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Abstract

CVS is a widely known version management system, which can be used for the dis-
tributed development of software as well as its distribution from a central database.

In this paper, we provide an outline of a formal security analysis of a CVS-Server
architecture performed in [1]. The analysis is based on an abstract architecture
(enforcing a role-based access control on the repository), which is refined to an im-
plementation architecture (based on the usual discretionary access control provided
by the POSIX environment). Both architectures serve as framework to formulate
access control and confidentiality properties.

Both the abstract as well as the concrete architecture are specified in the language
Z. Based on a logical embedding of Z into Isabelle/HOL, we provide formal, machine-
checked proofs for consistency properties of the specification, for the correctness of
the refinement, and for some security properties.

Thus, we present a case study for the security analysis of realistic models over an
off-the-shelf system by formal machine-checked proofs.
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1 Introduction

These days, the Concurrent Versions System (CVS) is a widely used tool
for version management in many industrial software development projects,
and plays a key role in open source projects usually performed by highly dis-
tributed teams [3,5,4]. CVS provides a central database (the repository) and
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means to synchronize local modifications of partial copies (the working copies)
with the global repository. CVS can be accessed via a network; this requires
a security architecture establishing authentication, access control and non-
repudiation. A further complication of the CVS security architecture stems
from the fact that the administration of authentication and access control is
done via CVS itself; i.e. the information for authentication is accessed and
modified via standard CVS operations.

The default CVS server has a number of security shortcomings (e.g. [12]).
In this paper, we focus on two particular aims of an improved CVS server
configuration presented in [1], which had been achieved by a formal analysis:
The first aim of our work is to provide a particular configuration of a CVS
server that enforces a role-based access control security policy [14]. Our second
aim is to develop an “open CVS-Server architecture”, where the repository is
part of the usual shared filesystem of a local network and the server is a
regular process on a machine in this network. While such an architecture has
a number of advantages, the correctness and trustworthiness of the security
mechanisms become a major concern.

Unfortunately, since we strive for modeling the sometimes hairy reality in
operating systems, we cannot present the complete specification or any proofs
here and refer the interested reader to [1]. Consequently, we will only outline
this case study here in order to exemplify the contribution of this paper:

(i) we present a certain modeling technique — called architectural modeling
— which has an abstraction level in-between the usual behavioral mod-
eling used in protocol analysis and security requirements analysis on the
one hand and code verification on the other,

(ii) we use a technique to flatten-out concurrency in the architecture into a
fairly coarse transition relation of the combined client-server system,

(iii) we present (partly reusable) models for widely used security technologies,

(iv) and we set up the mapping from security requirements to concrete secu-
rity problems as a standard data refinement problem.

Thus, we present a method using formal methods for analyzing the access con-
trol problems of complex system technology and its configuration. Moreover,
security analysis can be performed not only on the abstract, but also on the
concrete level too.

As a means to identify conceptual entities of the problem domain as well
as a means to structure the overall specification, we found it useful to describe
the architecture of the system on several abstraction layers. Following Garlan
and Shaw’s approach [7,15], architectures are composed by components (such
as clients, servers or stores like the filesystem) and connectors (like chan-
nels, shared variables, etc). In this terminology it is straight-forward to make
the mentioned architectures more precise (as implementation architecture, we
present the intended “open-Server Architecture”, see Fig. 1): For each opera-
tion (such as add, commit,. . . ) we assume a shared variable as connector that
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Fig. 1. The different CVS-Server architectures

keeps all necessary information that goes to and from the components; this
paves the way for our approach to formalize this architecture by describing
the transition relation of the combined system by the parallel composition of
the local transition relations of the components synchronized over the corre-
sponding shared variable. Since such transition relations can be represented
in Z [9] by operation schemas, we can thus define, for example:

CVS add = Client add ∧ Server add \ addshared variable

where ‘∧’ is the schema-conjunction and ‘\’ the hiding operator (i.e. an
existential quantifier). We have a means to describe the transitions of our
architectures by operation schemas in a standard specification formalism, and
can therefore represent traces (i.e. sequences of all possible transitions).

As specification formalism, we chose Z [16] for the following reasons: first,
Z fits to our type of architectures since the connectors are primitive and can
be factored out and the complex states of our components suggest to use a
formalism with rich theories for data-structures. Second, syntax and seman-
tics are specified in an ISO-standard [9]; for future standardization efforts of
operating system libraries (such as our POSIX [17] model in Section 2.3.1),
Z is therefore a likely candidate. Third, Z comes with a data-refinement no-
tion [16, pp. 136], which gives us a formal correctness notion of the underlying
“security technology mapping” between the two architectures and a means to
compute the proof obligations. We assume a rough familiarity with Z (the
interested reader is referred to excellent textbooks on Z such as [18]).

As modeling and theorem proving environment, we chose Isabelle/HOL-Z
2.0 [2], which is an integrated documentation/type-checking/theorem proving
environment for Z specifications. Isabelle [10] is a generic theorem prover,
i.e. new object logics can be introduced by specifying their syntax and infer-
ence rules. Isabelle/HOL is an instance of Isabelle with Church’s higher-order
logic (HOL) [8], a classical logic with equality. Isabelle/HOL-Z is a con-
servative embedding of Z into HOL (which is semantically isomorphic to Z
since Z is based on typed set-theory and HOL on typed λ-calculus). As a
result, Isabelle/HOL-Z combines up-to-date theorem prover technology with
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a widespread specification formalism and powerful documentation facilities.

The paper is organized as follows: First, we present the abstract system
architecture model, second, the model of the POSIX filesystem as an infras-
tructure for the implementation architecture embedded into it, and third the
implementation architecture itself. Further, we describe the refinement re-
lation between the system architecture and the implementation architecture,
the security properties at the different layers and their analysis.

2 The CVS-Server Case Study

The specification of CVS-Server [1] consists of more than 100 pages, and the
associated proof scripts are about 3000 lines of code. Its organization into
Z-sections directly follows the overall scheme presented in Fig. 2. The Z-
sections AbsState and AbsOperations describe the abstract system architec-
ture of the client and the server components. The Z-section SysConsistency

contains the consistency conditions (conservativity of axiomatic definitions,
definedness of applications, non-blocking operation schemas) of the system
architecture. This is mirrored at the implementation architecture level by
the corresponding structures FileSystem, CVSServer and ImplConsistency.
The section Refinement, which contains the usual abstraction predicate re-
lating abstract and concrete states, also contains the proof obligations for the
refinement. The security properties are defined and the corresponding proof
obligations are postulated in the sections SysArchSec and ImplArchSec.

In the following only those parts of schemas and other Z definitions will
be presented that are necessary to point out a certain feature of our model.

2.1 Entities of the Security Model

Following the standard role-based access model (RBAC) [14], we introduce ab-
stract types for CVS users Cvs Uid , permissions Cvs Perm (which are isomor-
phic to “roles” in our setting), and passwords Cvs Passwd used to authentify
a CVS user for a permission. Permissions are organized in a hierarchy formal-
ized by the reflexive, transitive relation cvs perm order (over CVS permissions
Cvs Perm) with cvs adm as greatest element.

In the following, we discuss the security entities and mechanisms of CVS
servers and clients in more detail. Working copies and repositories have both
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maps that assign abstract names Abs Name to data Abs Data, types that are
left abstract. The map is formalized as:

ABS DATATAB == Abs Name 7→ Abs Data

A CVS server provides an authorization table, which is used to control
access within the repository; this table is part of the servers repository itself
and can be changed dynamically, i.e. the role cvs adm may introduce CVS
users and grant them permissions or withdraw them. The server stores to
each file in the repository the permission that is necessary to access the file.

AUTH TAB == Cvs Uid × Cvs Passwd 7→ Cvs Perm
ABS PERMTAB == Abs Name 7→ Cvs Perm

CVS clients possess in their working copy not only the data maps discussed
above, but also a map that assigns to each abstract name a cvs user. Further,
there is a map that associates cvs user’s their password previously used during
the cvs login procedure. Thus, for any data in the working copy and whenever
an access to it may be processed, an individual role may be generated and
validated by the server from the cvs user and password.

ABS UIDTAB == Abs Name 7→ Cvs Uid
PASSWD TAB == Cvs Uid 7→ Cvs Passwd

2.2 The System Architecture

Modeling the server state via a Z schema is straight-forward. The state con-
tains the data map rep and the map rep permtab containing the required
permissions for each file. Our CVS-Server stores the authentication data in-
side rep, thus it can be accessed and modified with CVS operations. Therefore
we require a abstract name abs cvsauth to be associated with data, that can
be converted into an authentication table via a postulated function authtab.
Accessing the authentication table will require to have the role cvs adm.

ClientState models the state of the client component containing the work-
ing copy wc, the wc uidtab assigning a cvs user to each file and a password
table (modeling the file .cvspass). Further, there is a set of abstract names
wfiles which is used as filter in update and commit operations; this filter cor-
responds to the concept of the working directory in the implementation, that
restricts the effect of these operations to files below the working directory.

RepositoryState

rep : ABS DATATAB
rep permtab : ABS PERMTAB

abs cvsauth ∈ dom rep
dom rep = dom rep permtab
rep permtab(abs cvsauth) = cvs adm

ClientState
wc : ABS DATATAB
wc uidtab : ABS UIDTAB
abs passwd : PASSWD TAB
wfiles : P Abs Name

We define the abstract CVS operations that model combined state transi-
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tions of the client and the repository. Here, we only present login and update.

The login operation, simply stores authentication data on the client-side.
This is used to authenticate a CVS user for a permissions of the client. The
∆ and Ξ notation is used in Z to import the schemas in two variants, one just
as a copy, the other by replacing all variables with a stroke ′, describing the
post state of the operation. The Ξ also introduces equalities enforcing that
the pre state components are equal to the post state components.

abs login

∆ClientState
ΞRepositoryState
passwd? : Cvs Passwd
uid? : Cvs Uid

(uid?, passwd?) ∈ dom(authtab rep)
abs passwd ′ = abs passwd ⊕ {uid? 7→ passwd?}
wc ′ = wc ∧ wc uidtab ′ = wc uidtab ∧ wfiles ′ = wfiles

The update operation updates every file in the working copy if the client
has sufficient permissions. The overriding of the working copy by the reposi-
tory is controlled by the predicate is valid in which checks if a cvs user and a
password represent a valid permission according to the state of the authentica-
tion table in rep. The cvs user table is extended for files with role-names that
can be validated in the authentication table to the required permission (an
underspecified function choose valid rolename suffices here). Please note that
this operation does not block if the client does not have sufficient permissions,
but silently ignores files for which this is the case.

abs up

∆ClientState
ΞRepositoryState
files? : P Abs Name

wc′ = wc ⊕ {n : wfiles ∩ files? | n ∈ dom rep ∧ n ∈ dom wc uidtab
∧ (wc uidtab(n), abs passwd(wc uidtab n)) is valid in rep}C rep

wc uidtab ′ = wc uidtab ∪ {n : wfiles ∩ files? | n ∈ dom rep
∧ n /∈ dom wc uidtab • n 7→ choose valid rolename(rep permtab, n)}

abs passwd ′ = abs passwd ∧ wfiles ′ = wfiles

2.3 The Implementation Architecture

The implementation is based on a Unix-based CVS server [3]. Therefore,
the implementation has to cope with the full range of POSIX methods for
accessing files and changing their access attributes. A realistic model of POSIX
is therefore a necessary prerequisite in order to study the implementation of
our security model and to analyze attacks on the implementation level. We
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derived the POSIX model by formalizing the specification documents [17] and
detailed system descriptions [6] and validated it by carefully chosen tests and
inspections of critical parts of the system sources. In our POSIX model, the
CVS Filesystem is embedded — i.e. a repository is described as some area in
the filesystem, where file attributes are set in a suitable way, etc.

2.3.1 Modeling the POSIX Filesystem Access Control

We declare basic abstract sorts for POSIX user IDs, group IDs, data (file
contents left abstract in this model) and filenames. Thus, we assume a static
table groups that assigns to each user a set of groups he belongs to. The ax-
iomatic definition below also states the existence of a special user ID root , the
system administrator (usually called root). In principle all security relations
can only hold for all users except root , because root is allowed to do (almost)
everything.

[Uid ,Gid ,Data,Name]
Path == seq Name

groups : Uid → P Gid
root : Uid

Within POSIX, every file belongs to a unique pair of owner (user) and
group, and file access is divided into access by the user (owner), the group or
other (world). The POSIX discretionary access control (DAC) distinguishes
access for reading (r), writing (w), and executing (x). We also model the “set
group id” (sg) on directories, which affects the default group of newly created
files within that directory [6]:

Perm ::= ru | wu | xu | rg | wg | xg | ro | wo | xo | sg

The filesystem consists of files, which are represented by mapping to each
path the file content (either Data for regular files or Unit for directories 3 )
and of file attributes (assigning to each file or directory the permissions 4 , the
user ID of the owner and the group it belongs to).

FILESYS TAB == Path 7→ (Data + Unit)
FILEATTRIBUTES == [perm : P Perm; uid : Uid ; gid : Gid ]
FILEATTR TAB == Path 7→ FILEATTRIBUTES

At this point we are ready to model the filesystem state, which mainly
describes the map of (name) paths to their attributes. As mentioned, we
require that all defined paths must be “prefix-closed”, i.e. all prefix paths must
be defined in the filesystem (thus constituting a tree) and point to directories.

In addition to the filesystem state, we introduce a state schema for client
related information, namely the current user and group ID, the client’s umask
(which is used to set the initial file attributes on new files) and current working
directory (wdir). The working directory is often used as an implicit parameter

3 We do not consider special files, like devices, named pipes or process files.
4 The terms attributes and permissions are used interchangeably.
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to filesystem and CVS operations:

FileSystem

files : FILESYS TAB
attributes : FILEATTR TAB

∀ p : dom files • (p = 〈〉)
∨ (front(p) is dir in files)

dom files = dom attributes

ProcessState
uid : Uid
gid : Gid
umask : P(Perm \ {sg})
wdir : Path

As an example for our approach to specify POSIX-operations, we present
the (shortened) file remove specification [17], which corresponds to unlink():

The unlink() function shall fail and shall not unlink the file if:
• A component of path does not name an existing file . . .
• Search permission is denied for a component of the path prefix, or write per-

mission is denied on the directory containing the directory entry to be removed.

This text is formalized by a Z operation schema rm as follows: The first con-
dition in the body is common for most filesystem operations and requires the
path of the file must be a valid one in the filesystem table. The second condi-
tion requires that the client has write permissions on the file and the working
directory (“the directory containing the directory entry to be removed”), which
is checked via the has w access predicate:

rm
∆FileSystem; ΞProcessState
u? : Name

(wdir a 〈u?〉) is file in files
has w access(uid ,wdir , attributes)

∧ has w access(uid ,wdir a 〈u?〉, attributes)

files ′ = {wdir a 〈u?〉} −C files ∧ attributes ′ = attributes

For space reasons, we omit the presentation of is file in and has w access .
The other filesystem operations defined similarly, see [1] for details.

2.3.2 Mapping CVS Access Control onto POSIX DAC

Instead of mapping CVS roles and the access control policy on complex or non-
standard operating system mechanisms (such as access control lists (ACL)),
our setup requires only standard POSIX DAC: any CVS role will be mapped
to a particular pair of system owner and a set of system groups. When creating
new objects in the repository, an inheritance mechanism for generating default
roles is provided. Users can “down-scale” the permissions in the repository,
while “up-scaling” permissions is only possible for the CVS administrator.

For every CVS operation, the server determines the CVS permissions ac-
cording to the client’s CVS ID and password. These permissions are then
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mapped to POSIX user and group IDs, and these are compared to the file at-
tributes of the files and directories the operations operates on. This translation
is done by the two functions cvsperm2uid and cvsperm2gid . It is important
to notice that CVS IDs (Cvs Uid) are independent of POSIX IDs (Uid) and
that the POSIX IDs which are used by CVS are disjoint from “normal” POSIX
user IDs, i.e. it is impossible to login with such a special POSIX ID.

From these distinctness constraints follows that the POSIX system admin-
istrator and the CVS administrator may be different. Moreover, we require
that the group table (administrated by the system administrator and nobody
else) is compatible with cvs perm order .

The CVS repository is a subtree in the normal filesystem, its root is denoted
by the absolute path cvs rep. All paths inside the repository are relative
to cvs rep. The administrative files of CVS are stored in the CVSROOT
directory, which is a subdirectory of cvs rep, and the file that contains all
authentication information is called cvsauth and is located inside CVSROOT .

2.3.3 Modeling the CVS Filesystem

A major design decision for our specification is to enrich the FileSystem state
by new state components relevant to CVS, or more precisely, the combined
client/server component of CVS. In CVS, working copies contain specific
attributes assigned to the files; we restrict ourselves to security relevant at-
tributes, i.e. the CVS user ID and password, and the path rep where the file is
located in the repository. This information is kept in an own table implicitly
associated to the working copies. For simplicity, we require that the client has
write permissions for his working copy.

CVS ATTRIBUTES == [rep : Path; f uid : Cvs Uid ]
CVS ATTR TAB == Path 7→ CVS ATTRIBUTES

We introduce two state variables cvs uid and passwd in the Cvs FileSystem
(in the implementation they are set by cvs login). Due to the limited space,
we only show some requirements of the combined POSIX and CVS filesystem:

• Working copies and the repository are distinct areas of the filesystem.

• The repository contains a special directory that contains the administrative
data of CVS. Certain restrictive access permissions must be ensured to this
directory and its contents to preserve the system integrity.

• General requirements on file attributes within the repository:
· The owners of files must be POSIX user IDs that are disjoint from “regu-

lar” POSIX user IDs, and the group IDs must be legal w.r.t. the CVS role
hierarchy. Therefore a regular user has only the rights for others and as
such a regular user cannot use any POSIX operation within the repository.
· Read, write and execute permissions are the same for users and groups.

Together with our group setup this ensures that the initial CVS role and
all roles with higher precedence have the same access rights on that file.
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These two invariants are formally described in the axiomatic definitions:

rep attributes : P FileSystem

∀ fs : FileSystem • rep attributes(fs)⇔
(∀ p : dom fs .files | (cvs rep prefix p) •
(((fs .attributes p).uid) ∈ ran cvsperm2uid ∧
((fs .attributes p).gid) ∈ groups((fs .attributes p).uid) ∧
(ru ∈ ((fs .attributes p).perm)⇔ rg ∈ (fs .attributes p).perm) ∧
(wu ∈ ((fs .attributes p).perm)⇔ wg ∈ (fs .attributes p).perm) ∧
(xu ∈ ((fs .attributes p).perm)⇔ xu ∈ (fs .attributes p).perm)))

We turn now to a formal description of the repository within the filesystem;
this system invariant is captured in the state schema Cvs FileSystem. Addi-
tionally to rep attribues , we impose similar requirements for the administra-
tive area of the repository by the predicate admin attributes , and we define
requirements for the data in the repository, i.e. the files that are subject to
version control, in the predicate data attributes (both predicate formalizations
are omitted here).

Cvs FileSystem

FileSystem
wcs attributes : CVS ATTR TAB
cvs passwd : PASSWD TAB

dom wcs attributes ⊆ dom files

(cvs rep a 〈CVSROOT , cvsauth〉 is file in files)
attributes(cvs rep) = 〈| perm == {ru,wu, xu, xg , sg},

uid == cvsperm2uid(cvs adm),

gid == cvsperm2gid(cvs public) |〉
rep attributes(θFileSystem)

((attributes(cvs rep a 〈CVSROOT 〉)).gid) = cvsperm2gid(cvs adm)
admin attributes(θFileSystem) ∧ data attributes(θFileSystem)

Now we have established a basis for the operations on the combined POSIX
and CVS environment. As in Sec. 2.2, we present the login and update in order
to compare the the two different architecture levels.

The login operation mainly updates the variable cvs passwd , provided that
for the combination of user ID and password the authentication will succeed.
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cvs login

∆Cvs FileSystem; ΞProcessState
cvs uid? : Cvs Uid ; cvs pwd? : Cvs Passwd

(cvs uid?, cvs pwd?) ∈ dom(get auth tab files)
cvs passwd ′ = cvs passwd ⊕ {cvs uid? 7→ cvs pwd?}
wcs attributes ′ = wcs attributes
θFileSystem = θ(FileSystem)′

In the update operation, the current working directory wdir can be re-
stricted by the parameter p? to just one file or directory. All files below p?
for which the client has access will be updated.

cvs update

∆Cvs FileSystem; ΞProcessState
p? : Path

cvs rep a (wcs attributes wdir).rep a p? ∈ dom files

has w access(uid ,wdir a p?, attributes)
files ′ = files⊕
{q : rep access(θCvs FileSystem)((wcs attributes wdir).rep a p?) •

wdir a q 7→ files(cvs rep a q)}
attributes ′ = attributes⊕
{q : rep access(θCvs FileSystem)((wcs attributes wdir).rep a p?) •

wdir a q 7→ 〈| perm == ∅, uid == uid , gid == gid |〉}
wcs attributes ′ = wcs attributes∪
{q : Q(θCvs FileSystem)((wcs attributes wdir).rep a p?) |

wdir a q /∈ dom wcs attributes •
wdir a q 7→ 〈| rep == q , f uid == choose(θCvs FileSystem, q) |〉}

cvs passwd ′ = cvs passwd

In contrast to the system architecture specification we also must adjust
the POSIX file attributes of the updated files. The particularity of the update
operation is the use of rep access which computes the paths into the repository
to which the client has read access according to his CVS role.

rep access : Cvs FileSystem→ Path→ P Path

∀ cfs : Cvs FileSystem; p : Path • rep access(cfs)(p)

= {q : Path | p prefix q ∧ cvs rep a q ∈ dom cfs .files
∧ (∃ idpwd : cfs .cvs passwd • idpwd ∈ dom(get auth tab(cfs .files))
∧ has r access(cvsperm2uid(get auth tab(cfs .files)(idpwd)),

cvs rep a q , cfs .attributes))}
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3 Formal Analysis

3.1 Checking the Consistency

Two types of “sanity checks” are useful and have been routinely carried out
with HOL-Z throughout this case study:

• Definedness checks for all applications of partial functions in their context,
as undefined applications usually indicate that some part of the precondition
of a schema context is missing, and

• checking the state invariant of all operation schemas; in particular, we re-
quire that in a schema, all syntactic preconditions (i.e. the conjuncts in the
predicate part that contain occurrences of variables without stroke “‘” and
“!” suffix) suffice to show that the successor state exists.

Violating these consistency conditions does not results in inconsistencies but
in unprovable statements or operation definitions with undesired semantical
effects.

3.2 Establishing the Refinement

In order to prove that the concrete implementation architecture correctly im-
plements the abstract system architecture, we have to define an abstraction
schema R which relates the components of the abstract state schemas to the
components of the concrete state schemas. In particular, we must map ab-
stract names and data to paths and files in the sense of the POSIX filesystem.

To give an idea of these mappings, we illustrate some constraints of the
abstraction schema. As a prerequisite, let us define a function Rname2path,
which maps abstract names, i.e. files, to paths in the implementation model.

One constraint on the abstraction is that the authentication tables in both
models are related, and that the authentication information is equal:

Rname2path(abs cvsauth) = cvs rep a 〈CVSROOT , cvsauth〉
authtab(rep) = get auth tab(files)

Further we consider the implicit arguments (wfiles in the system architec-
ture, wdir in the implementation architecture) to CVS operations like commit
and update. Since the path wdir represents all possible paths that have wdir
as a prefix, we require that all names in wfiles are related:

∀ n : wfiles • wdir prefix Rname2path(n)

The last example predicate we present here enforces the abstract working
copy to have a counterpart in the implementation working copy:

Rname2path(|dom wc|) = dom wcs attributes

To verify the refinement relation R, following [16], we must prove two
refinement conditions for each operation on the abstract state and its cor-
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responding operation on the concrete state: Condition (a) ensures that a
concrete operation terminates whenever its corresponding abstract operation
is guaranteed to terminate, condition (b) ensures that the state after the con-
crete operation represents one of those abstract states in which the abstract
operation could terminate.

As an example of the refinement, we show the instantiation of conditions
(a) and (b) for the CVS login operation. The refinement conditions, though, as
defined in [16], assume that both operations have the same input parameters,
but since we define them differently in our two models, we have to introduce an
additional schema Asm, which is used to insert further assumptions into the
refinement proofs. In the case of the login operation, these are simple (they
differ only in their names) although one could imagine arbitrarily complex
relations between the arguments of other abstract and concrete operations.

Asm
passwd?, cvs pwd? : Cvs Passwd
uid?, cvs uid? : Cvs Uid

passwd? = cvs pwd? ∧ uid? = cvs uid?

Instantiating condition (a) and (b) for the login operation and adding the
assumption schema Asm leads to the following two proof obligations:

logina == ∀ClientState; RepositoryState; ProcessState; Cvs FileSystem;
passwd?, cvs pwd? : Cvs Passwd ; uid?, cvs uid? : Cvs Uid •

Asm ∧ pre abs login ∧ R ⇒ pre cvs login
loginb == ∀ClientState; RepositoryState; ProcessState; Cvs FileSystem;

ProcessState ′; Cvs FileSystem ′; passwd?, cvs pwd? : Cvs Passwd ;
uid?, cvs uid? : Cvs Uid • Asm ∧ pre abs login ∧ R ∧ cvs login
⇒ (∃ClientState ′; RepositoryState ′ • R′ ∧ abs login)

The obligations for the other operations are defined analogously. So far, we
proved these obligations formally for the refinement of login, add and update.
These proofs helped a lot to debug our specifications and find subtle side-
conditions that had to be dealt in Cvs FileSystem and thus to get our real
repository configuration “right”.

3.3 Security Properties of Both Architecture Layers

Analyzing security properties means considering the set of possible sequences
of operations (traces) and postulating requirements on the possible states the
system may reach. Hence, the specification of the security properties motivates
a Z section each on the system architecture and the implementation architec-
ture containing a classical behavioral specifications. In section SysArchSec

we investigate security properties of the system architecture, and in section
ImplArchSec we investigate the same properties and additional ones that are
specific to the implementation architecture.
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Methodically, we need an interface between the operation schemas of the
two architecture layers and the behavioral part allowing to specify safety prop-
erties. This is done by converting the suitably restricted operation schemas of
both system layers into explicit relations over the underlying state:

op1R = op1 ∧ R1

· · ·
opnR = opn ∧ Rn

step = op1R ∨ . . . ∨ opnR
trans = {step | (θstate, θstate ′)}∗
SecProp = ∀ trans(| init |) • P

Here, opiR represent the restricted operation schemas, their schema dis-
junction step the overall step relation of the system, that is converted into
a transitively closed relation trans . The security property SecProp can be
stated over the set of states reachable via trans from an initial state.

We instantiate this scheme: A client “knows” a set of pairs of roles and
passwords, and “invents” only files from a given set of pairs from names to data
in the add operation. We assume login being restricted to roles and passwords
the client “knows” and add being restricted to data the client “invents”.

abs loginR == abs login ∧ [cvs uid? : Cvs Uid ; passwd? : Cvs Passwd |
(cvs uid?, passwd?) ∈ Aknows ]

step == abs loginR ∨ abs addR ∨ abs ci ∨ abs up ∨ abs cd
AbsState == ClientState ∧ RepositoryState
trans == {step • (θAbsState, θAbsState ′)}∗

The security property SecProp1 is formulated for both architectures. Infor-
mally, the only difference between the two levels is that on the implementation
level, we must define the step over CVS and filesystem operations, whereas
on the system level only CVS operations are of concern.

The meaning of the security property is described as follows: Any sequence
of CVS operations starting from an empty working copy does not lead to a
working copy with data from the repository the client has no permission to.

We define the initial abstract state (empty working copy) and the set
Areachable1, which contains the states that are reachable from it.

InitAbsState1 == AbsState ∧ [wc : ABS DATATAB | wc = ∅]

Areachable1 == Atrans(|InitAbsState1|)

AProp1 captures the actual security property: files in the working copy are
either invented or the client knows a password to obtain sufficient permissions.

AProp1

wc : ABS DATATAB
rep : ABS DATATAB
rep permtab : ABS PERMTAB

∀ n : dom wc • (n,wc(n)) ∈ Ainvents ∨ ((wc(n) = rep(n)) ∧
(∃m : Aknows • (rep permtab(n), authtab(rep)(m)) ∈ cvs perm order))
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The complete security property is then defined by the schema expression:

AbsSecProp1 == ∀Areachable1 • AbsState ∧ AProp1

The proofs of these properties are essentially inductions over the transitive
closure trans . Our approach is very similar to Paulson’s inductive method on
protocol verification [11]; the main difference is that the steps were defined in
Z operation schema and not in inductive rules. Via the restriction schema Ri ,
side-conditions modeling the restricted use of operations in a particular variant
of a security model can be introduced easily; for instance, sequences of oper-
ations may be constructed where all operations not use cvs adm permissions
followed by subsequences where operations do use it (modeling interference
by the CVS administrator in withdraw-permission properties).

Unfortunately, implementing one security architecture by another opens
the door to new types of attacks on the implementation architecture: on the
implementation level, we have more operations available (the schema disjunc-
tion step additionally comprises the POSIX commands cp or setumask). Our
technique is also applicable here: The essential difference in the analysis is
that we define the step relation more liberally:

stepimpl == cvs cd ∨ . . . ∨ cvs chmod ∨ cvs login ∨ . . . ∨ cvs update

and introduce the side-conditions on the concrete level.

Although the proofs on the implementation architecture have the same
structure as on the system architecture, they are far more complex since con-
cepts such as paths, the distinction between files and directories, and their
permissions are involved. Moreover, they require new side-conditions (for ex-
ample, the refinement can only be established for the case that the user is not
root; i.e. all security properties are not met, if some attacking client obtains
root permissions on the filesystem level) which were systematically introduced
by the abstraction predicate R.

On the other hand, the higher degree of detail on the implementation ar-
chitecture makes a formalization of new types of security properties possible:
For example, since the crucial concept “directory” is present on the implemen-
tation level and since the existence of files can only be established by having
access to all father directories of a file, one can express confidentiality prop-
erties such as “the user can not find out that a file with name X exists in the
repository” on this level.

4 Conclusion

4.1 Discussion

We presented a case-study of an access control security problem for an “real”
system made amenable to formal, machine-based analysis. This demonstrates
a method for analyzing the security in off-the-shelve system components: First,
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specify the security architecture (as a framework for formal security proper-
ties), second, specify the implementation architecture (validated by inspecting
informal specifications or testing code), third, set up the security technology
mapping as a refinement, and forth, prove refinements and security properties
by mechanized proofs. This method is applicable for a wider range of problems
such as mission critical e-commerce applications or e-government applications.

It has been widely recognized that security properties can not be easily
refined — actually, finding refinement notions that preserve security properties
are a hot research topic. However, standard refinement proof technology has
still its value here since it checks that abstract security requirements (which
can be seen as security against unintentional misuse) are indeed achieved by
a mapping to concrete security technology, and that implicit assumptions on
this implementation have been made explicit. With respect to security against
intentional exploits of security leaks, we believe that specialized refinement
notions will be limited to restricted aspects of a system. For this problem, in
most cases the answer will be to analyze the security on the implementation
level, possibly by reusing results from the abstract level.

4.2 Related Work

Wenzel developed a specification of the basic Unix functionality. This specifi-
cation was done in Isabelle/HOL and is part of the actual Isabelle [10] distri-
bution. On the file system part, only a simple access model, not supporting
groups and the concepts of set-id bits, is formalized.

Sandhu described in [13] a method for embedding role-based access control
with the Discretionary Access Control provided by standard Unix systems.
Our implementation used this construction for providing the static role.

4.3 Future Work

In our opinion, amazingly few work has been addressed to the specification
of the POSIX interface; due to its often not intuitive features, its importance
for security implementations and its high degree of reuse, this is a particularly
rewarding target. We believe that our formalization is a good starting point for
a comprehensive, more complete model of the filesystem related commands.

The formal proofs we did so far represent in our opinion a “proof of tech-
nology” for this type of reasoning, but we do not claim that they represent a
complete analysis of the (real) CVS-server. So far, most consistency proper-
ties, but only selected refinement and security properties have been proven.
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