
HOL-TestGenFW

Achim D. Brucker Lukas Brügger Burkhart Wolff

March 12, 2010

Contents

1 Introduction 2

2 Preliminaries 3

3 Packets and Networks 4

4 Address Representations 6
4.1 Datatype Addresses . 7
4.2 Datatype Addresses with Ports 8
4.3 Integer Addresses . 8
4.4 Integer Addresses with Ports 9
4.5 IPv4 Addresses . 9

5 Policies 10
5.1 Policy Core . 10
5.2 Policy Combinators . 11
5.3 Policy Combinators with Ports 12
5.4 Ports . 15

6 Policy Normalisation 16
6.1 Basics . 16
6.2 Auxiliary definitions and functions. 17
6.3 Invariants . 19
6.4 Transformations . 21

7 Stateful Firewalls 24
7.1 Basic Constructs . 24
7.2 FTP Protocol . 26

8 Examples 30
8.1 Stateless Example . 30
8.2 FTP Example . 33

1

firewall policy

HOL-TestGen

export module

policy
theory

policy
tactic
library

test data test driver

(Test Result)
Test Trace

firewall under testHOL-TestGen/FW

Figure 1: The HOL-TestGen/FWarchitecture.
1 Introduction

As HOL-TestGenis built on the framework of Isabelle with a general plug-in
mechanism, HOL-TestGencan be customized to implement domain-specific,
model-based test tools in its own right. As an example for such a domain-
specific test-tool, we developed HOL-TestGen/FWwhich extends HOL-TestGenby:

1. a theory (or library) formalizing networks, protocols and firewall poli-
cies,

2. domain-specific extensions of the generic test-case procedures (tactics),
and

3. support for an export format of test-data for external tools such as [4].

HOL-TestGen/FWis part of the HOL-TestGendistribution. It is located in
the directory examples/hol-testgen-fw; see [3, 2] for more details.
Figure 1 shows the overall architecture of HOL-TestGen/FW.
In fact, item 1 defines the formal semantics (in HOL) of a specification lan-
guage for firewall policies; see [2] and the examples provided in the dirctory
examples/hol-testgen-fw for details. On the technical level, this library
also contains simplification rules together with the corresponding setup of
the constraint resolution procedures.
With item 2 we refer to domain-specific processing encapsulated the general
HOL-TestGentest-case generation. Since test specifications in our domain
have a specific pattern consisting of a limited set of predicates and pol-
icy combinators, this can be exploited in specific pre-processing and post-
processing of an optimized version of the procedure, now tuned for stateless
firewall policies. Moreover, there are new control parameters for the simpli-
fication.
With item 3, we refer to an own XML-like format for exchanging test-data for
firewalls, i.e., a description of packets to be send together with the expected
behavior of the firewall. This data data can be imported in a test-driver
for firewalls, for example [4]. This completes our toolchain which, thus,

2

supports the execution of test data on firewall implementations based on
test cases derived from formal specifications.

2 Preliminaries

theory
FWTesting

imports
PacketFilter/PacketFilter
FWCompilation/FWCompilationProof
StatefulFW /StatefulFW
Testing

begin

This is a formalisation in Isabelle/HOL of firewall policies and corresponding
networks and packets. It first contains the formalisation of stateless packet
filters as described in [2], followed by a verified policy normalisation tech-
nique (described in [1]), and a formalisation of stateful protocols described
in [3].

The following statement adjusts the pre-normalization step of the test case
generation algorithm. This turns out to be more efficient for the specific
case of firewall policies.

setup〈〈 map-testgen-params(TestGen.pre-normalizeTNF-tac-update (
fn ctxt =>

fn clasimp =>
(TestGen.ALLCASES (asm-full-simp-tac (simpset-of

(ThyInfo.get-theory Int))))))
〉〉

Next, the Isar command prepare-fw-spec-tac is specified. It can be used to
turn test specifications of the form: ”C x =⇒ FUT x = policy x” into the
desired form for test case generation.

ML 〈〈
fun prepare-fw-spec-tac ctxt =

(TRY ((res-inst-tac ctxt [((x ,0),x)] spec 1) THEN
(resolve-tac [allI] 1) THEN
(split-all-tac 1) THEN
(TRY (resolve-tac [impI] 1))));

〉〉

method-setup prepare-fw-spec =
〈〈

3

Scan.succeed (fn ctxt => SIMPLE-METHOD
(prepare-fw-spec-tac ctxt))〉〉 Prepares the firewall test theorem

end

3 Packets and Networks

theory NetworkCore
imports Main
begin

In networks based e.g. on TCP/IP, a message from A to B is encapsulated
in packets, which contain the content of the message and routing informa-
tion. The routing information mainly contains its source and its destination
address.
In the case of stateless packet filters, a firewall bases its decision upon this
routing information and, in the stateful case, on the content. Thus, we
model a packet as a four-tuple of the mentioned elements, together with an
id field.

The ID is just an integer:

types id = int

To enable different representations of addresses (e.g. IPv4 and IPv6, with or
without ports), we model them as an unconstrained type class and directly
provide several instances:

axclass adr < type
types ′α src = ′α::adr

′α dest = ′α::adr

instance int ::adr ..
instance nat ::adr ..
instance fun :: (adr ,adr) adr ..
instance ∗ :: (adr ,adr) adr ..

The content is also specified with an unconstrained generic type:

types ′β content = ′β

For applications were the concrete representation of the content field does
not matter (usually the case for stateless packet filters), we provide a default
type which can be used in those cases:

datatype DummyContent = data

4

A packet is thus:

types (′α, ′β) packet = id × (′α::adr) src × (′α::adr) dest × ′β content

Please note that protocols (e.g. http) are not modelled explicitly. In the
case of stateless packet filters, they are only visible by the destination port,
which will be modelled as part of the address. Additionally, stateful firewalls
will often determine the protocol by the content of a packet which is thus
kept as a generic type.

Port numbers (which are part of an address) are also modelled in a generic
way. The integers and the naturals are typical representations of port num-
bers.

axclass port < type
instance int ::port ..
instance nat :: port ..

A packet therefore has two parameters, the first being the address, the
second the content. These must of course be specified before we can generate
concrete test data later. For the sake of simplicity, we do not allow to have
a different address representation format for the source and the destination
of a packet respectively.

In order to access the different parts of a packet directly, we define a couple
of projectors:

definition id :: (′α, ′β) packet ⇒ id
where id ≡ fst

definition src :: (′α, ′β) packet ⇒ (′α::adr) src
where src ≡ fst o snd

definition dest :: (′α, ′β) packet ⇒ (′α::adr) dest
where dest ≡ fst o snd o snd

definition content :: (′α, ′β) packet ⇒ ′β content
where content ≡ snd o snd o snd

The following two constants give the source and destination port number
of a packet. Address representations using port numbers need to provide a
definition for these types.

consts src-port :: (′α, ′β) packet ⇒ ′γ::port
consts dest-port :: (′α, ′β) packet ⇒ ′γ::port

A subnetwork (or simply a network) is a set of sets of addresses.

types ′α net = ′α::adr set set

The relation in subnet (@) checks if an address is in a specific network. It
models a kind of subset relation and is defined as an infix operator.

5

definition
in-subnet :: ′α::adr ⇒ ′α net ⇒ bool (infixl @ 100) where
in-subnet a S ≡ ∃ s ∈ S . a ∈ s

The following lemmas will be useful later.

lemma in-subnet :
(((a), e) @ {{((x1),y). P x1 y}}) = (P a e)
by (simp add : in-subnet-def)

lemma src-in-subnet :
((src(q ,((a),e),r ,t)) @ {{((x1),y). P x1 y}}) = (P a e)

by (simp add : in-subnet-def in-subnet src-def)

lemma dest-in-subnet :
((dest (q ,r ,((a),e),t)) @ {{((x1),y). P x1 y}}) = (P a e)
by (simp add : in-subnet-def in-subnet dest-def)

Address models should provide a definition for the following constant, re-
turning a network consisting of the input address only.

consts subnet-of :: ′α::adr ⇒ ′α net

end

4 Address Representations

theory
NetworkModels

imports

DatatypeAddress
DatatypePort

IntegerAddress
IntegerPort

IPv4

begin

One can think of many different possible address representations. In this
distribution, we include 5 different versions:

• DatatypeAddress: Three explicitly named addresses, which build up
a network consisting of three disjunct subnetworks. I.e., there are no

6

overlaps and there is no way to distinguish between individual hosts
within a network.

• DatatypePort: An address is a pair, with the first element being the
same as above, and the second being a port number modelled as an
Integer1.

• IntegerAddress: An address in an Integer.

• IntegerPort: An address is a pair of an Integer and a port (which is
again an Integer).

• IPv4: An address is a pair. The first element is a four-tuple of Integers,
modelling an IPv4 address, the second element is an Integer denoting
the port number.

The respective theories of the networks are relatively small. It suffices to
provide the respective types, a couple of lemmas, and - if required - a defi-
nition for the source and destination ports of a packet.
end

4.1 Datatype Addresses

theory DatatypeAddress
imports NetworkCore
begin

A theory describing a network consisting of three subnetworks. Hosts within
a network are not distinguished.
datatype DatatypeAddress = dmz-adr | intranet-adr | internet-adr

definition
dmz ::DatatypeAddress net where
dmz ≡ {{dmz-adr}}

definition
intranet ::DatatypeAddress net where
intranet ≡ {{intranet-adr}}

definition
internet ::DatatypeAddress net where
internet ≡ {{internet-adr}}

end

1For technical reasons, we always use Integers instead of Naturals. As a consequence,
the test specifications have to be adjusted to eliminate negative numbers.

7

4.2 Datatype Addresses with Ports

theory DatatypePort
imports NetworkCore
begin

A theory describing a network consisting of three subnetworks, including
port numbers modelled as Integers. Hosts within a network are not distin-
guished.

datatype DatatypeAddress = dmz-adr | intranet-adr | internet-adr

types
port = int
DatatypePort = (DatatypeAddress × port)

instance DatatypeAddress :: adr ..

definition
dmz ::DatatypePort net where
dmz ≡ {{(a,b). a = dmz-adr}}

definition
intranet ::DatatypePort net where
intranet ≡ {{(a,b). a = intranet-adr}}

definition
internet ::DatatypePort net where
internet ≡ {{(a,b). a = internet-adr}}

defs (overloaded)
src-port-def : src-port (x ::(DatatypePort , ′β) packet) ≡ (snd o fst o snd) x
dest-port-def : dest-port (x ::(DatatypePort , ′β) packet) ≡ (snd o fst o snd o snd) x
subnet-of-def : subnet-of (x ::DatatypePort) ≡ {{(a,b). a = fst x}}

lemma src-port : src-port ((a,x ,d ,e)::(DatatypePort , ′β) packet) = snd x
by (simp add : src-port-def in-subnet)

lemma dest-port : dest-port ((a,d ,x ,e)::(DatatypePort , ′β) packet) = snd x
by (simp add : dest-port-def in-subnet)

lemmas DatatypePortLemmas = src-port dest-port src-port-def dest-port-def
end

4.3 Integer Addresses

8

theory IntegerAddress
imports NetworkCore
begin

A theory where addresses are modelled as Integers.

types
IntegerAddress = int

end

4.4 Integer Addresses with Ports

theory IntegerPort
imports NetworkCore
begin

A theory describing addresses which are modelled as a pair of Integers - the
first being the host address, the second the port number.

types
address = int
port = int
IntegerPort = address × port

defs (overloaded)
src-port-def : src-port (x ::(IntegerPort , ′β) packet) ≡ (snd o fst o snd) x
dest-port-def : dest-port (x ::(IntegerPort , ′β) packet) ≡ (snd o fst o snd o snd) x
subnet-of-def : subnet-of (x ::(IntegerPort)) ≡ {{(a,b). a = fst x}}

lemma src-port : src-port (a,x ::IntegerPort ,d ,e) = snd x
by (simp add : src-port-def in-subnet)

lemma dest-port : dest-port (a,d ,x ::IntegerPort ,e) = snd x
by (simp add : dest-port-def in-subnet)

lemmas IntegerPortLemmas = src-port dest-port src-port-def dest-port-def

end

4.5 IPv4 Addresses

9

theory IPv4
imports NetworkCore
begin

A theory describing IPv4 addresses with ports. The host address is a four-
tuple of Integers, the port number is a single Integer.

types
ipv4-ip = (int × int × int × int)
port = int
ipv4 = (ipv4-ip × port)

defs (overloaded)
src-port-def : src-port (x ::(ipv4 , ′b) packet) ≡ (snd o fst o snd) x
defs (overloaded)
dest-port-def :dest-port (x ::(ipv4 , ′b) packet) ≡ (snd o fst o snd o snd) x
defs (overloaded)
subnet-of-def : subnet-of (x ::ipv4) ≡ {{(a,b). a = fst x}}

definition subnet-of-ip :: ipv4-ip ⇒ ipv4 net
where subnet-of-ip ip ≡ {{(a,b). (a = ip)}}

lemma src-port : src-port (a,(x ::ipv4),d ,e) = snd x
by (simp add : src-port-def in-subnet)

lemma dest-port : dest-port (a,d ,(x ::ipv4),e) = snd x
by (simp add : dest-port-def in-subnet)

lemmas IPv4Lemmas = src-port dest-port src-port-def dest-port-def

end

5 Policies

5.1 Policy Core

theory PolicyCore
imports NetworkCore
begin

Next, we define the concept of a policy. From an abstract point of view,

10

a policy is a partial mapping of packets to decisions. Thus, we model the
decision as a datatype.

datatype ′α out = accept ′α | deny ′α

A policy is seen as a partial mapping from packet to packet out.

types (′α, ′β) Policy = (′α, ′β) packet ⇀ ((′α, ′β) packet) out

When combining several rules, the firewall is supposed to apply the first
matching one. In our setting this means the first rule which maps the packet
in question to Some (packet out). This is exactly what happens when using
the map-add operator (rule1 ++ rule2). The only difference is that the
rules must be given in reverse order.

The constant p-accept is True if the policy accepts the packet and False
otherwise.

definition
p-accept :: (′α, ′β) packet ⇒ (′α, ′β) Policy ⇒ bool where
p-accept p policy ≡ policy p = Some (accept p)

end

5.2 Policy Combinators

theory PolicyCombinators
imports
PolicyCore
begin

In order to ease the specification of a concrete policy, we define some com-
binators. Using these combinators, the specification of a policy gets very
easy, and can be done similarly as in tools like IPTables.

definition
allow-all :: (′α, ′β) Policy where
allow-all p ≡ Some (accept p)

definition
deny-all :: (′α, ′β) Policy where
deny-all p ≡ Some (deny p)

definition
allow-all-from :: (′α::adr) net ⇒ (′α, ′β) Policy where
allow-all-from src-net ≡ allow-all |‘ {pa. src pa @ src-net}

11

definition
deny-all-from :: (′α::adr) net ⇒ (′α, ′β) Policy where
deny-all-from src-net ≡ deny-all |‘ {pa. src pa @ src-net}

definition
allow-all-to :: (′α::adr) net ⇒ (′α, ′β) Policy where
allow-all-to dest-net ≡ allow-all |‘ {pa. dest pa @ dest-net}

definition
deny-all-to :: (′α::adr) net ⇒ (′α, ′β) Policy where
deny-all-to dest-net ≡ deny-all |‘ {pa. dest pa @ dest-net}

definition
allow-all-from-to :: (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy where
allow-all-from-to src-net dest-net ≡ allow-all |‘ {pa. src pa @ src-net ∧ dest pa

@ dest-net}

definition
deny-all-from-to :: (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy where
deny-all-from-to src-net dest-net ≡ deny-all |‘ {pa. src pa @ src-net ∧ dest pa @

dest-net}

All these combinators and the default rules are put into one single lemma
called PolicyCombinators to make life easier when we need to unfold a policy
consisting of several rules.
lemmas PolicyCombinators =

allow-all-def deny-all-def allow-all-from-def deny-all-from-def
allow-all-to-def deny-all-to-def allow-all-from-to-def deny-all-from-to-def
map-add-def restrict-map-def

end

5.3 Policy Combinators with Ports

theory PortCombinators
imports PolicyCombinators
begin

This theory defines policy combinators for those network models which have
ports. They are provided in addition to the the ones defined in the Policy-
Combinators theory.
This theory requires from the network models a definition for the two fol-
lowing constants:

• src port :: (′α,′ β)packet⇒ (′γ :: port)

12

• dest port :: (′α,′ β)packet⇒ (′γ :: port)

definition
allow-all-from-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α, ′β) Policy where
allow-all-from-port src-net s-port ≡ allow-all-from src-net |‘ {pa. src-port pa =

s-port}

definition
deny-all-from-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α, ′β) Policy where
deny-all-from-port src-net s-port ≡ deny-all-from src-net |‘ {pa. src-port pa =

s-port}

definition
allow-all-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α, ′β) Policy where
allow-all-to-port dest-net d-port ≡ allow-all-to dest-net |‘ {pa. dest-port pa =

d-port}

definition
deny-all-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α, ′β) Policy where
deny-all-to-port dest-net d-port ≡ deny-all-to dest-net |‘ {pa. dest-port pa =

d-port}

definition
allow-all-from-port-to :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ (′α, ′β)

Policy where
allow-all-from-port-to src-net s-port dest-net
≡ allow-all-from-to src-net dest-net |‘ {pa. src-port pa = s-port}

definition
deny-all-from-port-to :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ (′α, ′β)

Policy where
deny-all-from-port-to src-net s-port dest-net
≡ deny-all-from-to src-net dest-net |‘ {pa. src-port pa = s-port}

definition
allow-all-from-port-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ ′γ::port
⇒ (′α, ′β) Policy where

allow-all-from-port-to-port src-net s-port dest-net d-port ≡
allow-all-from-port-to src-net s-port dest-net |‘ {pa. dest-port pa = d-port}

definition
deny-all-from-port-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ ′γ::port
⇒ (′α, ′β) Policy where

deny-all-from-port-to-port src-net s-port dest-net d-port ≡
deny-all-from-port-to src-net s-port dest-net |‘ {pa. dest-port pa = d-port}

definition
allow-all-from-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ ′γ::port ⇒

(′α, ′β) Policy where

13

allow-all-from-to-port src-net s-port dest-net d-port ≡ allow-all-from-to src-net
dest-net |‘

{pa. src-port pa = s-port ∧ dest-port pa = d-port}

definition
deny-all-from-to-port :: (′α::adr) net ⇒ ′γ::port ⇒ (′α::adr) net ⇒ ′γ::port ⇒

(′α, ′β) Policy where
deny-all-from-to-port src-net s-port dest-net d-port ≡ deny-all-from-to src-net

dest-net |‘
{pa. src-port pa = s-port ∧ dest-port pa = d-port}

definition
allow-from-port-to :: ′γ::port ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy

where
allow-from-port-to port src-net dest-net ≡ allow-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (src-port pa = port)}

definition
deny-from-port-to :: ′γ::port ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy

where
deny-from-port-to port src-net dest-net ≡ deny-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (src-port pa = port)}

definition
allow-from-to-port :: ′γ::port ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy

where
allow-from-to-port port src-net dest-net ≡ allow-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (dest-port pa = port)}

definition
deny-from-to-port :: ′γ::port ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β) Policy

where
deny-from-to-port port src-net dest-net ≡ deny-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (dest-port pa = port)}

definition
allow-from-ports-to :: ′γ::port set ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β)

Policy where
allow-from-ports-to ports src-net dest-net ≡ allow-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (src-port pa ∈ ports)}

definition
allow-from-to-ports :: ′γ::port set ⇒ (′α::adr) net ⇒ (′α::adr) net ⇒ (′α, ′β)

Policy where
allow-from-to-ports ports src-net dest-net ≡ allow-all |‘

{pa. src pa @ src-net ∧ dest pa @ dest-net ∧ (dest-port pa ∈ ports)}

As before, we put all the rules into one lemma called PortCombinators to

14

ease writing later.

lemmas PortCombinators =
allow-all-from-port-def deny-all-from-port-def allow-all-to-port-def
deny-all-to-port-def allow-all-from-to-port-def
deny-all-from-to-port-def
allow-from-ports-to-def allow-from-to-ports-def
allow-all-from-port-to-def deny-all-from-port-to-def
allow-from-port-to-def allow-from-to-port-def deny-from-to-port-def
deny-from-port-to-def

end

5.4 Ports

theory Ports
imports Main
begin

This theory can be used if we want to specify the port numbers by names
denoting their default integer values. If you want to use them, please add
”Ports” to the simplifier before test data generation.

definition http::int where http ≡ 80
lemma http1 : x 6= 80 =⇒ x 6= http
by (simp add : http-def)

lemma http2 : x 6= 80 =⇒ http 6= x
by (simp add : http-def)

definition smtp::int where smtp ≡ 25
lemma smtp1 : x 6= 25 =⇒ x 6= smtp
by (simp add : smtp-def)

lemma smtp2 : x 6= 25 =⇒ smtp 6= x
by (simp add : smtp-def)

definition ftp::int where ftp ≡ 21
lemma ftp1 : x 6= 21 =⇒ x 6= ftp
by (simp add : ftp-def)

lemma ftp2 : x 6= 21 =⇒ ftp 6= x
by (simp add : ftp-def)

And so on for all desired port numbers.

15

lemmas Ports = http1 http2 ftp1 ftp2 smtp1 smtp2

end

6 Policy Normalisation

theory
FWCompilation

imports
../PacketFilter/PacketFilter
Testing

begin

This theory contains all the definitions used for policy normalisation as
described in [1]. Policy transformations are functions that map policies to
policies. We decided to represent policy transformations as syntactic rules;
this choice paves the way for expressing the entire normalisation process
inside HOL by functions manipulating abstract policy syntax.

6.1 Basics

We define a very simple policy language:

datatype (′α, ′β) Combinators =
DenyAll
| DenyAllFromTo ′α ′α
| AllowPortFromTo ′α ′α ′β
| Conc ((′α, ′β) Combinators) ((′α, ′β) Combinators) (infixr ⊕ 80)

And define the semantic interpretation of it. For technical reasons, we fix
here the type to policies on IntegerPort addresses. However, we could easily
provide definitions for other address types as well, using a generic consts for
the type definition and a primrec definition for each desired address model.

fun C :: (IntegerPort net , port) Combinators ⇒ (IntegerPort , DummyContent)
Policy
where
C DenyAll = deny-all
|C (DenyAllFromTo x y) = deny-all-from-to x y
|C (AllowPortFromTo x y p) = allow-from-to-port p x y
|C (x ⊕ y) = C x ++ C y

16

6.2 Auxiliary definitions and functions.

This subsection defines several functions which are useful later for the com-
binators, invariants, and proofs.

fun position :: ′α ⇒ ′α list ⇒ nat where
position a [] = 0
| (position a (x#xs)) = (if a = x then 1 else (Suc (position a xs)))

fun srcNet where
srcNet (DenyAllFromTo x y) = x
|srcNet (AllowPortFromTo x y p) = x

fun destNet where
destNet (DenyAllFromTo x y) = y
|destNet (AllowPortFromTo x y p) = y

fun srcnets::(IntegerPort net ,port) Combinators ⇒ (IntegerPort net) list where
srcnets DenyAll = []
|srcnets (DenyAllFromTo x y) = [x]
|srcnets (AllowPortFromTo x y p) = [x]
|(srcnets (x ⊕ y)) = (srcnets x)@(srcnets y)

fun destnets::(IntegerPort net ,port) Combinators ⇒ (IntegerPort net) list where
destnets DenyAll = []
|destnets (DenyAllFromTo x y) = [y]
|destnets (AllowPortFromTo x y p) = [y]
|(destnets (x ⊕ y)) = (destnets x)@(destnets y)

fun (sequential) net-list-aux where
net-list-aux [] = []
|net-list-aux (DenyAll#xs) = net-list-aux xs
|net-list-aux ((DenyAllFromTo x y)#xs) = x#y#(net-list-aux xs)
|net-list-aux ((AllowPortFromTo x y p)#xs) = x#y#(net-list-aux xs)
|net-list-aux ((x⊕y)#xs) = (net-list-aux [x])@(net-list-aux [y])@(net-list-aux xs)

fun net-list where net-list p = remdups (net-list-aux p)

definition bothNets where bothNets x = (zip (srcnets x) (destnets x))

fun (sequential) normBothNets where
normBothNets ((a,b)#xs) = (if ((b,a) ∈ set xs) ∨ (a,b) ∈ set (xs) then (normBothNets
xs) else (a,b)#(normBothNets xs))
|normBothNets x = x

fun makeSets where
makeSets ((a,b)#xs) = ({a,b}#(makeSets xs))
|makeSets [] = []

fun bothNet where

17

bothNet DenyAll = {}
|bothNet (DenyAllFromTo a b) = {a,b}
|bothNet (AllowPortFromTo a b p) = {a,b}

Nets List provides from a list of rules a list where the entries are the ap-
pearing sets of source and destination network of each rule.

definition Nets-List where Nets-List x = makeSets (normBothNets (bothNets x))

fun (sequential) first-srcNet where
first-srcNet (x⊕y) = first-srcNet x
| first-srcNet x = srcNet x

fun (sequential) first-destNet where
first-destNet (x⊕y) = first-destNet x
| first-destNet x = destNet x

fun (sequential) first-bothNet where
first-bothNet (x⊕y) = first-bothNet x
|first-bothNet x = bothNet x

fun (sequential) in-list where
in-list DenyAll l = True
|in-list x l = (bothNet x ∈ set l)

fun all-in-list where
all-in-list [] l = True
|all-in-list (x#xs) l = (in-list x l ∧ all-in-list xs l)

fun (sequential) member where
member a (x⊕xs) = ((member a x) ∨ (member a xs))
|member a x = (a = x)

fun noneMT where
noneMT (x#xs) = (dom (C x) 6= {} ∧ (noneMT xs))
|noneMT [] = True

fun notMTpolicy where
notMTpolicy (x#xs) = (if (dom (C x) = {}) then (notMTpolicy xs) else True)
|notMTpolicy [] = False

fun sdnets where
sdnets DenyAll = {}
| sdnets (DenyAllFromTo a b) = {(a,b)}
| sdnets (AllowPortFromTo a b c) = {(a,b)}
| sdnets (a ⊕ b) = sdnets a ∪ sdnets b

definition packet-Nets where packet-Nets x a b ≡ (src x @ a ∧ dest x @ b) ∨
(src x @ b ∧ dest x @ a)

18

fun matching-rule-rev where
matching-rule-rev a (x#xs) = (if a ∈ dom (C x) then (Some x) else (matching-rule-rev
a xs))
|matching-rule-rev a [] = None

Provides the first matching rule of a policy given as a list of rules.

definition matching-rule where
matching-rule a x ≡ (matching-rule-rev a (rev x))

definition subnetsOfAdr where subnetsOfAdr a ≡ {x . a @ x}

definition fst-set where fst-set s ≡ {a. ∃ b. (a,b) ∈ s}

definition snd-set where snd-set s ≡ {a. ∃ b. (b,a) ∈ s}

fun memberP where
memberP r (x#xs) = (member r x ∨ memberP r xs)
|memberP r [] = False

fun firstList where
firstList (x#xs) = (first-bothNet x)
|firstList [] = {}

6.3 Invariants

If there is a DenyAll, it is at the first position

fun wellformed-policy1 :: ((IntegerPort net , port) Combinators) list ⇒ bool where

wellformed-policy1 [] = True
| wellformed-policy1 (x#xs) = (DenyAll /∈ (set xs))

There is a DenyAll at the first position

fun wellformed-policy1-strong :: ((IntegerPort net , port) Combinators) list ⇒ bool
where

wellformed-policy1-strong [] = False
| wellformed-policy1-strong (x#xs) = (x=DenyAll ∧ (DenyAll /∈ (set xs)))

All rules appearing at the left of a DenyAllFromTo, have disjunct domains
from it (except DenyAll)

fun (sequential) wellformed-policy2 where
wellformed-policy2 [] = True
| wellformed-policy2 (DenyAll#xs) = wellformed-policy2 xs
| wellformed-policy2 (x#xs) = ((∀ c a b. c = DenyAllFromTo a b ∧ c ∈ set xs
−→ Map.dom (C x) ∩ Map.dom (C c) = {}) ∧ wellformed-policy2 xs)

An allow rule is disjunct with all rules appearing at the right of it. This
invariant is not necessary as it is a consequence from others, but facilitates
some proofs.

19

fun (sequential) wellformed-policy3 where
wellformed-policy3 [] = True
| wellformed-policy3 ((AllowPortFromTo a b p)#xs) = ((∀ r . r ∈ set xs −→ dom
(C r) ∩ dom (C (AllowPortFromTo a b p)) = {}) ∧ wellformed-policy3 xs)
| wellformed-policy3 (x#xs) = wellformed-policy3 xs

All two networks are either disjoint or equal.

definition netsDistinct where netsDistinct a b ≡ ¬ (∃ x . x @ a ∧ x @ b)

definition twoNetsDistinct where twoNetsDistinct a b c d ≡ netsDistinct a c ∨
netsDistinct b d

definition allNetsDistinct where allNetsDistinct p ≡ ∀ a b. (a 6= b ∧ a ∈ set
(net-list p) ∧ b ∈ set (net-list p)) −→ netsDistinct a b

definition disjSD-2 where
disjSD-2 x y ≡ ∀ a b c d . ((a,b)∈sdnets x ∧ (c,d) ∈sdnets y −→ (twoNetsDistinct

a b c d ∧ twoNetsDistinct a b d c))

The policy is given as a list of single rules.

fun singleCombinators where
singleCombinators [] = True
|singleCombinators ((x⊕y)#xs) = False
|singleCombinators (x#xs) = singleCombinators xs

definition onlyTwoNets where
onlyTwoNets x ≡ ((∃ a b. (sdnets x = {(a,b)})) ∨ (∃ a b. sdnets x = {(a,b),(b,a)}))

Each entry of the list contains rules between two networks only.

fun OnlyTwoNets where
OnlyTwoNets (DenyAll#xs) = OnlyTwoNets xs
|OnlyTwoNets (x#xs) = (onlyTwoNets x ∧ OnlyTwoNets xs)
|OnlyTwoNets [] = True

fun noDenyAll where
noDenyAll (x#xs) = ((¬ member DenyAll x) ∧ noDenyAll xs)
|noDenyAll [] = True

fun noDenyAll1 where
noDenyAll1 (DenyAll#xs) = noDenyAll xs
| noDenyAll1 xs = noDenyAll xs

fun separated where
separated (x#xs) = ((∀ s. s ∈ set xs −→ disjSD-2 x s) ∧ separated xs)
| separated [] = True

fun NetsCollected where
NetsCollected (x#xs) = (((first-bothNet x 6= firstList xs) −→ (∀ a∈set xs. first-bothNet

x 6= first-bothNet a)) ∧ NetsCollected (xs))

20

| NetsCollected [] = True

fun NetsCollected2 where
NetsCollected2 (x#xs) = (xs = [] ∨ (first-bothNet x 6= firstList xs ∧ NetsCollected2

xs))
|NetsCollected2 [] = True

6.4 Transformations

The following two functions transform a policy into a list of single rules and
vice-versa.

fun policy2list ::(IntegerPort net , port) Combinators ⇒ ((IntegerPort net , port)
Combinators) list where
policy2list (x ⊕ y) = (concat [(policy2list x),(policy2list y)])
|policy2list x = [x]

fun list2policy ::((IntegerPort net , port) Combinators) list ⇒ ((IntegerPort net ,
port) Combinators) where
list2policy (x#[]) = x
| list2policy (x#y) = x ⊕ (list2policy y)

Remove all the rules appearing before a DenyAll. There are two alternative
versions.

fun removeShadowRules1 where
removeShadowRules1 (x#xs) = (if (DenyAll ∈ set xs) then ((removeShadowRules1

xs)) else x#xs)
| removeShadowRules1 [] = []

fun removeShadowRules1-alternative-rev where
removeShadowRules1-alternative-rev [] = []
| removeShadowRules1-alternative-rev (DenyAll#xs) = [DenyAll]
| removeShadowRules1-alternative-rev [x] = [x]
| removeShadowRules1-alternative-rev (x#xs)= x#(removeShadowRules1-alternative-rev
xs)

definition removeShadowRules1-alternative where removeShadowRules1-alternative
p = rev (removeShadowRules1-alternative-rev (rev p))

Remove all the rules which allow a port, but are shadowed by a deny between
these subnets

fun removeShadowRules2 ::
((IntegerPort net , port) Combinators) list ⇒ ((IntegerPort net , port) Combi-

nators) list
where

(removeShadowRules2 ((AllowPortFromTo x y p)#z)) =
(if (((DenyAllFromTo x y) ∈ set z)) then ((removeShadowRules2 z)) else

(((AllowPortFromTo x y p)#(removeShadowRules2 z))))
| removeShadowRules2 (x#y) = x#(removeShadowRules2 y)

21

| removeShadowRules2 [] = []

Sorting a pocliy. We first need to define an ordering on rules. This ordering
depends on the Nets List of a policy.

fun smaller :: (IntegerPort net , port) Combinators ⇒
(IntegerPort net , port) Combinators ⇒
((IntegerPort net) set) list ⇒ bool

where
smaller DenyAll x l = True
| smaller x DenyAll l = False
| smaller x y l =
((x = y) ∨ (if (bothNet x) = (bothNet y) then

(case y of (DenyAllFromTo a b) ⇒ (x = DenyAllFromTo b a)
| - ⇒ True)

else
(position (bothNet x) l <= position (bothNet y) l)))

We use insertion sort for sorting a policy.

fun insort where
insort a [] l = [a]
| insort a (x#xs) l = (if (smaller a x l) then a#x#xs else x#(insort a xs l))

fun sort where
sort [] l = []
| sort (x#xs) l = insort x (sort xs l) l

fun sorted where
sorted [] l ←→ True |
sorted [x] l ←→ True |
sorted (x#y#zs) l ←→ smaller x y l ∧ sorted (y#zs) l

separate works on a sorted policy: it joins the rules which talk about the
traffic between the same two networks.

fun separate where
separate (DenyAll#x) = DenyAll#(separate x)
| separate (x#y#z) = (if (first-bothNet x = first-bothNet y)

then (separate ((x⊕y)#z))
else (x#(separate(y#z))))

|separate x = x

Insert the DenyAllFromTo rules, such that traffic between two networks can
be tested individually

fun insertDenies where
insertDenies (x#xs) = (case x of DenyAll ⇒ (DenyAll#(insertDenies xs))

| - ⇒ (DenyAllFromTo (first-srcNet x) (first-destNet x) ⊕
(DenyAllFromTo (first-destNet x) (first-srcNet x)) ⊕

x)#
(insertDenies xs))

22

| insertDenies [] = []

Remove duplicate rules. This is especially necessary as insertDenies might
have inserted duplicate rules.
The second function is supposed to work on a list of policies. Only rules
which are duplicated within the same policy, are removed.

fun removeDuplicates where
removeDuplicates (x⊕xs) = (if member x xs then (removeDuplicates xs) else

x⊕(removeDuplicates xs))
| removeDuplicates x = x

fun removeAllDuplicates where
removeAllDuplicates (x#xs) = ((removeDuplicates (x))#(removeAllDuplicates xs))
|removeAllDuplicates x = x

Remove rules with an empty domain - they never match any packet.

fun removeShadowRules3 where
removeShadowRules3 (x#xs) = (if (dom (C x) = {}) then (removeShadowRules3

xs) else (x#(removeShadowRules3 xs)))
|removeShadowRules3 [] = []

Insert a DenyAll at the beginning of a policy.

fun insertDeny where
insertDeny (DenyAll#xs) = DenyAll#xs
|insertDeny xs = DenyAll#xs

Now do everything:

definition sort ′ p l ≡ sort l p

definition normalize ′ p ≡ (removeAllDuplicates o insertDenies o separate o (sort ′

(Nets-List p)) o removeShadowRules2 o remdups o removeShadowRules3 o insert-
Deny o removeShadowRules1 o policy2list) p

definition normalize p ≡ removeAllDuplicates (insertDenies (separate
(sort (removeShadowRules2 (remdups (removeShadowRules3 (insertDeny (removeShadowRules1
(policy2list p)))))) ((Nets-List p)))))

definition normalize-manual-order p l ≡ removeAllDuplicates (insertDenies (separate
(sort (removeShadowRules2 (remdups (removeShadowRules3 (insertDeny (removeShadowRules1
(policy2list p)))))) ((l)))))

Of course, normalize is equal to normalize’, the latter looks nicer though.

lemma normalize = normalize ′

by (rule ext , simp add : normalize-def normalize ′-def sort ′-def)

The following definition helps in creating the test specification for the indi-
vidual parts of a normalized policy.

23

definition makeFUT where makeFUT FUT p x n =
(packet-Nets x (fst(((normBothNets (bothNets p)))!n)) (snd(((normBothNets (bothNets
p)))!n)) −→ FUT x = C ((normalize p)!(n+1)) x)

declare C .simps [simp del]

lemmas PLemmas = C .simps dom-def PolicyCombinators.PolicyCombinators
PortCombinators.PortCombinators src-def dest-def in-subnet-def

IntegerPort .src-port-def IntegerPort .dest-port-def

end

theory FWCompilationProof
imports FWCompilation
begin

This theory contains the complete proofs of the normalisation procedure. In
the generated PDF document, we refrain from showing the complete proofs.
Rather only the final theorem is provided.

lemma C-eq-compile-manual :
[[DenyAll ∈ set (policy2list p); all-in-list (policy2list p) l ; allNetsDistinct (policy2list
p)]]
=⇒
C (list2policy (removeAllDuplicates (insertDenies (separate (sort (removeShadowRules2
(remdups (removeShadowRules3 (insertDeny (removeShadowRules1 (policy2list p))))))
l))))) = C p
apply (subst C-eq-RAD [symmetric])
apply (rule idNMT)
apply (simp add : C-eqLemmas-id)
apply (rule C-eq-Until-InsertDenies)
apply simp-all
done

end

7 Stateful Firewalls

7.1 Basic Constructs

24

theory Stateful
imports ../PacketFilter/PacketFilter Testing
begin

The simple system of a stateless packet filter is not enough to model all
common real-world scenarios. Some protocols need further actions in order
to be secured. A prominent example is the File Transfer Protocol (FTP),
which is a popular means to move files across the Internet. It behaves quite
differently from most other application layer protocols as it uses a two-way
connection establishment which opens a dynamic port. A stateless packet
filter would only have the possibility to either always open all the possible
dynamic ports or not to allow that protocol at all. Neither of these options
is satisfactory. In the first case, all ports above 1024 would have to be
opened which introduces a big security hole in the system, in the second
case users wouldn’t be very happy. A firewall which tracks the state of the
TCP connections on a system doesn’t help here either, as the opening and
closing of the ports takes place on the application layer. Therefore, a firewall
needs to have some knowledge of the application protocols being run and
track the states of these protocols. We next model this behaviour.
The key point of our model is the idea that a policy remains the same as
before: a mapping from packet to packet out. We still specify for every
packet, based on its source and destination address, the expected action.
The only thing that changes now is that this mapping is allowed to change
over time. This indicates that our test data will not consist of single packets
but rather of sequences thereof.

At first we hence need a state. It is a tupel from some memory to be refined
later and the current policy.

types (′α, ′β, ′γ) FWState = ′α × (′β, ′γ) Policy

Having a state, we need of course some state transitions. Such a transi-
tion can happen every time a new packet arrives. State transitions can be
modelled using a state-exception monad.

types (′α, ′β, ′γ) FWStateTransition = (′β, ′γ) packet ⇒ (unit , (′α, ′β, ′γ) FWState)
MON-SE

The memory could be modelled as a list of accepted packets.

types (′β, ′γ) history = (′β, ′γ) packet list

The next two constants will help us later in defining the state transitions.
The constant before is True if for all elements which appear before the first
element for which q holds, p must hold.

consts before :: (′α ⇒ bool) ⇒ (′α ⇒ bool) ⇒ ′α list ⇒ bool
primrec

25

before p q [] = False
before p q (a # S) = (q a ∨ (p a ∧ (before p q S)))

Analogously there is an operator not-before which returns True if for all
elements which appear before the first element for which q holds, p must
not hold.

consts not-before :: (′α ⇒ bool) ⇒ (′α ⇒ bool) ⇒ ′α list ⇒ bool
primrec

not-before p q [] = False
not-before p q (a # S) = (q a ∨ (¬ (p a) ∧ (not-before p q S)))

The next two operators can be used to combine state transitions. It takes
the first transition which maps to Some ′α.

definition orelse:: (′α, ′β, ′γ) FWStateTransition ⇒ (′α, ′β, ′γ) FWStateTransition
⇒ (′α, ′β, ′γ) FWStateTransition (infixl orelse 100) where
(f orelse g) x ≡ λ σ. (case f x σ of None ⇒ g x σ | Some y ⇒ Some y)

end

7.2 FTP Protocol

theory FTP
imports

Stateful
begin

The File Transfer Protocol FTP is a well known example of a protocol which
uses dynamic ports and is therefore a natural choice to use as an example
for our model.
We model only a simplified version of the FTP protocol over IntegerPort
addresses, still containing all messages that matter for our purposes. It
consists of the following four messages:

1. ftp-init : The client contacts the server indicating his wish to get some
data.

2. ftp-port-request p: The client, usually after having received an ac-
knowledgement of the server, indicates a port number on which he
wants to receive the data.

3. ftp-data: The server sends the requested data over the new channel.
There might be an arbitrary number of such messages, including zero.

26

4. ftp-close: The client closes the connection. The dynamic port gets
closed again.

The content field of a packet therefore now consists of either one of those
four messages or a default one.

datatype ftp-msg = ftp-init
| ftp-port-request port
| ftp-data
| ftp-close
| other

We now also make use of the ID field of a packet. It is used as session ID
and we make the assumption that they are all unique.
At first, we need some predicates which check if a packet is a specific FTP
message and has the correct session ID.

definition
is-init :: id ⇒ (IntegerPort , ftp-msg) packet ⇒ bool where
is-init i p ≡ id p = i ∧ content p = ftp-init

definition
is-port-request :: id ⇒ port ⇒(IntegerPort , ftp-msg) packet ⇒ bool where
is-port-request i port p ≡ id p = i ∧ content p = ftp-port-request port

definition
is-data :: id ⇒ (IntegerPort , ftp-msg) packet ⇒ bool where
is-data i p ≡ id p = i ∧ content p = ftp-data

definition
is-close :: id ⇒ (IntegerPort , ftp-msg) packet ⇒ bool where
is-close i p ≡ id p = i ∧ content p = ftp-close

definition
port-open :: (IntegerPort , ftp-msg) history ⇒ id ⇒ port ⇒ bool where
port-open L a p ≡ not-before (is-close a) (is-port-request a p) L

We now have to model the respective state transitions. It is important to
note that state transitions themselves allow all packets which are allowed
by the policy, not only those which are allowed by the protocol. Their only
task is to change the policy. As an alternative, we could have decided that
they only allow packets which follow the protocol (e.g. come on the correct
ports), but this should in our view rather be reflected in the policy itself.
Of course, not every message changes the policy. In such cases, we do not
have to model different cases, one is enough. In our example, only messages
2 and 4 need special transitions. The default says that if the policy accepts
the packet, it is added to the history, otherwise it is simply dropped. The
policy remains the same in both cases.

27

fun FTP-ST :: ((IntegerPort ,ftp-msg) history , IntegerPort , ftp-msg) FWStateTransition
where

FTP-ST (i ,s,d ,ftp-port-request pr) (InL, policy) = (if p-accept (i ,s,d ,ftp-port-request
pr) policy then

(if not-before (is-close i) (is-init i) InL ∧ dest-port
(i ,s,d ,ftp-port-request pr) = (21 ::port) then

Some ((),((i ,s,d ,ftp-port-request pr)#InL, policy ++
(allow-from-to-port pr (subnet-of d) (subnet-of s))))

else Some ((),((i ,s,d ,ftp-port-request pr)#InL,policy)))
else Some ((),(InL,policy)))

|FTP-ST (i ,s,d ,ftp-close) (InL,policy) =
(if (p-accept (i ,s,d ,ftp-close) policy) then

(if (∃ p. port-open InL i p) ∧ dest-port (i ,s,d ,ftp-close) =
(21 ::port) then

Some((),((i ,s,d ,ftp-close)#InL, policy ++
deny-from-to-port (Eps (λ p. port-open InL i p))

(subnet-of d) (subnet-of s)))
else Some ((),((i ,s,d ,ftp-close)#InL, policy)))

else Some ((),(InL,policy)))

|FTP-ST p (InL,policy) = (if p-accept p policy then
Some ((),(p#InL,policy))

else
Some ((),(InL,policy)))

The second message of th protocol is the port request. If the packet is
allowed by the policy, and if and only if there is an opened but not yet closed
FTP-Session with the same session ID, we change our policy such that the
requested port is opened. If our policy allows the packet but there is no
open protocol run, we do allow the packet but do not open the requested
port.
In the last message, we need to close a port which we do not know directly.
It has only been specified in a preceding port request message. Therefore
a predicate is needed which checks if there is an open protocol run with
an opened port. This transition is the trickiest one. We need to close the
port wich has been opened but not yet closed by a packet with the same
session ID. Here we use the assumption that they are supposed to be unique.
This transition introduces some kind of inconsistency. If the port that was
requested was already open to start with, it gets closed here. The tester
should be aware of this fact.
This transition has also some other consequences. The Hilbert epsilon op-
erator Eps, also written as SOME, returns an arbitrary object for which the

28

following predicate is True and is undefined otherwise. We use it to get
the number of the port which we want to close. With the if-condition it
is assured that such a port exists, but we might have problems if there are
several of them. However, due to our assumption that the session IDs are
unique, there won’t be a problem as long as we do not open several ports in
one single protocol run. This should not occur by the definition of the pro-
tocol, but if it does, which might happen if we want to test illegal protocol
runs, some proof work might be needed.

Now we specify our test scenario in more detail. We could test:

• one correct FTP-Protocol run,

• several runs after another,

• several runs interleaved,

• an illegal protocol run, or

• several illegal protocol runs.

We only do the the simplest case here: one correct protocol run.

There are four different states which are modelled as a datatype.

datatype ftp-states = S0 | S1 | S2 | S3

The following constant is True for all sets which are correct FTP runs for a
given source and destination address, ID, and data-port number.

consts
is-ftp :: ftp-states ⇒ IntegerPort ⇒ IntegerPort ⇒ id ⇒ port ⇒ (IntegerPort ,ftp-msg)

history ⇒ bool
primrec

is-ftp H c s i p [] = (H =S3)
is-ftp H c s i p (x#InL) = (λ (id ,sr ,de,co). (((id = i ∧ (

(H =S2 ∧ sr = c ∧ de = s ∧ co = ftp-init ∧ is-ftp S3 c s i p InL) ∨
(H =S1 ∧ sr = c ∧ de = s ∧ co = ftp-port-request p ∧ is-ftp S2 c s i p

InL) ∨
(H =S1 ∧ sr = s ∧ de = (fst c,p) ∧ co= ftp-data ∧ is-ftp S1 c s i p InL) ∨
(H =S0 ∧ sr = c ∧ de = s ∧ co = ftp-close ∧ is-ftp S1 c s i p InL)))))) x

This definition is crucial for specifying what we actually want to test. Ex-
tending it produces more test cases but increases the time necessary to create
them and vice-versa.

The following constant then returns a set of all the historys which denote
such a normal behaviour FTP run, again for a given source and destination
address, ID, and data-port.

definition

29

NB-ftp :: IntegerPort src ⇒ IntegerPort dest ⇒ id ⇒ port ⇒ (IntegerPort ,ftp-msg)
history set where

NB-ftp s d i p ≡ {x . (is-ftp S0 s d i p x)}

Contrary to the case of a stateless packet filter, a lot of the proof work
will only be done during the test data generation. This means that we
need to add the required lemmas to the simplifier set, such that they will
be used. The following additional lemmas are neccessary when we use the
IntegerPort address representation. They should be added to the simplifier
set just before test data generation.

lemma subnetOf-lemma: (a::int) 6= (c::int) =⇒ ∀ x∈subnet-of (a, b::port). (c, d)
/∈ x
apply (rule ballI)
apply (simp add : IntegerPort .subnet-of-def)
done

lemma subnetOf-lemma2 : ∀ x∈subnet-of (a::int , b::port). (a, b) ∈ x
apply (rule ballI)
apply (simp add : IntegerPort .subnet-of-def)
done

lemma subnetOf-lemma3 : (∃ x . x ∈ subnet-of (a::int , b::port))
apply (rule exI)
apply (simp add : IntegerPort .subnet-of-def)
done

lemma subnetOf-lemma4 : ∃ x∈subnet-of (a::int , b::port). (a, c::port) ∈ x
apply (rule bexI)
apply (simp-all add : IntegerPort .subnet-of-def)
done

lemma port-open-lemma: ¬ (Ex (port-open [] (x ::port)))
apply (simp add : port-open-def)
done

end

8 Examples

8.1 Stateless Example

theory
SimpleDMZIntegerDocument

imports

30

FWTesting
begin

This is a typical example for a small stateless packet filter. There are three
subnetworks, with either none or some protocols allowed between then.
We use IntegerPort as the address model.

constdefs
intranet ::IntegerPort net
intranet ≡ {{(a,b) . a = 3}}

dmz :: IntegerPort net
dmz ≡ {{(a,b). a = 7}}

internet :: IntegerPort net
internet ≡ {{(a,b). ¬ (a=3 ∨ a =7)}}

constdefs
Intranet-DMZ-Port :: (IntegerPort ,DummyContent) Policy
Intranet-DMZ-Port ≡ allow-all-from-port-to intranet ftp dmz

Intranet-Internet-Port :: (IntegerPort ,DummyContent) Policy
Intranet-Internet-Port ≡ allow-all-from-port-to intranet http internet

Internet-DMZ-Port :: (IntegerPort ,DummyContent) Policy
Internet-DMZ-Port ≡ allow-all-from-port-to internet smtp dmz

The policy:

definition policy :: (IntegerPort , DummyContent) Policy where
policy ≡ deny-all ++

Intranet-Internet-Port ++
Intranet-DMZ-Port ++
Internet-DMZ-Port

lemmas PolicyLemmas = dmz-def internet-def intranet-def
Intranet-Internet-Port-def Intranet-DMZ-Port-def
Internet-DMZ-Port-def policy-def
src-def dest-def in-subnet-def
IntegerPortLemmas
content-def

Only create test cases crossing network boundaries.

definition not-in-same-net :: (IntegerPort ,DummyContent) packet ⇒ bool where
not-in-same-net x ≡ (src x @ internet −→ ¬ dest x @ internet) ∧

(src x @ intranet −→ ¬ dest x @ intranet) ∧
(src x @ dmz −→ ¬ dest x @ dmz)

31

declare Ports [simp add]

The test specification:
test-spec not-in-same-net x −→ FUT x = policy x

apply (prepare-fw-spec)
apply (simp add : not-in-same-net-def PolicyLemmas PortCombinators Policy-

Combinators)
apply (gen-test-cases FUT)
apply (simp-all add : PolicyLemmas)

store-test-thm PolicyTest

testgen-params[iterations=100]

gen-test-data PolicyTest

The set of generated test data is:
FUT (−10 , (7 , http), (−4 , −8), data) = Some (deny (−10 , (7 , http), (−4 ,
−8), data))
FUT (8 , (7 , ftp), (1 , 0), data) = Some (deny (8 , (7 , ftp), (1 , 0), data))
FUT (−7 , (7 , smtp), (−2 , −7), data) = Some (deny (−7 , (7 , smtp), (−2 ,
−7), data))
FUT (9 , (7 , 0), (2 , −5), data) = Some (deny (9 , (7 , 0), (2 , −5), data))
FUT (−2 , (3 , http), (7 , −1), data) = Some (deny (−2 , (3 , http), (7 , −1),
data))
FUT (−8 , (3 , ftp), (7 , −4), data) = Some (accept (−8 , (3 , ftp), (7 , −4),
data))
FUT (5 , (3 , smtp), (7 , 2), data) = Some (deny (5 , (3 , smtp), (7 , 2),
data))
FUT (−9 , (3 , 2), (7 , 0), data) = Some (deny (−9 , (3 , 2), (7 , 0), data))
FUT (−3 , (3 , http), (6 , −9), data) = Some (accept (−3 , (3 , http), (6 ,
−9), data))
FUT (2 , (3 , ftp), (−8 , −6), data) = Some (deny (2 , (3 , ftp), (−8 , −6),
data))
FUT (0 , (3 , smtp), (8 , 6), data) = Some (deny (0 , (3 , smtp), (8 , 6),
data))
FUT (−8 , (3 , −6), (4 , −8), data) = Some (deny (−8 , (3 , −6), (4 , −8),
data))
FUT (1 , (7 , http), (1 , −10), data) = Some (deny (1 , (7 , http), (1 , −10),
data))
FUT (2 , (7 , ftp), (6 , 3), data) = Some (deny (2 , (7 , ftp), (6 , 3), data))

32

FUT (1 , (7 , smtp), (−7 , −2), data) = Some (deny (1 , (7 , smtp), (−7 ,
−2), data))
FUT (8 , (7 , 0), (−4 , 7), data) = Some (deny (8 , (7 , 0), (−4 , 7), data))
FUT (−5 , (−9 , http), (3 , 10), data) = Some (deny (−5 , (−9 , http), (3 ,
10), data))
FUT (−10 , (−3 , ftp), (3 , 3), data) = Some (deny (−10 , (−3 , ftp), (3 ,
3), data))
FUT (0 , (−9 , smtp), (3 , −1), data) = Some (deny (0 , (−9 , smtp), (3 ,
−1), data))
FUT (−2 , (−3 , −4), (3 , 7), data) = Some (deny (−2 , (−3 , −4), (3 , 7),
data))
FUT (4 , (7 , http), (3 , −1), data) = Some (deny (4 , (7 , http), (3 , −1),
data))
FUT (−3 , (7 , ftp), (3 , −9), data) = Some (deny (−3 , (7 , ftp), (3 , −9),
data))
FUT (−5 , (7 , smtp), (3 , −8), data) = Some (deny (−5 , (7 , smtp), (3 ,
−8), data))
FUT (−4 , (7 , −8), (3 , −6), data) = Some (deny (−4 , (7 , −8), (3 , −6),
data))
FUT (−10 , (8 , http), (3 , −3), data) = Some (deny (−10 , (8 , http), (3 ,
−3), data))
FUT (−10 , (−2 , ftp), (3 , −9), data) = Some (deny (−10 , (−2 , ftp), (3 ,
−9), data))
FUT (3 , (6 , smtp), (3 , 4), data) = Some (deny (3 , (6 , smtp), (3 , 4),
data))
FUT (4 , (4 , 5), (3 , −1), data) = Some (deny (4 , (4 , 5), (3 , −1), data))
FUT (9 , (−6 , http), (7 , 8), data) = Some (deny (9 , (−6 , http), (7 , 8),
data))
FUT (6 , (−10 , ftp), (7 , −5), data) = Some (deny (6 , (−10 , ftp), (7 , −5),
data))
FUT (−8 , (−2 , smtp), (7 , −4), data) = Some (accept (−8 , (−2 , smtp),
(7 , −4), data))
FUT (−1 , (−3 , −3), (7 , 10), data) = Some (deny (−1 , (−3 , −3), (7 ,
10), data))

end

8.2 FTP Example

33

theory FTPTestDocument
imports

FWTesting
begin

In this theory we generate the test data for correct runs of the FTP protocol.
As usual, we start with definining the networks and the policy. We use a
rather simple policy which allows only FTP connections starting from the
intranet going to the internet and denies everything else.

constdefs
intranet :: IntegerPort net
intranet ≡ {{(a,e) . a = 3}}

internet :: IntegerPort net
internet ≡ {{(a,c). a > 3}}

constdefs
ftp-policy :: (IntegerPort ,ftp-msg) Policy
ftp-policy ≡ deny-all ++ allow-from-to-port (21 ::port) intranet internet

The next two constants check if an address is in the Intranet or in the
Internet respectively.

constdefs
is-in-intranet :: IntegerPort ⇒ bool
is-in-intranet a ≡ (fst a) = 3

is-in-internet :: IntegerPort ⇒ bool
is-in-internet a ≡ (fst a) > 3

The next definition is our starting state: an empty trace and the just defined
policy.

constdefs
σ-0-ftp :: (IntegerPort , ftp-msg) history ×

(IntegerPort , ftp-msg) Policy
σ-0-ftp ≡ ([],ftp-policy)

Next we state the conditions we have on our trace: a normal behaviour FTP
run from the intranet to some server in the internet on port 21.

constdefs accept-ftp :: (IntegerPort , ftp-msg) history ⇒ bool
accept-ftp t ≡ ∃ c s i p. t ∈ NB-ftp c s i p ∧ is-in-intranet c ∧ is-in-internet

s ∧ (snd s) = 21

fun packet-with-id where
packet-with-id [] i = []
|packet-with-id (x#xs) i = (if id x = i then (x#(packet-with-id xs i)) else (packet-with-id
xs i))

34

The depth of the test case generation corresponds to the maximal length of
generated traces. 4 is the minimum to get a full FTP protocol run.

testgen-params [depth=4]

The test specification:

test-spec accept-ftp (rev t) −→
(σ-0-ftp |= (os ← mbind t FTP-ST ; (λ σ. Some (FUT (rev t) = σ, σ))))
apply(simp add : accept-ftp-def σ-0-ftp-def)
apply (rule impI)+
apply (unfold NB-ftp-def is-in-internet-def is-in-intranet-def)
apply simp
apply (gen-test-cases FUT split : HOL.split-if-asm)
apply (simp-all)

store-test-thm ftp-test

We need to add all required lemmas to the simplifier set, such that they can
be used during test data generation.

lemmas ST-simps = Let-def valid-def unit-SE-def bind-SE-def orelse-def
in-subnet-def src-def dest-def IntegerPort .dest-port-def
subnet-of-def id-def port-open-def is-init-def is-data-def
is-port-request-def is-close-def p-accept-def content-def
PolicyCombinators PortCombinators is-in-intranet-def
is-in-internet-def intranet-def internet-def exI subnetOf-lemma
subnetOf-lemma2 subnetOf-lemma3 subnetOf-lemma4 port-open-lemma
ftp-policy-def

declare ST-simps [simp]

gen-test-data ftp-test

declare ST-simps [simp del]

The generated test data look as follows (with the unfolded policy rewritten):

• FUT [(4, (3, 5), (8, 21), ftp close), (4, (3, 5), (8, 21), ftp port request
4), (4, (3, 5), (8, 21), ftp init)] = ([(4, (3, 5), (8, 21), ftp close), (4,
(3, 5), (8, 21), ftp port request 4), (4, (3, 5), (8, 21), ftp init)],policy)

• FUT [(1, (3, 7), (9, 21), ftp close), (1, (9, 21), (3, 6), ftp data), (1,
(3, 7), (9, 21), ftp port request 6),(1, (3, 7), (9, 21), ftp init)] = ([(1,
(3, 7), (9, 21), ftp close), (1, (9, 21), (3, 6), ftp data), (1, (3, 7), (9,
21), ftp port request 6), (1, (3, 7), (9, 21), ftp init)],policy)

end

35

References

[1] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff. Verified firewall pol-
icy transformations for test case generation. In A. Cavalli and S. Ghosh,
editors, International Conference on Software Testing (ICST10), Lecture
Notes in Computer Science. Springer-Verlag, 2010.

[2] A. D. Brucker, L. Brügger, and B. Wolff. Model-based firewall confor-
mance testing. In K. Suzuki and T. Higashino, editors, Testcom/FATES
2008, number 5047 in Lecture Notes in Computer Science, pages 103–
118. Springer-Verlag, 2008.

[3] A. D. Brucker and B. Wolff. Test-sequence generation with HOL-
TestGen – with an application to firewall testing. In B. Meyer and
Y. Gurevich, editors, TAP 2007: Tests And Proofs, number 4454 in Lec-
ture Notes in Computer Science, pages 149–168. Springer-Verlag, 2007.

[4] D. von Bidder. Specification-based Firewall Testing. Ph.d. thesis, ETH
Zurich, 2007. eth Dissertation No. 17172. Diana von Bidder’s maiden
name is Diana Senn.

36

	Introduction
	Preliminaries
	Packets and Networks
	Address Representations
	Datatype Addresses
	Datatype Addresses with Ports
	Integer Addresses
	Integer Addresses with Ports
	IPv4 Addresses

	Policies
	Policy Core
	Policy Combinators
	Policy Combinators with Ports
	Ports

	Policy Normalisation
	Basics
	Auxiliary definitions and functions.
	Invariants
	Transformations

	Stateful Firewalls
	Basic Constructs
	FTP Protocol

	Examples
	Stateless Example
	FTP Example

