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The Situation Today

▲

Software systems are

– getting more and more complex.

– used in safety and security critical applications.

▲

We think:

– Complex software systems require a precise specification of its

architecture and components.

– Semi-formal methods (like UML diagrams) are not strong

enough.

Specification should be useful, i.e. not only documentation!
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Why use Formal Methods in Software

Development

There are many reasons for using formal methods:

▲

safety critical applications, e.g. flight or railway control.

▲

security critical applications, e.g. access control.

▲

financial reasons (e.g. warranty), e.g. embedded devices.

▲

legal reasons, e.g. certifications.

Many successful applications of formal methods proof their success!
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Why Formal Methods are not widely

accepted in software industry?
▲

Only a few formal methods address industrial needs:

– support for object-oriented programming.

– highly automatic (?).

– integration in standard CASE tools and processes.

▲

Formal methods people and industrial software developer are often

speaking different languages.

The KeY tool tackles these challenges by using a industrial accepted

specification languages (UML/OCL) and by providing a strong

integration into standard CASE tools.
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Road Map

▲

Motivation

▲

Foundations: UML/OCL and JavaCard

▲

The KeY Tool

▲

Conclusion
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UML

▲

diagrammatic OO modeling

language

▲

many diagram types, e.g.

– class diagrams (static)

– state charts (dynamic)

– use cases

▲

semantics currently

standardized by the OMG

▲

wide use in SE-Tools

(ArgoUML, Rational Rose,

Together, . . . )

inv:
balance >= credit

context Account::makeDeposit(amount:Real):Boolean

post: balance = balance@pre + amount
pre:  amount >= 0

+ getCredit():Real
+ setCredit(amount:Real):Boolean

− credit:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

+ makeWithdrawal(amount:Real):Boolean

− balance:Real
− id:Integer

Direction

Direction

1

owner accounts
belongsTo

1..99
− Identification:String

+ getAddress():String
+ getIdentification():String

+ setAddress(address:Real)

− address:String

CreditAccount

AccountCustomer
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Are UML diagrams enough to specify OO

systems formally?

▲

The short answer:

– UML diagrams are not powerful enough for supporting formal

reasoning over specifications.

▲

The long answer:

We want to be able to

– verify (proof) properties

– refine specifications
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OCL
▲

designed for annotating UML di-

agrams

▲

based on logic and set theory

▲

in the context of class–diagrams:

– preconditions

– postconditions

– invariants

▲

will also be used for other dia-

gram types

▲

part of the UML standard

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real
− id:Integer

context Account::makeDeposit(amount:Real):Boolean
pre:  amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account
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OCL — A Simple Examples

▲

“Uniqueness” constraint for the class Account:

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

▲

Properties of the class diagram can be described, e.g. multiplities:

context Account inv:

and Account.owner->size = 1

▲

Meaning of the method makeDeposit():

context Account::makeDeposit(amount:Real):Boolean

pre: amount >= 0

post: balance = balance@pre + amount

OCL keywords Syntax from UML model

Combining class diagrams and OCL results in a data-oriented formal
specification language similar to Z, VDM, B,. . .
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JavaCard

JavaCard is a proper subset of Java, excluding among other:

▲

threads

▲

dynamic class loading

▲

not all data types (e.g., float, double)

▲

restricted I/O (no GUI)

JavaCard supports basic object oriented features:

▲

state depends on local vars & attribute values of existing objects

▲

evaluation of expressions can have side effects

▲

int, short, arrays, reference types (aliasing)

▲

exceptions

▲

initialization of objects
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The KeY Tool — Overview

KeY is a CASE tool extension for formal specifications, supporting

▲

the creation of constraints (design patters)

▲

the formal analysis of constraints

▲

the verification of implementations

These features are highly integrated into an commercial CASE tool,

aiming for the

▲

development of industrial software without special needs for security.

▲

development of security critical software.

▲

use in education and training.
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Excursion: Formal Challenges

Only few formal methods are specialized for analyzing object oriented
specifications.

▲

Problems and open questions:

– object equality and aliasing
– embedding of object structures into logics
– referencing and dereferencing, including “null” references
– dynamic binding
– polymorphism
– . . .

▲

Turning UML/OCL into a formal method:

– semantics for OCL only given in a semi-formal way
– OCL expressions are only meaningful together with the

underlying UML model
– no proof calculi for OCL
– no refinement notions for OCL
– . . .
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The Architecture of the KeY tool

OCLUML

Dynamic Logic

automated interactive

Deduction Component

Verification Component

CASE Tool (Together)

(JavaCard)

Java

Modelling Component

extensions for formal

specifications
+
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The Modelling Component
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The Verification Component

▲

Translates OCL into dynamic logic (first order logic with modal

operators)

▲

Generation of proof goals in first order logic, e.g. the invariant of a

subclass implies the invariant of the superclass (Liskov).

▲

Generation of proof goals in dynamic logic, e.g. the implementation

honors a given invariant.

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

Can be translated into typed first order logic (using OO syntax):

(∀a1, a2 : Account)(a1.id
.
= a2.id → a1

.
= a2)
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Generated Proof Obligations
Example

▲

Proof obligation (OCL):

context Account inv:

Account.allInstances->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

is an invariant of the method getBalance()

▲

Claim to be proven (dynamic logic):

(a1.id
.
= a2.id → a1

.
= a2) ` 〈getBalance();〉(a1.id .

= a2.id → a1
.
= a2)
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The Deduction Component

▲

based on a sequence calculus for dynamic logic

▲

automatic and interactive proof support

▲

counter example generation
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The KeY Features

▲

create formal requirements specifications in OCL

▲

translate OCL requirements into correctness assertions in logic

▲

render OCL into natural language

▲

check correctness of a specification

▲

check correctness of a implementation

▲

generates counter examples for invalid assertions
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Case Studies

The KeY tool was successfully applied to several larger case studies,

e.g.:

Refinement: The Java Collection Framework (JFC)

Abstract specification of standard data structures (e.g. lists, sets)

are stepwise refined to a concrete implementation.

Security: access control (PAM authentication with iButton)

Analysis of the state diagram of a JavaCard application used as

authentication token.

Safety: computation of speed restrictions for Deutsche Bahn AG

(railway)

A reference implementation computing a “speed book” was

specified and analyzed (about 80 Java classes).
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Further Work
▲

Support challenging Java Features (long term), e.g. threads,

floating point arithmetic, dynamic class loading, GUI specification

▲

Integration of other formal techniques, e.g. model checking

▲

Integrate other UML diagram types, e.g. state charts

▲

Further applications, e.g. test case generation

▲

Build a formal, object-oriented software development process
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Critics and Limitations

Nevertheless, there are some weak points of the KeY architecture:

▲

tactlets (tactics) are not shown to be correct.

▲

the semantic definitions (for OCL and JavaCard) are done in a

axiomatic way and hence there is no guarantee for the consistency

of the system.

▲

the translation from OCL into dynamic logic is quite näıve and

doesn’t honor the OCL standard. As such, KeY uses a “Dynamic

Logic with OCL Syntax” instead of standard compliant OCL to

annotate UML class diagrams.

▲

there is no guarantee that the axiomatized JavaCard semantics is

compliant to Java standard.
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Summary

▲

UML/OCL allows one to

– formally specify object-oriented data models in
prec-/postcondition style.

– introduce formal methods in a lightweight way.

– use an industry accepted OMG standard. This will hopefully lead
to more acceptance (and hence tool support).

▲

The KeY tool allows one to

– write formal OCL/UML specifications.

– proof properties on the specification level.

– proof properties on the implementation level.

– proof that a implementation fulfills its specification.

And all that providing an easy to use, first class integration into a
widely accepted CASE tool!

The KeY tools fulfills its main goal, making formal methods usable by
the object-oriented software industry.
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Appendix
Slides for Answering Questions
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A Program Logic: Dynamic Logic
▲

Syntax

– typed first order logic

– program logic

– modal operators [p] and 〈p〉

▲

Semantics

– operators are evaluated in the terminating state of p

– [p]F : if p terminates, then F holds (partial correctness)

– 〈p〉F : p terminates and F holds (total correctness)
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Calculus: “if-then” and “while” rule

(simplified)

▲

if-then

pre, b
.
= true ` 〈p〉F pre, b

.
= false ` 〈q〉F

pre ` 〈if b then {p} else{q}〉F

▲

while

pre ` 〈if b then {p} while(b){p}〉F

pre ` 〈while(b){p}}〉F
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Related Work

▲

Tools supporting OCL can be roughly divided into:

– Runtime checking of OCL constraints, e.g. based on the

Dresden OCL compiler [7].

– Model simulation and validation, e.g. the USE tool [9].

– Proof environments, namely HOL-OCL [5]; which is implemented

as a shallow embedding of OCL into Isabelle/HOL. HOL-OCL

tries to strictly follow the OCL 2.0 standard, e.g. including a

three valued logic.

▲

Formalizing the Java semantics:

– µJava an embedding of a Java subset into Isabelle/HOL [8].
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