
Seminar: Specification and Verification of Object-oriented Software

The KeY Tool
developed by:

W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, P.H. Schmitt, and others

Achim D. Brucker

Information Security, ETH Zürich, Switzerland

http://www.brucker.ch/

brucker@inf.ethz.ch

January 21, 2004

Wintersemester 2003/04

The KeY Tool Motivation 1

The Situation Today

▲

Software systems are

– getting more and more complex.

– used in safety and security critical applications.

▲

We think:

– Complex software systems require a precise specification of its

architecture and components.

– Semi-formal methods (like UML diagrams) are not strong

enough.

Specification should be useful, i.e. not only documentation!

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Motivation 2

Why use Formal Methods in Software

Development

There are many reasons for using formal methods:

▲

safety critical applications, e.g. flight or railway control.

▲

security critical applications, e.g. access control.

▲

financial reasons (e.g. warranty), e.g. embedded devices.

▲

legal reasons, e.g. certifications.

Many successful applications of formal methods proof their success!

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Motivation 3

Why Formal Methods are not widely

accepted in software industry?
▲

Only a few formal methods address industrial needs:

– support for object-oriented programming.

– highly automatic (?).

– integration in standard CASE tools and processes.

▲

Formal methods people and industrial software developer are often

speaking different languages.

The KeY tool tackles these challenges by using a industrial accepted

specification languages (UML/OCL) and by providing a strong

integration into standard CASE tools.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Road Map 4

Road Map

▲

Motivation

▲

Foundations: UML/OCL and JavaCard

▲

The KeY Tool

▲

Conclusion

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 5

UML

▲

diagrammatic OO modeling

language

▲

many diagram types, e.g.

– class diagrams (static)

– state charts (dynamic)

– use cases

▲

semantics currently

standardized by the OMG

▲

wide use in SE-Tools

(ArgoUML, Rational Rose,

Together, . . .)

inv:
balance >= credit

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre: amount >= 0

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

− balance:Real
− id:Integer

Direction

Direction

1

owner accounts
belongsTo

1..99
− Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

− address:String

CreditAccount

AccountCustomer

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 6

Are UML diagrams enough to specify OO

systems formally?

▲

The short answer:

– UML diagrams are not powerful enough for supporting formal

reasoning over specifications.

▲

The long answer:

We want to be able to

– verify (proof) properties

– refine specifications

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 7

OCL
▲

designed for annotating UML di-

agrams

▲

based on logic and set theory

▲

in the context of class–diagrams:

– preconditions

– postconditions

– invariants

▲

will also be used for other dia-

gram types

▲

part of the UML standard

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real
− id:Integer

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 8

OCL — A Simple Examples

▲

“Uniqueness” constraint for the class Account:

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

▲

Properties of the class diagram can be described, e.g. multiplities:

context Account inv:

and Account.owner->size = 1

▲

Meaning of the method makeDeposit():

context Account::makeDeposit(amount:Real):Boolean

pre: amount >= 0

post: balance = balance@pre + amount

OCL keywords Syntax from UML model

Combining class diagrams and OCL results in a data-oriented formal
specification language similar to Z, VDM, B,. . .

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Background 9

JavaCard

JavaCard is a proper subset of Java, excluding among other:

▲

threads

▲

dynamic class loading

▲

not all data types (e.g., float, double)

▲

restricted I/O (no GUI)

JavaCard supports basic object oriented features:

▲

state depends on local vars & attribute values of existing objects

▲

evaluation of expressions can have side effects

▲

int, short, arrays, reference types (aliasing)

▲

exceptions

▲

initialization of objects

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 10

The KeY Tool — Overview

KeY is a CASE tool extension for formal specifications, supporting

▲

the creation of constraints (design patters)

▲

the formal analysis of constraints

▲

the verification of implementations

These features are highly integrated into an commercial CASE tool,

aiming for the

▲

development of industrial software without special needs for security.

▲

development of security critical software.

▲

use in education and training.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 11

Excursion: Formal Challenges

Only few formal methods are specialized for analyzing object oriented
specifications.

▲

Problems and open questions:

– object equality and aliasing
– embedding of object structures into logics
– referencing and dereferencing, including “null” references
– dynamic binding
– polymorphism
– . . .

▲

Turning UML/OCL into a formal method:

– semantics for OCL only given in a semi-formal way
– OCL expressions are only meaningful together with the

underlying UML model
– no proof calculi for OCL
– no refinement notions for OCL
– . . .

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 12

The Architecture of the KeY tool

OCLUML

Dynamic Logic

automated interactive

Deduction Component

Verification Component

CASE Tool (Together)

(JavaCard)

Java

Modelling Component

extensions for formal

specifications
+

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 13

The Modelling Component

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 14

The Verification Component

▲

Translates OCL into dynamic logic (first order logic with modal

operators)

▲

Generation of proof goals in first order logic, e.g. the invariant of a

subclass implies the invariant of the superclass (Liskov).

▲

Generation of proof goals in dynamic logic, e.g. the implementation

honors a given invariant.

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

Can be translated into typed first order logic (using OO syntax):

(∀a1, a2 : Account)(a1.id
.
= a2.id → a1

.
= a2)

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 15

Generated Proof Obligations
Example

▲

Proof obligation (OCL):

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

is an invariant of the method getBalance()

▲

Claim to be proven (dynamic logic):

(a1.id
.
= a2.id → a1

.
= a2) ` 〈getBalance();〉(a1.id .

= a2.id → a1
.
= a2)

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 16

The Deduction Component

▲

based on a sequence calculus for dynamic logic

▲

automatic and interactive proof support

▲

counter example generation

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 17

The KeY Features

▲

create formal requirements specifications in OCL

▲

translate OCL requirements into correctness assertions in logic

▲

render OCL into natural language

▲

check correctness of a specification

▲

check correctness of a implementation

▲

generates counter examples for invalid assertions

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 18

Case Studies

The KeY tool was successfully applied to several larger case studies,

e.g.:

Refinement: The Java Collection Framework (JFC)

Abstract specification of standard data structures (e.g. lists, sets)

are stepwise refined to a concrete implementation.

Security: access control (PAM authentication with iButton)

Analysis of the state diagram of a JavaCard application used as

authentication token.

Safety: computation of speed restrictions for Deutsche Bahn AG

(railway)

A reference implementation computing a “speed book” was

specified and analyzed (about 80 Java classes).

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Conclusion 19

Further Work
▲

Support challenging Java Features (long term), e.g. threads,

floating point arithmetic, dynamic class loading, GUI specification

▲

Integration of other formal techniques, e.g. model checking

▲

Integrate other UML diagram types, e.g. state charts

▲

Further applications, e.g. test case generation

▲

Build a formal, object-oriented software development process

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Conclusion 20

Critics and Limitations

Nevertheless, there are some weak points of the KeY architecture:

▲

tactlets (tactics) are not shown to be correct.

▲

the semantic definitions (for OCL and JavaCard) are done in a

axiomatic way and hence there is no guarantee for the consistency

of the system.

▲

the translation from OCL into dynamic logic is quite näıve and

doesn’t honor the OCL standard. As such, KeY uses a “Dynamic

Logic with OCL Syntax” instead of standard compliant OCL to

annotate UML class diagrams.

▲

there is no guarantee that the axiomatized JavaCard semantics is

compliant to Java standard.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Conclusion 21

Summary

▲

UML/OCL allows one to

– formally specify object-oriented data models in
prec-/postcondition style.

– introduce formal methods in a lightweight way.

– use an industry accepted OMG standard. This will hopefully lead
to more acceptance (and hence tool support).

▲

The KeY tool allows one to

– write formal OCL/UML specifications.

– proof properties on the specification level.

– proof properties on the implementation level.

– proof that a implementation fulfills its specification.

And all that providing an easy to use, first class integration into a
widely accepted CASE tool!

The KeY tools fulfills its main goal, making formal methods usable by
the object-oriented software industry.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool 22

Appendix
Slides for Answering Questions

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Dynamic Logic 23

A Program Logic: Dynamic Logic
▲

Syntax

– typed first order logic

– program logic

– modal operators [p] and 〈p〉

▲

Semantics

– operators are evaluated in the terminating state of p

– [p]F : if p terminates, then F holds (partial correctness)

– 〈p〉F : p terminates and F holds (total correctness)

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Dynamic Logic 24

Calculus: “if-then” and “while” rule

(simplified)

▲

if-then

pre, b
.
= true ` 〈p〉F pre, b

.
= false ` 〈q〉F

pre ` 〈if b then {p} else{q}〉F

▲

while

pre ` 〈if b then {p} while(b){p}〉F

pre ` 〈while(b){p}}〉F

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Related Work 25

Related Work

▲

Tools supporting OCL can be roughly divided into:

– Runtime checking of OCL constraints, e.g. based on the

Dresden OCL compiler [7].

– Model simulation and validation, e.g. the USE tool [9].

– Proof environments, namely HOL-OCL [5]; which is implemented

as a shallow embedding of OCL into Isabelle/HOL. HOL-OCL

tries to strictly follow the OCL 2.0 standard, e.g. including a

three valued logic.

▲

Formalizing the Java semantics:

– µJava an embedding of a Java subset into Isabelle/HOL [8].

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool References 26

References
[1] The KeY project, January 2004. http://www.key-project.org.

[2] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The key tool. Technical Report 2003-05,
Chalmers, Göteborg University, 2003.

[3] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Elmar
Habermalz, Reiner Hähnle, Wolfram Menzel, and Peter H. Schmitt. The KeY
approach: Integrating object oriented design and formal verification. Technical
Report 2000/4, University of Karlsruhe, Department of Computer Science,
January 2000. http://i12www.ira.uka.de/~projekt/publicat.htm.

[4] Achim D. Brucker and Burkhart Wolff. HOL-OCL: Experiences, consequences and
design choices. In Jean-Marc Jézéquel, Heinrich Hussmann, and Stephen Cook,
editors, UML 2002: Model Engineering, Concepts and Tools, number 2460 in
Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, Dresden,
2002. ISBN 3-540-44254-5.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002.

[5] Achim D. Brucker and Burkhart Wolff. A proposal for a formal OCL semantics in
Isabelle/HOL. In César Muñoz, Sophiène Tahar, and V́ıctor Carreño, editors,
Theorem Proving in Higher Order Logics, number 2410 in Lecture Notes in
Computer Science, pages 99–114. Springer-Verlag, Hampton, VA, USA, 2002.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool References 27

ISBN 3-540-44039-9.
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002.

[6] Richard Bubel and Reiner Hähnle. Integration of informal and formal development
of object-oriented safty-critical software: A case study with the key system. In
Electronic Notes in Theoretical Computer Science, volume 80. Elsevier Science
Publishers, 2003.

[7] OCL Compiler Suite, 2001. http://dresden-ocl.sourceforge.net/.

[8] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava: Embedding a
programming language in a theorem prover. In Friedrich L. Bauer and Ralf
Steinbrüggen, editors, Foundations of Secure Computation, volume 175 of NATO
Science Series F: Computer and Systems Sciences, pages 117–144. IOS Press,
2000. http://isabelle.IN.TUM.de/Bali/papers/MOD99.html.

[9] Mark Richters and Martin Gogolla. OCL - syntax, semantics and tools. In Tony
Clark and Jos Warmer, editors, Advances in Object Modelling with the OCL,
pages 43–69. Springer, Berlin, LNCS 2263, 2001.

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Table of Contents 28

Contents
Motivation 1

The Situation Today 1
Why use Formal Methods in Software Development 2
Why Formal Methods are not widely accepted in software industry? 3

Road Map 4
Road Map 4

Background 5
UML 5
Are UML diagrams enough to specify OO systems formally? 6
OCL 7
OCL — A Simple Examples 8
JavaCard 9

The KeY Tool 10
The KeY Tool — Overview 10
Excursion: Formal Challenges 11
The Architecture of the KeY tool 12
The Modelling Component 13
The Verification Component 14
Generated Proof Obligations 15
The Deduction Component 16
The KeY Features 17
Case Studies 18

Conclusion 19
Further Work 19
Critics and Limitations 20
Summary 21

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool Table of Contents 29

22
Dynamic Logic 23

A Program Logic: Dynamic Logic 23
Calculus: “if-then” and “while” rule (simplified) 24

Related Work 25
Related Work 25

References 26
References 26

Table of Contents 28
Contents 28

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

