OCL: Bridging the Gap between
Semi-Formal and Formal Specification

Achim D. Brucker
Albert-Ludwigs Universitat Freiburg, Germany

September 30, 2002

mailto:brucker@informatik.uni-freiburg.de

Softech Motivation

reiburg

Motivation

[1 Why specify?

— Complex software systems require a precise specification of architecture and

components.

— Semi-formal methods (like UML) are not strong enough.

[0 Why UML/OCL?

— UML is the standard modeling language in OO development.
— OCL is part of the OMG UML standard.

Specification should not only generate documentation!

Softech Motivation

reiburg

The Unified Modeling Language (UML)

[1 diagrammatic OO modeling

language

[1 many diagram types, e.g.

Customer

1 Direction p

1..99

context Account::makeDeposit(amount:Real):Boolean

pre: amount >=0

post: balance = balance@pre + amount
L

/

Account

- CIaSS diagrams (StatiC) — Identification:String

— address:String

J— Sta te Ch a rts (dyn am |C) + getldentification():String

+ getAddress():String
+ setAddress(address:Real)

— US€ Case€s

[1 semantics currently

standardized by the OMG

[1 we expect wide use in
SE-Tools (ArgoUML,

Rational Rose,...)

owner { Direction

belongsTo

accounts

- balance:Real

+ getBalance():Real

+ makeDeposit(amount:Real):Boolean
+ makeWithdrawal(amount:Real):Boolean

CreditAccount

- credit:Real

/

+ getCredit():Real

+ setCredit(amount:Real):Boolean

inv:
balance >= credit

Softech Motivation
reiburg

The Object Constraint Language (OCL)

D desi ned fOI’ annotatin UML dla rams context Account::makeDeposit(amount:Real):Boolean
g g g pre: amount >=0

(and give foundation for injectivities, ...) [Post Palance=balance@pre + amount
based on logic and set theory /
1..99 Account

in the context of class—diagrams: accounts| ~ balance:Real
— preconditions + getBalance():Real

o + makeDeposit(amount:Real):Boolean
- pOStCOﬂdItIOhS + makeWithdrawal(amount:Real):Boolean
— Invariants

[J can also be used for other diagram types

Softech Motivation 4
reiburg

Why There is a Need for a “more” Formal UML

[1 The short answer:

— UML is not powerful enough for supporting formal reasoning over specifications.

Softech Motivation 4
reiburg

Why There is a Need for a “more” Formal UML

[1 The short answer:

— UML is not powerful enough for supporting formal reasoning over specifications.

— OCL should close this gap.

[1 The long answer:

Softech Motivation 4
reiburg

Why There is a Need for a “more” Formal UML

[1 The short answer:

— UML is not powerful enough for supporting formal reasoning over specifications.

— OCL should close this gap.
[1 The long answer:

— We want to be able to

x verify
* validate
* refine

UML/OCL specifications, e.g. for proving security constraints or automatic
test data generation.

— The OCL semantics is not formally defined and needs clarification of several issues.

Softech Foundations 5
reiburg

HOL-OCL: A Shallow Embedding of OCL into HOL

(] is build on top of Isabelle/HOL.

[J provides a consistent (machine checked) OCL semantics.
[allows the examination of OCL features.

[1 builds the basis for OCL tool development.

[follows OCL 1.4 and the proposal for OCL 2.0

Softech Foundations 6
reiburg

HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

Triangle

+ isTriangle(s0, s1, s2: Integer): Boolean context

+ triangle(s0, s1, s2: Integer): TriType Triangle::isTriangle(s0,sl,s2:Integer):Boolean
pre:
(sO > 0) and (sl > 0) and (s2 > 0)

<<En_umeration>> post:

TriangType result = (s2 < (s s1))

invalid and (s0 < (sl + s2))

scalene and (sl < (s0 + s2))

isosceles

equilateral

Softech Foundations 6
reiburg

HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

context
Triangle::triangle(s0,sl,s2:Integer): TriangType

pre:
(sO > 0) and (sl > 0) and (s2 > 0)
Triangle post :
+ isTriangle(s0, s1, s2: Integer): Boolean result = if (isTriangle (50 sl ,s?2)) then
+ triangle(s0, s1, s2: Integer): TriType i f (sO = sl) then
if (sl = s2) then
Equilateral :: TriangType
else
Isosceles :: TriangType endif
<<Enumeration>> else
TriangType if (sl = s2) then
invalid Isosceles :: TriangType
scalene else
. | .
equilatera if (s0 = s2) then
Isosceles :: TriangType
else

Scalene:: TriangType
endif endif endif
else
Invalid :: TriangType endif

Softech Foundations
reiburg

HOL-OCL Application: Test Data Generation

1. Reduce all logical operation to the basis operators:

and, or, und not

2. Determine disjunctive normal Form (DNF):

x and (yorz) ~ (xandy) or (x and 2z

3. Eliminate unsatisfiable sub-formulae, e.g.:

scalene and invalid

4. Select test data with respect to boundary cases.

Softech Foundations 8
reiburg

Partitioning of the Test Data

1. Input describes no triangle.
2. Input describes an equilateral triangle.

3. Input describes an isoscalene triangle:

a) with sg equals s7.

0 1

b) with sg equals s».
0

(c) with s1 equals so.

4. Input describes an scalene triangle.

For each partition, concrete test data has to be selected with respect to boundary cases (e.g.
max./min. Integers, ...).

Softech Conclusion
reiburg

Conclusion

[OCL can be seen as formal specification language.

[1 OCL can be used for further tool support, e.g.:

— run-time checking, validating or proving (security) properties.
— automatic test data generation.

— reasoning over specifications.

[1 OCL offers a possibility for stepwise introducing Formal Methods into UML based,

industrial software development processes.

	Motivation
	Motivation
	The Unified Modeling Language (UML)
	The Object Constraint Language (OCL)
	Why There is a Need for a ``more'' Formal UML

	Foundations
	HOL-OCL: A Shallow Embedding of OCL into HOL
	HOL-OCL Application: Test Data Generation
	HOL-OCL Application: Test Data Generation
	Partitioning of the Test Data

	Conclusion
	Conclusion

