
OCL: Bridging the Gap between

Semi-Formal and Formal Specification

Achim D. Brucker
Albert-Ludwigs Universität Freiburg, Germany

September 30, 2002

mailto:brucker@informatik.uni-freiburg.de

SoftechSoftechf
reiburgreiburg

Motivation 1

Motivation

☛ Why specify?

– Complex software systems require a precise specification of architecture and

components.

– Semi-formal methods (like UML) are not strong enough.

☛ Why UML/OCL?

– UML is the standard modeling language in OO development.

– OCL is part of the OMG UML standard.

Specification should not only generate documentation!

SoftechSoftechf
reiburgreiburg

Motivation 2

The Unified Modeling Language (UML)

☛ diagrammatic OO modeling

language

☛ many diagram types, e.g.

– class diagrams (static)

– state charts (dynamic)

– use cases

☛ semantics currently

standardized by the OMG

☛ we expect wide use in

SE-Tools (ArgoUML,

Rational Rose,. . .)

inv:

balance >= credit

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre: amount >= 0

− Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

− address:String

Direction

Direction

1

owner accounts

belongsTo

1..99

CreditAccount

AccountCustomer

SoftechSoftechf
reiburgreiburg

Motivation 3

The Object Constraint Language (OCL)

☛ designed for annotating UML diagrams

(and give foundation for injectivities, . . .)

☛ based on logic and set theory

☛ in the context of class–diagrams:

– preconditions

– postconditions

– invariants

☛ can also be used for other diagram types

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account

SoftechSoftechf
reiburgreiburg

Motivation 4

Why There is a Need for a “more”Formal UML

☛ The short answer:

– UML is not powerful enough for supporting formal reasoning over specifications.

SoftechSoftechf
reiburgreiburg

Motivation 4

Why There is a Need for a “more”Formal UML

☛ The short answer:

– UML is not powerful enough for supporting formal reasoning over specifications.

– OCL should close this gap.

☛ The long answer:

SoftechSoftechf
reiburgreiburg

Motivation 4

Why There is a Need for a “more”Formal UML

☛ The short answer:

– UML is not powerful enough for supporting formal reasoning over specifications.

– OCL should close this gap.

☛ The long answer:

– We want to be able to

∗ verify
∗ validate
∗ refine

UML/OCL specifications, e.g. for proving security constraints or automatic
test data generation.

– The OCL semantics is not formally defined and needs clarification of several issues.

SoftechSoftechf
reiburgreiburg

Foundations 5

HOL-OCL: A Shallow Embedding of OCL into HOL

☛ is build on top of Isabelle/HOL.

☛ provides a consistent (machine checked) OCL semantics.

☛ allows the examination of OCL features.

☛ builds the basis for OCL tool development.

☛ follows OCL 1.4 and the proposal for OCL 2.0

SoftechSoftechf
reiburgreiburg

Foundations 6

HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

+ isTriangle(s0, s1, s2: Integer): Boolean
+ triangle(s0, s1, s2: Integer): TriType

Triangle

<<Enumeration>>
TriangType

invalid
scalene
isosceles
equilateral

context
Tr i a n g l e : : i s T r i a n g l e (s0 , s1 , s2 : Integer) : Boolean

pre :
(s0 > 0) and (s1 > 0) and (s2 > 0)

post :
r e s u l t = (s2 < (s0 + s1))

and (s0 < (s1 + s2))
and (s1 < (s0 + s2))

SoftechSoftechf
reiburgreiburg

Foundations 6

HOL-OCL Application: Test Data Generation

Based on a UML/OCL specification a minimal set of test data is calculated which can be used

for validating an implementation.

+ isTriangle(s0, s1, s2: Integer): Boolean
+ triangle(s0, s1, s2: Integer): TriType

Triangle

<<Enumeration>>
TriangType

invalid
scalene
isosceles
equilateral

context
Tr i a n g l e : : t r i a n g l e (s0 , s1 , s2 : Integer) : Tr iangType

pre :
(s0 > 0) and (s1 > 0) and (s2 > 0)

post :
r e s u l t = i f (i s T r i a n g l e (s0 , s1 , s2)) then

i f (s0 = s1) then
i f (s1 = s2) then
E q u i l a t e r a l : : Tr iangType

e l se
I s o s c e l e s : : Tr iangType endi f

e l se
i f (s1 = s2) then

I s o s c e l e s : : Tr iangType
e l se

i f (s0 = s2) then
I s o s c e l e s : : Tr iangType

e l se
Sca l en e : : Tr iangType

endi f end i f end i f
e l se

I n v a l i d : : Tr iangType endi f

SoftechSoftechf
reiburgreiburg

Foundations 7

HOL-OCL Application: Test Data Generation

1. Reduce all logical operation to the basis operators:

and, or, und not

2. Determine disjunctive normal Form (DNF):

x and (y or z) ; (x and y) or (x and z)

3. Eliminate unsatisfiable sub-formulae, e.g.:

scalene and invalid

4. Select test data with respect to boundary cases.

SoftechSoftechf
reiburgreiburg

Foundations 8

Partitioning of the Test Data

1. Input describes no triangle.

2. Input describes an equilateral triangle.

3. Input describes an isoscalene triangle:

(a) with s0 equals s1.

(b) with s0 equals s2.

(c) with s1 equals s2.

4. Input describes an scalene triangle.

For each partition, concrete test data has to be selected with respect to boundary cases (e.g.

max./min. Integers, . . .).

SoftechSoftechf
reiburgreiburg

Conclusion 9

Conclusion

☛ OCL can be seen as formal specification language.

☛ OCL can be used for further tool support, e.g.:

– run-time checking, validating or proving (security) properties.

– automatic test data generation.

– reasoning over specifications.

☛ OCL offers a possibility for stepwise introducing Formal Methods into UML based,

industrial software development processes.

	Motivation
	Motivation
	The Unified Modeling Language (UML)
	The Object Constraint Language (OCL)
	Why There is a Need for a ``more'' Formal UML

	Foundations
	HOL-OCL: A Shallow Embedding of OCL into HOL
	HOL-OCL Application: Test Data Generation
	HOL-OCL Application: Test Data Generation
	Partitioning of the Test Data

	Conclusion
	Conclusion

