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Seminar: Specification and Verification of Object-oriented Software The Situation TOday

» Software systems are

The KeY TOOI — getting more and more complex.

— used in safety and security critical applications.
developed by:
W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel, » We think:
W. Mostowski, A. Roth, S. Schlager, P.H. Schmitt, and others

— Complex software systems require a precise specification of its
architecture and components.

— Semi-formal methods (like UML diagrams) are not strong
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Why use Formal Methods in Software Why Formal Methods are not widely
Development accepted in software industry?

There are many reasons for using formal methods: . .
» Only a few formal methods address industrial needs:

» safety critical applications, e.g. flight or railway control. — support for object-oriented programming.
— highly automatic (7).

— integration in standard CASE tools and processes.
» security critical applications, e.g. access control.

» Formal methods people and industrial software developer are often
speaking different languages.
» financial reasons (e.g. warranty), e.g. embedded devices.
The KeY tool tackles these challenges by using a industrial accepted
» legal reasons, e.g. certifications. specification languages (UML/OCL) and by providing a strong
integration into standard CASE tools.

Many successful applications of formal methods proof their success!
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The KeYy Tool Road Map

Road Map

» Foundations: UML/OCL and JavaCard
» The KeY Tool

» Conclusion
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The KeY Tool Background

Seminar: Specification and Verification of Object-oriented Software

Are UML diagrams enough to specify OO
systems formally?

» The short answer:

— UML diagrams are not powerful enough for supporting formal
reasoning over specifications.

» The long answer:
We want to be able to

— verify (proof) properties

— refine specifications
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The KeY Tool Background
» diagrammatic OO modeling
language
context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
. post: balance = balance @pre + amount
» many diagram types, e.g. /
- CIaSS dlag rams (Statlc) Customer 1 Direction P 1.99 Account

~Tdentification:String

owner { Direction  yccounts |- balance:Real
—id:Integer

— state charts (dynamic) [;

— use cases

belongsTo

+ getldentification():String + getBalance()Real
+ getAddress():String + makeDeposit(amount:Real):Boolean
+ setAddress(address:Real) + makeWithdrawal(amount:Real):Boolean

» semantics currently
standardized by the OMG

» wide use in SE-Tools
(ArgoUML, Rational Rose,
Together, ...)
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inv AN

balance >= credit

CreditAccount

— credit:Real

+ getCredit():Real
+ setCredit(amount:Real):Boolean
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OCL

» designed for annotating UML di-
agrams

» based on logic and set theory

» in the context of class—diagrams:
— preconditions

— postconditions

— invariants

» will also be used for other dia-
gram types

» part of the UML standard

Achim D. Brucker

context Account::makel
pre: amount >=0
post: balance = balance@pre + amount

1..99 Account
accounts| - balance:Real
— id:Integer

+ getBalance():Real
+ makeDeposit(amount:Real):Boolean
. i Real):Bool

!
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OCL — A Simple Examples

» “Uniqueness” constraint for the class Account:

context Account inv:
Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

» Properties of the class diagram can be described, e.g. multiplities:

context Account inv:
and Account.owner->size = 1

» Meaning of the method makeDeposit():

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

OCL keywords Syntax from UML model
Combining class diagrams and OCL results in a data-oriented formal

specification language similar to Z, VDM, B,. ..
Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software

The KeY Tool The KeY Tool 10

The KeY Tool — Overview

KeY is a CASE tool extension for formal specifications, supporting

» the creation of constraints (design patters)
» the formal analysis of constraints
» the verification of implementations

These features are highly integrated into an commercial CASE tool,
aiming for the

» development of industrial software without special needs for security.
» development of security critical software.
» use in education and training.
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JavacCard
JavaCard is a proper subset of Java, excluding among other:
» threads
» dynamic class loading
» not all data types (e.g., float, double)

» restricted I/O (no GUI)

JavaCard supports basic object oriented features:
» state depends on local vars & attribute values of existing objects
» evaluation of expressions can have side effects
» int, short, arrays, reference types (aliasing)
» exceptions

» initialization of objects
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Excursion: Formal Challenges

Only few formal methods are specialized for analyzing object oriented
specifications.

» Problems and open questions:

— object equality and aliasing

— embedding of object structures into logics

— referencing and dereferencing, including “null” references
— dynamic binding

— polymorphism

» Turning UML/OCL into a formal method:

— semantics for OCL only given in a semi-formal way

— OCL expressions are only meaningful together with the
underlying UML model

no proof calculi for OCL

— no refinement notions for OCL
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The Architecture of the KeY tool

Modelling Component

extensions for formal
CASE Tool (Together) i e icatiore
UML ocCL JENE
(JavaCard)
Verification Component
Dynamic Logic
Deduction Component
automated interactive
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The Verification Component

» Translates OCL into dynamic logic (first order logic with modal
operators)

» Generation of proof goals in first order logic, e.g. the invariant of a
subclass implies the invariant of the superclass (Liskov).

» Generation of proof goals in dynamic logic, e.g. the implementation
honors a given invariant.

context Account inv:

Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

Can be translated into typed first order logic (using OO syntax):
(Val, a2 : Account)(al.id = a2.id — al = a2)
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The Modelling Component
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Generated Proof Obligations

Example

» Proof obligation (OCL):

context Account inv:

Account.allInstances->forAll(al,a2 | al.id = a2.id implies al = a2)

is an invariant of the method getBalance()

» Claim to be proven (dynamic logic):

(al.id = a2.id — al = a2) + (getBalance();)(al.id = a2.id — al = a2)

Achim D. Brucker
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The Deduction Component

» based on a sequence calculus for dynamic logic
» automatic and interactive proof support

» counter example generation
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Case Studies

The KeY tool was successfully applied to several larger case studies,
e.g.:

Refinement: The Java Collection Framework (JFC)
Abstract specification of standard data structures (e.g. lists, sets)
are stepwise refined to a concrete implementation.

Security: access control (PAM authentication with iButton)
Analysis of the state diagram of a JavaCard application used as
authentication token.

Safety: computation of speed restrictions for Deutsche Bahn AG
(railway)
A reference implementation computing a “speed book” was
specified and analyzed (about 80 Java classes).
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The KeY Features

» create formal requirements specifications in OCL

» translate OCL requirements into correctness assertions in logic
» render OCL into natural language

» check correctness of a specification

» check correctness of a implementation

» generates counter examples for invalid assertions
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Further Work

» Support challenging Java Features (long term), e.g. threads,
floating point arithmetic, dynamic class loading, GUI specification

» Integration of other formal techniques, e.g. model checking

» Integrate other UML diagram types, e.g. state charts

» Further applications, e.g. test case generation

» Build a formal, object-oriented software development process

Achim D. Brucker Seminar: Specification and Verification of Object-oriented Software
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Critics and Limitations

Nevertheless, there are some weak points of the KeY architecture:

» tactlets (tactics) are not shown to be correct.

» the semantic definitions (for OCL and JavaCard) are done in a
axiomatic way and hence there is no guarantee for the consistency
of the system.

» the translation from OCL into dynamic logic is quite naive and
doesn’'t honor the OCL standard. As such, KeY uses a “Dynamic
Logic with OCL Syntax” instead of standard compliant OCL to
annotate UML class diagrams.

» there is no guarantee that the axiomatized JavaCard semantics is
compliant to Java standard.
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AppendiXx

Slides for Answering Questions
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Summary

» UML/OCL allows one to
— formally specify object-oriented data models in
prec-/postcondition style.
— introduce formal methods in a lightweight way.

— use an industry accepted OMG standard. This will hopefully lead
to more acceptance (and hence tool support).

» The KeY tool allows one to
— write formal OCL/UML specifications.
— proof properties on the specification level.
— proof properties on the implementation level.
— proof that a implementation fulfills its specification.

And all that providing an easy to use, first class integration into a
widely accepted CASE tool!

The KeY tools fulfills its main goal, making formal methods usable by

the object-oriented software industry.
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A Program Logic: Dynamic Logic

» Syntax
— typed first order logic
— program logic

— modal operators [p] and (p)

» Semantics
— operators are evaluated in the terminating state of p
— [p]F: if p terminates, then F holds (partial correctness)

— (p)F: p terminates and F' holds (total correctness)
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The KeY Tool

Calculus: “if-then” and “while” rule

(simplified)
» if-then
pre,b = true - (p)F pre,b = false F (¢)F
pre b (if b then {p} else{q})F
» while

pre b (if b then {p} while(b){p})F

pre F (while(b){p}})F
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Related Work

» Tools supporting OCL can be roughly divided into:

— Runtime checking of OCL constraints, e.g. based on the
Dresden OCL compiler [7].

— Model simulation and validation, e.g. the USE tool [9].

— Proof environments, namely HOL-OCL [5]; which is implemented
as a shallow embedding of OCL into Isabelle/HOL. HOL-OCL
tries to strictly follow the OCL 2.0 standard, e.g. including a
three valued logic.

» Formalizing the Java semantics:

— pJava an embedding of a Java subset into Isabelle/HOL [3].
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