A Framework for Secure Service Composition

Achim D. Brucker Francesco Malmignati
Madjid Merabti Qi Shi Bo Zhou

presented by
Brett Lempereur

ASE/IEEE International Conference on Information Privacy, Security, Risk and Trust (PASSAT)

2013-09-11
The Aniketos Project
Enable composite services to establish and maintain security and trustworthiness

Goals of the Aniketos platform:
- Design-time discovery, composition and evaluation, threat awareness
- Runtime adaptation or change in service configuration
- Runtime monitoring, detection, notification

Two related dimensions:
- **Trustworthiness**: Reputation, perception, centralized vs. distributed
- **Security properties**: Behavior, contracts, interfaces, formal verification

Aniketos Fact-Sheet:
- EU Integrated Project (IP), FP7 Call 5
- Budget: € 13.9 Mio (€ 9.6 Mio funding)
- Coordinator: Sintef (Norway)

[Aniketos Fact-Sheet Link]

http://www.aniketos.eu
The Aniketos Process

Service developers

Service providers

Service end users

Compose

Provide

Adapt/recompose

Invoke

- Discovery and composition support based on trustworthiness, security properties and metrics
- Relevant threat awareness

- Trust and security monitoring
- Threat notification

- End user trust assurance and acceptance
- Identification of responsible party

- Self-protection
- Trust evaluation
- Security validation

Component change
Change of threats
Change of environment

Design-time

Runtime
Outline

1 Motivation
2 Analysing Access Control Configurations
3 Quantifying Service Compositions
4 Conclusion
Modeling Composition Plans using BPMN

- Human-centric tasks
- Automated tasks (services)
- Orchestration of services

- Start/end states
- Logical control flow (if/and/or)
- Error states
Security and Trust Properties in Service Compositions

Access control
- Authenticated users
- Authorization of users

SoD/BoD
- No approval of own travels
- Separation of finding and booking flights

Need-to-Know
- Finding flights: only travel data
- Payment: only price and credit card data

Trust
- Use only trustworthy services
- Trustworthiness may change over time
How to ensure security, compliance, and trustworthiness at design time and runtime?
Outline

1 Motivation

2 Analysing Access Control Configurations

3 Quantifying Service Compositions

4 Conclusion
The Problem: RBAC with Separation of Duty

Role-based access control (RBAC)

- Subjects are assigned to roles
- Permissions assign roles to tasks (resources)

Separation of duty (SoD)

- restrict subjects in executing tasks

We analyze:

- Does the RBAC configuration comply to the SoD requirements?

 yes: static SoD
 no: dynamic SoD

- In case of a compliance violation:

 - change RBAC configuration
 - ensure dynamic enforcement of SoD
Security Verification Module (RBAC/SoD Check)
User Interface for the Service Designer
Outline

1. Motivation
2. Analysing Access Control Configurations
3. Quantifying Service Compositions
4. Conclusion
The Problem: Selection of the Optimal Composition

- Ranking of service compositions
 - property of the composition
 - compositions provide the same
 - functionality
 - security and trustworthiness

- Ranking according to
 - Availability
 - Costs
Ranking Secure Service Compositions

Calculating the availability:

<table>
<thead>
<tr>
<th>Description</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>$\prod_{i=1}^{n} A_i$</td>
</tr>
<tr>
<td>Parallel</td>
<td>$\min(A_1, \ldots, A_n)$</td>
</tr>
<tr>
<td>Exclusive</td>
<td>A_i</td>
</tr>
</tbody>
</table>

Calculating the costs:

$$C = \sum_{i=1}^{n} C_i$$
Example: Ranking Service Compositions

Assume the following availability values:

- Find suitable hotels: 0.99
- Find suitable flights: 0.96
- Get user’s credit card data: 0.97
- Book the hotel: 0.99
- Book the flight: 0.98
- Undo hotel booking: 0.94

We compute:

\[A = \min(0.99, 0.96) \times 0.97 \times 0.99 \times 0.98 = 0.90 \]

Assume the weights to 0.72 (availability) and 0.28 (cost)

\[V = 0.72 \times A + 0.28 \times \frac{B - C}{B} \]
Conclusion and Outlook

Secure service compositions require:

- **Design time:**
 modeling, analysis and ranking of secure services
- **Run-time:**
 enforcement, monitoring, service replacement, and re-planning

Today, we presented design time support for

- Analysing security properties of service compositions
- a method for ranking service compositions

Our work is part of the Aniketos secure Composition Framework

Further information about Aniketos: http://www.aniketos.eu
Thank you for your attention!

Any questions or remarks?
Further Readings

Achim D. Brucker, Francesco Malmignati, Madjid Merabti, Qi Shi, and Bo Zhou.
A framework for secure service composition.
Part II

Appendix
The Aniketos Secure Composition Framework
SecureBPMN: Adding Security Specifications

- Access Control
- Delegation
- Separation/Binding of Duty
- Need to Know
- Break Glass
Analyzing (Dynamic | Static) Separation of Duty

Does the access control enforce a separation of duty constraint

- Translate the composition plan to ASLan

 \[\text{hc } \text{rbac_ac}(\text{Subject}, \text{Role}, \text{Task}) := \text{CanDoAction}(\text{Subject}, \text{Role}, \text{Task})
 \quad \text{:- user_to_role}(\text{Subject}, \text{Role}), \text{poto}(\text{Role}, \text{Task})\]
 \[\text{hc } \text{poto_T6} := \text{poto}(\text{Staff}, \text{Request Travel})\]
 \[\text{hc } \text{poto_T6} := \text{poto}(\text{Manager}, \text{Approve Absence})\]
 \[\text{hc } \text{poto_T7} := \text{poto}(\text{Manager}, \text{Approve Budget})\]

- Specify the test goal

 \[\text{attack_state sod_securitySod1_1}(\text{Subject0},\text{Subject1},\text{Instance1},\text{Instance2})
 := \text{executed}(\text{Subject0},\text{task}(\text{Request Travel},\text{Instance1})).\]
 \[\text{executed}(\text{Subject1},\text{task}(\text{Approve Budget},\text{Instance2})).\]
 \[\text{executed}(\text{Subject3},\text{task}(\text{Approve Absence},\text{Instance3})).\]
 \[\neg(\text{equal}(\text{Subject0},\text{Subject1})).\]
 \[\neg(\text{equal}(\text{Subject1},\text{Subject2})).\]
 \[\neg(\text{equal}(\text{Subject2},\text{Subject3})).\]

- Run the model checker

- Translate the analysis result back to BPMN (visualization)