𝐾 in clientSessionKeys(𝐴, 𝐵),
i.e., that 𝐴 has indeed meant 𝐾 for communication with 𝐵. In this case, 𝐵 moves the key 𝐾 from

serverSessionKeysUnauth(𝐵) to serverSessionKeysAuth(𝐴, 𝐵), i.e., registering the key as authenti-

cated.

The case of 𝐵 receiving the login from a dishonest 𝐴 is modeled by the rule authenticateKeyD.
Here, the server directly registers 𝐾 as authenticated by𝐴. Finally, we have the following additional

goals about keys that end up in the set of authenticated keys between honest𝐴 and 𝐵: secrecyLogin
says they must not be known by an intruder, and agreementLogin2 means that the client 𝐴 indeed

created them for use with 𝐵, i.e., the standard non-injective agreement on the key.

Call 𝑃1 the key-exchange from Fig. 3 and call 𝑃2 the login from Fig. 4. We have verified in Isabelle

with PSPSP [25] for two honest agents and one dishonest agent that 𝑃1 ∥ 𝑃★
2
and 𝑃★

1
∥ 𝑃2 are secure,

i.e., each protocol in parallel with the abstraction of the other is secure. With the composition

framework we have further proved automatically—without any bounds on the number of agents—

that 𝑃1 and 𝑃2 are parallel composable with respect to the set of shared terms consisting of the

private keys, the passwords, and the symmetric keys. Further, since 𝑃1 and 𝑃2 do not leak we have
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that 𝑃1 ∥ 𝑃2 is secure, which models in fact a sequential composition where 𝑃1 establishes shared

keys and 𝑃2 uses them.

Observe that the key-exchange protocol 𝑃1 can in fact be replaced by any key-exchange protocol

𝑃 ′
1
that induces the same abstraction 𝑃★

1
, and similar for the login 𝑃2 (and of course the parallel

composability conditions have to hold, but that is essentially that the message formats of the

protocols do not interfere). Let us thus review these interface 𝑃★
1
and 𝑃★

2
again more closely, i.e.,

restricting the protocols to ★-labeled steps.

𝑃★
1
says that the private key and passwords of the intruder are declassified and that the in-

truder can generate new keys that are inserted into the set dishonest (rules initialKnowledge and
intruderGen). Moreover, any agent can create fresh keys and insert them into clientSessionKeys(𝐴, 𝐵),
and if 𝐵 is dishonest, these keys are declassified and given to the intruder (rules clientHello and
clientHelloD). Since the protocol must not leak shared terms, it is an implicit consequence of this

specification that all other keys must thus be kept secret. Moreover, an honest 𝐵 will accept arbitrary

keys into serverSessionKeysUnauth (rule serverRcv). (The attack rules secrecyGoal and authGoal
do not contribute to 𝑃★

1
, since their consequence attack is not labeled ★.)

In 𝑃★
2
, sendPW and the attack rules are not contributing for the same reason. The two rules

authenticateKey and authenticateKeyD in the abstracted versions now say that any unauthenti-

cated key 𝐾 at server 𝐵 can be moved to the authenticated keys for an agent 𝐴, if 𝐴 is honest and

indeed considers 𝐾 as a session key with 𝐵, or if 𝐴 is dishonest.

Both protocols’ interfaces thus completely abstract from the way this is implemented: they only

talk about asymmetric keys and passwords only as far as what the intruder initially knows.
3

In the additional material [29] you can find an example that goes beyond the simple sequential

composition by adding another protocol that updates keys for the above composition.

7.2 Vertical Composition
In [19] we have considered vertical compositionality, where vertical means that we have one

“high-level” application protocol that uses a “low-level” channel protocol for tasks like secure

transport, e.g., a banking service running over TLS. The vertical composition paper, in fact, is

building on the compositionality result of this paper: it uses the parallel composition as one step in

its construction, where sets act as an interface between high- and low-level protocols, similar to

what we have done in this section. The particular difficulty is that, due to the vertical nature of this

composition, the low-level protocol embeds the messages of the high-level protocol, and thus the

messages of the high-level protocol need to be part of S to satisfy our composition requirements.

[19] therefore extends the typing system to allow for an abstract payload data type (so that one

can use an arbitrary high-level protocol), and then shows in several transformation steps that it is

sufficient to verify the low-level protocol with nonces as payloads, though one has to allow for

both fresh and repeated nonces, as well as for both secret and public nonces to cover all cases of

payloads in an abstract way.

8 CONCLUSION AND RELATEDWORK
Our composition theorem for parallel composition is the latest in a sequence of parallel composition

results, each of them pushing the boundaries of the class of protocols that can be composed [2–

4, 12, 14, 15, 21–23]. The first results simply require completely disjoint encryptions; subsequent

results allowed the sharing of long-term keys, provided that wherever the common keys are used,

the content messages of the different protocols are distinguished, for instance by tagging. Other

3
One can easily improve the key-exchange so that it satisfies injective agreement as well (i.e., old keys are not accepted by a

server a second time). The keyserver example from the previous section achieves this.
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aspects are which primitives are supported as well as what forms of negative conditions, e.g., to

support as goals the full geometric fragment [2], and under which conditions privacy properties

can be preserved under protocol composition [4].

Our result lifts the common requirement that the component protocols only share a fixed set

of long-term public and private constants. Our result allows for stateful protocols that maintain

databases (such as a key server) and the databases may even be shared between these protocols. This

includes the possibility to declassify long-term secrets, e.g., to verify that a protocol is even secure

if the intruder learns all old private keys. Both databases, shared databases, and declassification are

considerable generalizations over the existing results.

Like [2] our result links the parallel compositionality result with a typing result such as the

result of [27], i.e., essentially requiring that all messages of different meaning have a distinguishable

form. Under this requirement it is sound to restrict the intruder model to using only well-typed

messages which greatly simplifies many related problems. While one may argue that such a typing

result is not strictly necessary for composition, we believe it is good practice and also fits well

with disjointness requirements of parallel composition. Moreover, many existing protocols already

satisfy our typing requirement, since, unlike tagging schemes, this does not require a modification

of a protocol as long as there is some way to distinguish messages of different meaning.

There are other types of compositionality results for sequential and vertical composition, where

the protocols under composition do build upon each other, e.g., one protocol establishes a key that

is then subsequently used by another protocol [3, 11, 15, 18–20, 38]. This requires that one protocol

satisfies certain properties (e.g. that the key exchange is authenticated and secret) for the other

protocol to rely on.

As the example of sequential composition in Sec. 7 shows the support of shared databases in a

compositionality result opens a whole alley of applications: we can use the databases as an interface

between components of a system. Here, the system thus work in parallel but not independent of

each other. In all examples in this paper, each database has been modeled as belonging to one

particular agent. Thus, when using databases as an interface between components, they are in fact

not communications between different agents (via shared memory), but communications through

an interface between components belonging to a single agent. Each of these components, however,

can communicate over the normal network with components at other agents. Hence, this allows

for integrating into the security question more traditional compositionality aspects from software,

that are not concerned with a notion of attackers [7, 8, 16, 17, 36].

So far, compositionality for security protocols results are almost exclusively “paper-and-pencil”

proofs. The proof arguments are often quite subtle, e.g., given an attack where the intruder learned

a nonce from one protocol and uses it in another protocol, one has to prove that the attack does

not rely on this, but would similarly work for distinct nonces. It is not uncommon that parts of

such proofs are a bit sketchy with the danger of overlooking some subtle problems as for instance

described in [26]. For this reason, we have formalized the compositionality result in the proof

assistant Isabelle/HOL [39], extending the formalization of [24, 26, 27], giving the extremely high

correctness guarantee of machine-checked proofs. To our knowledge, this work is the first such

formalization within the symbolic model of a compositionality result in a proof assistant, with the

notable exception of a study in Isabelle/HOL of compositional reasoning on concrete protocols [10].

Besides the symbolic model, there are several works about compositionality in the cryptographic

research [6, 9, 33, 34]. Here, one describes components both in terms of a real system and an

ideal functionality and in the composition one basically proves that the real system is indeed

indistinguishable for an attacker from the ideal system. There are first works [1] towards formalizing

this step in a theorem prover. Then in proving the high-level system one can instead rely on the

ideal functionality of the low-level components. In this way one can work in a security proof

, Vol. 1, No. 1, Article . Publication date: December 2022.



34 Andreas V. Hess, Sebastian A. Mödersheim, and Achim D. Brucker

upwards in several layers from a low cryptographic layer to the high application layer. There is a

similarity in the real vs. ideal paradigm and our paradigm of a protocol P and its abstraction P★

and the fact that in a compositionality proof we can rely on P★
. However, the setup is substantially

different: P★
represents the declassifications and changes that the protocol P can make to databases

shared with another protocol P′
and the compositionality proof then shows that P′

is secure when

the environment only makes declassifications and changes contained in P★
(and vice-versa for P

and P′★
). While an ideal system may abstract communicated messages, hiding the cryptographic

implementation in the abstract version, our approach rather has to give verbatim the interaction

that happens. This means also that we have the concept of shared messages and declassification

when a message is available to the intruder. Thus, the cryptographic compositionality frameworks

are closer to vertical composition in the sense of [19]. While the cryptographic compositionality

frameworks perform proofs on the cryptographic level, our work is on a symbolic (term-algebra)

level. This makes many arguments easier for us and allows us to argue on a transition system level

where the interaction with shared databases can be expressed at least much easier.

This has indeed another advantage of the present approach: our result is closely linked to

automated methods for protocol verification, in particular our PSPSP tool [25] that allows for

automated verification of a large class of stateful protocols. This means that not only can a complex

system—composed of several component protocols—be proved correct entirely in Isabelle, but also

that this proof can be obtained automatically.
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