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Abstract Based on experiences gained from an embedding of the Ob-
ject Constraint Language (OCL) in higher-order logic [1], we explore
several key issues of the design of a formal semantics of the OCL. These
issues comprise the question of the interpretation of invariants, pre- and
postconditions, an executable sub-language and the possibilities of refine-
ment notions. A particular emphasize is put on the issue of mechanized
deduction in UML/OCL specification.
Keywords: OCL, formal semantics, constraint languages, refinement

1 Introduction

The Object Constraint Language (OCL) [2, 3, 4] is part of the UML, the de-facto
standard of object-oriented modeling. Being in the tradition of data-oriented
formal specification languages like Z [5] or VDM [6], OCL is designed to make
UML diagrams more expressive. In short, OCL is a three-valued Kleene logic
with equality that allows for specifying constraints on graphs of object instances.

There is a need for both researchers and CASE tool developers1 to clarify the
concepts of OCL formally and to put them into perspective of more standard
semantic terminology. In order to meet this need, we started to provide a formal
semantics in form of a conservative embedding of OCL into Isabelle/HOL which
is described in [1]. In contrast to traditional paper-and-pencil-work in defining
the semantics of a language, a theorem prover based formalization inside a pow-
erful logical language such as higher-order logic (HOL) [7, 8] offers a number of
advantages: First of all, the consistency of an embedded logic, if based on con-
servative extensions, can be guaranteed. Second, as already pointed out in [9],
the use of a theorem prover works as Occam’s razor in a formalization since
machine-checked proofs enforce “a no-frills approach and often leads to unex-
pected simplifications”. Third, incremental changes of a semantic theory can be
facilitated since re-running the proof-scripts immediately reveal new problems
in previous proofs, “thus freeing you from the tedium of having to go through all
the details again”. Further, programmable theorem provers such as Isabelle can
1 This work was partially funded by the OMG member Interactive Objects Software
GmbH (www.io-software.com).

http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002
http://dx.doi.org/10.1007/3-540-45800-X_17
http://www.brucker.ch
www.io-software.com


HOL-OCL: Experiences, Consequences and Design Choices 197

be used to study symbolic evaluation and thus prototypical tool development.
For all these reasons, the embedding approach has been successfully applied for
a number of “real” languages such as Java [10, 9], ML [11], CSP [12],or Z [13].

In this document, we summarize experiences and consequences of our formal-
ization, including answers on questions raised in previous research on the precise
meaning of OCL [14, 15, 4]: the issue of partial and total correctness, the role
of exceptions, the precise meaning of invariants, the option for recursive query
methods and executability of OCL, and its potential for formal refinement.

We proceed as follows: First, we will outline the underlying logical, method-
ological and technical framework. Second, we will present an abstraction of the
key-concepts of our embedding [1]. On this basis, we enter in a discussion on the
“research issues on OCL” as listed above and their answer in the light of our se-
mantic model of OCL. Finally, we discuss our first experiences with mechanized
deduction in UML/OCL specifications.

2 Formal and Technical Background

In this section we will outline the underlying logical, methodological and tech-
nical framework of our embedding of OCL into Isabelle/HOL.

2.1 Higher-order logic — HOL

Higher-order logic (HOL) [7, 8] is a classical logic with equality enriched by total
polymorphic2 higher-order functions. It is more expressive than first-order logic,
since e.g. induction schemes can be expressed inside the logic. Pragmatically,
HOL can be viewed as a combination of a typed functional programming lan-
guage like Standard ML or Haskell extended by logical quantifiers. Thus, it often
allows a very natural way of specification.

When extending logics, two approaches can be distinguished: the axiomatic
method on the one hand and conservative extensions on the other. Extending
the HOL core via axioms, i.e. introducing new, unproven laws seems to be the
easier approach but it usually leads easily to inconsistency; given the fact that
in any major theorem proving system the core theories and libraries contain
several thousand theorems and lemmas, the axiomatic approach is worthless
in practice. In contrast, a conservative extension introduces new constants (via
constant definitions) and types (type definitions) only via a particular schema of
axioms; the (meta-level) proof that axioms of this schema preserve consistency
can be found in [16]. For example, a constant definition introduces a “fresh”
constant symbol and a non-recursive equality axiom with the new constant at
the left hand side, while the right-hand side is a closed expression. Thus, the
new constant can be viewed as an abbreviation of previously defined constructs.

The HOL library provides conservative theories for the HOL-core based on
type bool, for the numbers such as nat and int, for typed set theory based on
2 to be more specific: parametric polymorphism
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τ set and a list theory based on τ list. In this sense, the HOL type system is quite
similar to the OCL type system, but offers no subtyping. Moreover, there are
products, maps, and even a theory on real numbers and non-standard analysis.

2.2 Isabelle

Isabelle [17] is a generic theorem prover. New object logic’s can be introduced
by specifying their syntax and inference rules. Among other logics, Isabelle sup-
ports first order logic (constructive and classical), Zermelo-Fränkel set theory
and HOL, which we choose as framework for HOL-OCL.

Isabelle consists of a logical engine encapsulated in an abstract data type thm
in Standard ML; any thm object has been constructed by trusted elementary
rules in the kernel. Thus Isabelle supports user-programmable extensions in a
logically safe way. A number of generic proof procedures (tactics) have been
developed; namely a simplifier based on higher-order rewriting and proof-search
procedures based on higher-order resolution.

2.3 Shallow Embeddings vs. Deep Embeddings

We are now concerned with the question how a language is represented in a logic.
In general, two techniques are distinguished: shallow and deep embeddings.

Deep embeddings represent the abstract syntax as a datatype and define a
semantic function I from syntax to semantics.

Shallow embeddings define the semantics directly; each construct is repre-
sented by some function on a semantic domain.

Assume we want to embed the boolean OCLlight operators3 and and or into HOL.
Note, that the semantics I : expr → env → bool is a function that maps OCL
expressions and environments to bool, where environments env = var → bool
maps variables to bool values. Using a shallow embedding, we define directly:

x and y ≡ λ e • x e ∧ y e x or y ≡ λ e • x e ∨ y e

Shallow embedding allows for direct definitions in terms of semantic domains
and operations on them. In contrast, in a deep embedding, we have to define the
syntax of OCLlight as recursive datatype:

expr = var var | expr and expr | expr or expr

and the explicit semantic function I :

I [[var x]] = λ e • e(x)
I [[x and y]] = λ e • I [[x]] e ∧ I [[y]] e
I [[x or y]] = λ e • I [[x]] e ∨ I [[y]] e

3 Here we simplify the OCL semantics, by ignoring undefinedness and states.
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This example reveals the main drawback of deep embeddings: the language is
more distant to the underlying meta language HOL, i.e. semantic functions rep-
resent obstacles for deduction. The explicit syntax of deep embeddings enables
induction proofs, however; for some meta-theoretic analysis, this may have ad-
vantages. Since we are interested in a concise semantic description of OCL and
prototypical proof support, but not meta-theory, we chose a shallow embedding.

3 An Abstract Model of HOL-OCL

In this section, we will motivate some design goals of HOL-OCL (as described
in [1]), namely extendibility and modular organization. Here, we are less con-
cerned with an integrated solution of the technical problems, but with the un-
derlying concepts of our approach.

3.1 Design Goals of HOL-OCL

A conservative shallow embedding enforces any entity of the language to have a
type in HOL. This seems to be tedious at first sight, but has the foundational
advantage that statements such as x ∈ S never run into Russel’s paradox; in
a typed set theory, well-typedness assures consistency. The set theoretic foun-
dation makes the treatment of what we call a general semantics of OCL quite
difficult; such a semantics should interpret an OCL-expression not only in one
class diagram, but also “the set of all possible extensions”. Unfortunately, the
semantic domain of general semantics requires concepts such as “the set of all
universes over all class diagrams” (where a universe U is the set of all objects of a
class diagram). Such a set is too large to be represented in a typed set theory and
a critical construction in Zermelo-Fränkel set theory. Therefore, previous formal
semantics to OCL ([14, 15, 4]) has been based on a “parameterized semantics”
approach, i.e. the semantic function is parameterized by an arbitrary, but fixed
diagram C, and its definition is based on naive set theoretic reasoning [18].

Even if one is not too much concerned about the foundational problems
with this approach, we argue that parametric semantics does not cover the most
important aspect of object-orientation: reuseability. In principle, if one extends a
class diagram C by a diagram extension E (containing new classes and inheritance
relations) to a class diagram C⊕ E, one wants to reuse “everything” done for C.
In a theorem prover, the reuse of derived rules and theorems from the library
or a user model is pragmatically vital. However, in the parameterized semantics
approach, values in the two semantic functions IC[[e]] and IC⊕E[[e]] are unrelated,
and, thus, theorems proven over the first do not carry over to the latter. In order
to obtain proof-reuseability, we based HOL-OCL on the extendible semantics
approach, that lies in between the parameterized and the general semantics. The
idea is to introduce extension variables X and to represent diagrams by C ⊕ X,
such that diagram C ⊕ E ⊕ X′ becomes an instance of C ⊕ X. Since extension
variables can be represented via type variables in HOL, values within a family
of “diagrams extensions” become semantically related.
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Representing a language that is still under construction (as OCL) is risky:
if the various key features were changed, a lot of work may be lost. Keeping a
semantic theory flexible is therefore a major challenge for the theorem-prover
based analysis of language designs. We answered the problem by organizing the
semantic definition for any type and any operator of OCL into layers, whose
“semantical essence” is captured by certain combinators (i.e. type constructors
for types and higher-order functions for operators). When embedding the types
from HOL-library theories like bool, string, set etc, they all have to be “lifted”
by adding a ⊥-element denoting undefinedness:

Bool = bool ] {⊥} = bool⊥

where ] denotes the disjoint sum. When embedding operations, fundamental
semantic principles like “all operations are strict” can be incorporated “once
and for all” by defining a combinator “strictify”, that is used in all definitions of
OCL-operators (with some exceptions listed in the OCL standard). For instance,
the strictified logical not can be defined as follows:

not ′ ≡ b_c ◦ (strictify(¬ ))

where b_c takes a value and embeds it into its disjoint sum with ⊥, _ ◦_ is the
function composition, and ¬ _ the logical not in HOL on bool. The combinator
is defined by:

strictify(f )(x) ≡

{
⊥ if x = ⊥
f z if x = bzc.

Similarly, we define combinators that realize uniformly the semantic construction
for state transitions (the actual definition for not is lift1(not ′), see below), for the
“smashing” of collection types (see below) or for the treatment of late binding
or static binding in recursive query methods.

The purpose of the following subsections is to introduce an “abstract version”
of HOL-OCL that covers the most essential concepts but abstracts away the quite
involved details with respect to the construction of objects in a state, with respect
to types and with respect to parametric polymorphism, that implements these
concepts. The details can be found in [1].

3.2 Foundation

In the following, we assume the base types Boolean, String, Int, etc. as lifted
versions bool⊥, string⊥, etc. of the HOL library types, and C, C′,C′′ are denoting
UML class diagrams. Further we assume an operation ⊕ and the class diagram
extensions E, E′,E′′, universes UC of objects over a class diagram C (the universe
also contains all values of the base types, states4State(UC) containing objects of
UC), and STC ≡ State(UC)× State(UC).

4 also called object configurations or snapshots in the literature
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3.3 Methods in OCL

One vital motivation for OCL is its possibility to specify methods of class dia-
grams with pre- and postconditions:

context C . op ( x : T1 ) : T2
pre : PRE
post : POST

where PRE and POST may be OCL expressions of type Boolean. PRE may
contain at most the free variables self and x and accesses via path-expressions
to an underlying “old” state σ : State(UC), while POST may additionally contain
the free variable result and accesses to the “new” state σ′ : State(UC).

The definition in the OCL 2.0 proposal is similar to Z operation schemas:

op
∆State
x? : T1
result! : T2

PRE(x?, σ)
POST (x?, result!, σ, σ′)

where State : Exp is a schema over state variables σ containing the system
invariant. The schema notation is just a notational variant of the (typed) set:{

x? : T1, result! : T2, σ : State(UC), σ′ : State(UC)
∣∣

PRE(x?, σ) ∧ POST (x?, result!, σ, σ′)
}

Here, we propose a slight deviation from the OCL 2.0 proposal and allow PRE
and POST to be undefined. Since sets {x | P(x)} are just isomorphic to charac-
teristic functions P : τ → bool, it is natural to view the semantics of an operation
op as a function

IC[[op]] : T1 → T2 → STC → Boolean

where T1 → T2 → STC → Boolean is just a curried (isomorphic) version of
T1×T2×STC → Boolean. When turning the semantics into a shallow embedding,
one more massaging step is necessary:

I S
C [[op]] : (STC → T1)→ (STC → T2)→ STC → Boolean

or just:
I S
C [[op]] : VC(T1)→ VC(T2)→ VC(Boolean)

where the type constructor VC(T1) is an abbreviation for STC → T1.
Note that this semantic function interprets a specification of op and thus

constructs a kind of “three valued relation” between input and output state, i.e.
a state may be clearly related to its successor, or may be clearly unrelated, or the
relationship may be undefined (see discussion below). Our solution is very similar
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to the OCL 2.0 proposal; however, we allow the distinction between unrelated
states and an unspecified relation between the states (see Sec. 4.4). Hence, when
semantically interpreting a concrete operation op : T1 → T1, the resulting type
will be:

I S
C [[op]] : VC(T1)→ VC(T2).

Thus, there is a clear conversion scheme from OCL-types to HOL-OCL types,
which corresponds to a semantic construction we call lifting that we support by
appropriate combinators. The combinator lift1 (for “lift 1-ary HOL-function to
shallow OCL interpretation”; see also previous section) is designed to hide the
“plumbing” with respect to the state transitions. It is defined by:

lift1(f )(x)(σ, σ′) ≡ f (x(σ, σ′))

(the combinators for the 2-ary and 3-ary case are analogous).

3.4 Logic

We define the Boolean constants true, false and ⊥⊥⊥L (undefined) as constant
functions, that yield the lifted HOL-value for undefinedness, truth or falsehood:

⊥⊥⊥L : VC(Boolean) ⊥⊥⊥L ≡ λ(σ, σ′) • b⊥c
true : VC(Boolean) true ≡ λ(σ, σ′) • bTruec
false : VC(Boolean) false ≡ λ(σ, σ′) • bFalsec

Following the previous section, the types for the logical operators are as follows:

not : VC(Boolean)→ VC(Boolean)
and : VC(Boolean)→ VC(Boolean)→ VC(Boolean)

or : VC(Boolean)→ VC(Boolean)→ VC(Boolean)

The logical operators and the “if then else endif” are the only exception from the
rule that the OCL operators have to be strict. They must be defined individually.
The definitions following the OCL 2.0 proposal are straight-forward, e.g.:

(S andT )(σ, σ′) ≡


bS ∧ Tc if S(σ, σ′) 6= ⊥ ∧ T (σ, σ′) 6= ⊥
false if S(σ, σ′) 6= ⊥ ∧ S(σ, σ′) = false
false if T (σ, σ′) 6= ⊥ ∧ T (σ, σ′) = false
⊥⊥⊥L otherwise

Note that due to extensionality of the HOL equality:

∀ x • f (x) = g(x)⇒ f = g

the states can be “hidden away”. For example, instead of:

(true and false)(σ, σ′) = false(σ, σ′)

http://www.brucker.ch
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we can write equivalently:

true and false = false

The proof in Isabelle is easily done by applying extensionality and Isabelle’s
proof procedure. The usual truth tables for Kleene logics were derived similarly:

a not a
true false
false true
⊥⊥⊥L ⊥⊥⊥L

a b a and b
false false false
false true false
false ⊥⊥⊥L false

a b a and b
true false false
true true true
true ⊥⊥⊥L ⊥⊥⊥L

a b a and b
⊥⊥⊥L false false
⊥⊥⊥L true ⊥⊥⊥L

⊥⊥⊥L ⊥⊥⊥L ⊥⊥⊥L

It is not difficult to derive with Isabelle the laws of the surprisingly rich algebraic
structure of Kleene logics: Both and and or enjoy not only the usual associativity,
commutativity and idempotency laws, but also both distributives and de Morgan
laws. The main drawback of a three-valued Kleene logic is that the axiom of the
excluded middle (a ∨ ¬ a = true) and the usual laws on implication do not hold,
which makes their handling in proof procedures non-standard.

Based on the logic, we define as suggested in the OCL 2.0 proposal ([4], sat-
isfaction of operation specifications (see definition 5.34)) two notions of validity
of an OCL formula: a formula P may be valid for all state transitions (� P) or
valid for some transition (σ, σ′) ((σ, σ′) � P). We define validity by:

� P ≡ P = true or (σ, σ′) � P ≡ P(σ, σ′) = true(σ, σ′)

respectively. Note that P = false is equivalent to � notP and P = ⊥⊥⊥L is equiva-
lent to � is_undef P where is_undef P ≡ λ st.bP st 6= ⊥c. This also extends to
the validity for some transition.

3.5 Layered Semantics for the Library

A great advantage of shallow embeddings consists in the possibility to define
the bulk of library operations via a theory morphism from HOL library the-
ories: all OCL operators were defined uniformly in layers via combinators over
HOL-operations, enabling theorems like e.g. “’concatenation is associative” (sev-
eral thousand of these folk-theorems exist in the HOL-library and represent the
basis for effective machine assisted reasoning) to be synthesized from their HOL-
counterparts automatically; this extends to the operations for Integer, Real and
Strings. For the parametric collection types (Sets, Bags, Sequences, and Tuples
(as proposed in [4]), two further layers have to be considered: flattening and
smashing. While the OCL standard 1.4 requires an automated flattening (whose
semantics is not formally defined), the proposal for OCL 2.0 introduces a “man-
ual” flattening operator which is also our preference. Further, for collections the
question arises how to handle the case of undefined values inserted into a collec-
tion. There are essentially two different possibilities for their treatment: Tuples,
for instance, may be defined as follows:

(⊥,X) = (Y ,⊥) = ⊥



204 Achim D. Brucker and Burkhart Wolff

with the consequence:

first(X ,⊥) = ⊥ and second(⊥,Y ) = ⊥

Alternatively, tuples may be defined as:

(⊥,X) 6= (Y ,⊥) 6= ⊥

with the natural consequence:

first(X ,⊥) = X and second(⊥,Y ) = Y

In [19, 20], the former is called “smashed product”, while the latter is the stan-
dard product. We also apply this terminology for sets, bags and sequences and
suggest the use of smashed collection types and strict access operations (the
OCL 2.0 proposal suggests a non-strict, even non-executable includes operation).
Smashed collections mirror the operational behavior of programming languages
such as Java and, hence, pave the way for an executable OCL subset (see also
Sec. 4.6).

4 Consequences
It is worth noting that OCL semantics is traditionally considered as a deno-
tational semantics (see also [20, chapter 5]) or state transition semantics for
imperative languages. We will discuss the consequences for the notion of invari-
ant, method specifications, their refinement and the connection to Hoare-logics
and to programming languages implementing method specifications.

4.1 On Invariants in OCL

In the light of HOL-OCL, we have no problem with the explanation:

An OCL expression is an invariant of the type and must be true for all
instances of that type at any time.

Object Constraint Language Specification [2] (version 1.4), page 6-52

that raised some criticism by some researchers (e.g. [21]). Since OCL semantics
describes “state transitions”, at any time means at any state that is reachable
by the state transition relation. The issue of “intermediate states” that may
violate invariants is a problem of a refinement notion or the combination with
an axiomatic semantics (see Sec. 4.4).

Even general recursion based on fixed-points for query operations does not
change the picture since query operations may not have side-effects.

4.2 On Method Specifications

In [21] it was asked what the precise nature of pre-and postconditions of a
method is, and what happens if a precondition of a method m is not fulfilled. As
possible behaviors, four cases are listed: the implementation of m might raise an

http://www.brucker.ch
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exception, or may diverge, or may terminate without changing the state, or may
produce a more or less arbitrary state. The authors argue that a pragmatically
useful notion of specification should at least exclude the last case.

In our formalization (following OCL 2.0), both conditions are conjoint and
form a method specification. Thus, a false precondition simply says that there is
“no transition” from a state to its successor; this corresponds to the operational
behavior of an exception, a divergence or a deadlock.

Moreover, an undefined precondition may either result in an undefined or false
method specification; in the former case, no statement on the implementation is
made, i.e. it may behave arbitrarily. Thus, when writing a specification, there is
the possibility to explicitly distinguish these possibilities: a precondition a.c > 5
makes no statement for the case that a is an undefined object in a particular state
(provided the postcondition is valid), in not is_undef(a) and a.c > 5, however,
it is explicitly specified that there is no successor state, if a is not defined in
the previous state. We believe that this distinction is sensible and useful in
connection with requirement collection and with refinement, albeit we foresee
that these subtleties will not always be easy to swallow by practitioners.

Further, [21] argues that there is the necessity for distinguishing total and
partial correctness for OCL, and develop a formal machinery based on four cor-
rectness notions. Here is a confusion about the type of semantics: a precondition
(or postcondition respectively) in the sense of Hoare-logics [20] is a “predicate
over admissible states” (thus a set of states), that were related over a command.
Hoare-logics describes the annotation of command sequences with predicates. In
contrast, denotational OCL semantics just describes the relation on states (the
keyword pre resp. post are purely syntactical). The difference can be seen best at
one feature: in OCL, any variable that should remain invariant must be stated
explicitly by x = x@pre (here, the semantics should be changed in order to limit
this effect, say, to the attributes of a class), otherwise arbitrary transitions are
possible; in contrast, in Hoare-logics, not occurring variables remain constant as
a result of the consequence rule [20, p. 89]. Therefore, these correctness notions
simply do not apply for OCL, they apply for a refinement of OCL to code.

In [21], two “semantic styles” for method specifications were distinguished:
the PRE ∧ POST -style and the PRE ⇒ POST style. While we adhere to
the former (following the OCL 2.0 proposal), the authors of [21] advocate the
latter. The PRE ∧ POST -style based on Kleene logics allows for two types of
independent requirement collections that correspond to conjunction and disjunc-
tion (similar to the usual pragmatics in the Z schema calculus [22]). Both types
profit from a style of specifications that uses undefinedness whenever possible
in order to avoid over-specification. Conversely, conjunctions and disjunctions
of method specifications allow for straight-forward splitting transformations of
method specifications along the usual distributivity and de Morgan laws.

4.3 On Undefinedness and the OCL Logics

The current OCL 2.0 proposal explicitly requires an explicit value for undefined-
ness and forces the logics to be a Kleene logic, prescribing algebraic laws like
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⊥⊥⊥L and false = false etc. This particular choice has raised criticism [21], both
for methodological and tool-technological reasons (the latter will be discussed in
Sec. 5). In particular, another implication is proposed:

A impliesB ≡ notA or(A andB)

instead of the version prescribed in the standard:

A impliesB ≡ notA orB

A routine analysis with Isabelle reveals that both definitions enjoy the same laws
for a Hilbert-Style calculus:

A impliesB impliesC = A andB impliesC
A implies(B orC ) = A impliesB orA impliesC

A impliesA = A (provided A 6= ⊥⊥⊥L )

However, the first definition fulfills ⊥⊥⊥L impliesA = ⊥⊥⊥L , while the second fulfills
⊥⊥⊥L implies true = true. While we found the first version slightly more intuitive,
we do not see any fundamental reasons for preferring one definition to the other.
Also, we investigated both implication versions in the context of a natural de-
duction calculus for OCL; here, the differences were also minimal.

4.4 On Refinement in OCL

Based on denotational method semantics and based on the validity notion intro-
duced in Sec. 3.4, it is now an easy exercise to adopt, for example, the standard
data refinement notion of Z ([5, p. 138], c.f. [22], where it is called “forward
simulation”). As a prerequisite, we introduce an abstraction

predicate R that relates two states which may even be of two different data
universes, i.e. we may have an abstract operation based on STC, while the im-
plementing operation is based on STC′ . Further, we define the usual predicate
transformer pres,in(P) which decides if for a state s and an input in there exists
a successor state and output that makes the method specification valid. Recall
that this “semantic” precondition construction is necessary since the PRE and
POST part of a specification are a purely syntactical separation.

Our first refinement notion — called validity refinement — is defined in HOL
for the abstract method specification Mabs and the concete method specification
Mconc of type VC(Tin)→ VC(Tout)→ VC(Boolean) as follows:

Mabs vR
V Mconc = ∀ sascin • presa ,in(Mabs) ∧ (sa, sc) ∈ R⇒ presc,in(Mconc)

∧ ∀ sascs′cin out • presa ,in(Mabs) ∧ (sa, sc) ∈ R
∧ (sc, s′c) � Mconc in out
⇒ (∃ s′a • (s′a, s′c) ∈ R ∧ (sa, s′a) � Mabs in out)

Validity refinement is based on the idea, that whenever a transition is possible in
Mabs, then it must be possible in a corresponding implementation transition in
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Mconc to find a successor state s′a which is related to a possible successor state of
Mabs. This refinement notion is only based on valid transitions. In the presence
of Kleene logic, we can distinguish undefined transitions from impossible ones
by replacing validity by invalidity. We define “failure refinement” as follows:

Mabs vR
F Mconc = Mabs vR

V Mconc ∧ F(Mabs) vR
V F(Mconc)

where F M in out = not(M in out) (Recall that M in out = false is equivalent
to � not(M in out). Thus, the implementation notions describe in different de-
grees of precision that the underlying transition systems were refined to “more
deterministic and more defined ones”.

Of course, other refinement notions may be transferred to OCL along the
lines presented above; e.g. backward simulation [22]. Further, it is possible to
link method specifications to implementations in concrete code of a program-
ming language like Java. Technically, this is an integration of a denotational
semantics with a Hoare logic (c.f. [20], see also the corresponding formal proofs
in Isabelle [23]); meanwhile, it is feasible to combine HOL-OCL with a Hoare logic
for NanoJava [9]. Of course, such a combination will inherently be programming
language specific. An in-depth discussion of these alternatives, however, is out
of the scope of this paper.

4.5 On Recursive Methods

Both the OCL standard 1.4 and the standard draft 2.0 allow recursive methods
“as long as the recursion is not infinite”. The documents make no clear statement
what the nature of non-terminating recursive definitions might be. Essentially
two possibilities come to mind:

– It could be illegal OCL. However, since non-termination is undecidable, this
would imply a notion of well-formedness, that is not machine-checkable. A
variant of this approach is the restriction to well-founded recursion; how-
ever, this would require new syntactic and semantic concepts for OCL (well-
founded orderings, measure-statements, etc.).

– It could be “undefined”, i.e. ⊥⊥⊥L . This is consistent with the least fixpoint in
the theory of complete partial orderings (cpo; c.f. [20]). This idea has already
been proposed by [24].

The theory of cpo’s is a strict extension of semantic domains with undefinedness
and yields a least-fixpoint operator, which gives semantics on recursive equations
of methods. This enables method implementations that can be handled as an
add-on to the OCL standard (see [1] for more details). Since recursive methods
are executable and increase the expressive power of OCL, we encourage their
use. However, this extension does not come for free: first, the semantics of a
method invocation (static binding vs. late binding) must be clarified; Moreover,
with respect to code generation, a particular treatment of undefinedness in the
logical connectors is necessary.
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4.6 On Executability of OCL

OCL is based on a design rationale behind the semantics: OCL is still viewed
as an object-oriented assertion language and has thus more similarities with
an object-oriented programming language than a conventional specification lan-
guage. For example, operations are defined as strict, only bounded quantifiers
are admitted, and there is a tendency to define infinite sets away wherever they
occur. As a result, OCL has a particularly executable flavor which comes in
handy when generating code for assertions or when animating specifications.

However, seen from meta-language such as HOL, many of these restriction
seem to be ad hoc add complexity, while excluding expressiveness. For exam-
ple, states must be finite — this is a restriction never needed in the semantics;
allInstances of basic types like Int is defined as ⊥⊥⊥L , etc. Moreover, these restric-
tions tend to make the language “not self-contained”, i.e. some side-conditions
like “the operation must be associative” (see the definition of collection->sum():T
in [2]) of OCL can not be treated inside OCL and make a meta-language such
as HOL necessary for a complete formal treatment). Further, these restrictions
represent an obstacle for defining a library of mathematical definitions and the-
orems comparable to the Mathematical Toolkit in Z, which turned out to be
vital for its success. We suggest to omit all these restrictions and to define an
executable sub-language of OCL, which could comprise recursive methods, strict
versions of the logical operators, smashed collections, etc. Admitting infinite sets
paves the way for lazy evaluation code schemes and their animation.

5 Mechanization

HOL-OCL provides a natural deduction calculus and a Hilbert-style calculus
which builds together with powerful OCL rewriting rules the foundation for
automated proof techniques for OCL.

The basis of our deduction calculus are the notions for validity introduced in
Sec. 3.4. Since they are in itself two-valued judgments in HOL, there is no fun-
damental problem to reason about these in Isabelle’s (two-valued) proof engine,
let it be the tableaux-prover or the rewrite engine. In particular the latter can
be used to compute normal forms of OCL specifications, i.e. disjunctive normal
forms suitable to generate test cases out of a method specification (see [1] for
more details).

Information about definedness is often “hidden” in the context of OCL for-
mulae, e.g. when rewriting B in the context � A andB, we can assume � A and
therefore the definedness of A. This kind of context rewriting can be used in
Isabelle’s rewriting procedure, that can therefore simplify:

context A pre : s e l f . x <= 0 and s e l f . x <= s e l f . x

to

context A pre : s e l f . x <= 0

http://www.brucker.ch
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Note, that � x <= x does not hold in general.
Whereas our experiments with HOL-OCL represent a proof-of-technology for

automated reasoning, we cannot make any statements about its efficiency for
large examples at present.

6 Conclusion

We have presented an abstraction of a concrete formalization project of OCL
using a shallow, conservative embedding into Isabelle/HOL, called HOL-OCL, in
order to make OCL more understandable and discussed pragmatical, method-
ological and tool-oriented consequences. HOL-OCL is designed to be as close as
possible to the OCL 2.0 proposal. The construction of HOL-OCL can guarantee
the consistency, delivers formally proven sound rules and provides a prototypical
implementation framework for OCL tools.

Based on our discussion, we draw the following major consequences:
– Although we find Kleene logic sometimes quite non-intuitive, we do not see

any evidence that it causes major problems with respect to methodology or
tool support,

– Method specification semantics needs to be extended by mechanisms that
enforces “most” of the state to remain equal (cf. Sec. 4.2),

– The underlying concepts of OCL make it compatible for recursion based
on least-fixpoint semantics. This possible future extension requires some
changes of the OCL 2.0 proposal (smashed collections, strict includes).

– We would encourage a simplification of the OCL semantics by admitting
infinite sets and general quantifiers in order to make OCL as a logic more
self-contained and more abstract.

Minor consequences discussed in Chapter 4 are summarized in Tab. 1. We com-
pare the actual OCL standard [2], the OCL 2.0 proposal [4] and our suggestions:

OCL 1.4 [2] OCL 2.0 RfP [4] HOL-OCL preference
extendible universes 2 2 2�
general recursion 2 2 2�
smashing ? 2 2�
automated flattening 2� 2 2

tuples 2 2� 2�
finite state 2� 2� 2

general Quantifiers 2 2 2�
allInstances finite 2� 2� 2

Kleene logic 2� 2� 2�
strong and weak equality 2 2� 2�

2�: supported 2: unsupported
Table 1. Comparison of important properties
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