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1 Introduction

Today, essentially two validation techniques for software are used: software verification
and software testing. Whereas verification is rarely used in “real” software develop-
ment, testing is widely-used, but normally in an ad-hoc manner. Therefore, the attitude
towards testing has been predominantly negative in the formal methods community,
following what we call Djikstra’s verdict [19, p.6]:

“Program testing can be used to show the presence of bugs, but never to
show their absence!”

More recently, three research areas, albeit driven by different motivations, converge and
result in a renewed interest in testing techniques:

Abstraction Techniques: model-checking raised interest in techniques to abstract in-
finite to finite models. Provided that the abstraction has been proven sound,
testing may be sufficient for establishing correctness [11, [18].

Systematic Testing: the discussion over test adequacy criteria [28], i. e. criteria solving
the question “when did we test enough to meet a given test hypothesis,” led to
more systematic approaches for partitioning the space of possible test data and
the choice of representatives. New systematic testing methods and abstraction
techniques can be found in [22] 20].

Specification Animation: constructing counter-examples has raised interest also in
the theorem proving community, since combined with animations of evaluations,
they may help to find modeling errors early and to increase the overall productiv-
ity [10) 23, [17].

The first two areas are motivated by the question “are we building the program right?”
the latter is focused on the question “are we specifying the right program?” While
the first area shows that Dijkstra’s Verdict is no longer true under all circumstances,
the latter area shows, that it simply does not apply in practically important situations.
In particular, if a formal model of the environment of a software system (e.g. based
among others on the operation system, middleware or external libraries) must be reverse-
engineered, testing (“experimenting”) is without alternative (see [14]).

Following standard terminology [28], our approach is a specification-based unit test.
In general, a test procedure for such an approach can be divided into:

Test Case Generation: for each operation of the pre/postcondition relation is divided
into sub-relations. It assumes that all members of a sub-relation lead to a similar
behavior of the implementation.



Test Data Generation: (also: Test Data Selection) for each test case (at least) one
representative is chosen so that coverage of all test cases is achieved. From the
resulting test data, test input data processable by the implementation is extracted.

Test Execution: the implementation is run with the selected test input data in order
to determine the test output data.

Test Result Verification: the pair of input/output data is checked against the spec-
ification of the test case.

The development of HOL-TestGen has been inspired by [21], which follows the line of
specification animation works. In contrast, we see our contribution in the development
of techniques mostly on the first and to a minor extent on the second phase. Building on
QuickCheck [17], the work presented in [21] performs essentially random test, potentially
improved by hand-programmed external test data generators. Nevertheless, this work
also inspired the development of a random testing tool for Isabelle [10]. It is well-known
that random test can be ineffective in many cases; in particular, if preconditions of a
program based on recursive predicates like “input tree must be balanced” or “input
must be a typable abstract syntax tree” rule out most of randomly generated data.
HOL-TestGen exploit these predicates and other specification data in order to produce
adequate data. As a particular feature, the automated deduction-based process can log
the underlying test hypothesis made during the test; provided that the test hypothesis
are valid for the program and provided the program passes the test successfully, the
program must guarantee correctness with respect to the test specification, see [13] for
details.



2 Preliminary Notes on Isabelle/HOL

2.1 Higher-order logic — HOL

Higher-order logic(HOL) [16, [9] is a classical logic with equality enriched by total poly-
morphi(ﬂ higher-order functions. It is more expressive than first-order logic, since e. g.
induction schemes can be expressed inside the logic. Pragmatically, HOL can be viewed
as a combination of a typed functional programming language like Standard ML (SML)
or Haskell extended by logical quantifiers. Thus, it often allows a very natural way of
specification.

2.2 Isabelle

Isabelle [24] 2] is a generic theorem prover. New object logic’s can be introduced by
specifying their syntax and inference rules. Among other logics, Isabelle supports first
order logic (constructive and classical), Zermelo-Frénkel set theory and HOL, which we
choose as the basis for the development of HOL-TestGen.

Isabelle consists of a logical engine encapsulated in an abstract data type thm in
Standard ML; any thm object has been constructed by trusted elementary rules in
the kernel. Thus Isabelle supports user-programmable extensions in a logically safe
way. A number of generic proof procedures (tactics) have been developed; namely a
simplifier based on higher-order rewriting and proof-search procedures based on higher-
order resolution.

We use the possibility to build on top of the logical core engine own programs per-
forming symbolic computations over formulae in a logically safe (conservative) way: this
is what HOL-TestGen technically is.

Lto be more specific: parametric polymorphism






3 Installation

3.1 Prerequisites

HOL-TestGen is build on top of Isabelle/HOL, version 2008, thus you need a working
installation of Isabelle 2008, either based on SML/NJ [7] or Poly/ML [5] to use HOL-
TestGen. To install Isabelle, follow the instructions on the Isabelle web-site:

http://isabelle.in.tum.de/download.html
We strongly recommend also to install the generic proof assistant front-end Proof Gen-

eral [6].

3.2 Installing HOL-TestGen

3.2.1 Installation from Source

In the following we assume that you have a running Isabelle 2008 environment includ-
ing the Proof General based front-end. The installation of HOL-TestGen requires the
following steps:

1. Unpack the HOL-TestGen distribution, e. g.:
tar zxvf hol-testgen-1.4.0.tar.gz

This will create a directory hol-testgen-1.4.0 containing the HOL-TestGen dis-
tribution.

2. Check the settings in the configuration file hol-testgen-1.4.0/make.config. If
you can use the isatool tool from Isabelle on the command line, the default
settings should work.

3. Change into the src directory
cd hol-testgen-1.4.0/src
and build the HOL-TestGen heap image for Isabelle by calling

isatool make


http://isabelle.in.tum.de/download.html

3.2.2 Using Debian Packages

Installing HOL-TestGen on an Debian GNU/Linux on a i386 architecture should be
straight forward. Just add the IsaMorph apt-repostory to the sources of your package
manager, e. g.by adding the following lines

# IsaMorph repository
deb-src http://projects.brucker.ch/debian/rep stable main
deb http://projects.brucker.ch/debian/rep stable main

to /etc/apt/sources.list file. Please replace stable by the distribution you are using
(we provide packages for all three flavours, i.e., stable, testing or unstable. After
that, update your package list, i.e., by executing

aptitude update

Now install a complete Isabelle setup by executing

aptitude install x-symbol proofgeneral-misc isabelle isabelle-thy-hol
and HOL-TestGen by executing

aptitude install hol-testgen hol-testgen-doc

This should give you a running installation of Isabelle (based on Poly /ML), Proof General
and last but no least, HOL-TestGen.

3.3 Starting HOL-TestGen
HOL-TestGen can now be started using the Isabelle command:
Isabelle -L HOL-TestGen

As HOL-TestGen provides new top-level commands, the -L HOL-TestGen is manda-
tory. After a few seconds you should see a Emacs window similar to the one shown in

igure J.
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File Edit Options Buffers Tools |Index |Isabelle Proof-General X-Symbol

ing normal

Figure 3.1: A HOL-TestGen session Using the Isar Interface of Isabelle
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4 Using HOL-TestGen

4.1 HOL-TestGen: An Overview

HOL-TestGen allows one to automate the interactive development of test cases, refine
them to concrete test data, and generate a test script that can be used for test execution
and test result verification. The test case generation an test data generation (selection) is
done in an Isar-based [27] environment (see for details). The Test executable
(and the generated test script) can be build with any SML-system.

4.2 Test Case and Test Data Generation

In this section we give a brief overview of HOL-TestGen related extension of the Isar [27]
proof language. We also use a presentation similar to the one in the Isar Reference
Manual [27], e. g. “missing” non-terminals of our syntax diagrams are defined in [27]. We
introduce the HOL-TestGen syntax by a (very small) running example: assume we want
to test a functions that computes the maximum of two integers.

Starting your own theory for testing: For using HOL-TestGen you have to build
your Isabelle theories (i. e.test specifications) on top of the theory Testing instead

of Main. A sample theory is shown in

Defining a test specification: Test specifications are defined similar to theorems in
Isabelle, e. g.,

test spec "prog a b = max a b”
would be the test specification for testing a a simple program computing the max-

imum value of two integers. The syntax of the keyword test_spec : theory —
proof (prove) is given by:

»— test_spec (goal) have (goal) —
L (locale) JU (longgoal) J show

hence
thus

<90al>:*: ”"AI;E?TOPS> —
and

(longgoal) ::= » T

7 shows — (goal) —————

(thmdecl) JL (contextelem)

13



(test speciﬁcation)% HOL-TestGen

| test cases |

y

| test data |

Isabelle/HOL

@rogram under test—— | test script |

| test harness | Test Trace

e
test executable SML-system | (Test Result)

____________________________ 1

Figure 4.1: Overview of the system architecture of HOL-TestGen

theory max_ test = Testing:

test spec "proga b = max a b"
apply(gen_test_cases 1 3 "prog” simp: max_ def)
store test thm "max_test”

gen test data "max_test”

thm max_test.test data

gen test script "test max.sm
"myMax.max"

max_ test” " prog”

end

Table 4.1: A simple Testing Theory

14



Please look into the Isar Reference Manual [27] for the remaining details, e.g.a
description of (contextelem).

Generating symbolic test cases: Now, abstract test cases for our test specification
can (automatically) generated, e. g.by issuing

apply(gen_test cases "prog” simp: max_ def)

The gen_test_ cases : method tactic allows a one to control the test case gener-
ation in a fine-granular manner:

»— gen_test_cases (progname)
L (depth) — (breadth) J L (clamsimpmod) J

Where (depth) is a natural number describing the depth of the generated test cases
and (breadth) is a natural number describing their breadth. Roughly speaking, the
(depth) controls the term size in data separation lemmas in order to establish a
regularity hypothesis (see [13] for details), while the (breadth) controls the number
of variables occurring in the test specification for which regularity hypothesis’ were
generated. The default for (depth) and (breadth) is 3 resp. 1. (progname) denotes
the name of the program under test. Further, one can control the classifier and
simplifier sets used internally in the gen test cases tactic using the optional

(clasimpmod) option:
-
t:fdel—:j
only
cong o
spllt }:add
del
M iff
LL add JL J (
1ntro
ﬂ H
dest

The generated test cases can be further processed, e. g., simplified using the usual
Isabelle/HOL tactics.

— (thmrefs) ————<

(clamsimpmod) ::= = simp

Storing the test theorem: After generating the test cases (and test hypothesis’) you
should store your results, e. g.:

store test thm "max_test”

for further processing. This is done using the test spec : proof(prove) —
proof (prove) | theory command which also closes the actual “proof state” (or
test state. Its syntax is given by:

»— store_test_thm — (name) -

15



Where (name) is a fresh identifier which is later used to refer to this test state. Is-
abelle/HOL can access the corresponding test theorem using the identifier (name).test_thm,

e.g.

max_ test.test thm

Generating test data: In a next step, the test cases can be refined to concrete test
data:

"max_ test”
The gen_test_data : theory|proof — theory|proof command takes only one pa-

rameter, the name of the test environment for which the test data should be
generated:

»— gen_test_data — (name) —

After the successful execution of this command Isabelle can access the test hypoth-
esis using the identifier (name).test _hyps and the test data using the identifier
(name).test_data

max_ test.test hyps
max_ test.test data

It is important to understand that generating test data is (partly) done by calling
the random solver which is incomplete. If the random solver is not able to find a
solution, it instantiate the term with the constant RSF (random solve failure).

Note, that one has a broad variety of configurations options using the
command.

Exporting test data:: After the test data generation, HOL-TestGen is able to export
the test data into an external file, e. g.:

export test data "test max.dat” "max_test”

exports the generated test data into a file text max.dat. The generation of a
test data file is done using the export test data : theory|proof — theory|proof
command:

»— export_test_data — (filename) — (name)

. (smlprogname) J
Where (filename) is the name of the file in which the test data is stored and (name)
is the name of a collection of test data in the test environment.

Generating test scripts: After the test data generation, HOL-TestGen is able to gen-
erate a test script, e. g.:

"test max.sml” "max_ test
"myMax.max”

prog”

16



structure TestDriver : sig end = struct

val return = ref “63;
fun eval x2 x1 = let
val ret = myMax.max x2 x1
in
((return := ret);ret)
end

fun retval () SOME (! return) ;
fun toString a Int.toString a;
val testres = [1;

val pre_0 = [1;

val post_0 fn () => ( (eval 723 69 = 69));

val res_0 = TestHarness.check retval pre_0 post_O;
val testres testres@[res_01];

val pre_1 = [1;
val post_1 = fn () => ( (eval ~11 ~15 = ~11));
val res_1 = TestHarness.check retval pre_1 post_1;

val testres testres@[res_1];

val _ = TestHarness.printlist toString testres;
end

Table 4.2: Test Script

produces the test script shown in [Table 4.2 that can (together with the provided
test harness) be used to test real implementations. The generation of test scripts
is done using the generate_test_script : theory|proof — theory|proof command:

»— gen_test_script — (filename) — (name) — (progname) T 7 —
(smlprogname)

Where (filename) is the name of the file in which the test script is stored, and
(name) is the name of a collection of test data in the test environment, and
(progname) the name of the program under test. The optional parameter (smiprogname)
allows for the configuration of different names of the program under test that is
used within the test script for calling the implementation.

Configure HOL-TestGen: The overall behavior of test data and test script generation
can be configured, e. g.

[iterations=15]

using the testgen params : theory — theory command:

17



»— testgen_params — [ [ ~ depth — = — (nat) ~ ]

M breadth — = — (nat) ———
M bound - = - (nat) -
case_breadth — = — (nat)
iterations — = — (nat)

M gen_prelude — = — (bool) ———
M gen_wrapper — = — {bool) ———
M toString — = — (string) ————
M————— setup_code — = — (string) ———
dataconv_code — = — (siring)

M type_range_bound — = — (nat) ——

“— type_candidates — = — [ %nam 1~

— ] —

Configuring the test data generation: Further, a attribute test : attribute is pro-
vided, i.e.:

lemma max_ abscase [test "maxtest”]:""max 47 = 7"

or

declare max_ abscase [test " maxtest”]

that can be used for hierarchical test case generation:

»— test — (name) -

4.3 Test Execution and Result Verification

In principle, any SML-system, e.g. [7, [5, [8, 8, [4], should be able to run the provided
test-harness and generated test-script. Using their specific facilities for calling foreign
code, testing of non-SML programs is possible. For example, one could test

e implementations using the .Net platform (more specific: CLR IL), e. g., written in
C+# using sml.net [§],

e implementations written in C using, e. g.the foreign language interface of sml/NJ [7]
or MLton [4],

e implementations written in Java using mlj [3].
Also, depending on the SML-system, the test execution can be done within an interpreter
(it is even possible to execute the test script within HOL-TestGen) or using a compiled

test executable. In this section, we will demonstrate the test of SML programs (using
SML/NJ or MLton) and ANSI C programs.

18



structure myMax = struct
fun max x y = if (x < y) then y else x
end

Table 4.3: Implementation in SML of max

Test Results:

Test 0 - SUCCESS, result: 69

Test 1 - SUCCESS, result: ~11

Summary

Number successful tests cases: 2 of 2 (ca. 100%)
Number of warnings: 0 of 2 (ca. 0%)
Number of errors: 0 of 2 (ca. 0%)
Number of failures: 0 of 2 (ca. 0%)
Number of fatal errors: 0 of 2 (ca. 0%)

Overall result: success

Table 4.4: Test Trace

4.3.1 Testing an SML-Implementation

Assume we have written a max-function in SML (see stored in the file max.sml
and we want to test it using the test script generated by HOL-TestGen. Following
we have to build a test executable based on our implementation, the generic
test harness (harness.sml) provided by HOL-TestGen, and the generated test script
(test_max.sml), shown in

If we want to run our test interactively in the shell provided by sml/NJ, we just have
to issue the following commands:

use "harness.sml";
use "max.sml";
use "test_max.sml";

After the last command, sml/NJ will automatically execute our test, e. g.you will see a

output similar to the one shown in

If we prefer to use the compilation manager of sml/NJ, or compile our test to a single
test executable using MLton, we just write a (simple) file for the compilation manager of
sml/NJ (which is understood both, by MLton and sml/NJ) with the following content:

Group is

19



int max (int x, int y) {
if (x < y) {
return y;
Yelsed{
return x;

3

Table 4.5: Implementation in ANSI C of max

harness.sml
max.sml
test_max.sml

#if (defined (SMLNJ_VERSION))
$/basis.cm
$smlnj/compiler/compiler.cm

#else

#endif

and store it as test.cm. We have two options, we can

e use sml/NJ, e. g.we can start the sml/NJ interpreter and just enter
CM.make("test.cm")

which will build a test setup and run our test.

e use MLton to compile a single test executable by executing

mlton test.cm

on the system shell. This will result in a test executable called test which can be

directly executed.

In both cases, we will get a test output (test trace) similar to the one presented in

[Table 5.11

4.3.2 Testing Non-SML Implementations

Suppose we have an ANSI C implementation of max (see that we want to
test using the foreign language interface provided by MLton. First we have to provide
import the max method written in C using the _import keyword of MLton. Further,
we provide a “wrapper” function doing the pairing of the curried arguments:

20



structure myMax = struct

val cmax = _import "max": int * int -> int ;
fun max a b = cmax(a,b);
end

We store this file as max.sml and write a small configuration file for the compilation
manager:

Group 1is
harness.sml
max.sml
test_max.sml

We can compile a test executable by the command
mlton -default-ann ’allowFFI true’ test.cm max.c

on the system shell. Again, we end up with an test executable test which can be called
directly. Running our test executable will result in trace similar to the one presented in

21
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5 Examples

Before introducing to the HOL-Test Gen showcase ranging from simple to more advanced
examples, one general remark: The test data generation uses as final procedure to solve
the constraints of test cases a random solver. This choice has the advantage that the
random process is more faster in general while requiring less interaction as, say, an
enumeration based solution principle. However this choice has the feature that two
different runs of this document will produce outputs that differs in the details o displayed
data. Even worse, in very unlikely cases, the random solver does not find a solution that
a previous run could easily produce (in such cases, one should upgrade the iterations-
variable in the test environment.

5.1 Triangle

theory
Triangle

imports
Testing

begin

A prominent example for automatic test case generation is the triangle problem [25]:
given three integers representing the lengths of the sides of a triangle, a small algorithm
has to check, whether these integers describe an equilateral, isosceles, scalene triangle,
or no triangle at all. First we define an abstract data type describing the possible results
in Isabelle/HOL:

datatype triangle = equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an auxiliary
predicate deciding if the three lengths are describing a triangle:

constdefs triangle :: "[int,int,int] => bool"
"triangle x y z = (0<x A O<y A 0 < z A
(z < xty) N (x < y+tz) A (y < x+z))"

Now we define the behavior of the triangle program:

constdefs
classify_triangle :: "[int,int,int] = triangle"
"classify_triangle x y z = (if triangle x y z
then if x=y
then if y=z

then equilateral
else 1isosceles

23



else if y=z
then isosceles
else if x=z then isosceles
else scalene else error)"
end

theory
Triangle_test

imports
Triangle
Testing

begin

The test theory Triangle test is used to demonstrate the pragmatics of HOL-
TestGen in the standard triangle example; The demonstration elaborates three test
plans: standard test generation (including test driver generation), abstract test data
based test generation, and abstract test data based test generation reusing partially
synthesized abstract test data.

5.1.1 The Standard Workflow

We start with stating a test specification for a program under test: it must behave as in
the definition of classify_triangle specified.

Note that the variable program is used to label an arbitrary implementation of the
current program under test that should fulfill the test specification:

test spec '"program(x,y,z) = classify_triangle x y z"
By applying gen_test_cases we bring the proof state into testing normal form (TNF).

apply (simp add: classify_triangle_def)
apply (gen_test_cases ‘"program" simp add: triangle_def
classify_triangle_def)

In this example, we decided to generate symbolic test cases and to unfold the triangle predicate
by its definition before the process. This leads to a formula with, among others, the following
clauses:

1. 0 < ?X1X347 —> program (7X1X347, 7X1X347, 7X1X347) = equilateral
2. THYP
((3x. 0 < x — program (x, x, x) = equilateral) —
(Vx>0. program (x, x, x) = equilateral))
. 0 0 < 7X1X341 — program (7X1X341, ?7X1X341, 7X1X341) = error
THYP
((3x. - 0 < x — program (x, x, x) = error) —
Vx. - 0 < x — program (x, x, x) = error))
5. [7X2X330 < 2 * ?7X1X329; 0 < ?X2X330; 0 < 7X1X329; 0 < ?X2X330;
0 < 7X1X329; 7X2X330 # ?X1X329ﬂ
—> program (7X1X329, 7X2X330, 7X1X329) = isosceles

N W
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Note that the computed TNFis not minimal, e.g., further simplification and rewriting steps
are needed to compute the minimal set of symbolic test cases. The following post-generation
simplification improves the generated result before “frozen” into a test theorem:

apply (simp_all)

Now, “freezing” a test theorem technically means storing it into a specific data structure
provided by HOL-TestGen, namely a test environment that captures all data relevant to a test:

store_test_thm "triangle_test"

The resulting test theorem is now bound to a particular name in the Isar environment,
such that it can inspected by the usual Isar command thm.

thm "triangle_test.test_thm"

We compute the concrete test statements by instantiating variables by constant terms
in the symbolic test cases for “program” via a random test procedure:

gen test data "triangle_test"
thm "triangle_test.test_hyps"
thm "triangle_test.test_data"

Now we use the generated test data statement lists to automatically generate a test
driver, which is controlled by the test harness. The first argument is the external SML-
file name into which the test driver is generated, the second argument the name of the
test data statement set and the third the name of the (external) program under test:

gen test script "triangle_script.sml" "triangle_test" "program"

which results in

program (7, 7, 7) = equilateral
program (0, 0, 0) = error
program (9, 10, 9) = isosceles
program (10, 0, 10) = error

RSF = program (6, 10, 6) = error
program (2, 9, 2) = error
program (4, 9, 9) = isosceles
program (8, 2, 2) = error
program (10, 0, 0) = error
program (0, 4, 4) = error
program (8, 8, 7) = isosceles
program (3, 3, 9) = error
program (0, 0, 5) = error
program (4, 4, 0) = error
program (6, 5, 10) = scalene
program (10, 7, 1) = error
program (2, 4, 9) = error
program (5, 8, 0) = error

RSF = program (4, 8, 2) = error
program (1, 10, 8) = error
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5.1.2 The Modified Workflow: Using Abstract Testdata

There is a viable alternative for the standard development process above: instead of un-
folding triangle and trying to generate ground substitutions satisfying the constraints,
one may keep triangle in the test theorem, treating it as a building block for new con-
straints. Such building blocks will also be called abstract test cases.

In the following, we will set up a new version of the test specification, called triangle2,
and prove the relevant abstract test cases individually before test case generation. These
proofs are highly automatic, but the choice of the abstract test data in itself is ingenious,
of course. Nevertheless, the computation for establishing if a certain triple is encapsu-
lated in these proofs, deliberating the main test case generation of triangle2 from them.
In fact, these contain 5 arithmetic constraints which represent already a sensible load if
given to the random solver.

The abstract test data will be assigned to the subsequent test generation for the test
generation triangle2. Then the test data generation phase is started for triangle2
implicitly using the abstract test cases. The association established by this assignment
is also stored in the test environment.

The point of having abstract test data is that it can be generated “once and for all”
and inserted before the test data selection phase producing a “partial” grounding. It
will turn out that the main state explosion is shifted from the test case generation to
the test data selection phase.

The “ingenious approach”

lemma triangle_abscasel [test "triangle2"]: "triangle 1 1 1"
by (auto simp: triangle_def)

lemma triangle_abscase2 [test'"triangle2"]:"triangle 1 2 2"
by (auto simp: triangle_def)

lemma triangle_abscase3 [test"triangle2"]:"triangle 2 1 2"
by (auto simp: triangle_def)

lemma triangle_abscase4 [test"triangle2"]:"triangle 2 2 1"
by (auto simp: triangle_def)

lemma triangle_abscaseb [test'"triangle2"]:"triangle 3 4 5"
by (auto simp: triangle_def)

lemma triangle_abscase6 [test"triangle2"]:"— triangle -1 1 2"
by (auto simp: triangle_def)

lemma triangle_abscase7 [test"triangle2"]:"— triangle 1 -1 2"
by (auto simp: triangle_def)
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lemma triangle_abscase8 [test"triangle2"]:"- triangle 1 2 -1"
by (auto simp: triangle_def)

Test specification is as shown in the standard case, but the underlying simplification
does not use the definition of triangle def. Afterwards we inspect the resulting test
theorem.

test spec '"prog(x,y,z) = classify_triangle x y z"
apply (gen_test_cases "prog" simp add: classify_triangle_def)
store test thm "triangle2"

thm "triangle2.test_thm"

The test data generation is started and implicitly uses the abstract test data assigned
to the test theorem triangle2. Again, we inspect the results:

gen_test_data "triangle2"

thm "triangle2.test_hyps"
thm "triangle2.test_data"

Alternative: Synthesizing Abstract Test Data

In fact, part of the ingenious work of generating abstract test data can be synthesized
by using the test case generator itself. This scenario of use proceeds as follows:

1. we set up a the decomposition of triangle in an equality to itself; this identity is
disguised by introducing a variable prog which is stated equivalent to triangle in
an assumption,

2. the introduction of this assumption is delayed; i.e. the test case generation is
performed in a state where this assumption is not visible,

3. after executing test case generation, we fold back prog against triangle.

test _spec abs_triangle :

assumes 1: "prog = triangle"

shows "triangle x y z = prog x y z"
apply (gen_test_cases "prog" simp add: triangle_def)
apply (simp_all add: 1)

store_test__thm "abs_triangle"

thm abs_triangle.test_thm

which results in

[[7X2x89 < ?7X3X90 + 7X1X88; 7X3X90 < 7X2X89 + 7X1X88;
PX1X88 < 7X3X90 + 7X2X89; 0 < 7X1X88; 0 < ?7X2X89; 0 < 7X3X90]
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— triangle 7X3X90 7X2X89 7X1X88;
THYP
((3x xa xb.
xa < xb + x — xb < xa + x — x < xb + xa — triangle xb xa x) —
(Vx xa xb.
xa < xb + x — xb < xa + x — x < xb + xa — triangle xb xa x));
- 0 < ?X3X75 = - triangle 7X3X75 ?7X2X74 7X1X73;
THYP
((dx xa xb. = 0 < xb — - triangle xb xa x) —
(Vx xa xb. = 0 < xb — — triangle xb xa x));
- 0 < 7X2X64 — — triangle 7X3X65 7X2X64 7X1X63;
THYP
((3x xa. = 0 < xa — (Ixb. - triangle xb xa x)) —
(Vx xa. = 0 < xa — (Vxb. — triangle xb xa x)));
- 0 < ?X1X63 = — triangle 7X3X55 7X2X54 7X1X53;
THYP
((3dx. - 0 < x — (dxa xb. — triangle xb xa x)) —
(Vx. = 0 < x — (Vxa xb. — triangle xb xa x)));
- 7X1X43 < 7X3X45 + 7X2X44 — — triangle 7X3X45 7X2X44 7X1X43;
THYP
((dx xa xb. = x < xb + xa — triangle xb xa x) —
(Vx xa xb. = x < xb + xa — triangle xb xa x));
- ?7X3X35 < 7X2X34 + ?7X1X33 = — triangle 7X3X35 7X2X34 ?7X1X33;
THYP
((3x xa xb. = xb < xa + x —
(Vx xa xb. = xb < xa + x —
- 7X2X24 < 7X3X25 + 7X1X23 —
THYP
((3x xa xb. - xa < xb + x — — triangle xb xa x) —
(Vx xa xb. - xa < xb + x — - triangle xb xa x))]
= (triangle x y z = prog X y z)

J

J

J

triangle xb xa x) —
triangle xb xa x));
triangle 7X3X25 7X2X24 7X1X23;

J

J

J

Thus, we constructed test cases for being triangle or not in terms of arithmetic con-
straints. These are amenable to test data generation by increased random solving, which
is controlled by the test environment variable iterations:

testgen params/[iterations=100]
gen test data "abs_triangle"

resulting in:

prog = triangle
triangle 8 8 10

— triangle 0 0 5
— triangle 10 0 8
- triangle 10 2 0
- triangle 0 1 10
- triangle 8 2 4
- triangle 1 6 5

Thus, we achieve solved ground instances for abstract test data. Now, we assign
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these synthesized test data to the new future test data generation. Additionally to the
synthesized abstract test data, we assign the data for isosceles and equilateral triangles;
these can not be revealed from our synthesis since it is based on a subset of the constraints
available in the global test case generation.

declare abs_triangle.test_datal[test"triangle3"]
declare triangle_abscasel[test"triangle3"]
declare triangle_abscase2[test"triangle3"]
declare triangle_abscase3[test"triangle3"]

The setup of the testspec is identical as for triangle2; it is essentially a renaming.

test spec '"program(x,y,z) = classify_triangle x y z"
apply (simp add: classify_triangle_def)
apply (gen_test_cases '"program" simp add: classify_triangle_def)
store_test _thm "triangle3"

The test data generation is started again on the basis on synthesized and selected
hand-proven abstract data.

testgen params/[iterations=3]
gen test data "triangle3"

thm "triangle3.test_hyps"
thm "triangle3.test_data"

end

5.2 Lists

theory
List_test
imports
List
Testing
begin

In this example we present the current main application of HOL-TestGen: generating
test data for black box testing of functional programs within a specification based unit
test. We use a simple scenario, developing the test theory for testing sorting algorithms
over lists.

5.2.1 A Quick Walk Through

In the following we give a first impression how the testing process using HOL-TestGen
looks like. For brevity we stick to default parameters an explain possible decision points
and parameters where the testing can be improved in the next section.
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Writing the Test Specification We start by specifying a primitive recursive predi-
cate describing sorted lists:

consts is_sorted:: "(’a::ord) list = bool"
primrec "is_sorted [] = True"
"is_sorted (x#xs) = ((case xs of [] = True

| y#ys = (x <y) V (x = y))
A is_sorted xs)"

We will use this HOL predicate for describing our test specification, i.e., the properties
our implementation should fulfill:

test spec "is_sorted(PUT (1::(’a list)))"

where PUT is a “placeholder” for our program under test.

Generating test cases Now we can automatically generate test cases Using the de-
fault setup, we just apply our gen_test_cases:

test spec "is_sorted(PUT (1::(’a list)))"
apply (gen_test_cases "PUT")

which leads to the test partitioning one would expect:

1. is_sorted (PUT [])
2. is_sorted (PUT [7X1X26])
3. THYP ((3x. is_sorted (PUT [x])) — (Vx. is_sorted (PUT [x])))
4. is_sorted (PUT [7X2X22, 7X1X21])
5. THYP
((dx xa. is_sorted (PUT [xa, x])) — (Vx xa. is_sorted (PUT [xa, x])))
6. is_sorted (PUT [?X3X16, 7X2X15, ?X1X14])

7. THYP
((3x xa xb. is_sorted (PUT [xb, xa, x])) —
(Vx xa xb. is_sorted (PUT [xb, xa, x])))

8. THYP (3 < length 1 — is_sorted (PUT 1))

Now we bind the test theorem to a particular named test environment.

store test thm "test_sorting"

Generating test data Now we want to generate concrete test data, i.e., all variables
in the test cases must be instantiated with concrete values. This involves a random
solver which tries to solve the constraints by randomly choosing values.

gen test data "test_sorting"

Which leads to the following test data:

is_sorted (PUT [])
is_sorted (PUT [10])
is_sorted (PUT [6, 6])
is_sorted (PUT [4, 9, 0])
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Note that by the following statements, the test data, the test hypothesis’s’ and the
test theorem can be inspected interactively.

thm test_sorting.test_data
thm test_sorting.test_hyps
thm test_sorting.test_thm

The generated test data can be exported to an external file:

export test data "list_data.dat" test_sorting

Test Execution and Result Verification In principle, any SML-system should be
able to run the provided test-harness and generated test-script. Using their specific
facilities for calling foreign code, testing of non-SML programs is possible. For example,
one could test implementations written

e for the.Net platform, e.g., written in C# using sml.net [§],
e in C using, e.g. the foreign language interface of sml/NJ [7] or MLton [4],
e in Java using MLj [3].

Depending on the SML-system, the test execution can be done within an interpreter or
using a compiled test executable. Testing implementations written in SML is straight-
forward, based on automatically generated test scripts. This generation is based on the
internal code generator of Isabelle and must be set up accordingly.

consts__code "op <" ("(_ </ _)")
The key command of the generation is:
gen test script "list_script.sml" test_sorting PUT "myList.sort"

which generates the following test harness:

(5K K K oK K oK KK KKK KK KK K K KKK KK KKK KK KK KKK KK KKK KK KK KKK KK KKK KK KKK KKK K KKK KKK KK
* Test -Driver

* generated by HOL-TestGen 1.4.0 (build: 8174)
R e T T )

structure TestDriver : sig end = struct
fun is_sorted [] = true
| is_sorted (x :: xs) =
((case xs of [] => true | (xa :: xb) => ((x < xa) orelse (x = xa))) andalso

is_sorted xs);

val return = ref ( [1:((int 1list)));
fun eval x1 = 1let val ret = mylList.sort x1 in ((return := ret);ret)end
fun retval () = SOME('return);
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fun toString a = (fn 1 => ("[""(foldr (fn (s1,s2)
=> (if s2 = "" then s1 else s1°",,""s2))
"" (map (fn x => Int.toString x) 1))""1")) a;

val testres = [];
val _ = print ("\nRunning, Test_Case3:\n")
val pre_3 = [];

val post_3 = fn () => ( is_sorted (eval [4, 9, 0]1));
val res_3 TestHarness.check retval pre_3 post_3;

val testres = testres@[res_3];

val _ = print ("\nRunning, Test_Case2:\n")

val pre_2 = [];

val post_2 = fn () => ( is_sorted (eval [6, 6]));
val res_2 = TestHarmness.check retval pre_2 post_2;
val testres = testres@[res_2];

val _ = print ("\nRunning, Test_ Caseyl:\n")

val pre_1 = [];

fn () => ( is_sorted (eval [10]));
TestHarness.check retval pre_1 post_1;

val post_1
val res_1

val testres = testres@[res_1];
val _ = print ("\nRunning, Test_ Case0:\n")
val pre_0 = [];

val post_0 = fn () => ( is_sorted (eval []));
val res_O TestHarness.check retval pre_0 post_O;

val testres = testres@[res_0];
val _ = TestHarness.printlList toString testres;
end

Further, suppose we have an ANSI C implementation of our sorting method for sorting
C arrays that we want to test. Using the foreign language interface provided by the
SML compiler MLton we first we have to import the sort method written in C using the
_import keyword of MLton and further, we provide a “wrapper” doing some datatype
conversion, e.g. converting lists to arrays and vice versa:

structure myList = struct
val csort = _import "sort": int array * int -> int array;
fun tolist a = Array.foldl (op ::) [] a;
fun sort 1 = tolist(csort(Array.fromList(list),length 1));
end

That’s all, now we can build the test executable using MLton and end up with a test
executable which can be called directly. Running our test executable will result in the
test trace in Tab. on the facing page. Even this small set of test vectors is sufficient
to exploit an error in your implementation.
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Test Results:

Test 0 - SUCCESS, result: []
Test 1 - SUCCESS, result: [10]
Test 2 - SUCCESS, result: [72, 42]

Test 3 - **x FAILURE: post-condition false, result: [8, 15, -31]

Summary

Number successful tests cases: 3 of 4 (ca. 75%)
Number of warnings: 0 of 4 (ca. O0%)
Number of errors: 0 of 4 (ca. O0%)
Number of failures: 1 of 4 (ca. 25%)
Number of fatal errors: 0 of 4 (ca. 0%)

Overall result: failed

Table 5.1: A Sample Test Trace

Improving the Testing Results

Obviously, in reality one would not be satisfied with the test cases generated in the
section: for testing sorting algorithms one would expect that the test data somehow
represents the set of permutations of the list elements. We have already seen, that
the test specification used in the last section “only” enumerates lists up to a specific
length without any ordering constraints on their elements. Thus we decide to try a
more ‘‘descriptive” test specification that is based on the behavior of an insertion sort
algorithm:
consts ins :: "(’a::ord) = ’a list = ’a list"
primrec "ins x [] = [x]"

"ins x (y#ys) = (if (x < y) then x#y#ys else (y#(ins x ys)))"
consts sort:: "(’a::ord) list = ’a list"
primrec "sort [] = [] "

"sort (x#xs) = ins x (sort xs)"

Now we state our test specification by requiring that the behavior of the program
under test PUT is identical to the behavior of our specified sorting algorithm sort:

Based on this specification gen_test_cases produces test cases representing all per-
mutations of lists up to a fixed length n. Normally, we also want to configure up to
which length lists should be generated (we call this the depth of test case), e.g. if we
decide to generated lists up to length 4. Our standard setup
test spec "sort 1 = PUT 1"

apply (gen_test_cases 4 1 "PUT")

apply (simp_all)

which leads to the following test partitioning (excerpt):
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1. [] = PUT []
2. [?7X1X1802] = PUT [?7X1X1802]
3. THYP ((3x. [x] = PUT [x]) — (Vx. [x] = PUT [x]))
4. ?X2X1797 < ?7X1X1796 — [7X2X1797, ?X1X1796] = PUT [7X2X1797, 7X1X1796]
5. THYP
((dx xa. xa < x — [xa, x] = PUT [xa, x]) —
(Vx xa. xa < x — [xa, x] = PUT [xa, x]))
6. — 7X2X1789 < 7X1X1788 —> [7X1X1788, 7X2X1789] = PUT [7X2X1789, 7X1X1788]

7. THYP
(dx xa. - xa < x — [x, xa] PUT [xa, x]) —
Wx xa. = xa < x — [x, xal PUT [xa, x]))
8. [[?XQX1778 < PX1X1777; 7X3X1779 < ?X1X1777; ?X3X1779 < ?X2X1778]]
— [?X3X1779, ?X2X1778, ?7X1X1777] = PUT [?X3X1779, 7X2X1778, ?X1X1777]
9. THYP
(@x xa.
xa < x —
(dxb. xb < x — xb < xa — [xb, xa, x] = PUT [xb, xa, x])) —
(Vx xa. xa < x — (Vxb<x. xb < xa — [xb, xa, x] = PUT [xb, xa, x])))
10. [[—\ 7X2X1764 < 7X1X1763; 7X3X1765 < 7X1X1763; 7X3X1765 < ?X2X1764]]
= [?X3X1765, ?7X1X1763, 7X2X1764] = PUT [?X3X1765, ?7X2X1764, 7X1X1763]

store test thm "test_insertion_sort"
generates 34 test cases describing all permutations of lists of length 1,2,3 and 4.

Generating concrete test data already takes a remarkable length of time, as it’s quite
unlikely that the random solver generates values that fulfills these ordering constraints.
Therefore we restrict the attempts (iterations) the random solver takes for solving a
single test case to 10.

testgen params [iterations=10]
gen test data "test_insertion_sort"

thm test_insertion_sort.test_data

which is sadly not sufficient to solve all conditions, e.g. we obtain test cases like:

[J = PUT []

[6] = PUT [6]

[o, 3] = put [0, 3]

[1, 8] = PUT [8, 1]

[3, 4, 5] = PUT [3, 4, 5]
[3, 7, 8] = PUT [3, 8, 7]
[2, 5, 6] = PUT [5, 6, 2]
[o, 6, 91 = PUT [6, 0, 9]
[5, 8, 9] = PUT [9, 5, 8]

[5, 5, 10] = PUT [10, 5, 5]

RSF =— [10, 10, 5, 7] = PUT [10, 10, 5, 7]
[o, 3, 9, 10] = PUT [0, 3, 10, 9]

RSF — [5, 7, 9, 0] = PUT [5, 9, 0, 7]
RSF — [4, 1, 8, 8] = PUT [1, 8, 8, 4]
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RSF — [9, 6, 1, 6] = PUT [6, 9, 1, 6]
RSF — [4, 3, 2, 3] = PUT [3, 4, 3, 2]
RSF — [1, 8, 6, 8] = PUT [6, 1, 8, 8]
RSF — [3, 0, 5, 1] = PUT [5, 0, 1, 3]
RSF = [2, 9, 5, 6] = PUT [2, 5, 9, 6]
RSF — [8, 8, 0, 0] = PUT [8, 0, 8, 0]
RSF — [0, 1, 5, 9] = PUT [0, 9, 5, 1]
[5, 5, 9, 10] = PUT [5, 10, 9, 5

RSF — [6, 7, 6, 0] = PUT [6, 6, 7, 0]
RSF — [10, 0, 2, 10] = PUT [10, 10, 0, 2]
RSF — [5, 10, 3, 6] = PUT [6, 5, 3, 10]
RSF — [10, 8, 9, 6] = PUT [6, 8, 9, 10]
RSF — [2, 4, 1, 0] = PUT [4, 1, 2, 0]
RSF — [8, 0, 4, 4] = PUT [0, 4, 8, 4]
[4, 6, 8, 91 = PUT [8, 9, 4, 6]

RSF — [1, 10, 4, 1] = PUT [4, 1, 10, 1]
[1, 3, 9, 10] = PUT [9, 3, 1, 10]

[2, 2, 6, 91 = PUT [9, 2, 2, 6]

RSF — [8, 0, 0, 1] = PUT [1, 0, 8, 0]
RSF — [8, 10, 7, 7] = PUT [7, 7, 10, 8]

were RSF marks unsolved cases. Analyzing the generated test data reveals, that all
cases for lists with length up to (and including) 3 could be solved. From the 24 cases for
lists of length 4 only 9 could be solved by the random solver (thus, overall 19 of the 34
cases were solved). To achieve more concrete test cased, we could interactive increase
the number of iterations which reveals that we need to set iterations to 100 to find all
solutions reliably:r

iterations | 5]10]20 2530405075100
solved goals (of 34) || 13 | 19 | 23 | 24 | 25 [ 29 | 33 | 33| 34

Instead of increasing the number of iterations one could also add other techniques such
as

1. deriving new rules that allow for the generation of a simplified test theorem,
2. introducing abstract test cases or

3. supporting the solving process by derived rules.

end

5.3 AVL

theory
AVL_def
imports
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Testing
begin

This test theory specifies a quite conceptual algorithm insertion and deletion of AVL
Trees. It is essentially a streamlined version of the AFP [I] theory developed by Pusch,
Nipkow, Klein and the authors.

datatype ’a tree = ET | MKT ’a "’a tree" "’a tree"

consts
height :: "’a tree = nat"
is_in :: "’a = ’a tree = bool"
is_ord :: "(’a::order) tree = bool"
is_bal :: "’a tree = bool"

primrec

"height ET = 0"
"height (MKT n 1 r) = 1 + max (height 1) (height r)"

primrec
"is_in k ET = False"
"is_in k (MKT n 1 r) = (k=n V is_in k 1 V is_in k r)"

primrec

isord_base: "is_ord ET = True"

isord_rec: "is_ord (MKT n 1 r) = ((Vn’. is_inn’ 1 — n’ < n) A
(Vn’. is_inn’ r — n < n’) A
is_ord 1 A is_ord r)"

primrec

"is_bal ET = True"

"is_bal (MKT n 1 r) = ((height 1 = height r V
height 1 = 1+height r V
height r = 1+height 1) A
is_bal 1 A is_bal r)"

We also provide a more efficient variant of is_in:

consts
is_in_eff :: "(Pa::order) = ’a tree = bool"
primrec
"is_in_eff k ET = False"
"is_in_eff k (MKT n 1 r) = (if k = n then True
else (if k<n then (is_in_eff k 1)
else (is_in_eff k r)))"

datatype bal = Just | Left | Right

constdefs
bal :: "’a tree = bal"
"bal t = case t of ET = Just
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| (MKT n 1 r) = if height 1 = height r then Just
else if height 1 < height r then Right

else Left"
consts
r_rot :: "’a X ’a tree X ’a tree = ’a tree'
1l _rot :: "’a X ’a tree X ’a tree = ’a tree'
Ir_rot :: "’a X ’a tree X ’a tree = ’a tree"
rl_rot :: "’a X ’a tree X ’a tree = ’a tree"

recdef r_rot "{}"
"r_rot (n, MKT 1n 11 1lr, r) = MKT 1n 11 (MKT n 1r r)"

recdef 1_rot "{}"
"l_rot(n, 1, MKT rn rl rr) = MKT rn (MKT n 1 rl) rr"

recdef 1r_rot "{}"
"lr_rot(n, MKT 1n 11 (MKT lrn 1rl lrr), r) =
MKT lrn (MKT 1n 11 1rl) (MKT n lrr r)"

recdef rl_rot "{}"
"rl_rot(n, 1, MKT rn (MKT rln rll rlr) rr) =
MKT rln (MKT n 1 r1l) (MKT rn rlr rr)"

constdefs
1_bal :: "’a = ’a tree = ’a tree = ’a tree"
"l_bal n 1 r = if bal 1 = Right
then 1r_rot (n, 1, r)
else r_rot (n, 1, )"

r_bal :: "’a = ’a tree = ’a tree = ’a tree"
"r'bal n 1 r if bal r = Left

then rl_rot (n, 1, r)

else 1_rot (n, 1, )"

consts

insert :: "’a::order = ’a tree = ’a tree"
primrec
insert_base: '"insert x ET = MKT x ET ET"
insert_rec: "insert x (MKT n 1 r) =

(if x=n
then MKT n 1 r
else if x<n
then let 1’ = insert x 1
in if height 1’ = 2+height r
then 1_bal n 1’ r
else MKT n 1’ r



else let r’ = insert x r
in if height r’ = 2+height 1

then r_bal n 1 r’

else MKT n 1 r’)"

delete

consts
tmax :: "’a tree = ’a"
delete :: "’a::order x (’a tree) = (’a tree)"

end

theory
AVL_test

imports
AVL_def

begin

This test plan of this theory follows more or less the standard. However, we insert
some minor theorems into the test theorem generation in order to ease the task of solving;
this both improves speed of the generation and quality of the test.

declare insert_base insert_rec [simp del]

lemma size_0[simp]: "(size x = 0) = (x = ET)"
by (induct "x",auto)

lemma height_O[simp]: "(height x = 0) = (x = ET)"
by (induct "x",auto)

lemma [simp]: "(max (Suc a) b) ~= 0"
by (auto simp: max_def)

lemma [simp]: "(max b (Suc a) ) = 0"
by (auto simp: max_def)

We adjust the random generator at a fairly restricted level and go for a solving phase.

testgen params [iterations=10]

test spec "(is_bal t) --> (is_bal (insert x t))"
apply (gen_test_cases "insert")
store test thm "foo"
gen test data "foo"

thm foo.test_data

end
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5.4 RBT

This example is used to generate test data in order to test the sml/NJ library, in par-
ticular the implementation underlying standard data-structures like set and map. The
test scenario reveals an error in the library (so in software that is really used, see [13]
for more details). The used specification of the invariants was developed by Angelika
Kimmig.
theory

RBT_def
imports

Testing
begin

The implementation of Red-Black trees is mainly based on the following datatype
declaration:

datatype ml_order = LESS | EQUAL | GREATER
axclass ord_key < type

consts
compare :: "’a::ord_key = ’a = ml_order "

axclass LINORDER < linorder, ord_key

LINORDER_less : "((compare x y) = LESS) = (x<y"
LINORDER_equal : "((compare x y) = EQUAL) = (x = y)"
LINORDER_greater : "((compare x y) = GREATER) = (y < x)"

types ’a item = "’a::ord_key"
datatype color =R | B

datatype ’a tree = E | T color "’a tree" "’a item" "’a tree"

In this example we have chosen not only to check if keys are stored or deleted correctly
in the trees but also to check if the trees fulfill the balancing invariants. We formalize
the red and black invariant by recursive predicates:

consts
isin :: "?a::LINORDER item = ’a tree = bool"
isord :: "(’a::LINORDER item) tree =- bool"
redinv :: "’a tree = bool"
blackinv :: "’a tree = bool"
strong_redinv:: "’a tree = bool"
max_B_height :: "’a tree = nat"

primrec
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isin_empty : "isin x E = False"
isin_branch: "isin x (T ¢ a y b) = (((compare x y) = EQUAL)
| (isin x a) | (isin x b))"

primrec
isord_empty : "isord E = True"
isord_branch: "isord (T ¢ a y b)
= (isord a A isord b
A (Vv x. isin x a — ((compare x y)
A (VY x. isin x b — ((compare x y)

LESS))
GREATER)))"

recdef redinv "measure ()t. (size t))"

redinv_1: "redinv E = True"

redinv_2: "redinv (T B a y b) = (redinv a A redinv b)"
redinv_3: "redinv (T R (T R a x b) y c) = False"
redinv_4: "redinv (TR a x (TR by c)) = False"
redinv_5: "redinv (T R a x b) = (redinv a A redinv b)"

recdef strong_redinv "{}"
Rinv_1: ‘'strong_redinv E = True"
Rinv_2: ‘"strong_redinv (T R a y b) = False"
Rinv_3: ‘"strong_redinv (T B a y b) (redinv a A redinv b)"

recdef max_B_height "measure (/t. (size t))"
maxB_height_1: '"max_B_height E = 0"
maxB_height_3: '"max_B_height (T B a y b)
= Suc(max (max_B_height a) (max_B_height b))"
maxB_height_2: ‘"max_B_height (T R a y b)
= (max (max_B_height a) (max_B_height b))"

recdef blackinv "measure (Jt. (size t))"
blackinv_1: "blackinv E = True"
blackinv_2: "blackinv (T color a y b)
= ((blackinv a) A (blackinv b)
A ((max_B_height a) = (max_B_height b)))"
end

theory
RBT_test

imports
RBT_def
Testing

begin

The test plan is fairly standard and very similar to the AVL example: test spec,
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test generation on the basis of some lemmas that allow for exploiting contradictions in
constraints, data-generation and test script generation.

Note that without the interactive proof part, the random solving phase is too blind
to achieve a test script of suitable quality. Improving it will definitively improve also
the quality of the test. In this example, however, we deliberately stopped at the point
where the quality was sufficient to produce relevant errors of the program under test.

First, we define certain functions (inspired from the real implementation) that spe-
cialize the program to a sufficient degree: instead of generic trees over class LINORDER,
we will generate test cases over integers.

5.4.1 Test Specification and Test-Case-Generation

instance int::ord_key
by (intro_classes)

instance int::linorder
by intro_classes

defs compare_def: "compare (x::int) y
== (if (x < y) then LESS
else (if (y < x)
then GREATER
else EQUAL))"

instance int::LINORDER

apply intro_classes

apply (simp_all add: compare_def)
done

lemma comparel[simp]:"(compare (x::int) y
by (auto simp:compare_def)

EQUAL) = (x=y)"

lemma compare2[simp]:"(compare (x::int) y = LESS) = (x<y)"

by (auto simp:compare_def)

lemma compare3[simp]:"(compare (x::int) y
by (auto simp:compare_def)

GREATER) = (y<x)"

Now we come to the core part of the test generation: specifying the test specification.
We will test an arbitrary program (insertion add, deletion delete) for test data that
fulfills the following conditions:

e the trees must respect the invariants, i.e. in particular the red and the black
invariant,

e the trees must even respect the strong red invariant - i.e. the top node must be
black,
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e the program under test gets an additional parameter y that is contained in the
tree (useful for delete),

e the tree must be ordered (otherwise the implementations will fail).

The analysis of previous test case generation attempts showed, that the following
lemmas (altogether trivial to prove) help to rule out many constraints that are unsolvable
- this knowledge is both useful for increasing the coverage (not so much failures will
occur) as well for efficiency reasons: attempting to random solve unsolvable constraints
takes time. Recall that that the number of random solve attempts is controlled by the
iterations variable in the test environment of this test specification.

lemma max_0_0 : "((max (a::nat) b) =0) = (a=0A (b=0))"
by (auto simp: max_def)

lemma [simp]: "(max (Suc a) b) “= 0"
by (auto simp: max_def)

lemma [simp]: "(max b (Suc a) ) = 0"
by (auto simp: max_def)

lemma size_O[simp]: "(size x = 0) = (x = E)"
by (induct "x",auto)

test _spec "(isord t & isin (y::int) t & strong redinv t & blackinv t)
— (blackinv(prog(y,t)))"

apply (gen_test_cases 5 1 "prog" simp: comparel compare2 compare3)

store test thm "red-and-black-inv"

5.4.2 Test Data Generation
Brute Force

This fairly simple setup generates already 25 subgoals containing 12 test cases, altogether
with non-trivial constraints. For achieving our test case, we opt for a “brute force”
attempt here:

testgen params [iterations=40]
gen test data "red-and-black-inv"
thm "red-and-black-inv.test_data"

Using Abstract Test Cases

test _spec "(isord t & isin (y::int) t & strong_redinv t & blackinv t)
— (blackinv(prog(y,t)))"

apply (gen_test_cases 3 1 "prog" simp: comparel compare2 compare3)

store test thm "red-and-black-inv2"
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By inspection of the onstraints of the test theorem, on immediately identifies predicates
for which solutions are difficult to find by a random process (a mesure for this difficulty
could be the percentage of trees up to depth k, that make this predicate valid. One can
easily convince oneself, that this percentage is decreasing).

Repeatedly, ground instances were needed for:

1. max_B_height ?X = 0

2. max_B_height 7Y

max_B_height 77
3. blackinv 7X

4. redinv 7X

The point is, that enumerating some examples of ground instances for these predicates
is fairly easy if one bears its informal definition in mind. For max_B_height ?X this is:
"maximal number of black nodes on any path from root to leaf”. So let’s enumerate
some trees who contain no black nodes:

lemma maxB_0_1: "max_B_height (E:: int tree) = 0"
by auto

lemma maxB_0_2: "max_B_height (T R E (5::int) E) = 0"

by auto

lemma maxB_0_3: "max_B_height (T R (T R E 2 E) (5::int) E) = 0"
by auto

lemma maxB_0_4: "max_B_height (T R E (5::int) (TR E 7 E)) = 0"

by auto

lemma maxB_0_5: "max_B_height (T R (TR E 2 E) (5::int) (TR E 7 E)) = 0"
by auto

Note that these ground instances have already been produced with hindsight to the
ordering constraints - ground instances must fulfil all the other constraints, otherwise
they wouldn’t help the solver at all. On the other hand, continuing with this enumera-
tion doesn’t help too much since we start to enumerate trees that do not fulfil the red
invariant.

A good overview over what is needed gives the set of rules generated from the redinv-
definition. We bring this into the form needed for a lemma

thm redinv.simps

An Alternative Approach with a little Theorem Proving

which will suffice to generate the critical test data revealing the error in the sml/NJ
library.
Alternatively, one might:
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1. use abstract test cases for the auxiliary predicates redinvand blackinv,

2. increase the depth of the test case generation and introduce auxiliary lemmas, that
allow for the elimination of unsatisfiable constraints,

3. or applying more brute force.

Of course, one might also apply a combination of these techniques in order to get a
more systematic test than the one presented here.

We will describe option 2) briefly in more detail: part of the following lemmas require
induction and real theorem proving, but help to refine constraints systematically an to
increase

n

lemma aux :"x = x — x = X

by (auto)

lemma height_0:
"(max_B_height x = 0) =
(x=EV (3 ayb.x=TRaybA
(max (max_B_height a) (max_B_height b)) = 0))"
by (induct "x", simp_all,case_tac "color",auto)

lemma max_B_height_dec :
"((max_B_height (T x t1 val t3)) = 0) = (x =R) "
by (case_tac "x",auto)

This paves the way for the following testing scenario:

test _spec "(isord t & isin (y::int) t & strong_redinv t & blackinv t)
— (blackinv(prog(y,t)))"
apply (gen_test_cases 3 1 "prog" simp: comparel compare2 compare3
max_B_height_dec)

apply (simp_all only: height_0, simp_all add: max_0_0)
apply (simp_all only: height_0, simp_all add: max_0_0)
apply (safe)

unfortunately, at this point a general hyp subst tac would be needed that allows for instan-
tiating meta variables. TestGen provides a local tactic for this (should be integrated as a general
Isabelle tactic .. .)

apply (tactic "ALLGOALS(fn n => TRY(TestGen.var_hyp_subst_tac n))")
apply (simp_all)

store test thm "red-and-black-inv3"

testgen params [iterations=20]

gen test data "red-and-black-inv3"

thm "red-and-black-inv3.test_data"
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The inspection shows now a stream-lined, quite powerful test data set for our prob-
lem. Note that the "depth 3” parameter of the test case generation leads to ”depth 2”
trees, since the constructor E is counted. Nevertheless, this test case produces the error
regularly (Warning: recall that randomization is involved; in general, this makes the
search faster (while requiring less control by the user) than brute force enumeration, but
has the prize that in rare cases the random solver does not find the solution at all):

blackinv (prog (4, T B E 4 E))

blackinv (prog (3, TBE 3 (TR E 10 E)))
blackinv (prog (3, TBE 1 (TRE 3 E)))

blackinv (prog (7, TB (TR E 4 E) 7 E))

blackinv (prog (6, TB (TR E 6 E) 8 E))

blackinv (prog (3, TB (TRE 1E) 3(TRET7E)))
blackinv (prog (4, TB (TBE4E) 7 (TBE9E)))
blackinv (prog (9, TB(TBE 1E) 3 (TBES9E)))

When increasing the depth to 5, the test case generation is still feasible - we had runs
which took less than two minutes and resulted in 348 test cases.

5.4.3 Configuring the Code Generator

We have to perform the usual setup of the internal Isabelle code generator, which involves
providing suitable ground instances of generic functions (in current Isabelle) and the map
of the the data structures to the data structures in the environment.

Note that in this setup the mapping to the target program under test is done in the
wrapper script, that also maps our abstract trees to more concrete data structures as
used in the implementation.

testgen params [setup_code="open IntRedBlackSet;",
toString="wrapper.toString"]

lemma [code]: "(max (a::nat) b) = (if (a < b) then b else a)"
by (simp add: max_def)

types code
color ("color")
ml_order ("order")
tree ("_ tree")

consts_code
"compare" ("Key.compare (_,_)")
"color.B" ("B")
"color.R" ("R")
"tree.E" ("E")
"tree.T" ("(T(_,_,_,_))")

Now we can generate a test script (for both test data sets):

n.on

gen_test_script "rbt_script.sml" "red-and-black-inv" "prog"
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"wrapper.del"

gen test script "rbt2_script.sml" "red-and-black-inv3" "prog"
"wrapper.del"

5.4.4 Test Result Verification

Running the test executable (either based on red-and-black-inv or on red-and-black-inv3)
results in an output similar to

Test Results:

0 - SUCCESS, result: E
1 - SUCCESS, result: T(R,E,67,E)
Test 2 - SUCCESS, result: T(B,E,"88,E)
3 - *x WARNING: pre-condition false (exception
during post_condition)
Test 4 - *x WARNING: pre-condition false (exception
during post_condition)
Test 5 - SUCCESS, result: T(R,E,30,E)
Test 6 - SUCCESS, result: T(B,E,73,E)
Test 7 - ** WARNING: pre-condition false (exception
during post_condition)
Test 8 - *x WARNING: pre-condition false (exception
during post_condition)
Test 9 - **xx FAILURE: post-condition false, result:
T(B,T(B,E,"92,E),"11,E)

Test 10 - SUCCESS, result: T(B,E,19,T(R,E,98,E))
Test 11 - SUCCESS, result: T(B,T(R,E,8,E),16,E)
Summary

of 12 (ca. 58%)
of 12 (ca. 33%)
of 12 (ca. 0%)
of 12 (ca. 8%)
of 12 (ca. 0%)

Number successful tests cases:
Number of warnings:

Number of errors:

Number of failures:

Number of fatal errors:

O = O b N

Overall result: failed

The error that is typically found has the: Assuming the red-black tree presented in

Fig. |5.1(a)} deleting the node with value —49 results in the tree presented in Fig. [5.1(c)|
which obviously violates the black invariant (the expected result is the balanced tree in

Fig.[5.1(b)). Increasing the depth to at least 4 reveals several test cases where unbalanced
trees are returned from the SML implementation.cat

end
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(a) pre-state (b) correct result (c) result of sml/NJ

Figure 5.1: Test Data for Deleting a Node in a Red-Black Tree

5.5 IMP

theory
hoare_test_theory
imports
vc
Testing
begin

5.5.1 Alternative Formulations of Hoare-Rules

lemma semi_rev: "[ |- {Q} d {R}; |- {P} ¢ {@+} | = |- {P} c¢; d {R}"

by (rule semi, assumption+)

lemma conseq_rev:
"[I- {P} ¢ {Q}; Vs. PP s — P s; Vs. @ s — Q’ s] = |- {P’} c {Q’}"

by (rule conseq, auto)

lemma conseq_skip:
" s. Ps — @ s) = |- {P} SKIP {Q}"
by (rule conseq_rev, rule skip, auto)

lemma conseq_ass:
" s. Ps — Q (s[lx— Es])) = |- 1P} x :== E {Q}"
by (rule conseq_rev, rule ass, auto)

thm While

lemma conseq_while:
" I- 4\ s. I s A cond s} s {I};
Vs. Ps — I s;
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Vs. I s A - conds — Qs]
— |- {P} WHILE cond DO s {Q}"
by (rule conseq_rev, rule While, assumption+)

5.5.2 Hoare-Rules Using Semantic Equivalences

Soundness and Completeness justify the following equivalence, which allows to conclude
the existence of Hoare-proofs from denotational-semantic equivalences.

lemma hoare_deriv_eq_valid: "( |- {P} ¢ {Q}) = ( |= {P} ¢ {QM)"
by (auto intro!: hoare_sound hoare_relative_complete)

lemma hoare_false:
" |- {\ x. False} c {Q}"
by (simp add: hoare_deriv_eq_valid hoare_valid_def)

lemma while_unfold:
"( |- {P} WHILE b DO ¢ {Q}) =
( |- {P}IF b THEN c; WHILE b DO c¢c ELSE SKIP {Q})"
by (simp only: hoare_deriv_eq_valid hoare_valid_def
Denotation.C_While_If[symmetric])

lemma semi_skipl:
"( |- {P} SKIP ;c {Q}) = ( |- {P} c {@P"
by (simp only: hoare_deriv_eq_valid hoare_valid_def
Denotation.C.simps Id_O_R R_0_Id)

lemma semi_skip2:
"( |- {P} c;SKIP {Q}) = ( [- {P} c {@PH"
by (simp only: hoare_deriv_eq_valid hoare_valid_def
Denotation.C.simps Id_O_R R_0_Id)

lemma semi_assoc:
"( |- {P} (c;d) ;e {Q}) = ( |- {P} c; (d;e) {@H)"
by (simp only: hoare_deriv_eq_valid hoare_valid_def
Denotation.C.simps Relation.0_assoc)

lemma semi_assoc2:
" |- {P} (c;(d;e)) ; £ 4QF) = ( |- {P} c;(d;(e;£)) {QP)"
by (simp only: hoare_deriv_eq_valid hoare_valid_def
Denotation.C.simps Relation.0_assoc)
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5.5.3 Unwind and its Correctness

The core of our white box testing function is the following “unwind” function, that
“unfolds” while loops and normalizes the resulting program in order to expose it to the
operational semantics (i.e. the “natural semantics” evalc up to an unwind factor k.
Evaluating programs leads to accumulating path-conditions: If a remaining constraint
(whose components essentially result from applications of the If_split rule), is sat-
isfiable that a path through a program is traceable and results to a certain successor
state.

This can be used to test program specifications: Hoare-Triples were checked against
for all paths up to a certain depth.

consts "@@" :: "[com,com] = com" (infixr 70)
primrec

ca_skip : "SKIP @@ c = c"

ca_ass : "(x:==E) @ c = ((x:==E); c)"
ca_semi : "(c;d) @@ e = (c; d @@ e)"

ca_If : "(IF b THEN c¢ ELSE d) @@ e =

(IF b THEN ¢ @@ e ELSE d @@ e)"
ca_while: "(WHILE b DO c) @@ e = ((WHILE b DO c);e)"

lemma C_skip_cancell[simp] : "C(SKIP;c) = C(c)"
by (simp add: Denotation.C.simps Id_O_R R_0_Id)

lemma C_skip_cancel2[simp] : "C(c;SKIP) = C(c)"
by (simp add: Denotation.C.simps Id_O_R R_0_Id)

lemma C_If_semi[simp]
"C((IF x THEN c ELSE d);e) = C(IF x THEN (c;e) ELSE (d;e))"
by auto

lemma comappend_correct [simp]: "C(c @@ d) = C(c;d)"
apply (induct "c")
apply (simp_all only: C_If_semi ca_If)
apply (simp_all add: Relation.0_assoc)

done
consts unwind :: "nat X com = com"
recdef unwind "less_than <*lex*> measure(\ s. size s)"
uw_skip : "unwind(n, SKIP) = SKIP"
uw_ass : "unwind(n, a :== E) = (a :== E)"
uw_If : "unwind(n, IF b THEN c ELSE d) =

IF b THEN unwind(n, c¢) ELSE unwind(n, d)"
uw_while: "unwind(n, WHILE b DO c) =
(if 0 < n
then IF b THEN unwind(n,c)@@unwind(n- 1,WHILE b DO c) ELSE SKIP
else WHILE b DO unwind(0, c))"
uw_semil: "unwind(n, SKIP ; c¢) = unwind(nm, c)"
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uw_semi2: "unwind(n, ¢ ; SKIP) = unwind(n, c)"
uw_semi3: "unwind(n, (IF b THEN c¢ ELSE d) ; e) =

(IF b THEN (unwind(n,c;e)) ELSE (unwind(a,d;e)))"

uw_semi4: "unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))"
uw_semi5: "unwind(n, ¢ ; d) = (unwind(n, c))@@(unwind(n, d))"

lemma unwind_correct_auxl :

assumes H : "Vx. C (unwind (x, c)) =Cc"
shows "C(unwind (n,WHILE b DO c)) = C(WHILE b DO c)"
apply (induct "n")

apply (simp add: Denotation.C.simps H)

apply (subst uw_while)

apply (subst if_P, simp)

apply (simp only: Denotation.C.simps comappend_correct)
apply (rule_tac s = "n" and t = "Suc n - 1" in subst)
apply arith

apply (simp only: Denotation.C.simps [symmetric] H)

apply (simp only: Denotation.C_While_If)

done

declare uw_while [simp del]

lemma unwind_correct_aux2 :

"C(unwind(n,c;d))= C(unwind(n,c) ; unwind(n, d))"
apply (induct "c", simp_all)

apply (case_tac "d", simp_all)

apply (case_tac "d", simp_all)

apply (case_tac "d", simp_all)

apply (simp_all only: C.simps[symmetric] C_If_semi)
apply (case_tac "d", simp_all)

done

lemma unwind_correct : "C(unwind(m,c)) = C(c)"
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apply (rule_tac x = n in spec)
apply (induct "c")
prefer 5
apply (rule alll)
apply (rule unwind_correct_auxl, simp, simp_all)
apply (case_tac "c1",case_tac "c2",
simp_all add: unwind_correct_aux2)
done



lemma unwind_hoare:
"( |- {P} unwind(n,c) {Q} ) = ( |- {P} c {@P)"
by (simp only: unwind_correct hoare_deriv_eq_valid
hoare_valid_def)

lemma wp_unwind : "wp (c¢) (p) = wp(unwind(n,c)) (p) "
by (simp add: wp_def unwind_correct)

lemma wp_test : "Wo. P o — wp (unwind(k,c)) Q o
= |- {P} ¢ {Q}"
apply (rule Hoare.hoare_conseql)
prefer 2
apply (rule wp_is_pre)
apply (simp add: wp_unwind[symmetric])
done

ML {*

fun thyp_ify n = EVERY[TestGen.mp_fy n,

TestGen.all_ify [] n,

rtac ((thm"THYP_def") RS (thm"HOL.meta_eq_to_obj_eq") RS (thm"iffD1"))
n]
*}

5.5.4 Relation to Operational Semantics

lemma If_split:

" b s = (c0,8) —. s7;
- bs = (cl,s) —. s’ ]
- <IF b THEN cO ELSE cl,s> —. 82"
by (cases "b s", simp_all)

lemma If_splitE:
"[  (IF b THEN c¢ ELSE d,s) —. s’;
[ bs; (c,s) — 8" ] = P;
[ - bs; (ds) —cs’] = P] = P"
by (cases "b s", simp_all)

lemma setup_test :
"( |- {Pre} ¢ {Post}) =
(Vs t. (unwind (n, ¢),s) —. t — Pre s — Post t)"
apply (subst unwind_hoare[symmetric])
apply (subst hoare_deriv_eq_valid)
apply (simp only: hoare_valid_def denotational_is_natural)
done
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consts STOP :: com

uninterpreted constant stopping deduction for cases reached for it ...

constdefs ASSERT :: "[bexp,com] = com"
"ASSERT b ¢ = IF b THEN ¢ ELSE STOP"

constdefs AWHILE :: "[bexp,bexp,com] = com"
"AWHILE b invnt ¢ = ASSERT invnt (WHILE b DO (c; ASSERT invnt SKIP))"

end

theory
squareroot_test
imports
hoare_test_theory
begin

5.5.5 The Definition of the Integer-Squareroot Program

constdefs
squareroot :: "[loc,loc,loc,loc] => com"
"squareroot tm sum i a ==
(( tm == (\s. 1));
(( sum :== (As. 1));
(@i ;== (As. 0));
WHILE (As. (s sum) <= (s a)) DO
((C i == (As. (s i) + 1));
((tm  :== (\s. (s tm) + 2));
(sum :== (As. (s tm) + (s sum)))))))
)”
constdefs
pre :: assn
"pre = A\ x. True"
post :: "[loc,loc] = assn"
"post a i = A s. (s i)*(s i)<(sa) Asa< (si+1*(si+ 1"
inv :: "[loc,loc,loc,loc] = assn"

"inv i sum tm a = As.(s i + 1) ¥ (s i + 1) = s sum
Astm= (2% (s i) + 1)
A (s i) * (s i) <= (s a)"
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5.5.6 Computing Program Paths and their Path-Constraints

lemma derive_pathconds:
assumes no_alias : "sum # i A 1 # sum A tm # sum A
sum # tm A sum # a A a # sum A
tm# i AN i# tm A tm# aAas#tm A
a#iANiz#* a"

shows "(unwind(3, squareroot tm sum i a), s) —. s’"

apply (simp add: squareroot_def uw_while)
apply (rule If_split, simp_all add: update_def no_alias)+

The resulting proof state capturing the test hypothesis as well as the resulting 4 evaluation
paths (no entry into loop, 1 pass, 2 passes and 3 passes through the loop) looks as follows:

1. Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < s a —
(WHILE As. s sum
< s aD0i :==MXs. Suc (s i) ; (tm :== MAs.
Suc (Suc (s tm)) ; sum :== As. s tm + s sum ),s
(i := Suc (Suc (Suc 0)),
tm := Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))),
sum :=
Suc (Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))
— S8’
2. [Suc (Suc (Suc (Suc 0))) < s a;
- Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < s aJ
= s’ = s
(i := Suc (Suc 0), tm := Suc (Suc (Suc (Suc (Suc 0)))),
sum := Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))
3. [Suc 0 < s a; = Suc (Suc (Suc (Suc 0))) < s g
= s’ = s
(i := Suc 0, tm := Suc (Suc (Suc 0)), sum := Suc (Suc (Suc (Suc 0))))
4, = Suc 0 < sa=— s’ =s(tm := Suc 0, sum := Suc 0, i := 0)

0oops

Summary: With this approach, one can synthesize paths and their conditions.

5.5.7 Testing Specifications

lemma wb_specification_test:
assumes no_alias : "sum # i A i # sum A tm # sum A
sum # tm A sum # a A a # sum A
tm# i AN1iF# tmAtm#aAaz#tm A
a#iANi# a"

shows "[|- {pre} squareroot tm sum i a {post a i}"
apply (simp add: squareroot_def pre_def)

apply (rule_tac n1 = "3" in iffD2[0F setup_test])
apply (rule alll, rule alll, simp, rule impI)
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apply (simp_all add: update_def no_alias uw_while)
apply (erule If_splitE, simp_all add: update_def no_alias uw_while)+

We “wrap” the first part into the test hypothesis:

apply (erule rev_mp) back
apply (erule THYP_appl_rev)

The resulting proof state captures the essence of this white box test:

1. \s t. THYP
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < s a —
(WHILE As. s sum
< s aD0Oi :== )\s. Suc
(s i) ; (tm :== As. Suc (Suc (s tm)) ; sum :== A\s. s tm + s sum ),s
(i := Suc (Suc (Suc 0)),
tm := Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))),
sum :=
Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))
—. t — post a i t)
2. As t. [Suc (Suc (Suc (Suc 0))) < s a;
= Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < s a;
t = s
(i := Suc (Suc 0), tm := Suc (Suc (Suc (Suc (Suc 0)))),
sum := Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))]
— post a i
(s(i := Suc (Suc 0), tm := Suc (Suc (Suc (Suc (Suc 0)))),
sum :=
Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))
3. As t. [Suc 0 < s a; — Suc (Suc (Suc (Suc 0))) < s a;
t =s
(i := Suc 0, tm := Suc (Suc (Suc 0)),
sum := Suc (Suc (Suc (Suc 0))))]
— post a 1
(s(i := Suc 0, tm := Suc (Suc (Suc 0)),
sum := Suc (Suc (Suc (Suc 0)))))
4. Ast. [~ Suc 0 < s a; t = s(tm := Suc 0, sum := Suc 0, i := 0)]
— post a i (s(tm := Suc 0, sum := Suc 0, i := 0))

Now testing all paths for compliance to post condition:

apply (simp_all add: no_alias post_def)

In this special case—arithmetic constraints—the system can even verify these constraints, i.e.
the simplifier shows that all postconditions follow from the initial constraints and the computed
relation between pre-state and post state.

1. \s t. THYP
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < s a —
(WHILE As. s sum
< s aD0i :==As. Suc
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(s i) ; (tm :== As. Suc (Suc (s tm)) ; sum :== As. s tm + s sum ),s
(i := Suc (Suc (Suc 0)),
tm := Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))),
sum :=
Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))))))))))))
— .t — ti*xti<taAta<Suc (ti+ (ti+tix*ti)))

To say it loud and clearly: The white box test decomposes the original specification into a
test hypothesis for cases with 32 = 9 <= sa and all other cases (e.g. 22 = 4 <= sa A sa < 9).
The latter have been proven automatically.

oops

5.5.8 An Alternative Approach with an On-The-Fly generated
Explicit Test-Hyp.

lemma path_exploration_test:
assumes no_alias : "sum # i A 1 # sum A tm # sum A
sum # tm A sum # a A a # sum A
tm# 1 AN 1# tmAtm#aAa#tm A
a#1iANi=# a"

shows "|- {pre} squareroot tm sum i a {post a i}"
We fire the basic white-box scenario:
apply (rule wp_test [of _ "3"])

Given the concrete unwinding factor and the concrete program term, standard normalization
yields an ”Path Exhaustion Theorem” with the explicit test hypothesis:

apply (auto simp: squareroot_def update_def no_alias uw_while)
apply (tactic "thyp_ify 1")
defer 1

and we reach the following instantiation of a white-box test-theorem (with explicit test-
hypothesis for the uncovered paths):

1. No. [pre o; Suc (Suc (Suc (Suc 0))) < o a;
= Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < o af
— post a i
(o (i := Suc (Suc 0), tm := Suc (Suc (Suc (Suc (Suc 0)))),
sum :=
Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))
2. No. [pre o; Suc 0 < ¢ a; — Suc (Suc (Suc (Suc 0))) < o 4]
— post a i
(o(i := Suc 0, tm := Suc (Suc (Suc 0)),
sum := Suc (Suc (Suc (Suc 0)))))
3. N\o. [pre o; = Suc 0 < o 4]
= post a i (o(tm := Suc 0, sum := Suc 0, 1 := 0))
4. THYP
(Vx xa xb xc xd.
Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < xd xc —
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pre xd —
wp (WHILE As. s xa
< s xc DO xb :== As.
Suc (s xb) ; (x :== As. Suc (Suc (s x)) ; xa :== A\s. s x + s xa ))
(post xc xb)
(xd(xb := Suc (Suc (Suc 0)),
x := Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))),
xa :=
Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))

Now we allso perform the ”tests” by symbolic execution:
apply (auto simp: no_alias pre_def post_def)

which leaves us just with test-hypothesis case; for all paths not leading to a remaining while,
the program is correct.

1. THYP
(Vx xa xb xc xd.
Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))))) < xd xc —
wp (WHILE As. s xa
< s xc DO xb :== As.
Suc (s xb) ; (x :== As. Suc (Suc (s x)) ; xa :== As. s x + s xa ))
(As. s xb ¥ s xb < 5 xc A
s xc < Suc (s xb + (s xb + s xb * s xb)))
(xd(xb := Suc (Suc (Suc 0)),
x := Suc (Suc (Suc (Suc (Suc (Suc (Suc 0)))))),
xa :=
Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))))))

oops

end

5.6 Sequence Testing

In this section, we apply HOL-TestGento different sequence testing scenarios; see [15]
for more details.
theory Sequence_test
imports
List
Testing
begin

In this theory, we present present a simple reactive system and demonstrate and show
how HOL-TestGen can be used for testing such systems.
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Our scenario is motivated by the following communcation scenario: A client sends a
server a communication request and specifies a port-range X. The server non-deterministically
chooses a port Y which is within the specified range. The client sends a sequence of data
(abstracted away in our example to a constant Data) on the port allocated by the server.

The communication is terminated by the client with a stop event. Using a csp-like
notation, we can describe such a system as follows:

req?X — port?YY < X]
— (rec N e send!D,Y — ack — N O stop — ack — SKIP)

It is necessary for our approach that the protocol strictly alternates client-side and server-
side events; thus, we will be able to construct in a test of the server a step-function ioprog
(see below) that stimulates the server with an input and records its result. If a protocol
does not have alternation in its events, it must be constructed by artificial acknowledge
events; it is then a question of their generation in the test-harness, if they were sent
anyway or if they correspond to something like “server reacted within timebounds.”

The stimulation sequence of the system under test results just from the projection of
this protocol to the input events:

req?X — (rec N @ send!D,Y — N [ stop — SKIP)

5.6.1 Basic Technique: Events with explicit variables

We define abstract traces containing explicit variables X, Y, .... The whole testcase-
generation is done on the basis of the abstract traces. However, some small additional
functions substitute and bind were used to replace them with concrete values during the
run of the test-driver, as well as programs that check pre and post conditions on the
concrete values occuring in the concrete run.

We specify explicit variables and a joined type containing abstract events (replacing
values by explicit variables) as well as their concrete counterparts.

datatype vars = X | Y
datatype data = Data

datatype dvars = inp vars | outp vars

types chan = int

datatype InEvent = req chan | reqA vars |
send data chan | sendA data vars |
stop

datatype OutEvent = port chan | portA vars|
ack
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constdefs lookup :: "[’a — ’b, ’a] = ’b"
"lookup env v = the(env v)"
success:: "'« option = bool"
"success x = case x of None => False | Some x => True"

types event = "InEvent + OutEvent"

5.6.2 The infra-structure of the observer: substitute and rebind

The predicate subsitute allows for mapping abstract events containing explicit variables
to concrete events by substituting the variables by values communicated in the system
run. It requires an environment (“substitution”) where the concrete values occuring in
the system run were assigned to variables.

consts substitute :: "[vars — chan, InEvent] = InEvent"
primrec

"substitute env (req n) = req n"

"substitute env (reqA v) = req(lookup env v)"

"substitute env (send d n) = send d n"
"substitute env (sendA d v)= send d (lookup env v)"
"substitute env stop = stop"

The predicate rebind extracts from concrete output events the values and binds them
to explicit variables in env. It should never be applied to abract values; therefore, we
we can use an underspecified version (arbitrary). The predicate rebind only stores ?7-
occurrences in the protocol into the environment; !-occurences were ignored. Events,
that are the same in the abstract as well as the concrete setting are treated as abstract
event.

In a way, rebind can be viewed as an abstraction of the concrete log produced at
runtime.

consts rebind :: "[vars — chan, OutEvent] = vars — chan"
primrec

"rebind env (port n) = env(Y—n)"

"rebind env ack = env"

5.6.3 Abstract Protocols and Abstract Stimulation Sequences

Now we encode the protocol automaton (abstract version) by a recursive acceptance
predicate. One could project the set of stimulation sequences just by filtering out the
outEvents occuring in the traces.

We will not pursue this approach since a more constructive presentation of the stim-
ulation sequence set is advisable for testing.

However, we show here how such concepts can be specified.

syntax A :: "nat"
B :: "nat"
C :: "nat"
D :: "nat"
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E :: "nat"

translations "A" == "O"
"B" == "Suc A"
"C" == "Suc B"
"D" == "Suc C"
"E" == "Suc D"
consts accept’ :: "nat X event list = bool"
recdef accept’ "measure(\ (x,y). length y)"
"accept’ (A, (Inl(reqA X))#S) = accept’(B,S)"
"accept’ (B, (Inr(portA Y))#S) = accept’(C,S)"
"accept’ (C, (Inl(sendA d Y))#S) = accept’(D,S)"
"accept’ (D, (Inr(ack))#S) = accept’(C,S)"
"accept’ (C, (Inl(stop))#S) = accept’(E,S)"
"accept’ (E, [Inr(ack)]) = True"
"accept’ (x,y) = False"
constdefs accept :: "event list = bool"

"accept s = accept’(0,s)"
We proceed by modeling a subautomaton of the protocol automaton accept.

consts stim_trace’ :: "nat X InEvent list = bool"

recdef stim_trace’ "measure(\ (x,y). length y)"
"stim_trace’ (A, (reqA X)#S) = stim_trace’(C,S)"
"stim_trace’ (C, (sendA d Y)#S) = stim_trace’(C,S)"
"stim_trace’ (C, [stop]) = True"
"stim_trace’(x,y) = False"

constdefs stim_trace :: "InEvent list => bool"
"stim_trace s = stim_trace’(4,s)"

5.6.4 The Post-Condition

consts
postcond’ :: "((vars — int) X unit X InEvent X OutEvent) =- bool"

recdef postcond’ "{}"
"postcond’ (env, x, req n, port m) = (m <= n)"

"postcond’ (env, x, send z n, ack) = (n = lookup env Y)"
"postcond’ (env, x, stop, ack) = True"
"postcond’ (env, x, y, z) = False"
constdefs
postcond :: "(vars — int) X unit = InEvent = OutEvent = bool"

"postcond x y z = postcond’ (fst x, snd x, y, z)"

99



5.6.5 Testing for successful system runs of the server under test

So far, we have not made any assumption on the state ¢’ of the of our program under
test ioprog. It could be a log of the actual system run. However, for simplicity, we give
it inly a trivial state in this test specification.

5.6.6 Test-Generation: The Standard Approach

declare stim_trace_def[simp]
declare Mfold.simps[simp del]

test spec "stim_trace trace —
success (Mfold trace (empty(X—init), ())
(observer rebind substitute postcond ioprog))"
apply (gen_test_cases 4 1 "ioprog")
store test thm "reactive"

testgen params [iterations=1000]
gen test data "reactive"

thm reactive.test_data

testgen params [
gen_wrapper=false,
setup_code="
fun fst(x,y) = x
fun snd(x,y) =y

n
2

dataconv_code=""
fun sendToServer event Unity = let
fun toServerData Data = server.Data
fun toServerVars X = server.X
| toServerVars Y = server.Y
fun fromServerData server.Data = Data
fun fromServerVars server.X =X
| fromServerVars server.Y Y
fun convert_InEvent (req x) server.req X
| convert_InEvent (reqA x) = server.reqA (toServerVars x)
| convert_InEvent (send (x,y))
= server.send (toServerData x,y)
| convert_InEvent (sendA (x,y))
= server.sendA (toServerData x, toServerVars y)
| convert_InEvent stop = server.stop
fun convert_OutEvent (server.port x) = Some(port x,Unity)

| convert_OutEvent (server.portA x) = Some(portA (fromServerVars x),Unity)

| convert_OutEvent server.ack = Some (ack,Unity)
in
convert_OutEvent (server.read (convert_InEvent event))
end
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"J

gen test script "sequence_script.sml" reactive ioprog "sendToServer"

5.6.7 Test-Generation: Refined Approach involving TP

An analysis of the previous approach shows, that random solving on trace patterns is
obviously still quite ineffective. Although path coverage wrt. the input stimulation
trace automaton can be achieved with a reasonable high probability, the depth remains
limited.

The idea is to produce a better test theorem by more specialized rules, that take the
special form of the input stimulation protocol into account.

lemma start :
"stim_trace’ (A,x#S) = ((x = reqA X) A stim_trace’(C,S))"
apply (cases "x", simp_all)
apply (rule_tac y="vars" in vars.exhaust,simp_all)
done

lemma final[simp]:

"(stim_trace’ (x, stop # S)) = ((x=C)A(S=[]))"

apply (case_tac "x=Suc (Suc (A:nat))", simp_all)

apply (cases "S",simp_all)

apply (case_tac "x=Suc (A:nat)", simp_all)

apply (case_tac "x = (A:nat)", simp_all)

apply (subgoal_tac "d xa. x = Suc(Suc(Suc xa))",erule exE,simp)
apply (arith)

done

lemma stepl :
"stim_trace’ (C,x#y#S) = ((x=sendA Data Y) Astim_trace’(C,y#S))"
apply (cases "x", simp_all)
apply (rule_tac y="data" in data.exhaust,simp_all)
apply (rule_tac y="vars" in vars.exhaust,simp_all)
done

lemma step2:

"stim_trace’(C, [x]) = (x=stop)"
apply (cases "x", simp_all)
apply (rule_tac y="data" in data.exhaust,simp_all)
apply (rule_tac y="vars" in vars.exhaust,simp_all)
done

The three rules start, stepl and step2 give us a translation of a constraint of the form
stim¢race’(z, [a, ... ,b]) into a simple conjunction of equalities (in general: disjunction
and existential quantifier will also occur). Since a formula of this form is an easy game
for fastiac inside gen_test cases, we will get dramatically better test theorems, where
the constraints have been resolved already.
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We reconfigure the rewriter . ..

declare start[simp] stepl[simp] step2 [simp]

test spec "stim_trace trace —
success (Mfold trace (empty(X—init), ())
(observer rebind substitute postcond ioprog))"
apply (gen_test_cases 40 1 "ioprog")
store test thm "reactive2"

testgen params [iterations=1]
gen test data "reactive2"

thm reactive2.test_data

gen test script "sequence_script.sml" reactive2 ioprog "sendToServer"

Within the timeframe of 1 Minute, we get trace lengthes of about 40 in the stimulation
input protocol, which corresponds to traces of 80 in the standard protocol. The examples
shows, that it is not the length of traces that is a limiting factor of our approach. The
main problem is the complexity in the stimulation automaton (size, brachning-factors,
possible instantiations of parameter input).

end

5.7 HOL-TestGen/FW: A Domain-specific Test Tool for
Firewall Policies

As HOL-TestGenis built on the framework of Isabelle with a general plug-in mechanism,
HOL-TestGencan be customized to implement domain-specific, model-based test tools
in its own right. As an example for such a domain-specific test-tool, we developed
HOL-TestGen/FWwhich extends HOL-TestGenby:

1. a theory (or library) formalizing networks, protocols and firewall policies,
2. domain-specific extensions of the generic test-case procedures (tactics), and
3. support for an export format of test-data for external tools such as [26].

HOL-TestGen/FWis part of the HOL-TestGendistribution. It is located in the directory
examples/hol-testgen-fw; see [15, [12] for more details.

shows the overall architecture of HOL-TestGen/FW.

In fact, defines the formal semantics (in HOL) of a specification language for fire-
wall policies; see [12] and the examples provided in the dirctory examples/hol-testgen-fw
for details. On the technical level, this library also contains simplification rules together
with the corresponding setup of the constraint resolution procedures.
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( firewall policy ) HOL-TestGen/FW (ﬁrewall under test)

policy | Policy i/ 1\

theory tactic %{ test data }% | test driver

library

HOL-TestGen

export module

Test Trace
(Test Result)

Figure 5.2: The HOL-TestGen/FWarchitecture.

With we refer to domain-specific processing encapsulated the general HOL-
TestGentest-case generation. Since test specifications in our domain have a specific
pattern consisting of a limited set of predicates and policy combinators, this can be
exploited in specific pre-processing and post-processing of an optimized version of the
procedure, now tuned for stateless firewall policies. Moreover, there are new control
parameters for the simplification.

With [item 3], we refer to an own XML-like format for exchanging test-data for firewalls,
i.e., a description of packets to be send together with the expected behavior of the
firewall. This data data can be imported in a test-driver for firewalls, for example [26].
This completes our toolchain which, thus, supports the execution of test data on firewall
implementations based on test cases derived from formal specifications.
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A Glossary

Abstract test data : In contrast to pure ground terms over constants (like integers
1,2,3, or lists over them, or strings ...) abstract test data contain arbitrary predi-
cate symbols (like triangle 3 4 5).

Regression testing: Repeating of tests after addition/bug fixes have been introduced
into the code an checking that behavior of unchanged portions has not changed.

Stub: Stubs are “simulated” implementations of functions, they are used do simulate
functionality that does not yet exists ore cannot be run in the test environment.

Test case: An abstract test stimuli that test some aspects of the implementation and
validates the result.

Test case generation: For each operation of the pre/postcondition relation is divided
into sub-relations. It assumes that all members of a sub-relation lead to a similar
behavior of the implementation.

Test data: One or more representative for a given test case.

Test data generation (Test data selection): For each test case (at least) one rep-
resentative is chosen so that coverage of all test cases is achieved. From the result-
ing test data, test input data processable by the implementation is extracted.

Test execution: The implementation is run with the selected test input data in order
to determine the test output data.

Test executable: An executable program that consists of a test harness, the test script
and the program under test. The Test executable executes the test and writes a
test trace documenting the events and the outcome of the test.

Test harness: When doing unit testing the program under test is not a runnable pro-
gram in itself. The test harness or test driver is a main program that initiates
test calls (controlled by the test script), i.e., drives the method under test and
constitutes a test executable together with the test script and the program under
test.

Test hypothesis : The hypothesis underlying a test that makes a successful test equiv-
alent to the validity of the tested property, the test specification. The current im-
plementation of HOL-TestGen only supports uniformity and regularity hypothesis,
which were generated “on-the-fly” according to certain parameters given by the
user like depth and breadth.
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Test specification : The property the program under test is required to have.

Test result verification: The pair of input/output data is checked against the speci-
fication of the test case.

Test script: The test program containing the control logic that drives the test using
the test harness. HOL-TestGen can automatically generate the test script for you
based on the generated test data.

Test theorem: The test data together with the test hypothesis will imply the test
specification. HOL-TestGen conservatively computes a theorem of this form that
relates testing explicitly with verification.

Test trace: Output made by a test executable.
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