Why is software always crashing?
Are we lazy or just not clever enough to code?

Achim D. Brucker
a.brucker@sheffield.ac.uk https://www.brucker.ch/

Software Assurance & Security Research
Department of Computer Science, The University of Sheffield, Sheffield, UK
https://logicalhacking.com/

May 16, 2018
A problem has been detected and Windows has to your computer.

If this is the first time you've seen this screen, restart your computer. If this screen appears again, follow these steps:
BA faces £80m cost for IT failure that stranded 75,000 passengers

New apology comes as thousands of passengers fly without checked-in bags from Heathrow

Willie Walsh: 'I know that it was a dreadful experience for many of our customers and we are truly sorry' © PA

Tobias Buck in Madrid and Peggy Hollinger in London June 15, 2017

British Airways expects to suffer an £80m cost from the IT failure.
BA faces £80m cost for IT failure that stranded 75,000 passengers

New apology comes as thousands of passengers fly without checked-in bags from Heathrow

British Airways expects to suffer an £80m cost from the IT failure last
We build software since over 50 years
We build software since over 50 years and still do not get it right.
We build software since over 50 years and still do not get it right.

Why?
A small example: what triangle do I have?

Our program

Given: The length of three lines

Answer: Do the three lines form a triangle?

```haskell
> testTriangle(1,2,3);
val it = Error: triangle

> testTriangle(2,2,2);
val it = Equilateral: triangle

> testTriangle(1,2,2);
val it = Isosceles: triangle

> testTriangle(2,4,5);
val it = Scalene: triangle
```
A small example what triangle do I have?

Is our program correct?

- We tested 4 different inputs …
- The program has 3 inputs, each can take 2^{64} different values
A small example what triangle do I have?
Is our program correct?

- We tested 4 different inputs …
- The program has 3 inputs, each can take

\[2^{64} = 1'844'6744'073'709'551'616 \]

different values
A small example what triangle do I have?
Is our program correct?

- We tested 4 different inputs …
- The program has 3 inputs, each can take
 \[2^{64} = 1'844'6744'073'709'551'616\]
 different values
- Assume we can test 1’000’000 per second
 it takes 584’942 to test them all!
A small example what triangle do I have?

Is our program correct?

- We tested 4 different inputs …
- The program has 3 inputs, each can take

\[2^{64} = 1'844'674'407'370'955'161 \]

different values

- Assume we can test 1’000’000 per second it takes 584’942 to test them all!
- But we have three inputs:

\[3^{2^{64}} = 11'790'184'577'738'583'171'520'872'861'412'518'665'678'211'592'275'841'096'961 \]
A small example what triangle do I have?
Let’s have a look at our program

datatype triangle = Equilateral | Scalene | Isosceles | Error

fun isTriangle(x:int, y:int, z:int)
 = ((z < (x+y)) andalso (x < (x+z)) andalso (y < (x+z)))

fun testTriangle(x:int, y:int, z:int)
 = if isTriangle(x,y,z) then
 if x=y then if y=z then Equilateral
 else Isosceles
 else if y=z then Isosceles
 else if x=z
 then Isosceles
 else Scalene
 else Error
 else Error
A small example what triangle do I have?
Let’s have a look at our program

datatype triangle = Equilateral | Scalene | Isosceles | Error

fun isTriangle (x:int , y: int , z: int)
 = ((z < (x+y)) andalso (x < (x+z)) andalso (y < (x+z)))

fun testTriangle (x:int, y:int , z: int)
 = if isTriangle (x,y,z) then
 if x=y then if y=z then Equilateral
 else if y=z then Isosceles
 else if x=z
 then Isosceles
 else Scalene
 else Error
 else Error

21 tests are sufficient, to cover all branches...
Can 21 tests convince you that the program is correct?
Can we do better?

We can **prove** the correctness mathematically!

```isar
lemma isosceles:
  assumes "x = y"
  and "z \neq x"
  and "isTriangle x y z"
  shows "testTriangle x y z = isosceles"
  using assms testTriangle_def
  by auto
```
Can we do better?

We can **prove** the correctness mathematically!

```ocaml
lemma isosceles
  assumes
  assumes "isTriangle x y z"
  shows "testTriangle x y z = isosceles"
  using assms testTriangle_def
  by auto
```

Verification can show the correctness (for all possible inputs)!
Ensuring correctness, security, and safety

(Inductive) Verification
- Formal (mathematical) proof
- Can show absence of all failures relative to specification

Testing
- Execution of test cases
- Can show failures on real system
Is testing a "poor man’s verification?"
Or: Why should I test if I verified my program (and vice versa)

- Fully formally verified
- Total number of flights: 0

- Fully tested
- Total number of flights: 1000
My vision

Combining testing and verification to ensure the security, safety, reliability, and correctness of (software) systems.
Any questions or remarks?

Contact:
Dr. Achim D. Brucker
Department of Computer Science
University of Sheffield
Regent Court
211 Portobello St.
Sheffield S1 4DP, UK

✉️ a.brucker@sheffield.ac.uk
胗 @adbrucker
🔗 https://de.linkedin.com/in/adbrucker/
🔗 https://www.brucker.ch/
🔗 https://logicalhacking.com/blog/
This presentation is classified as *Public (CC BY-ND 4.0)*:
Except where otherwise noted, this presentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International Public License (CC BY-ND 4.0).