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1 Introduction to White Box Tests

Our framework is not restricted to black box test of side-effect free programs. Using
a logical embedding (a representation in HOL comprising syntax and semantics) for an
imperative language, it can be used to implement and analyze various white-box test
techniques.

1.1 The Language IMP: An Overview

The Isabelle distribution comes already with various logical embeddings: IMP, IMPP,
NanoJava, or MicroJava, and more are available in the literature. For the sake of this
presentation, we chose the simplest one, IMP, which is intended as formalization of a
textbook on programming language semantics [10, 8], and provides as such a particularly
clean and complete collection of several semantics of IMP (natural semantics, transition
semantics, denotational semantics, axiomatic semantics), proofs of their relations (e.g.,
denotational is equivalent to natural) and proofs of crucial meta-properties (axiomatic
semantics is sound and relative complete).

The basic concepts of IMP are values val (just natural numbers, for example), and
states state = loc ⇒ val. Boolean expressions bexp and atomic expressions (aexp) are
represented as functions from state to val or bool. Thus, IMP has in fact no syntax of
its own, but just inherits the expression language of HOL at this place1. The syntax of
IMP commands com is then defined as data type:

datatype com = SKIP

| ”:==” loc aexp ( infixl 60)
| Semi com com (” ; ” [60, 60] 10)
| Cond bexp com com (” IF THEN ELSE ” 60)
| While bexp com (” WHILE DO ” 60)

where the text in the parenthesis are just pragmas for the powerful Isabelle syntax engine
to allow the usual infix/mixfix notation.

One of the operational semantics of IMP is a relation of triples evalc :: (com ×state
× state) set ((cm,s,s ’) ∈ evalc is denoted 〈cm,s〉 −→c s ’) which is inductively defined
as follows:

inductive evalc intros
”〈SKIP , s〉 −→c s”
”〈x :== a,s〉 −→c s [x:=(a s )]”
”[[ 〈c0,s〉 −→c s1 ; 〈cs1 ,s1〉 −→c s2 ]] =⇒ 〈c0;cs1 , s〉 −→c s2”
”[[ b s ; 〈c0,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c 1, s〉 −→c s1”
”[[ ¬b s; 〈c1,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c1, s〉 −→c s1”
”[[¬b s]] =⇒ 〈 WHILE b DO c, s〉 −→c s”
”[[ b s ; 〈c, s〉−→c s1 ; 〈 WHILE b DO c, s1〉−→c s2 ]] =⇒ 〈 WHILE b DO c, s〉 −→c s2”

1This technique is also called a “shallow embedding”
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The usual notation s [x:=v] is defined by λ y. if y=x then v else s y. For these induc-
tive rules, an alternative rule set is derived that can be processed by the efficient Isabelle
rewriter directly:

〈 SKIP , s〉 −→c s ’ = (s’ = s)
〈 x :== a, s〉 −→c s ’ = (s’ = s[x := a s ])
b s =⇒ 〈 IF b THEN d ELSE e, s〉 −→c s ’ = 〈 d,s〉 −→c s ’
. . .

We omit the definition of the denotational semantics reflecting the partial correctness
C :: com ⇒(state × state) set (see [2] for details), but it is linked to the operational
semantics via the theorem ((s , t) ∈ C c) = 〈c,s〉 −→c t. On the denotational level, pro-
gram transformation rules relevant for the next section can be shown easily:

C(SKIP ;c) = C(c) C(c;SKIP) = C(c) C((c;d);e) = C(c;(d;e))
C(( IF b THEN c ELSE d);e) = C( IF b THEN c;e ELSE d;e)
C( WHILE b DO c) = C( IF b THEN c; WHILE b DO c ELSE SKIP)

On the level of the denotational semantics, the usual notion of “valid Hoare triple” is
formalized as:

|= {P} c {Q} ≡ ∀ s t. (s , t) ∈ C c −→P s −→Q t

where P, Q are assertions, i.e., functions from state to bool.

1.2 Unwinding IMP Programs

To perform white box tests in the style of Pathfinder [9], SpecExplorer [7], or Korat [3],
it is necessary to make the program paths explicit in the program representation and
amenable to the rules of the operational semantics. Therefore, a pre-processing step
is necessary that unfolds all WHILE -loops up to a certain limit, the unwind-factor k.
This principle can also be applied in a language extension with procedure calls such
as IMPP, also available in the Isabelle distribution. Additionally, the program should
be transformed into a certain normal form to be efficiently processed (left associative
sequential compositions must be avoided since they lead to an existentially quantified
intermediate states which are more difficult to process in the symbolic computation).
We define two recursive functions on com-terms that perform both these normalizations
as well as the unwinding up to k. Note, that we will not program this function outside
the logic as (tactic), i.e., a control program in SML, but inside HOL, such that we can
also prove its correctness with respect to the IMP semantics:

consts ”@@” :: ”[com,com] ⇒com” ( infixr 70)
primrec ”SKIP @@ c = c”

”(x:== E) @@ c = ((x:== E); c)”
”(c;d) @@ e = (c; d @@ e)”
”( IF b THEN c ELSE d) @@ e = ( IF b THEN c @@ e ELSE d @@ e)”
”( WHILE b DO c) @@ e = ((WHILE b DO c); e)”

consts unwind :: ”nat ×com ⇒com”
recdef unwind ”less than <∗lex∗> measure(λ s. size s)”
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”unwind(n, SKIP) = SKIP”
”unwind(n, a :== E) = (a :== E)”
”unwind(n, IF b THEN c ELSE d) = IF b THEN unwind(n,c) ELSE unwind(n,d)”
”unwind(n, WHILE b DO c) =

( if 0 < n
then IF b THEN unwind(n,c)@@unwind(n− 1,WHILE b DO c) ELSE SKIP

else WHILE b DO unwind(0, c))”
”unwind(n, SKIP ; c) = unwind(n, c)”
”unwind(n, c ; SKIP) = unwind(n, c)”
”unwind(n, ( IF b THEN c ELSE d) ; e) =

( IF b THEN (unwind(n,c;e)) ELSE (unwind(n,d;e)))”
”unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))”
”unwind(n, c ; d) = (unwind(n, c))@@(unwind(n, d))”

The primitive recursive auxiliary function c@@d appends a command d to the last
command in c that is reachable from the root via sequential composition modes. The
more tricky unwind function unfolds WHILE -loops as long as the unwind factor is positive
and performs the program normal form computation along the program equivalences as
discussed in Sec. 1.1.

The Isabelle Recursion Package adopts a “First Fit” pattern matching strategy (similar
to SML). This means that in overlapping cases, the first is taken into account with
higher priority—this is reflected on the level of the rewrite rule set generated from this
definition. Thus, the last equation in the recursive definition is a catch-all rule for
sequential composition.

Now we derived the following facts over these definitions:

Lemma 1 (Termination:). Both functions terminate.

Proof. In the case of @@ this is trivial due to machine checked primitive recursion; in
case of unwind a proof has to be performed that the lexicographic composition of the
standard ordering < and the standard term ordering is well-founded and respected
by the inner calls in this recursive definition. This proof is done fully automatically.

Lemma 2 (Correctness:). C(c @@ d)= C(c;d) and C(unwind(n,c))= C(c)

Proof. For @@, a straight-forward induction suffices. As for unwind, the proof is non-
trivial, but routine (generalization over n, induction over c, intricate case splitting,
application of semantic equivalences of Sec. 1.1).

1.3 Generating Path Conditions

As example program, we chose a little program that computes the square-root of a
natural number. In Isabelle/IMP syntax, we can define it as follows:

constdefs squareroot :: ”[ loc , loc , loc , loc ] ⇒ com”
”squareroot tm sum i a ≡ (( tm :== λs. 1);

(( sum :== λs. 1);
(( i :== λs. 0);

WHILE λs. (s sum) <= (s a) DO
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(( i :== λs. (s i ) + 1);
((tm :== λs. (s tm) + 2);
(sum :== λs. (s tm) + (s sum)))))))

where the locations (references) are the input into the program to express semantically
constraints on them, as we will see later. The shallow embedding of the expressions
has the consequence that program variable accesses must be represented as explicit
application of the state s (at this program point) to a location representing this variable.
Hence, we implicitly require a pre-parser that makes these bindings of program variables
explicit.

We need one further derived rule If split , which is necessary to expand the case splits
produced for each path:

[[b s =⇒ 〈c, s〉−→c s ’; ¬ b s =⇒ 〈d,s〉−→c s ’ ]] =⇒ 〈 IF b THEN c ELSE d,s〉−→c s ’

Putting everything together, we can now formulate the generation of symbolic states for
the program squareroot as follows:

lemma derive test cases : assumes no alias : . . .
shows ”〈unwind(3, squareroot tm sum i a), s〉 −→c s ’”

where the omitted technical side-condition no alias specifies that the locations tm,sum,i,a
are pairwise disjoint. Now, the canonical tactic script:

apply(simp add: squareroot def )
apply(rule If split , simp all add: update def no alias )+

unfolds the definition of squareroot, and then enters in a loop that performs the computa-
tion of unwind (including path normalization), the case splitting along the If split rule
discussed above, the evaluation of state constraints and the simplification of the arith-
metic constraints until no further changes can be achieved. The resulting proof-state
consists of the following goals:2

1. 9 ≤ s a =⇒ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
2. [[4 ≤ s a; 8 < s a ]] =⇒ s ’ = s ( i := 2, tm := 5, sum := 9)
3. [[ 1 ≤ s a; s a < 4]] =⇒ s ’ = s ( i := 1, tm := 3, sum := 4)
4. s a = 0 =⇒ s ’ = s(tm := 1, sum := 1, i := 0)

The resulting proof state enumerates the possible symbolic states including their path
conditions.3

1.4 Treating Assertions and Test Hypothesises

Traditional pre and post conditions can be expressed via the validity relation for Hoare
Triple, e.g.: |= {pre} squareroot tm sum i a {post a i} where pre is just λx. True and
post a i is λ s . (s i )∗(s i )≤(s a) ∧ s a < (s i + 1)∗(s i + 1).

2the presentation has been slightly syntactically simplified
3The computing time for unwind-factor 10 based on this simplistic tactic remains under a few seconds,

including pretty-printing.
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The setup of a specification based white box test is now produced by the derived rule:

|={P} c {Q} = ∀ s t. 〈unwind (n, c ), s〉 −→c t −→P s −→Q t

The result of this rule application is piped into the previous process which conjoins the
preconditions with the path conditions and attempts to solve them; the post condition
is then constructed over the post state constructed by the natural semantics.

Assertions can be introduced into our language as follows: First, we declare an uninter-
preted constant STOP as command of the language. Then, a construct like ASSERT b c
can be introduced as abbreviation for ASSERT b c ≡ IF b THEN c ELSE STOP, and
further constructs like an annotated while loop AWHILE b inv c are introduced analo-
gously.

It remains to show how white box testing fits methodically into our framework, where
we try to generate test hypothesis that make the “logical difference” between a test
and the verification of the test specification explicit. Obviously, the only new element
related to white box test is the unwinding parameter; if exhausted, this leads to program
fragments that represent the “set of untested execution paths” of a program under test.
In our running example, this lead to the first sub-goal in the final proof state. Turned
into an explicit unwinding k test hypothesis, this condition for resulting from the test
theorem: |={pre} squareroot tm sum i a {post a i} looks as follows:

1. THYP(9 ≤s a −→ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
∧ post a i s ’)

Testing a program in this setting means that all symbolic state transitions including their
path conditions must satisfy the post condition whenever the pre condition holds. This
is the case in our example, and the system will find the satisfiability of the generated
constraints without need for random solving in this case. The only remaining assumption
is the test hypothesis shown above which reflects that we have tested the program and
not verified it.

To sum up, we described a symbolic computation process for white box tests in the
language IMP, that generates from a given, potentially annotated program a test theorem
including the test hypotheses automatically. This test theorem can be fed into the test
data generation phase to find ground instances for particular paths as before.

1.5 Blowing up IMP

The reader might object that the language IMP, having only Boolean and arithmetic
side-effect free expressions and non-recursive, macro-like procedures, is too academic to
be of practical importance. In contrast, we argue that IMP is a reasonable core language
which can be “blown-up” fairly easy to larger languages, in large parts without adding
further complexity to the symbolic computation process presented so far.

We discuss three extensions of IMP, two more straight-forward, one more involved, to
give an impression over the potential of our approach:
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1. Mutual recursion: Just apply our approach to embedding IMPP.

2. Arbitrary expressions: exchange val in the IMP semantics by a universe which is
a sum of the HOL data types.

3. Objects: Extend our approach to an embedding like NanoJava.

In more detail, extension 2 requires that program variables must be presented as triples
(loc ,emb::α−→val,proj::val−→α) consisting of the traditional location, and a pair of
functions (representing the typing of the program and variable) that allow for injection
and projection of HOL-values into the val universe of IMP. Program variable accesses,
which has been encoded by s a so far, will be s !a where s !(a,emb,prj) is defined by prj(s
a). The assignment semantics of IMP must be adopted analogously. This technique paves
the way for lists, options, strings, and further user-defined data types. Expressions over
user-defined HOL data-types can now be processed by the gen test cases -method which
is at the heart of HOL-TestGen. As a result of these extensions, we have an SML-like
language with data-types and HOL-expressions inside.

The extension 3 involves sub-classing, method calls with late-binding and object cre-
ation; as such, a lot more machinery is therefore involved whose tactical control will be
feasible in our opinion, but require substantial more work.

2 Conclusion

We have shown the pragmatics of our Isabelle/HOL-based testing tool HOL-TestGen [1,
6] gained from previous experiences for specification based black box tests. While some
aspects of the symbolic computations are fully automatic (like data separation lemma
generation, generation of test hypothesis, TNF-computations, test data generations and
solving), other aspects like constraint solving may profit from some theorem proving and
experiments with “appropriate” formulations of test specifications/test theorems. We
have also developed a method to use HOL-TestGen for specification based white box
tests.

The symbolic computation process is fully presented inside HOL, so no tool integra-
tion and conversion issues are involved which may be critical both for correctness and
efficiency. Since the necessary symbolic transformation processes can be based on de-
rived rules,4 HOL-TestGen can be used as a tool for a seamless conceptual study of these
techniques including formal correctness proofs, their prototypical implementation and
even their industry strength implementation. The latter, will require substantial effort
in tactic programming and tool integration.

Although the example for imperative white-box test is based on a conceptual language
and therefore merely a proof of concept than a proof of technology, we believe that the
approach can scale up with respect to size of the supported language while maintaining
reasonable efficiency of the underlying symbolic computations. Thus, we believe that
HOL-TestGen can be seen as unifying framework in which a wide range of unit test
techniques can be presented in a mathematically clean way.

4Inserting such rules as axioms is trivial, but endangers correctness, of course
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3 Appendix

theory Com imports Main begin

typedecl loc
— an unspecified (arbitrary) type of locations (adresses/names) for variables

types
val = nat — or anything else, nat used in examples
state = loc ⇒ val
aexp = state ⇒ val
bexp = state ⇒ bool
— arithmetic and boolean expressions are not modelled explicitly here,
— they are just functions on states

datatype
com = SKIP
| Assign loc aexp (- :== - 60 )
| Semi com com (-; - [60 , 60 ] 10 )
| Cond bexp com com (IF - THEN - ELSE - 60 )
| While bexp com (WHILE - DO - 60 )

notation (latex )
SKIP (SKIP ) and
Cond (IF - THEN - ELSE - 60 ) and
While (WHILE - DO - 60 )

end

theory Natural imports Com begin

3.1 Execution of commands

We write 〈c,s〉 −→c s ′ for Statement c, started in state s, terminates in state s ′. For-
mally, 〈c,s〉 −→c s ′ is just another form of saying the tuple (c,s,s ′) is part of the relation
evalc:

definition
update :: ( ′a ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ ( ′a ⇒ ′b) (-/[- ::= /-] [900 ,0 ,0 ] 900 ) where
update = fun-upd

notation (xsymbols)
update (-/[- 7→ /-] [900 ,0 ,0 ] 900 )

Disable conflicting syntax from HOL Map theory.

no-syntax
-maplet :: [ ′a, ′a] => maplet (- /|−>/ -)
-maplets :: [ ′a, ′a] => maplet (- /[|−>]/ -)

:: maplet => maplets (-)
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-Maplets :: [maplet , maplets] => maplets (-,/ -)
-MapUpd :: [ ′a ∼=> ′b, maplets] => ′a ∼=> ′b (-/ ′(- ′) [900 ,0 ]900 )
-Map :: maplets => ′a ∼=> ′b ((1 [-]))

The big-step execution relation evalc is defined inductively:

inductive
evalc :: [com,state,state] ⇒ bool (〈-,-〉/ −→c - [0 ,0 ,60 ] 60 )

where
Skip: 〈SKIP ,s〉 −→c s
| Assign: 〈x :== a,s〉 −→c s[x 7→a s]

| Semi : 〈c0 ,s〉 −→c s ′′ =⇒ 〈c1 ,s ′′〉 −→c s ′ =⇒ 〈c0 ; c1 , s〉 −→c s ′

| IfTrue: b s =⇒ 〈c0 ,s〉 −→c s ′ =⇒ 〈IF b THEN c0 ELSE c1 , s〉 −→c s ′

| IfFalse: ¬b s =⇒ 〈c1 ,s〉 −→c s ′ =⇒ 〈IF b THEN c0 ELSE c1 , s〉 −→c s ′

| WhileFalse: ¬b s =⇒ 〈WHILE b DO c,s〉 −→c s
| WhileTrue: b s =⇒ 〈c,s〉 −→c s ′′ =⇒ 〈WHILE b DO c, s ′′〉 −→c s ′

=⇒ 〈WHILE b DO c, s〉 −→c s ′

lemmas evalc.intros [intro] — use those rules in automatic proofs

The induction principle induced by this definition looks like this:

[[〈x1 ,x2 〉 −→c x3 ;
∧

s. P SKIP s s;
∧

x a s. P (x :== a ) s (s[x 7→ a s]);∧
c0 s s ′′ c1 s ′.
[[〈c0 ,s〉 −→c s ′′; P c0 s s ′′; 〈c1 ,s ′′〉 −→c s ′; P c1 s ′′ s ′]]
=⇒ P (c0 ; c1 ) s s ′;∧
b s c0 s ′ c1 . [[b s; 〈c0 ,s〉 −→c s ′; P c0 s s ′]] =⇒ P (IF b THEN c0 ELSE c1 ) s s ′;∧
b s c1 s ′ c0 . [[¬ b s; 〈c1 ,s〉 −→c s ′; P c1 s s ′]] =⇒ P (IF b THEN c0 ELSE c1 ) s s ′;∧
b s c. ¬ b s =⇒ P (WHILE b DO c) s s;∧
b s c s ′′ s ′.
[[b s; 〈c,s〉 −→c s ′′; P c s s ′′; 〈WHILE b DO c,s ′′〉 −→c s ′;
P (WHILE b DO c) s ′′ s ′]]

=⇒ P (WHILE b DO c) s s ′]]
=⇒ P x1 x2 x3

(
∧

and =⇒ are Isabelle’s meta symbols for ∀ and −→)

The rules of evalc are syntax directed, i.e. for each syntactic category there is always
only one rule applicable. That means we can use the rules in both directions. This
property is called rule inversion.

inductive-cases skipE [elim!]: 〈SKIP ,s〉 −→c s ′

inductive-cases semiE [elim!]: 〈c0 ; c1 , s〉 −→c s ′

inductive-cases assignE [elim!]: 〈x :== a,s〉 −→c s ′

inductive-cases ifE [elim!]: 〈IF b THEN c0 ELSE c1 , s〉 −→c s ′

inductive-cases whileE [elim]: 〈WHILE b DO c,s〉 −→c s ′

The next proofs are all trivial by rule inversion.
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inductive-simps
skip: 〈SKIP ,s〉 −→c s ′

and assign: 〈x :== a,s〉 −→c s ′

and semi : 〈c0 ; c1 , s〉 −→c s ′

lemma ifTrue:
b s =⇒ 〈IF b THEN c0 ELSE c1 , s〉 −→c s ′ = 〈c0 ,s〉 −→c s ′

〈proof 〉

lemma ifFalse:
¬b s =⇒ 〈IF b THEN c0 ELSE c1 , s〉 −→c s ′ = 〈c1 ,s〉 −→c s ′

〈proof 〉

lemma whileFalse:
¬ b s =⇒ 〈WHILE b DO c,s〉 −→c s ′ = (s ′ = s)
〈proof 〉

lemma whileTrue:
b s =⇒
〈WHILE b DO c, s〉 −→c s ′ =
(∃ s ′′. 〈c,s〉 −→c s ′′ ∧ 〈WHILE b DO c, s ′′〉 −→c s ′)
〈proof 〉

Again, Isabelle may use these rules in automatic proofs:

lemmas evalc-cases [simp] = skip assign ifTrue ifFalse whileFalse semi whileTrue

3.2 Equivalence of statements

We call two statements c and c ′ equivalent wrt. the big-step semantics when c started in
s terminates in s ′ iff c ′ started in the same s also terminates in the same s ′. Formally:

definition
equiv-c :: com ⇒ com ⇒ bool (- ∼ - [56 , 56 ] 55 ) where
c ∼ c ′ = (∀ s s ′. 〈c, s〉 −→c s ′ = 〈c ′, s〉 −→c s ′)

Proof rules telling Isabelle to unfold the definition if there is something to be proved
about equivalent statements:

lemma equivI [intro!]:
(
∧

s s ′. 〈c, s〉 −→c s ′ = 〈c ′, s〉 −→c s ′) =⇒ c ∼ c ′

〈proof 〉

lemma equivD1 :
c ∼ c ′ =⇒ 〈c, s〉 −→c s ′ =⇒ 〈c ′, s〉 −→c s ′

〈proof 〉

lemma equivD2 :
c ∼ c ′ =⇒ 〈c ′, s〉 −→c s ′ =⇒ 〈c, s〉 −→c s ′

〈proof 〉
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As an example, we show that loop unfolding is an equivalence transformation on pro-
grams:

lemma unfold-while:
(WHILE b DO c) ∼ (IF b THEN c; WHILE b DO c ELSE SKIP ) (is ?w ∼ ?if )
〈proof 〉

Happily, such lengthy proofs are seldom necessary. Isabelle can prove many such facts
automatically.

lemma
(WHILE b DO c) ∼ (IF b THEN c; WHILE b DO c ELSE SKIP )
〈proof 〉

lemma triv-if :
(IF b THEN c ELSE c) ∼ c
〈proof 〉

lemma commute-if :
(IF b1 THEN (IF b2 THEN c11 ELSE c12 ) ELSE c2 )
∼
(IF b2 THEN (IF b1 THEN c11 ELSE c2 ) ELSE (IF b1 THEN c12 ELSE c2 ))

〈proof 〉

lemma while-equiv :
〈c0 , s〉 −→c u =⇒ c ∼ c ′ =⇒ (c0 = WHILE b DO c) =⇒ 〈WHILE b DO c ′, s〉 −→c u
〈proof 〉

lemma equiv-while:
c ∼ c ′ =⇒ (WHILE b DO c) ∼ (WHILE b DO c ′)
〈proof 〉

Program equivalence is an equivalence relation.

lemma equiv-refl :
c ∼ c
〈proof 〉

lemma equiv-sym:
c1 ∼ c2 =⇒ c2 ∼ c1
〈proof 〉

lemma equiv-trans:
c1 ∼ c2 =⇒ c2 ∼ c3 =⇒ c1 ∼ c3
〈proof 〉

Program constructions preserve equivalence.

lemma equiv-semi :
c1 ∼ c1 ′ =⇒ c2 ∼ c2 ′ =⇒ (c1 ; c2 ) ∼ (c1 ′; c2 ′)
〈proof 〉
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lemma equiv-if :
c1 ∼ c1 ′ =⇒ c2 ∼ c2 ′ =⇒ (IF b THEN c1 ELSE c2 ) ∼ (IF b THEN c1 ′ ELSE c2 ′)
〈proof 〉

lemma while-never : 〈c, s〉 −→c u =⇒ c 6= WHILE (λs. True) DO c1
〈proof 〉

lemma equiv-while-True:
(WHILE (λs. True) DO c1 ) ∼ (WHILE (λs. True) DO c2 )
〈proof 〉

3.3 Execution is deterministic

This proof is automatic.

theorem 〈c,s〉 −→c t =⇒ 〈c,s〉 −→c u =⇒ u = t
〈proof 〉

The following proof presents all the details:

theorem com-det :
assumes 〈c,s〉 −→c t and 〈c,s〉 −→c u
shows u = t
〈proof 〉

This is the proof as you might present it in a lecture. The remaining cases are simple
enough to be proved automatically:

theorem
assumes 〈c,s〉 −→c t and 〈c,s〉 −→c u
shows u = t
〈proof 〉

end

theory Hoare imports Natural begin

types assn = state => bool

inductive
hoare :: assn => com => assn => bool (|− ({(1-)}/ (-)/ {(1-)}) 50 )

where
skip: |− {P}SKIP {P}
| ass: |− {%s. P(s[x 7→a s])} x :==a {P}
| semi : [| |− {P}c{Q}; |− {Q}d{R} |] ==> |− {P} c;d {R}
| If : [| |− {%s. P s & b s}c{Q}; |− {%s. P s & ∼b s}d{Q} |] ==>

|− {P} IF b THEN c ELSE d {Q}
| While: |− {%s. P s & b s} c {P} ==>

|− {P} WHILE b DO c {%s. P s & ∼b s}
| conseq : [| !s. P ′ s −−> P s; |− {P}c{Q}; !s. Q s −−> Q ′ s |] ==>

|− {P ′}c{Q ′}
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lemma strengthen-pre: [| !s. P ′ s −−> P s; |− {P}c{Q} |] ==> |− {P ′}c{Q}
〈proof 〉

lemma weaken-post : [| |− {P}c{Q}; !s. Q s −−> Q ′ s |] ==> |− {P}c{Q ′}
〈proof 〉

lemma While ′:
assumes |− {%s. P s & b s} c {P} and ALL s. P s & ¬ b s −→ Q s
shows |− {P} WHILE b DO c {Q}
〈proof 〉

lemmas [simp] = skip ass semi If

lemmas [intro!] = hoare.skip hoare.ass hoare.semi hoare.If

end

theory Hoare-Op imports Hoare begin

definition
hoare-valid :: [assn,com,assn] => bool (|= {(1-)}/ (-)/ {(1-)} 50 ) where
|= {P}c{Q} = (!s t . 〈c,s〉 −→c t −−> P s −−> Q t)

lemma hoare-sound : |− {P}c{Q} ==> |= {P}c{Q}
〈proof 〉

definition
wp :: com => assn => assn where
wp c Q = (%s. !t . 〈c,s〉 −→c t −−> Q t)

lemma wp-SKIP : wp SKIP Q = Q
〈proof 〉

lemma wp-Ass: wp (x :==a) Q = (%s. Q(s[x 7→a s]))
〈proof 〉

lemma wp-Semi : wp (c;d) Q = wp c (wp d Q)
〈proof 〉

lemma wp-If :
wp (IF b THEN c ELSE d) Q = (%s. (b s −−> wp c Q s) & (∼b s −−> wp d Q s))
〈proof 〉

lemma wp-While-If :
wp (WHILE b DO c) Q s =
wp (IF b THEN c;WHILE b DO c ELSE SKIP) Q s
〈proof 〉
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lemma wp-While-True: b s ==>
wp (WHILE b DO c) Q s = wp (c;WHILE b DO c) Q s
〈proof 〉

lemma wp-While-False: ∼b s ==> wp (WHILE b DO c) Q s = Q s
〈proof 〉

lemmas [simp] = wp-SKIP wp-Ass wp-Semi wp-If wp-While-True wp-While-False

lemma wp-is-pre: |− {wp c Q} c {Q}
〈proof 〉

lemma hoare-relative-complete: assumes |= {P}c{Q} shows |− {P}c{Q}
〈proof 〉

end

theory VC imports Hoare-Op begin

datatype acom = Askip
| Aass loc aexp
| Asemi acom acom
| Aif bexp acom acom
| Awhile bexp assn acom

primrec awp :: acom => assn => assn
where

awp Askip Q = Q
| awp (Aass x a) Q = (λs. Q(s[x 7→a s]))
| awp (Asemi c d) Q = awp c (awp d Q)
| awp (Aif b c d) Q = (λs. (b s−−>awp c Q s) & (∼b s−−>awp d Q s))
| awp (Awhile b I c) Q = I

primrec vc :: acom => assn => assn
where

vc Askip Q = (λs. True)
| vc (Aass x a) Q = (λs. True)
| vc (Asemi c d) Q = (λs. vc c (awp d Q) s & vc d Q s)
| vc (Aif b c d) Q = (λs. vc c Q s & vc d Q s)
| vc (Awhile b I c) Q = (λs. (I s & ∼b s −−> Q s) &

(I s & b s −−> awp c I s) & vc c I s)

primrec astrip :: acom => com
where

astrip Askip = SKIP
| astrip (Aass x a) = (x :==a)
| astrip (Asemi c d) = (astrip c;astrip d)
| astrip (Aif b c d) = (IF b THEN astrip c ELSE astrip d)
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| astrip (Awhile b I c) = (WHILE b DO astrip c)

primrec vcawp :: acom => assn => assn × assn
where

vcawp Askip Q = (λs. True, Q)
| vcawp (Aass x a) Q = (λs. True, λs. Q(s[x 7→a s]))
| vcawp (Asemi c d) Q = (let (vcd ,wpd) = vcawp d Q ;

(vcc,wpc) = vcawp c wpd
in (λs. vcc s & vcd s, wpc))

| vcawp (Aif b c d) Q = (let (vcd ,wpd) = vcawp d Q ;
(vcc,wpc) = vcawp c Q

in (λs. vcc s & vcd s,
λs.(b s −−> wpc s) & (∼b s −−> wpd s)))

| vcawp (Awhile b I c) Q = (let (vcc,wpc) = vcawp c I
in (λs. (I s & ∼b s −−> Q s) &

(I s & b s −−> wpc s) & vcc s, I ))

declare hoare.conseq [intro]

lemma vc-sound : (ALL s. vc c Q s) =⇒ |− {awp c Q} astrip c {Q}
〈proof 〉

lemma awp-mono:
(!s. P s −−> Q s) ==> awp c P s ==> awp c Q s
〈proof 〉

lemma vc-mono:
(!s. P s −−> Q s) ==> vc c P s ==> vc c Q s
〈proof 〉

lemma vc-complete: assumes der : |− {P}c{Q}
shows (∃ ac. astrip ac = c & (∀ s. vc ac Q s) & (∀ s. P s −−> awp ac Q s))
(is ? ac. ?Eq P c Q ac)
〈proof 〉

lemma vcawp-vc-awp: vcawp c Q = (vc c Q , awp c Q)
〈proof 〉

end

theory Denotation imports Natural begin

types com-den = (state×state)set
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definition
Gamma :: [bexp,com-den] => (com-den => com-den) where
Gamma b cd = (λphi . {(s,t). (s,t) ∈ (cd O phi) ∧ b s} ∪

{(s,t). s=t ∧ ¬b s})

primrec C :: com => com-den
where

C-skip: C SKIP = Id
| C-assign: C (x :== a) = {(s,t). t = s[x 7→a(s)]}
| C-comp: C (c0 ;c1 ) = C (c0 ) O C (c1 )
| C-if : C (IF b THEN c1 ELSE c2 ) = {(s,t). (s,t) ∈ C c1 ∧ b s} ∪

{(s,t). (s,t) ∈ C c2 ∧ ¬b s}
| C-while: C (WHILE b DO c) = lfp (Gamma b (C c))

lemma Gamma-mono: mono (Gamma b c)
〈proof 〉

lemma C-While-If : C (WHILE b DO c) = C (IF b THEN c;WHILE b DO c ELSE SKIP )
〈proof 〉

lemma com1 : 〈c,s〉 −→c t =⇒ (s,t) ∈ C (c)

〈proof 〉

lemma com2 : (s,t) ∈ C (c) =⇒ 〈c,s〉 −→c t
〈proof 〉

lemma denotational-is-natural : (s,t) ∈ C (c) = (〈c,s〉 −→c t)
〈proof 〉

end

theory
program-based-testing

imports
IMP−2011/VC
IMP−2011/Denotation
Testing

16



begin

3.4 Unfold and its Correctness

The core of our white box testing function is the following “unwind” function, that
“unfolds” while loops and normalizes the resulting program in order to expose it to the
operational semantics (i.e. the “natural semantics” evalc up to an unwind factor k.
Evaluating programs leads to accumulating path-conditions: If a remaining constraint
(whose components essentially result from applications of the If-split rule), is satisfiable
that a path through a program is traceable and results to a certain successor state.

This can be used to test program specifications: Hoare-Triples were checked against for
all paths up to a certain depth.

primrec Append :: [com,com] ⇒ com (infixr @@ 70 )
where

conc-skip : SKIP @@ c = c
| conc-ass : (x :== E ) @@ c = ((x :== E ); c)
| conc-semi : (c;d) @@ e = (c; d @@ e)
| conc-If : (IF b THEN c ELSE d) @@ e =

(IF b THEN c @@ e ELSE d @@ e)
| conc-while: (WHILE b DO c) @@ e = ((WHILE b DO c);e)

lemma C-skip-cancel1 [simp] : C (SKIP ;c) = C (c)
〈proof 〉

lemma C-skip-cancel2 [simp] : C (c;SKIP) = C (c)
〈proof 〉

lemma C-If-semi [simp] :
C ((IF x THEN c ELSE d);e) = C (IF x THEN (c;e) ELSE (d ;e))

〈proof 〉

lemma comappend-correct [simp]: C (c @@ d) = C (c;d)
〈proof 〉

fun unfold :: nat × com ⇒ com
where

uf-skip : unfold(n, SKIP) = SKIP
| uf-ass : unfold(n, a :== E ) = (a :== E )
| uf-If : unfold(n, IF b THEN c ELSE d) =

IF b THEN unfold(n, c) ELSE unfold(n, d)
| uf-while: unfold(n, WHILE b DO c) =

(if 0 < n
then IF b THEN unfold(n,c)@@unfold(n− 1 ,WHILE b DO c) ELSE SKIP
else WHILE b DO unfold(0 , c))

| uf-semi1 : unfold(n, SKIP ; c) = unfold(n, c)
| uf-semi2 : unfold(n, c ; SKIP) = unfold(n, c)
| uf-semi3 : unfold(n, (IF b THEN c ELSE d) ; e) =

17



(IF b THEN (unfold(n,c;e)) ELSE (unfold(n,d ;e)))
| uf-semi4 : unfold(n, (c ; d); e) = (unfold(n, c;d))@@(unfold(n,e))
| uf-semi5 : unfold(n, c ; d) = (unfold(n, c))@@(unfold(n, d))

lemma unfold-correct-aux1 :
assumes H : ∀ x . C (unfold (x , c)) = C c
shows C (unfold(n,WHILE b DO c)) = C (WHILE b DO c)
〈proof 〉

declare uf-while [simp del ]

lemma unfold-correct-aux2 :
C (unfold(n,c;d))= C (unfold(n,c) ; unfold(n, d))
〈proof 〉 print-cases
〈proof 〉

lemma unfold-correct [rule-format ]: ∀ x . (C (unfold(x ,c)) = C (c))
〈proof 〉

lemma wp-unfold : wp (c) (p) = wp(unfold(n,c)) (p)
〈proof 〉

lemma wp-test : ∀σ. P σ −→ wp (unfold(k ,c)) Q σ =⇒ |− {P} c {Q}
〈proof 〉

3.5 Symbolic Evaluation Rule-Set

lemma If-split :
[[ b s =⇒ 〈c0 ,s〉 −→c s ′;
¬ b s =⇒ 〈c1 ,s〉 −→c s ′ ]]

=⇒ 〈IF b THEN c0 ELSE c1 ,s〉 −→c s ′

〈proof 〉

lemma If-splitE :
[[ 〈IF b THEN c ELSE d ,s〉 −→c s ′;

[[ b s; 〈c,s〉 −→c s ′ ]] =⇒ P ;
[[ ¬ b s; 〈d ,s〉 −→c s ′ ]] =⇒ P ]] =⇒ P

〈proof 〉
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3.6 Splitting Rule for program-based Tests

lemma symbolic-eval-test :
( |− {Pre} c {Post}) =

(∀ s t . 〈unfold (n, c),s〉 −→c t −→ Pre s −→ Post t)
〈proof 〉

3.7 Tactic Set-up

〈ML〉

lemmas one-point-rules = HOL.simp-thms(39 ) HOL.simp-thms(40 )

lemma IF-split :
〈IF b THEN c ELSE d ,s〉 −→c s ′ =
((b s ∧ 〈c ,s〉 −→c s ′) ∨ (¬ b s ∧ 〈d ,s〉 −→c s ′ ))
〈proof 〉

lemma assign-sequence:
〈a:== e; c,s〉 −→c s ′ = 〈c,s[a 7→ e s]〉 −→c s ′

〈proof 〉

lemmas symbolic-evaluation = IF-split
Natural .skip Natural .assign
Natural .semi Natural .whileFalse

thm symbolic-evaluation

lemmas symbolic-evaluation2 = IF-split assign-sequence
Natural .skip Natural .assign
Natural .whileFalse

lemmas memory-model = Fun.fun-upd-other HOL.simp-thms(8 )
Fun.fun-upd-same Fun.fun-upd-triv

〈ML〉

end

theory
squareroot-test
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imports
../../src/program-based-testing

begin

3.8 The Definition of the Integer-Squareroot Program

definition squareroot :: [loc,loc,loc,loc] ⇒ com
where squareroot tm sqsum i a ==

(( tm :== (λs. 1 ));
(( sqsum :== (λs. 1 ));
((i :== (λs. 0 ));

WHILE (λs. (s sqsum) <= (s a)) DO
(( i :== (λs. (s i) + 1 ));
((tm :== (λs. (s tm) + 2 ));
(sqsum :== (λs. (s tm) + (s sqsum)))))))

)

definition pre :: assn where pre ≡ λ x . True
definition post :: [loc,loc] ⇒ assn
where post a i ≡ λ s. (s i)∗(s i)≤(s a) ∧ s a < (s i + 1 )∗(s i + 1 )

definition inv :: [loc,loc,loc,loc] ⇒ assn
where inv i sqsum tm a ≡ λs.(s i + 1 ) ∗ (s i + 1 ) = s sqsum

∧ s tm = (2 ∗ (s i) + 1 )
∧ (s i) ∗ (s i) <= (s a)

3.9 Computing Program Paths and their Path-Constraints

lemma derive-pathconds:
assumes no-alias : sqsum 6= i ∧ i 6= sqsum ∧ tm 6= sqsum ∧

sqsum 6= tm ∧ sqsum 6= a ∧ a 6= sqsum ∧
tm 6= i ∧ i 6= tm ∧ tm 6= a ∧ a 6= tm ∧
a 6= i ∧ i 6= a

shows 〈unfold(3 , squareroot tm sqsum i a), s〉 −→c s ′

〈proof 〉

Summary: With this approach, one can synthesize paths and their conditions.

3.10 Testing Specifications

thm symbolic-evaluation2

Slow Motion Interactive Version (for demonstrations).

lemma whitebox-test :
assumes no-alias[simp] : sqsum 6= i ∧ i 6= sqsum ∧ tm 6= sqsum ∧

sqsum 6= tm ∧ sqsum 6= a ∧ a 6= sqsum ∧
tm 6= i ∧ i 6= tm ∧ tm 6= a ∧ a 6= tm ∧
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a 6= i ∧ i 6= a
shows |− {pre} squareroot tm sqsum i a {post a i}

〈proof 〉

Automated Version:

lemma whitebox-test2 :
assumes no-alias[simp] : sqsum 6= i ∧ i 6= sqsum ∧ tm 6= sqsum ∧

sqsum 6= tm ∧ sqsum 6= a ∧ a 6= sqsum ∧
tm 6= i ∧ i 6= tm ∧ tm 6= a ∧ a 6= tm ∧
a 6= i ∧ i 6= a

shows |− {pre} squareroot tm sqsum i a {post a i}

〈proof 〉

3.11 An Alternative Approach with an On-The-Fly generated Explicit
Test-Hyp.

Recall the rules for the computation of weakest preconditions:

Hoare.wp_def: wp ?c ?Q == %s. ALL t. (s, t) : C ?c --> ?Q t

Hoare.wp_If: wp (IF ?b THEN ?c ELSE ?d) ?Q = (%s. (?b s --> wp ?c ?Q s) &

(~ ?b s --> wp ?d ?Q s))

Hoare.wp_Semi: wp (?c; ?d) ?Q = wp ?c (wp ?d ?Q)

Hoare.wp_Ass: wp (?x :== ?a ) ?Q = (%s. ?Q (s[?x ::= ?a s]))

Hoare.wp_SKIP: wp SKIP ?Q = ?Q

lemma path-exploration-test :
assumes no-alias : sqsum 6= i ∧ i 6= sqsum ∧ tm 6= sqsum ∧

sqsum 6= tm ∧ sqsum 6= a ∧ a 6= sqsum ∧
tm 6= i ∧ i 6= tm ∧ tm 6= a ∧ a 6= tm ∧
a 6= i ∧ i 6= a

shows |− {pre} squareroot tm sqsum i a {post a i}〈proof 〉

end
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