Abstract

Enterprise systems in general and process aware systems in particular are storing and processing the most critical assets of a company. To protect these assets, such systems need to implement a multitude of security properties. Moreover, such systems need often to comply to various compliance regulations.

In this talk, we briefly discuss challenges of implementing large-scale systems based on workflow-management in general and, in particular, the in the context of cloud based systems. We will put a particular focus on security requirements and discuss the gab between the ideal world of process-aware information systems and the real world. We conclude our presentation by discussing several research challenges in the area of verifiable secure process aware information systems.
Die SAP AG

- Leader in Business Software
- Vendor process-aware systems
- More than 25 industries
- 63% of the world’s transaction revenue touches an SAP system
- 64,422 employees worldwide
- Headquarters: Walldorf (and St. Leon-Rot)
- Location in Karlsruhe: ca. 500m from here

SAP P&I ACES: Mission

Mission
- Orchestrating the architecture definition and communicating the results consistently
- Building the best educated development organization in- and outside the company
- Making Security a key differentiator for choosing SAP

Goals

- **Architecture**: Lead the way we jointly create and manage the architecture of our products
- **Communication**: Roll-out this architecture consistently to our field colleagues, customers and partners.
- **Education**: Drive education for developers internally & externally - ensure that it is fun to learn SAP, renew education concepts and technology.
- **Security**: Drive Product Security, transform it to become a differentiator for SAP.

SAP P&I ACES: Organizational Structure

My Background

- Senior Researcher at SAP AG
 - Product Security Research
 - Code Analysis
- Background: Security, Formal Methods, Software Engineering
- Current work areas:
 - Security in business processes
 - Static code analysis (u.a. für JavaScript)
 - Security Testing
Agenda

1. SAP and SAP P&I ACES
2. Process-aware Information Systems
4. Research Directions and Challenges
5. Conclusion

Ideal World: Modeling

Ideal World: Deployment and Execution

Real World: Modeling

Process Models:
- BPMN/BPEL
- Configurable transactions
- Custom Coding
- Legacy Systems
- External services

Security:
- Each system (OS, DB, IS)
 - own security infrastructure
 - own logging infrastructure
- Management solutions try to bridge this gap
Real World: Deployment and Execution

Backend:
- AS Java, AS ABAP
- Business Process Engine
- Legacy Systems
- External services
- Sensors and product lines

Frontend:
- Desktop clients
- Web-based clients
- Mobile clients
- Client side compositions (e.g., mash-ups)

End-to-End Business Process Integration

Customers have complex on-premise landscapes

As customers adopt cloud solutions, hybrid landscapes will become a norm

Integration across the boundaries of cloud and on-premise is a must to prevent application silos

As companies adopt cloud, real-time end-to-end business process integration is critical

How the Future Might Look Like

Customer Example (1/2)

- Large manufacturing company with SAP ERP, multiple legacy HR and other financial applications worldwide
- Migration from legacy HR system
- >120 third-party interfaces – Integration of third-party cloud solutions to Employee Central (EC) and EC Payroll
- 100% of SAP-to-SAP integrations and 30% of all integrations covered by prepackaged integration flows (iFlows)
Customer Example (2/2)

- Industrial manufacturer with multiple subsidiaries on different SAP ERP clients as well as third-party ERP systems
- Rapid implementation with small IT team
- Delivered improved usability for field sales and collaboration between field sales and back office
- Integration of accounts, materials, sales quotes and sales orders

Evolution of Source Code

- Increase in
 - code size
 - code complexity
 - number of products
 - product versions

Support Lifecycle (Maintenance)
Support Lifecycle (Maintenance)

Example (Maintenance Cycles)

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Release</th>
<th>EOL</th>
<th>ext. EOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows XP</td>
<td>2001</td>
<td>2009</td>
<td>2014</td>
</tr>
<tr>
<td>Windows 8</td>
<td>2012</td>
<td>2018</td>
<td>2023</td>
</tr>
<tr>
<td>Red Hat Ent. Linux</td>
<td>2012</td>
<td>2020</td>
<td>2023</td>
</tr>
<tr>
<td>SAP ERP</td>
<td>2004</td>
<td>2020</td>
<td>> 2024</td>
</tr>
</tbody>
</table>

Maintenance fees: typical 20% of the original price

Customer Requirements

- **LOB***
 - Single source of truth and master data synchronization
 - Real-time business process integration
 - Integrated user experience
 - Rapid deployment

- **IT**
 - Data security and compliance
 - Support for complex landscapes
 - Choice of integration technology
 - End-to-end monitoring and support

Agenda

1. SAP and SAP P&I ACES
2. Process-aware Information Systems
4. Research Directions and Challenges
5. Conclusion

Security in Business Processes: An Example
Access Control

Goal:
- Control access to Tasks, Resources (Data), ...

The core:
- Usually: Users, Roles, Access Rights, ...
- In special cases: Data labeling

On top:
- Separation of Duty
- Binding of Duty
- Delegation

Protecting Data (and Goods)

Goal:
- Ensure confidentiality, integrity (safety) of data (and goods)

The core:
- Need-to-Know
- Fingerprints
- Encryption
- Sensors

Compliance and Additional Requirements

Many regulated markets
- Basel II/III, SoX, PCI
- HIPAA

Many customer-specific regulations
- Own governance to mitigate risks
- Own business code of conduct
- Fraud detection/prevention
- Non-observability

Customers are individually audited
- No “one certificate fits all” solution

Security should not hinder business

Agenda

1. SAP and SAP P&I ACES
2. Process-aware Information Systems
4. Research Directions and Challenges
5. Conclusion
Our Research Over the Last Decade

Access Control for Processes
- RBAC-like models
- Delegation models
- Break-(the)-glass models

Model-driven Security
- Modeling of Security
- Generation of implementation, configuration
- Monitoring based on models

Process-level Verification
- Compliance to security spec.
- Consistency of security configurations

Implementation-level Verification
- Compliance of implementation to process level security req.

Research Challenges

Adaptability:
- How to extend systems safely
- Integration of legacy systems

Auditability:
- Coherent audit across providers/systems
- Reduction of audit costs

Cloud (SaaS):
- How to manage decentralized systems
- How to capture behavior of the composition
- Who is the attacker

Process level vs. technical levels:
- Security is more than CIA
- Ensuring secure implementation

Agenda

1. SAP and SAP P&I ACES
2. Process-aware Information Systems
4. Research Directions and Challenges
5. Conclusion

Conclusion

The most interesting challenges are still ahead of us!

- Real systems are large and complex:
 - many programming languages or frameworks
 - many security technologies
 - highly distributed
 - implement business processes in many different ways

- Many research is done on the process level

- We now need to bring the
 - process level
 - implementation level
closer together to provide end-to-end security

- Cloud solutions create new challenges:
 - data protection across different providers
 - new attacker models