The KeY Tool Motivation

Seminar: Specification and Verification of Object-oriented Software The Situation TOday

» Software systems are

The KeY TOOI — getting more and more complex.

— used in safety and security critical applications.
developed by:
W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel, » We think:
W. Mostowski, A. Roth, S. Schlager, P.H. Schmitt, and others

— Complex software systems require a precise specification of its
architecture and components.

— Semi-formal methods (like UML diagrams) are not strong
Achim D. Brucker enough.

Information Security, ETH Zirich, Switzerland
http://www.brucker.ch/ Specification should be useful, i.e. not only documentation!
brucker@inf.ethz.ch
January 21, 2004
Wintersemester 2003/04

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software
The KeY Tool Motivation 2 The KeY Tool Motivation
Why use Formal Methods in Software Why Formal Methods are not widely
Development accepted in software industry?

There are many reasons for using formal methods: . .
» Only a few formal methods address industrial needs:

» safety critical applications, e.g. flight or railway control. — support for object-oriented programming.
— highly automatic (7).

— integration in standard CASE tools and processes.
» security critical applications, e.g. access control.

» Formal methods people and industrial software developer are often
speaking different languages.
» financial reasons (e.g. warranty), e.g. embedded devices.
The KeY tool tackles these challenges by using a industrial accepted
» legal reasons, e.g. certifications. specification languages (UML/OCL) and by providing a strong
integration into standard CASE tools.

Many successful applications of formal methods proof their success!

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeYy Tool Road Map

Road Map

» Foundations: UML/OCL and JavaCard
» The KeY Tool

» Conclusion

Achim D. Brucker

The KeY Tool Background

Seminar: Specification and Verification of Object-oriented Software

Are UML diagrams enough to specify OO
systems formally?

» The short answer:

— UML diagrams are not powerful enough for supporting formal
reasoning over specifications.

» The long answer:
We want to be able to

— verify (proof) properties

— refine specifications

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background
» diagrammatic OO modeling
language
context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
. post: balance = balance @pre + amount
» many diagram types, e.g. /
- CIaSS dlag rams (Statlc) Customer 1 Direction P 1.99 Account

~Tdentification:String

owner { Direction yccounts |- balance:Real
—id:Integer

— state charts (dynamic) [;

— use cases

belongsTo

+ getldentification():String + getBalance()Real
+ getAddress():String + makeDeposit(amount:Real):Boolean
+ setAddress(address:Real) + makeWithdrawal(amount:Real):Boolean

» semantics currently
standardized by the OMG

» wide use in SE-Tools
(ArgoUML, Rational Rose,
Together, ...)

Achim D. Brucker

The KeY Tool

inv AN

balance >= credit

CreditAccount

— credit:Real

+ getCredit():Real
+ setCredit(amount:Real):Boolean

Seminar: Specification and Verification of Object-oriented Software

Background 7

OCL

» designed for annotating UML di-
agrams

» based on logic and set theory

» in the context of class—diagrams:
— preconditions

— postconditions

— invariants

» will also be used for other dia-
gram types

» part of the UML standard

Achim D. Brucker

context Account::makel
pre: amount >=0
post: balance = balance@pre + amount

1..99 Account
accounts| - balance:Real
— id:Integer

+ getBalance():Real
+ makeDeposit(amount:Real):Boolean
. i Real):Bool

!

Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 8

OCL — A Simple Examples

» “Uniqueness” constraint for the class Account:

context Account inv:
Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

» Properties of the class diagram can be described, e.g. multiplities:

context Account inv:
and Account.owner->size = 1

» Meaning of the method makeDeposit():

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

OCL keywords Syntax from UML model
Combining class diagrams and OCL results in a data-oriented formal

specification language similar to Z, VDM, B,. ..
Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 10

The KeY Tool — Overview

KeY is a CASE tool extension for formal specifications, supporting

» the creation of constraints (design patters)
» the formal analysis of constraints
» the verification of implementations

These features are highly integrated into an commercial CASE tool,
aiming for the

» development of industrial software without special needs for security.
» development of security critical software.
» use in education and training.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 9

JavacCard
JavaCard is a proper subset of Java, excluding among other:
» threads
» dynamic class loading
» not all data types (e.g., float, double)

» restricted I/O (no GUI)

JavaCard supports basic object oriented features:
» state depends on local vars & attribute values of existing objects
» evaluation of expressions can have side effects
» int, short, arrays, reference types (aliasing)
» exceptions

» initialization of objects

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 11

Excursion: Formal Challenges

Only few formal methods are specialized for analyzing object oriented
specifications.

» Problems and open questions:

— object equality and aliasing

— embedding of object structures into logics

— referencing and dereferencing, including “null” references
— dynamic binding

— polymorphism

» Turning UML/OCL into a formal method:

— semantics for OCL only given in a semi-formal way

— OCL expressions are only meaningful together with the
underlying UML model

no proof calculi for OCL

— no refinement notions for OCL

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 12

The Architecture of the KeY tool

Modelling Component

extensions for formal
CASE Tool (Together) i e icatiore
UML ocCL JENE
(JavaCard)
Verification Component
Dynamic Logic
Deduction Component
automated interactive

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 14

The Verification Component

» Translates OCL into dynamic logic (first order logic with modal
operators)

» Generation of proof goals in first order logic, e.g. the invariant of a
subclass implies the invariant of the superclass (Liskov).

» Generation of proof goals in dynamic logic, e.g. the implementation
honors a given invariant.

context Account inv:

Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

Can be translated into typed first order logic (using OO syntax):
(Val, a2 : Account)(al.id = a2.id — al = a2)

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool

The KeY Tool 13

The Modelling Component

57| public vaid char paline amcure)

g and e Inspeme

fis Bk Semich Ve Fromst T —
LIS EE 5| S0 IR 5| 48] | & workmce: [cadnpwarkspmes ¥ |
csiarer # 0 % [nanmer wox
ol % | o || e B CED
4 é':lr: (b3 | 2 coeiaue |
percurd la Iz
A B, " start PayCard Sharoatl i
gcn..w] : S
IssueCard 1 i I
& Farcard E Vit Chargeu P
% @ Faptarduniar |8 In-vol balance int P
. A HnitGUEvoid 5 %
o bE:
&
| & I
- i
Gl | javalang Exception |
| - CardException
+CardException
I!mnmc harpe - a L3

[T m—n
— e .. st
EICE T DICCIEET] : B
¢ dpreconditions|G smaan 2
26 * @postcondi tionll e
- < T contrate Saquanea Cisgram
28 8 public void charged oeimr . =
29 if (this.balaf Tads A A
30 this,unsud e ol
sefastaring i
3 3 else {

7

B | e premesscondeion 67| ool 4

Achim D. Brucker

The KeY Tool

Seminar: Specification and Verification of Object-oriented Software

The KeY Tool 15

Generated Proof Obligations

Example

» Proof obligation (OCL):

context Account inv:

Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

is an invariant of the method getBalance()

» Claim to be proven (dynamic logic):

(al.id = a2.id — al = a2) + (getBalance();)(al.id = a2.id — al = a2)

Achim D. Brucker

Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 16

The Deduction Component

» based on a sequence calculus for dynamic logic
» automatic and interactive proof support

» counter example generation

Bgply Hewistics A] Goal Back

heuristies

Froalabligations |

v bommiie | | o1 f balance) s- A
Praof Geals pea te leg

(self . balance) ien Himit)
Cself. juniorLing peses i mit)
==3 peaadi et

(self balance) § oo
nideleft

Ease_distinetion
e

Elose_paul_irtss

| - R

K" inegraved Cedunive Saltware Design: knady

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 18

Case Studies

The KeY tool was successfully applied to several larger case studies,
e.g.:

Refinement: The Java Collection Framework (JFC)
Abstract specification of standard data structures (e.g. lists, sets)
are stepwise refined to a concrete implementation.

Security: access control (PAM authentication with iButton)
Analysis of the state diagram of a JavaCard application used as
authentication token.

Safety: computation of speed restrictions for Deutsche Bahn AG
(railway)
A reference implementation computing a “speed book” was
specified and analyzed (about 80 Java classes).

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 17

The KeY Features

» create formal requirements specifications in OCL

» translate OCL requirements into correctness assertions in logic
» render OCL into natural language

» check correctness of a specification

» check correctness of a implementation

» generates counter examples for invalid assertions

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Conclusion 19

Further Work

» Support challenging Java Features (long term), e.g. threads,
floating point arithmetic, dynamic class loading, GUI specification

» Integration of other formal techniques, e.g. model checking

» Integrate other UML diagram types, e.g. state charts

» Further applications, e.g. test case generation

» Build a formal, object-oriented software development process

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Conclusion 20

Critics and Limitations

Nevertheless, there are some weak points of the KeY architecture:

» tactlets (tactics) are not shown to be correct.

» the semantic definitions (for OCL and JavaCard) are done in a
axiomatic way and hence there is no guarantee for the consistency
of the system.

» the translation from OCL into dynamic logic is quite naive and
doesn’'t honor the OCL standard. As such, KeY uses a “Dynamic
Logic with OCL Syntax” instead of standard compliant OCL to
annotate UML class diagrams.

» there is no guarantee that the axiomatized JavaCard semantics is
compliant to Java standard.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool 22

AppendiXx

Slides for Answering Questions

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeYy Tool Conclusion 21

Summary

» UML/OCL allows one to
— formally specify object-oriented data models in
prec-/postcondition style.
— introduce formal methods in a lightweight way.

— use an industry accepted OMG standard. This will hopefully lead
to more acceptance (and hence tool support).

» The KeY tool allows one to
— write formal OCL/UML specifications.
— proof properties on the specification level.
— proof properties on the implementation level.
— proof that a implementation fulfills its specification.

And all that providing an easy to use, first class integration into a
widely accepted CASE tool!

The KeY tools fulfills its main goal, making formal methods usable by

the object-oriented software industry.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Dynamic Logic 23

A Program Logic: Dynamic Logic

» Syntax
— typed first order logic
— program logic

— modal operators [p] and (p)

» Semantics
— operators are evaluated in the terminating state of p
— [p]F: if p terminates, then F holds (partial correctness)

— (p)F: p terminates and F' holds (total correctness)

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

Dynamic Logic 24

The KeY Tool

Calculus: “if-then” and “while” rule

(simplified)
» if-then
pre,b = true - (p)F pre,b = false F (¢)F
pre b (if b then {p} else{q})F
» while

pre b (if b then {p} while(b){p})F

pre F (while(b){p}})F

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool References 26
References

[1] The KeY project, January 2004. http://www.key-project.org.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hahnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The key tool. Technical Report 2003-05,
Chalmers, Goteborg University, 2003.

[3] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar
Habermalz, Reiner Hahnle, Wolfram Menzel, and Peter H. Schmitt. The KeY
approach: Integrating object oriented design and formal verification. Technical
Report 2000/4, University of Karlsruhe, Department of Computer Science,
January 2000. http://il2www.ira.uka.de/ projekt/publicat.htm.

[4] Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, consequences and

design choices. In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook,
editors, UML 2002: Model Engineering, Concepts and Tools, number 2460 in
Lecture Notes in Computer Science, pages 196—211. Springer-Verlag, Dresden,
2002. ISBN 3-540-44254-5.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-o0cl-2002.

[5] Achim D. Brucker and Burkhart Wolff. A proposal for a formal OCL semantics in
Isabelle/HOL. In César Mufioz, Sophiene Tahar, and Victor Carrefio, editors,
Theorem Proving in Higher Order Logics, number 2410 in Lecture Notes in
Computer Science, pages 99—114. Springer-Verlag, Hampton, VA, USA, 2002.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

Related Work 25

The KeY Tool

Related Work

» Tools supporting OCL can be roughly divided into:

— Runtime checking of OCL constraints, e.g. based on the
Dresden OCL compiler [7].

— Model simulation and validation, e.g. the USE tool [9].

— Proof environments, namely HOL-OCL [5]; which is implemented
as a shallow embedding of OCL into Isabelle/HOL. HOL-OCL
tries to strictly follow the OCL 2.0 standard, e.g. including a
three valued logic.

» Formalizing the Java semantics:

— pJava an embedding of a Java subset into Isabelle/HOL [3].

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

References 27

The KeY Tool

ISBN 3-540-44039-9.
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002.

6

Richard Bubel and Reiner Hahnle. Integration of informal and formal development
of object-oriented safty-critical software: A case study with the key system. In
Electronic Notes in Theoretical Computer Science, volume 80. Elsevier Science
Publishers, 2003.

[7] OCL Compiler Suite, 2001. http://dresden-ocl.sourceforge.net/.

8

Tobias Nipkow, David von Oheimb, and Cornelia Pusch. pJava: Embedding a
programming language in a theorem prover. In Friedrich L. Bauer and Ralf
Steinbriggen, editors, Foundations of Secure Computation, volume 175 of NATO
Science Series F: Computer and Systems Sciences, pages 117—144. 10S Press,
2000. http://isabelle.IN.TUM.de/Bali/papers/MOD99.html.

[9

Mark Richters and Martin Gogolla. OCL - syntax, semantics and tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL,
pages 43—69. Springer, Berlin, LNCS 2263, 2001.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

Table of Contents 28

The KeY Tool

Contents

Motivation 1
The Situation Today 1

Why use Formal Methods in Software Development 2
Why Formal Methods are not widely accepted in software industry? 3
Road Map 4
Road Map 4
Background 5
UML 5

Are UML diagrams enough to specify OO systems formally? 6
OCL 7
OCL — A Simple Examples 8
JavacCard 9

The KeY Tool 10
The KeY Tool — Overview 10
Excursion: Formal Challenges 11

The Architecture of the KeY tool 12

The Modelling Component 13

The Verification Component 14
Generated Proof Obligations 15

The Deduction Component 16

The KeY Features 17
Case Studies 18
Conclusion 19
Further Work 19
Critics and Limitations 20
Summary 21
Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Table of Contents 29

22

Dynamic Logic 23
A Program Logic: Dynamic Logic 23
Calculus: “if-then” and “while” rule (simplified) 24
Related Work 25
Related Work 25
References 26
References 26
Table of Contents 28
Contents 28

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

