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Abstract. We present a method for the security anal-
ysis of realistic models over off-the-shelf systems and
their configuration by formal, machine-checked proofs.
The presentation follows a large case study based on a
formal security analysis of a CVS-Server architecture.
The analysis is based on an abstract architecture (en-
forcing a role-based access control), which is refined to
an implementation architecture (based on the usual dis-
cretionary access control provided by the POSIX envi-
ronment). Both architectures serve as a skeleton to for-
mulate access control and confidentiality properties.
Both the abstract and the implementation architec-
ture are specified in the language Z. Based on a logical
embedding of Z into Isabelle/HOL, we provide formal,
machine-checked proofs for consistency properties of the
specification, for the correctness of the refinement, and
for security properties.
Keywords: verification, security, access control, refine-
ment, POSIX, CVS, Z

1 Introduction

These days, the Concurrent Versions System (CVS) is a
widely used tool for version management in many indus-
trial software development projects, and plays a key role
in open source projects usually carried out by highly dis-
tributed teams [3l[4]. (See http://www.cvshome.org.)
CVS provides a central database (the repository) and
means to synchronize local modifications of partial copies
(the working copies) with the repository. The repository
can be accessed via a network; this requires a security
architecture establishing authentication, access control
and non-repudiation. A further complication of the CVS

security architecture stems from the fact that the admin-
istration of authentication and access control is done via
CVS itself; i.e. the authentication table is accessed and
modified via standard CVS operations.

This work emerged from our own experiences with
setting up a CVS-Server for more than 80 users world-
wide. Besides overcoming a number of security problems
(see, e.g. http://www.cvshome.org/dev/security9706.
html, we had to develop an improved CVS-Server con-
figuration described in [I] meeting two system design
requirements: first, we had to provide a configuration
of a CVS-Server that enforces a role-based access con-
trol [I3]; second, we had to develop an “open CVS-Server
architecture”, where the repository is part of the shared
filesystem of a local network and the server is a regu-
lar process on a machine in this network. While such
an architecture has a number of advantages, the cor-
rectness and trustworthiness of the security mechanisms
become a major concern. Thus, we decided to apply for-
mal modeling and analysis techniques to meet the chal-
lenge.

In this paper, we present the method we developed
for analyzing the security problems of complex systems
such as the CVS-Server and its configuration. As a re-
sult, we provide the following contributions:

1. a modeling technique that we call architectural mod-
eling, which has an abstraction level in-between the
usual behavioral modeling used in protocol analysis
and code verification,

2. a technique to use system architecture models for
defining security requirements,

3. the presentation of the mapping from security re-
quirements to concrete security technologies as a data
refinement problem,
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4. mechanized proof-techniques for refinements and se-
curity properties over system transitions, and
5. reusable models for widely used security technologies.

In particular, we provide means to model a certain type
of security policies, and show how security analysis can
be performed not only on the abstract, but also on the
concrete level.

The paper is organized as follows: After introducing
some background material, e.g. CVS, our chosen specifi-
cation formalism Z and the architectural modeling style,
we present the model of the abstract system architec-
ture. We proceed with the model of the POSIX filesys-
tem as an infrastructure for the implementation archi-
tecture, and present the implementation architecture it-
self. Then, we describe the refinement relation between
the system architecture and the implementation archi-
tecture, and the analysis of security properties at the
different layers based on formal proofs in an interactive
theorem prover.

2 Background

2.1 The CVS Operations

For the purpose of this paper, it is sufficient to mention
only the most common CVS commands (initiated by the
client). These are: login for client authenticating, add for
registering files or directories for version control, commit
for transferring local changes to the repository, and up-
date for incorporating changes from the repository (e.g.
fetching the latest version from the repository) into the
working copy. Additionally, CVS provides functionality
for accessing the history, for branching, for logging in-
formation which is out of the scope of this paper, and a
mechanism for conflict resolution (e.g. merging the dif-
ferent versions) which is only modeled as an abstract
operation. Further, in order to facilitate both the refine-
ment and the security analysis, we will include in our
CVS model a operation which is strictly speaking not
part of CVS but of the operating system: the operation
modify. This operation models changes of the working
copy, e.g. by editing a file.

2.2 Z and Isabelle/HOL-Z

As our specification formalism, we chose Z [16] for the
following reasons: first, Z fits our modeling problem since
the complex states of our components suggest to use
a formalism with rich theories for data-structures. Sec-
ond, syntax and semantics of Z are specified in an ISO-
standardﬂ for future standardization efforts of operating
system libraries (e.g. similar to the POSIX [17] model in

1 7 formal specification notation An syntax, type system and
semantics, 2002. ISO/IEC 13568:2002

Sec. , Z is therefore a likely candidate. Third, Z
comes with a data-refinement notion [16, p. 136], which
provides a correctness notion of the underlying “security
technology mapping” between the two architectures and
a means to compute the proof obligations. We assume a
rough familiarity with Z (the interested reader is referred
to excellent textbooks on Z such as [T6L[I8]).

As our modeling and theorem-proving environment,
we chose Isabelle/HOL-Z [2], which is an integrated doc-
umentation, type-checking, and theorem-proving envi-
ronment for Z specifications, which is built on top of Is-
abelle/HOL. Isabelle [9] is a generic theorem prover, i.e.
new object logics can be introduced by specifying their
syntax and inference rules. Isabelle/HOL is an instance
of Isabelle with Church’s higher-order logic (HOL) [1],
a classical logic with equality. Isabelle/HOL-Z is a con-
servative embedding of Z into HOL (which is seman-
tically isomorphic to Z). As a result, Isabelle/HOL-Z
combines up-to-date theorem proving technology with
a widespread, standardized specification formalism, and
powerful documentation facilities.

2.8 Architectural Modeling

As a means to identify conceptual entities of the prob-
lem domain and to structure the overall specification,
we found it useful to describe the architecture of the
system on several abstraction layers. Following Garlan
and Shaw’s approach [6LI5], architectures are composed
by components (such as clients, servers or stores like the
filesystem) and connectors (like channels, shared vari-
ables, etc). In this terminology it is straight forward
to make the mentioned architectures more precise (as
implementation architecture, we present the intended
“open server architecture”, see Fig. . We assume for
each operation (such as add) a shared variable as con-
nector that keeps all necessary information that goes to
and from the components. This paves the way to formal-
ize this architecture by describing the transition relation
of the combined system by the parallel composition of
the local transition relations of the components synchro-
nized over the corresponding shared variable. Since such
transition relations can be represented in Z by operation
schemas, we can thus define, for example:

CVS_add = Client_add
A Server_add \ addgpared variable

where A is the schema-conjunction and \ the hiding op-
erator (i.e. an existential quantifier). Throughout this
paper, we will only present combined operation schemas
and model properties over the transitive closure of their
transition relations.

2.4 Architecture Refinement

When analyzing security architectures one can separate
an abstract security architecture (see Sec. [3.2]), which


http://www.brucker.ch/
http://www.informatik.uni-freiburg.de/\protect \unhbox \voidb@x \penalty \@M \ {}wolff

Achim D. Brucker, Burkhart Wolff: A Verification Approach for Applied System Security 235

CVS client 1
cvs login

| add

| update

CVS-Server

—

repository

| commit

CVS client n

cvs  login
| add
| update

| commit

(a) “system”

login
| add
| update

| commit

| update
| commit

filesystem

copy, mv, chmod, chown, ... repository
and

working copy

copy, mv, chmod, chown, ...

(b) “implementation”

Fig. 1: The different CVS-Server architectures

is merely a framework for describing the security re-
quirements, from an implementation architecture (see
Sec. where a mapping to security mechanisms is
described (see Fig. . By connecting the abstract and
the concrete layer formally, it is possible to reason about
safety and security properties on the abstract level. Such
a connection between abstract and more concrete views
on a system and their semantic underpinning is well-
known under the term refinement, and security technol-
ogy mappings can be understood as a special case of this.
Various refinement notions have been proposed [I8/[11];
in our setting, we chose to use only a simple data refine-
ment notion following Spivey [16].

2.5 Security Models vs. Security Technologies

Many security models distinguish between objects (e.g.
data) and subjects (e.g. users). Using role-based access
control (RBAC) [I3] one assigns each subject at least one
role (e.g. the role “administrator”), and access of objects
is granted or denied by the role a subject is acting in.
Further, roles can be hierarchically ordered, e.g. subjects
in the role “administrator” are allowed to do everything
other roles are allowed to. Our CVS-Server uses such a
hierarchic RBAC model.

In an RBAC model, the decision, which roles may
have access to which objects is done during system de-
sign and cannot be changed by regular users. In con-

system security L
architecture

security properties
(access control policy)

correct refinement

security technologies
& safety requirements

Fig. 2: Refining Security Architectures

implementation L
architecture

80

trast, in a discretionary access control (DAC) model,
every object belongs to a specific subject (its owner),
and the owner is allowed to change the access policies
at any time, hence “discretionary”. For example a DAC
implementation that also allows grouping users is the
Unix/POSIX filesystem layer [17] access control.

Based on a DAC that supports groups, one can ‘im-
plement’” an RBAC model by a special setup [12]. We
use a similar technique to implement a hierarchic RBAC
model for our CVS-Server on top of the POSIX filesys-
tem layer, which is described in Sec. [3:3-3] However, we
will analyze the concrete form in which DAC is imple-
mented in POSIX and not a conceptual model thereof.

3 The CVS-Server Case Study

The Z specification of the CVS-Server [1] consists of
more than 120 pages, and the associated proof scripts
are about 13000 lines of code. The organization of the
Z-sections follows directly the overall scheme presented
in Fig.[3] The Z-sections AbsState and AbsOperations are
describing the abstract system architecture of the client
and the server components. The Z-section SysConsis-
tency contains the consistency conditions (conservatism
of axiomatic definitions, definedness of applications, non-
blocking operation schemas) of the system architecture.
This is mirrored at the implementation architecture level
by the structures FileSystem, CVS-Server, and ImplCon-
sistency. The Z-section Refinement contains the usual
abstraction predicates relating the abstract and the con-
crete states, and also the proof obligations for this refine-
ment. The security properties, together with the corre-
sponding proof obligations, are defined in the sections
SysArchSec and ImplArchSec.

3.1 Entities of the Security Model

Following the standard RBAC model, we introduce ab-
stract types for CVS clients (users) Cvs_Uid, permissions
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Fig. 3: Organizing the Specification into Z-sections

Cws_Perm (which are isomorphic to roles in our setting),
and CVS passwords Cvs_Passwd used to authenticate a
CVS client for a permission:

[Cvs_Uid, Cvs_Perm, Cvs_Passwd)

Permissions are hierarchically organized by the re-
flexive and transitive relation cvs_perm_order (over per-
missions Cvs_Perm) with cvs_adm as greatest element:

cvs_adm, cvs_public : Cvs_Perm
cvs_perm_order : Cvs_Perm «— Cvs_Perm

cvs_perm_order = cvs_perm_order™

Vi : Cvs_Perm o (x, cvs_adm) € cvs_perm_order
Vz: Cvs_Perm e (cvs_public,x) € cvs_perm_order
Vz: Cvs_Perm e (x # cvs_adm) =

(cvs_adm, x) ¢ cvs_perm_order
Yz : Cvs_-Perm o (z # cvs_public) =

(z, cvs_public) ¢ cvs_perm_order
Viz: Cvs_Perm e 3y : Cvs_Perme

(z,y) € cvs_perm_order

We turn now to the security entities and mechanisms
of the CVS-Server and the clients: first we have to model
the working copies and the repositories as maps assign-
ing abstract names Abs_Name to data Abs_Data (both
types are abstract in our model):

[Abs_Name, Abs_Data]
ABS_DATATAB = Abs_Name + Abs_Data

A CVS-Server provides an authorization table, which
is used to control access within the repository. The server
stores for each file in the repository the required permis-
sion. These tables are modeled as follows:

= Cws_Uid x Cvs_Passwd
-+ Cvs_Perm
ABS_PERMTAB = Abs_Name + Cvs_Perm

AUTH_TAB

Clients possess in their working also a table that as-
signs to each abstract name a CVS client and another

map that associates each CVS client to the password
previously used during the cvs login procedure. The in-
terplay of these tables will be discussed later, here we
just define them:

ABS_UIDTAB = Abs_Name - Cvs_Uid
PASSWD_TAB = Cvs_Uid + Cvs_Passwd

3.2 The System Architecture

In this section, we give a brief overview on how we model
the system architecture, which is divided into: the state
of the server (including the repository), the state of the
client (including the working copy), and a set of CVS
operations working over both of them.

It is a distinguishing feature of a CVS-Server to store
the authentication data inside the repository such that
it can be accessed and modified with CVS operations.
This implies certain formal prerequisites: we require an
abstract name abs_cvsauth to be associated with data,
which can be converted into an authentication table via
a postulated function authtab.

abs_cvsauth : Abs_Name

abs_auth_of : Abs_Data +~ AUTH_TAB
abs_data_of : AUTH_TAB — Abs_Data
authtab : ABS_DATATAB -~ AUTH_TAB

ran(abs_data_of ) C dom(abs_auth_of)

YV x : dom abs_auth_of e
abs_data_of (abs_auth_of x) = x

Vo: AUTH_TABe
abs_auth_of (abs_data_of z) = x

Vr: ABS_DATATAB e abs_cvsauth € dom(r) =
authtab(r) = abs_auth_of (r abs_cvsauth)

Modeling the server’s state as a Z schema is straight
forward. The state contains the repository rep and the
map rep_permtab containing the required permissions for
each file. Accessing the authentication table inside rep
will require to have the role cvs_adm. RepositoryState is
modeled as follows:
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—— RepositoryState
rep : ABS_DATATAB
rep_permtab : ABS_PERMTAB

abs_cvsauth € dom rep

dom rep = dom rep_permtab
rep_permtab(abs_cvsauth) = cvs_adm
rep(abs_cvsauth) € dom abs_auth_of

The state of the client component contains the work-
ing copy wec, the wc_uidtab assigning a CVS client to
each file and a password table abs_passwd with creden-
tials (passwords) used in previous CVS login operations
(abs_passwd models the file .cvspass). Thus, for any data
in the working copy and whenever an access to it may be
processed, an individual role may be generated and vali-
dated by the server with respect to its current repository
state. Further, there is a set of abstract names wfiles which
is used as filter in update and commit operations. This
filter corresponds to the concept of the working directory
in the implementation, i.e. the effects of these operations
are restricted to files stored within the working directory:

ClientState
wc : ABS_DATATAB
we_widtab : ABS_UIDTAB
abs_passwd : PASSWD_TAB
wfiles : P Abs_Name

In what follows, we define the abstract CVS opera-
tions that model combined state transitions of the client
and the repository. Due to space reasons, we only present
login and commit.

The login operation simply stores the authentication
data on the client-side. This is used to authenticate a
CVS user for a permissions of the client. The A and
Z notation is used in Z to import the schemas in two
variants; one variant as a copy, the other by replacing all
variables by corresponding stroked variables (e.g. wc’)
describing the successor state. The = also introduces
equalities enforcing that the components of the previous
state are equal to the post state components.

— abs_login

cate. As a prerequisite, we define the shortcut is_valid_in
for checking that a CVS client, together with a creden-
tial (password), represents a valid role with respect to

the current repository:
_isvalid_in _: (Cus_Uid x Cvs_Passwd)

—ABS_DATATAB

V role : Cvs_Uid; pwd : Cvs_Passwd;
rep: ABS_DATATAB e
(role, pwd) is_valid_in rep
< (role, pwd) € dom(authtab(rep))
Further, the has_access predicate ensures is_valid_in
and that the permissions resulting from these credentials
are sufficient to access the requested file according to the

role hierarchy:
has_access - : P(ABS_PERMTAB

x ABS_DATATAB x PASSWD_TAB
x Abs_Name x Cvs_Uid)

Vrep_pt: ABS_PERMTAB; rep : ABS_DATATAB;

pwtb : PASSWD_TAB; file : Abs_Name;

role : Cvs_Uid e
has_access(rep_pt, rep, pwtb, file, role)
< (role, pwtb(role)) is_valid_in rep

A (rep_pt(file), authtab(rep)(role, pwtb(role)))

€ cus_perm_order

The commit operation consists of the construction
of a new repository rep’ and a new table with required
permissions rep_permtab’ which were constructed via the
override operator @ from previous states of these tables.
For rep’, three cases can be distinguished: (i) either a
file in the repository does not occur in the working copy,
then it is unchanged, or (ii) it occurs in the working
copy but not in the repository, then it is copied provided
a valid permission is available in the wc_uid_tab of the
working copy, or (iii) the file exists both in working copy
and repository, then the working copy file overrides the
repository file whenever the client has access:
— abs_ci
= ClientState
ARepositoryState
files? : P Abs_Name

AClientState

= RepositoryState
passwd? : Cvs_Passwd
wid? : Cvs_Uid

(uid?, passwd?) € dom(authtab rep)
abs_passwd' = abs_passwd © {uid? — passwd?}
we’ = we

we_uidtab = we_uidtab

wfiles’ = wfiles

The commit (ci) operation usually takes a set of files
as arguments (here denoted by files?). The case that no
arguments may be passed is modeled by the possibility
to set files? to the set of all files ABS_NAME.

Now we address the core of our hierarchic RBAC
model of the system architecture, the has_access predi-

(wfiles N files?) C dom we
rep’ = rep ® ({n : wfiles N files? | n ¢ dom rep
A n € dom we_uidtab
(we_widtab(n), abs_passwd(wc_uidtab n))
is_valid_in rep} <1 wc)
®({n : wfilesN files? | n € dom rep
A n € dom we_uidtab
A has_access(rep_permtab, rep,
abs_passwd, n, we_uidtab(n))
} < we)
rep_permtab’ = rep_permtab @ {n : wfiles N files? |
n ¢ domrep A n € dom wc_uidtab
A (we_uidtab(n), abs_passwd(wc_uidtab n))
€ dom(authtab rep) e
n +— authtab(rep)(wc_uidtab(n),
abs_passwd(wc_uidtabn))}
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The table rep_permtab’ is extended by permissions
for files that are new in the repository (based on the
permissions used for committing these files). Further,
the table wc_uid_tab is updated by the add operation,
which we omit here.

In addition to these abstract models of the CVS op-
erations, we provide a modify operation which explicitly
models interactions of users with their files via modifying
the files of the working copy of the client state.

3.3 The Implementation Architecture

The implementation architecture of CVS-Server is in-
tended to model realistically the security mechanisms
used to achieve the security goals formalized in the previ-
ous system architecture. Therefore, it captures the rele-
vant operating system environment methods, i.e. POSIX
methods in our case, for accessing files and changing
their access attributes. We derived our POSIX model by
formalizing the specification documents [17] and detailed
system descriptions [5] and by validating it by carefully
chosen tests and by inspections of critical parts of the
system sources. In this POSIX model, the CVS Filesys-
tem will be embedded, i.e. a repository is described as
some area in the filesystem, where file attributes are set
in a suitable way.

3.3.1 Modeling Basic Data Structures

We declare basic abstract sorts for POSIX user IDs,
group IDs, data (file contents left abstract in this model),
elementary filenames and file paths.

[Uid, Gid, Data, Name]
Path = seq Name

We assume a static table groups that assigns to each
user a set of groups he belongs to. We also describe a
special user ID root, modeling the system administra-
tor. As we will show later, all security goals can only be
achieved for all users except root, because root is allowed
to do (almost) everything.

groups : Uid — P Gid
root : Uid

3.3.2 Modeling the POSIX Filesystem Access Control

Within POSIX, every file belongs to a unique pair of
owner (user) and group, and file access is divided into
access by the user (owner), the group or other (world).
The POSIX discretionary access control (DAC) distin-
guishes access for reading (r), writing (w), and executing
(x). We also model the “set group id” (sg) on directo-
ries, which affects the default group of newly created files
within that directory (see [5] for more technical details
about the Unix/POSIX DAC):

Perm :=ru| wu|zu|rg| wg|zg|ro|wo|zolsg

The filesystem consists of a map from a file path
to file content (which is either Data for regular files or
Unit for directoriesEI) and of file attributes (assigning to
each file or directory the permissionsﬂ the user ID of
the owner and the group it belongs to). Our concept
of file attributes may easily be extended by adding new
components to its records.

Unit ::= Nil

FILESYS_TAB = Path + (Data + Unit)
FILEATTR = [perm : P Perm; uid : Uid; gid : Gid]
FILEATTR_TAB = Path + FILEATTR

We use type sums for modeling the FILESYS_TAB
which are not part of the Z standard. Type sums can
simulate enumerations in Z free type definitions on the
fly. The two functions Inl : X — (X+Y) and Inr: ¥ —
(X +Y) are provided for building type sums.

For testing if a directory contains a specific entry
(either a file or a directory) we provide the function is_in.
Further, we provide functions that test for regular files
(is_file_in) and for directories (is_dir_in); their definitions
are straight forward:

_is_in _: Path < (Path - (Data + Unit))
_is_dir_in _: Path < (Path + (Data + Unit))
_isfile_in _: Path < (Path - (Data + Unit))

Y fs : (Path -+ (Data + Unit)); f : Pathe
(fisiin fs) < f € dom fs
Y fs : (Path - (Data + Unit)); d : Pathe
(d isdir_in fs) < (d is_in fs)
A (Bu: Unit o fs(d) = Inr(u))
Y fs : (Path -+ (Data + Unit)); f : Pathe
(f isfile_in fs) < (f is_in fs) A = (f is_dir_in fs)

At this point we are ready to model the filesystem
state, which mainly describes the map of (name) paths
to their attributes. As mentioned, we require that all
defined paths must be “prefix-closed”, i.e. all prefix paths
must be defined in the filesystem (thus constituting a
tree) and point to directories.

— FileSystem

files : FILESYS_TAB
attributes : FILEATTR_TAB

¥V p: dom files o (p = ())
V (front(p) is_dir_in files)
dom files = dom attributes

In addition to the filesystem state, we introduce a
state schema ProcessState for client related information,

2 We do not consider special files, like devices, named pipes or
process files.

3 The terms attributes and permissions are used interchange-
ably.
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namely the current user and group ID, the client’s umask
(which is used to set the initial file attributes on new
files) and current working directory (wdir). The work-
ing directory is often used as an implicit parameter to
filesystem and CVS operations:

ProcessState
uid : Uid
gid : Gid
umask : P(Perm \ {sg})
wdir : Path

As a prerequisite for describing functions that do
modifications on the file system, we need to model the
POSIX DAC in detail. Therefore we first introduce a
function has_attrib, which decides whether the attributes
(read, write and execute) of a file are set with respect to a
specific user (and the groups he is a member of). Within
this function, a crucial detail of the POSIX access model
is formalized, namely that file access is checked by se-
quentially testing the following conditions (leading to an
overall failure if the first condition fails):

1. If the user owns the file, he can only access the file if
the access attributes for users grant access.

2. If the user is a member of the group owning the file,
he can only access the file if the access attributes for
the group grant access.

3. Last, the access attributes for others are checked.

These requirements may lead to some unexpected conse-
quences, e.g. assume a user u being member of the group
g and owner of a file with the permissions { perm ==
{rg, ro}, uid == u, gid == g ). Curiously, file access will
be denied for him, while granted for all others in his
group, because the rights specified for the user precede
the rights given for the group.

has_attrib _ : P(Uid x Path x FILEATTR_TAB
x Perm x Perm x Perm)

Vuid : Uid; fa: FILEATTR_TAB;
pu, pg, po : Perm o ¥ p : dom(fa) e
has_attrib(uid, p, fa, pu, pg, po) <
((uid = root) V
(Vm : P Perm; diruid : Uid; dirgid : Gid |
{ perm = m, uid = diruid, gid = dirgid |
= fa(p)
(diruid = uid N\ pu € m) V
(diruid # uid A dirgid € groups(uid)
A pg € m)V
(diruid # wid N\ dirgid ¢ groups(uid)
A po € m)))

Based on has_attrib we introduce shortcuts for check-
ing read, write and execute attributes (e.g. has_w_attrib)
of files and directories as well as definitions for checking
the read, write and execute access (e.g. has_w_access).

has_w_attrib_ : P(Uid x Path x FILEATTR_TAB)
has_r_attrib_ : P(Uid x Path x FILEATTR_TAB)
has_z_attrib_: P(Uid x Path x FILEATTR_TAB)

YV uid : Uid; p: Path; fa: FILEATTR_TAB e
has_w_attrib(uid, p, fa)
& has_attrib(uid, p, fa, wu, wg, wo)

has_w_access - : P(Uid x Path x FILEATTR_TAB)
has_r_access _: P(Uid x Path x FILEATTR_TAB)
has_z_access - : P(Uid x Path x FILEATTR_TAB)

YV uid : Uid; p: Path; fa: FILEATTR_TAB e
has_w_access(uid, p, fa) <
(V pref : Path | pref prefix (frontp) e
has_z_attrib(uid, pref, fa))
A has_w_attrib(uid, front p, fa)

As an example for our approach to specify POSIX
operations, we present the (shortened) file remove spec-
ification [1'7], which corresponds to unlink():

The unlink() function shall fail and shall not unlink

the file if:

— A component of path does mot name an existing
file or path is an empty string.

— Search permission is denied for a component of
the path prefix, or write permission is denied on
the directory containing the directory entry to be
removed.

This text is formalized by a Z operation schema rm as
follows: The first condition in the body is common for
most filesystem operations and requires the path of the
file must be a valid one in the filesystem table. The sec-
ond condition requires that the client has write permis-
sions on the file and the working directory (“the directory
containing the directory entry to be removed”), which is
checked via the has_w_access predicate:

— ™
AFileSystem
Z ProcessState
u? : Name

(wdir ~ (u?)) isfile_in files
has_w_access(uid, wdir, attributes)

A has_w_access(uid, wdir ™ (u?), attributes)
files' = {wdir ™ (u?)} < files
A attributes’ = attributes

The definitions for the remaining filesystem opera-
tions are similar, see [I] for details.

3.3.3 Mapping CVS Access Control onto POSIX DAC

We turn now to a crucial aspect of the implementation of
the security goals by security mechanisms provided from
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standard POSIX DAC: any CVS role will be mapped to
a particular pair of system owner and a set of system
groups. This mapping has the consequence of an inheri-
tance mechanism for generating default roles when creat-
ing new objects in the repository. Additionally, there is a
mechanisms to “down-scale” and “up-scale” the permis-
sions in the repository for the CVS administrator (not
described here).

For every CVS operation, the server determines the
CVS role according to the client’s CVS ID and password.
These roles are then mapped to POSIX user and group
IDs, and these are compared to the file attributes of
the files and directories the operations operates on. This
translation is done by the two functions cvsperm2uid
and cvsperm?2gid.

cvsperm2uid : Cvs_Perm — Uid
cvsperm2gid : Cvs_Perm — Gid
users : P Uid

root ¢ ran cvsperm2uid
ran cvsperm2uid N users = &

ran cusperm2gid N U{x : users o groups(z)} = &
ran cusperm2uid <1 groups = {z : Cvs_Perme
cvsperm2uid x —
{c¢: Cvs_Perm | (¢, z) € cvs_perm_order e
cusperm2gid ¢} }

It is important to notice that CVS IDs (Cuvs_Uid) are
independent of POSIX IDs (Uid) and that the POSIX
IDs which are used by CVS are disjoint from “normal”
POSIX user IDs, i.e. it is impossible to login with such
a special POSIX ID.

From these distinctness constraints follows that the
POSIX system administrator and the CVS administra-
tor may be different. Moreover, we require that the group
table (administrated by the system administrator and
nobody else) is compatible with cvs_perm_order. These
requirements have to be assured during installation of a
CVS server.

The CVS repository is a subtree of the normal filesys-
tem; its root is denoted by the absolute path cvs_rep
and all paths inside the repository are relative to the
root cvs_rep. Further, the administrative files of CVS
are stored in the CVSROOT directory, which is a sub-
directory of cvs_rep, and the file that contains all au-

thentication information is called cvsauth and is located
inside CVSROOT.

cvs_rep : Path

CVSROOT : Name

cvsauth : Name

auth_of : Data - AUTH_TAB
data_of : AUTH_TAB — Data

ran data_of C dom auth_of
Yz : dom auth_of e data_of (auth_of x) = x
Vo : AUTH_TAB e auth_of (data_of x) = x

3.3.4 Modeling the CVS Filesystem

A major design decision for our specification is to enrich
the FileSystem state by new state components relevant
to CVS, or more precisely, the combined client/server
component of CVS. In CVS, working copies contain spe-
cific attributes assigned to the files; we restrict ourselves
to security relevant attributes, i.e. the CVS client ID and
password, and the path rep where the file is located in
the repository. This information is kept in an own table
implicitly associated to the working copies.

CVS_ATTR = [rep : Path; f_uid : Cvs_Uid]
CVS_ATTR_TAB = Path +~ CVS_ATTR

Due to the space reasons, we only show some require-
ments of the combined POSIX and CVS filesystem:

— working copies and the repository are distinct areas
of the filesystem.

— the repository contains a special directory that con-
tains the administrative data of CVS. Certain restric-
tive access permissions must be ensured to this direc-
tory and its contents to preserve the system integrity.

— requirements on file attributes within the repository:

— since the owners of files must be POSIX user IDs
that are disjoint from “regular” POSIX user IDs,
and the group IDs must be legal with respect to
the CVS role hierarchy. This guarantees that reg-
ular users only have the rights described by the
file attributes for others. Thus, our initial invari-
ant for the base directory of the repository implies
that such a user cannot do anything, using only
POSIX operations, within the repository.

— read, write and execute permissions are the same
for user and group. Together with our group setup
this ensures that the initial CV'S role and all roles
with higher precedence have the same rights to
access that file.

These invariants are formally described in the ax-
iomatic definition:

attr_in_rep _ : P FileSystem
attr_in_root _ : P FileSystem
attr_outside_root _ : P FileSystem

Y fs : FileSystem e attr_in_rep(fs) <
(Vp: dom fs.files | (cvs_rep prefix p) e
(((fs.attributes p).uid) € ran cvsperm2uid
A ((fs.attributes p).gid)
€ groups((fs.attributes p).uid) A

(ru € ((fs.attributes p).perm) < rg
€ (fs.attributes p).perm) A

(wu € ((fs.attributes p).perm) < wg
€ (fs.attributes p).perm) A

(zu € ((fs.attributes p).perm) < g
€ (fs.attributes p).perm)))
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ACus_FileSystem
= ProcessState
p? . Path

has_r_access(uid, wdir ™ p?, attributes)
wdir € dom wes_attributes
files' = files © {q : rep_access(0 Cvs_FileSystem)((wes_attributes wdir).rep ™ p?) |

has_r_access(uid, wdir > cutPath(q, (wes-_attributes wdir).rep), attributes)

cvs_rep — q > files(wdir 7 cutPath(q, (wes-attributes wdir).rep))}
attributes’ = attributes ® {q : rep_access(0 Cvs_FileSystem)((wes_attributes wdir).rep ™ p?) |

has_r_access(uid, wdir ~ cutPath(q, (wes_attributes wdir).rep), attributes)

D}

wes_attributes’ = wes_attributes

!
cvs_passwd = cvs_passwd

cvs_rep ~ g — ( perm = {ru, rg},

uwid = cvsperm2uid(get_auth_tab(files)((wes_attributes q).f —uid,
)

cvs_passwd((wces_attributes q).f-uid))),

( )
gid = cusperm2gid(get_auth_tab(files)((wes_attributes q).f _uid,
)

cvs_passwd((wcs_attributes q).f —uid))

Fig. 4: The specification of the commit command (implementation architecture)

We turn now to a formal description of the repository
within the filesystem. This invariant of the system is cap-
tured in the state schema Cus_FileSystem:

— Cus_FileSystem

FileSystem; wecs_attributes : CVS_ATTR_TAB
cvs_passwd : PASSWD_TAB

dom wes_attributes C dom files

(cvs_rep ™ (CVSROOT, cusauth) isfile_in files)
attributes(cvs_rep) =
(| perm = {ru, wu, zu, zg, sg},

wid = cvsperm2uid(cvs_adm),
gid = cvsperm2gid(cvs_public) )
attr_in_rep(0 FileSystem)
((attributes(cvs_rep ~ (CVSROOT))).gid)
= cusperm2gid(cvs_adm)
attr_in_root(0 FileSystem)
A attr_outside_root(0 FileSystem)

Additionally to rep_attributes, we impose similar re-
quirements for the administrative area of the repository
by the predicate attr_in_root. Further, we describe in the
predicate attr_outside_root the requirements for the data
in the repository, i.e. files that are subject to version con-
trol. Both axiomatic definitions are omitted here.

Now we have established a basis for the operations
on the combined POSIX and CVS environment. As in
Sec. we present the login and commit operations in
order to compare the two different architecture levels.

Before we describe the operations of the CVS-Server
we need to model the access to the CVS authentica-
tion table (get_auth_tab) that is part of the cuvs_rep ™
CVSROOT directory and underlies the standard access
discipline of CVS-Server. In particular, the authentica-

tion table is only modifiable by the CVS administrator,
but not by any other client of the system.

‘ get_auth_tab : FILESYS_TAB — AUTH_TAB

The login operation updates the variable cvs_passwd,
provided that for the combination of user ID and pass-
word the authentication will succeed.

— cvs_login
ACvs_FileSystem
= ProcessState
cvs_uwid? : Cvs_Uid
cvs_pwd? : Cvs_Passwd

(cvs_uid?, cvs_pwd?) € dom(get_auth_tab files)
cvs_passwd’ = cvs_passwd

@ cvs_uid? — cvs_pwd?}
wes_attributes’ = wes_attributes
0 FileSystem = O( FileSystem)’

In the commit operation, the current working direc-
tory wdir can be restricted by the parameter p? to just
one file or directory. All files below p? for which the
client has access will be committed. We use the function
cutPath to remove a given prefix from a path.

‘ cutPath : (Path x Path) -+ Path

‘Va,lxc:Patho cutPath(a,b) =c<a=b"c¢

In contrast to the system architecture specification
we also must determine the POSIX file attributes of the
files. The particularity of the update and the commit
operation is the use of rep_access which computes the
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paths into the repository to which the client has read
access according to his CVS role.
rep_access : Cvs_FileSystem — Path — P Path

V cfs : Cvus_FileSystem; p: Pathe
rep_access(cfs)(p) = {q : Path | p prefix ¢

A cvs_rep — q € dom cfs. files

A (Fidpwd : cfs.cus_passwd e
idpwd € dom(get_auth_tab(cfs.files))

A (has_r_access( cvsperm2uid(
get_auth_tab(cfs.files)(idpwd)),
cvs_rep " q, cfs.attributes)

V (has_z_access(cvsperm2uid(
get_auth_tab(cfs.files) (idpwd)),
cvs_rep " q, cfs.attributes)

A cvs_rep 7 q is_dir_in cfs.files)))}

The schema cvs_ci (see Fig. models the commit
command. We require that the client has read access for
the file or directory in the current working directory and
sufficiently high-ranked role to modify the repository.

4 Formal Analysis

A formal model, even if successfully type-checked, is in
itself not a value of its own: it must be validated, e.g.
by testing techniques or by formal proof activities as in
our approach. In this section, we present a formal consis-
tency check of the specifications, and we show that the
implementation architecture is, in a formal sense, a re-
finement of the abstract system architecture. We specify
and prove security properties of the type “no combina-
tion of user-commands will enable a user to write into
the repository, except he has the required access rights”.

4.1 Checking the Consistency

Two types of “sanity checks” are useful and have been
carried out with HOL-Z [2] routinely:

— definedness checks for all applications of partial func-
tions in their context, as undefined applications usu-
ally indicate that some part of the precondition of a
schema context is missing, and

— checking the state invariant of all operation schemas;
in particular, we require that in a schema, all syntac-
tic preconditions (i.e. the conjuncts in the predicate
part that contain occurrences of variables without
stroke “’” and “!” suffix) suffice to show that a suc-
cessor state exists.

Violating these conditions does not result in logical in-
consistencies but in unprovable statements or operation
definitions with undesired semantical effects.

4.2 FEstablishing the Refinement

To prove that the concrete implementation architecture
correctly implements the abstract system architecture,

we have to define an abstraction schema R which relates
the components of the abstract state to the components
of the concrete state. In particular, we must map ab-
stract names and data to paths and files in the sense of
the POSIX filesystem, and the working copies and repos-
itories of the abstract model must be related to certain
areas of the filesystem, the authentication tables must
be related, the user must not be root (the refinement
simply does not work otherwise) and the file attributes
in the concrete filesystem must be convertible along the
mapping discussed in Sec[3.3.3]

Due to limited space, we will only show two con-
straints of R formally. As a prerequisite, let us define
a function Rname2path, which maps abstract names, to
file paths in the implementation model. One constraint
is that abs_cusauth is mapped to the right path and that
the authentication tables in both models are equal:

Rname2path(abs_cvsauth) = cvs_rep

~(CVSROOT, cvsauth)
authtab(rep) = get_auth_tab(files)

The last constraint we present here enforces the ab-
stract working copy to have a counterpart in the imple-
mentation working copy:

Rname2path(dom we]) = dom wes_attributes

To verify the refinement relation R, following Spivey
in [I6], we must prove two refinement conditions for each
operation on the abstract state and its corresponding op-
eration on the concrete state: Condition (a) ensures that
a concrete operation terminates whenever their corre-
sponding abstract operation is guaranteed to terminate,
condition (b) ensures that the state after the concrete op-
eration represents one of those abstract states in which
the abstract operation could terminate.

As an example of the refinement, we show the in-
stantiation of conditions (a) and (b) for the CVS login
operation. The refinement conditions, though, as defined
in [I6], assume that both operations have the same in-
put parameters, but since we define them differently in
our two models, we introduce an additional schema Asm,
which is used to insert further assumptions into the re-
finement proofs (the effect could also have been achieved
by a suitable renaming):

— Asm
passwd?, cvs_pwd? : Cvs_Passwd
wid?, cvs_uid? : Cvs_Uid

passwd? = cvs_pwd?
wid? = cvs_uid?

In the case of the login operation, these assumptions
are simple since the parameters are of the same type but
differ in name. Instantiating condition (a) and (b) for the
login operation and adding the assumption schema Asm
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leads to the following two proof obligations:

login, =V ClientState; RepositoryState;
ProcessState; Cvs_FileSystem,;
passwd?, cvs_pwd? : Cvs_Passwd; uid?,
cvs_uid? : Cvs_Uid e
Asm A pre abs_login A R = pre cvs_login
loginy =V ClientState; RepositoryState;
ProcessState; Cvs_FileSystem;
ProcessState’; Cvs_FileSystem'; passwd?,
cvs_pwd? : Cvs_Passwd; uid?
cvs_uid? : Cvs_Uid e
Asm A pre abs_login A R A cvs_login
= (3 ClientState’; RepositoryState’ o
R’ A abs_login)

The obligations for the other operations are defined
analogously. So far, we proved these obligations formally
for the refinement of login, add and update. These proofs
considerably helped us to identify subtle side-conditions
in our model and thus to get our real CVS configuration
“right”.

4.8 Security Properties in Architecture Layers

Specifying the security properties motivates a Z-section
for the system architecture and one for the implemen-
tation architecture, both containing a classical behav-
toral specification. In SysArchSec we investigate security
properties of the system architecture. In ImplArchSec we
investigate the same properties and additional ones that
are specific to the implementation architecture.

4.3.1 The General Scheme of Security Properties

As an interface between the operation schemas of the two
architecture layers and the behavioral part allowing to
specify safety properties, we convert suitably restricted
operation schemas of both system layers into explicit
relations over the underlying state. The purpose of these
restrictions is to provide a slot for side-conditions that
are related to the security model and not the functional
model described in the previous sections:

ropy = op1 N Ry
0Py = 0pn N Ry,

where each rop; represents the operation schema op;
constrained by the restriction schema R;. Further the
schema disjunction step represents the overall step rela-
tion of the system, which is converted into a transitively
closed relation trans:

step =rop; V...V ropy,
trans = {step | (Ostate, Ostate’) }*

In the literature, three types of properties can be dis-
tinguished: One may formalize properties over the set of
reachable states, the set of possible transitions or the set
of possible sequences of states (traces) of a system. While
the first two types are only sufficient for classical safety
invariants (“something bad will never happen”), the lat-
ter two allow for the specification of liveness properties
(“eventually something good will happen”). The general
scheme for properties over reachable states and possi-
ble transitions for safety properties and the schema for
liveness properties looks as follows:

SPrs = Vo : trans(init)) e Po
SPrr = ¥(0,0’) : init <l trans e P(o,0”)
LPgr = V(0,0’) : init < transe
3(0’”, O,///) - trans e P(O’, 0/701/’0///)

Note that the reachable states are restricted via the
existential image operator or the domain restriction to
the states (respectively transitions) reachable from the
set of initial states init.

4.3.2 An Instance of the General Scheme: RBAC _write

We will exemplify the scheme SPgp for a crucial security
property, namely “the user may write in the repository
only if he has RBAC-permissions”, which we will call
RBAC _write in the following. Moreover, we will outline
the inductive proof.

As a prerequisite, we postulate two arbitrary sets
knows and invents; a client “knows” a set of pairs of
roles and passwords, and “invents” only files from a given
set of pairs from names to data. We assume invents to
be closed under the merge-operation left abstract in our
modelﬁ On this basis, we define a security policy, by
providing suitable restrictions op;R for the system op-
erationsﬂ For example, we restrict the add operation to
elements in the domain of the invents-set, we assume
login being restricted to roles and passwords the client
knows set, the modify operation and add being restricted
to data the client “invents”. While these restrictions have
a more technical nature, a more conceptual restriction
of abs_ci is as follows: in the role cvs_adm, the authen-
tication table may only be altered such that rights are
withdrawn, not granted. A typical restriction looks as
follows:

abs_loginR = abs_login
A [cvs_uid? : Cvs_Uid; passwd? :
Cuvs_Passwd |
(cvs_wid?, passwd?) € Aknows|

4 This is very similar to the concept of abstract crypt-functions
and the closures analz, synth and parts in [10]; see discussion

5 In practice, such security policies may be based on voluntary
self-restrictions of users or enforced by administrative means.
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Now we define the step-relation and its transitive clo-
sure of the system architecture layer:

step = abs_loginR V abs_addR V abs_ciR
V abs_modifyR vV abs_up V abs_cd

AbsState = ClientState N RepositoryState

trans = {step e (0 AbsState, § AbsState’)}*

Finally, for constructing the proof goal RBAC _write,
we instantiate the P in our schema SPrr by:

rbac_write_: . ..

Y rep, rep’ : ABS_DATATAB;
YV rptab’ : ABS_PERMTAB e
rbac_write(rep, rep’, rptab’) <
(Vf:domrep o
(rep(f) # rep/ (]

A (f,rep’(f)) € invents)
= (Im : knowse

(rptab’ (f), authtab(rep’)(m))
€ cus_perm_order))

This property reads as follows: whenever there is a
change in the repository, and the changed file stems from
the users invents-set, the user must have valid permis-
sions according to the RBAC-model. We observe that

rbac_write is true whenever the repository does not change,

i.e. rbac_write(r, r, rt) holds.

4.3.3 A Proof-Outline

We will now present an exemplary proof (performed with
HOL-Z) for RBAC _write. The initial proof goal stating
that RBAC _write holds is refined by unfolding elemen-
tary definitions and simplification of Z notation to the
following proof state:

[oo = (abs-passwd, rep, rep_permtab, we,
we_uidtab, wfiles);

o1 = (abs_passwd’, rep’, rep_permtab’, wc',
we_uidtab’, wfiles');

AbsStateoy;

AbsStateo;
(00,01) : {step e (0g,01)}"
=
oo : tnit
= rbac_write(rep, rep’, rep_permtabd’)

Over this implication, we can now apply an induction
rule over the transitive closure:

Puzy,
(z,y) € 1%,
[t €dom r] [y €ran 7] (y,2) er
(a,b) € r* Pz Pyy Pz

Pab

This leads to two base cases and the induction step;
both base cases are trivially true due to observation
rbac_write(r, r, rt). Now the induction steps, which looks
after some massage as follows, remains to show:

ooo0 = (abs_passwdz, repz, rep_permtabz, wez,
we_uidtabx, wfilesx);

oo1 = (abs_passwdy, repy, rep_permtaby, wey,
we_uidtaby, wfilesy);

010 = (abs_passwdz, repz, rep_permtabz, wez,
we_uidtabz, wfilesz);

ooo : init = rbac_write(repz, repy, rep_permtaby);

(000, 001) : {step ® (d0,01)}7;

(000, 010) : {step o (00,01)}

]] = 0o : nit
= rbac_write(repz, repz, rep_permtabz)

Here, the point of proof refinement is the assumption
(000,001) : {step ® (0p,01)}*, which can be decomposed
via the definition of step into a disjunction of schemas,
where the input variables are existentially quantified. A
generic tactic strips away the disjunctions and the exis-
tential quantifiers in the assumption. The result is a case
split over all operations of the system architecture and
universally quantified input parameters of all operations
under consideration. Now, the observation is crucial that
all operations except abs_ci do not change the repository,
and, as a consequence of observation rbac_write(r,r, rt),
imply the truth of the step. We can therefore focus on
the case abs_ci:

(000, 001) : {step ® (00,01)}7;
rbac_write(repx, repy, rep_permiaby);
abs_ci(abs_passwdy, abs_passwdz, filesq, repy, repz,
rep_permtaby, rep_permtabz, wey, wez,
we_uidtaby, we_uidtabz, wfilesy, wfilesz)
(000) : @nit;
| = rbac_write(repx, repz, rep_permtabz)

This is the core part of an invariance proof: the sys-
tem made a transition from an initial system state (with
repz) to another (with repy) performing an arbitrary
combination of operations and the system behaved well
(i.e. rbac_write(repx, repy, rep_permtaby)). Now a com-
mit operation (abs_ci) occurs, and the question is if the
resulting state (with repz) will also fulfill our safety prop-
erty.

The core of this subproof is, of course, a case distinc-
tion following the definition of abs_ci shown in Sec.
a file may be

1. in the repository and not in the working copy: then
abs_ci will change nothing,
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2. in the working copy and not in the repository: then
abs_ct will only change the latter if the current cre-
dentials are is_valid_in which implies write_correct as
the rep_permtab was changed accordingly,

3. both in the working copy and the repository: then
abs_ci will only change the file in the repository if the
current credentials allow for has_access which implies
write_correct.

The interested reader may note that the overall scheme
of the proof follows the structure of the general scheme
of the property descriptions, which allows for automated
tactic support that copes with Z-related technicalities,
the choice of the inductions, the decomposition of the
specification and the systematic derivation of state com-
ponents remaining invariant. Obviously, there is a high
potential of automation for this type of proofs, such that
the proof developer may be guided rather automatically
to the critical questions in the induction step.

4.3.4 Other Examples

The verification of the analogous property RBAC _read
is straight forward; files in the working copy of a client
are either invented by him (via the operation modify)
or stem from the repository, where the client knows a
password to obtain sufficient permissions.

An important, but quite obvious liveness property
in the LPgp-scheme is RBAC _do_write: Provided the
client has access, it can change a file arbitrarily and
perform operations leaving the repository changed ac-
cordingly; the proof immediately boils down to abs_ci
which is designed to fulfill this property. At first sight,
RBAC _do_write looks very similar to RBAC _write, how-
ever, note that both properties are independent: one
could model an absolutely secure CVS-Server that never
changes the repository. Such a model trivially fulfills
RBAC _write, but is ruled out by RBAC _do_write.

So far, RBAC _write is formalized for a single-user
client/server setting. Extending the analysis to a multi-
user client/server model only requires simple modifica-
tions in the definition of the step-relation; via renaming
of the working copies and the invents and knows-sets,
instances of abs_ci, abs_up and modify for each client
with individual working copy can be generated. Adding
suitable restrictions (e.g. invents and knows-sets must
be pairwise disjoint), RBAC _write and similar proper-
ties remain valid.

It is well-known that security properties are usually
not preserved under refinement (see discussion later).
The reason is that implementing one security architec-
ture by another opens the door to new types of attacks
on the implementation architecture that can be com-
pletely overlooked on the abstract level. For example,
on the implementation architecture, it is possible to re-
alize an attack on the repository by combinations POSIX
commands such as rm and setumask etc (see Sec.
In principle, our method can be applied for this type of

analysis of the implementation architecture as well. In
this setting, the step-relation and the init is defined as:

stepimpr = ™M V setumask V - -- V chmod

V cvs_login V - -+ V cus_update
initimpr = ConcState

A [wes-attributes : CVS_ATTR_TAB |

wes_attributes = &)

Although the proofs on the implementation architec-
ture have the same structure as on the system archi-
tecture, they are far more complex since concepts such
as paths, the distinction between files and directories,
and their permissions are involved. Moreover, they re-
quire new side-conditions (for example, the refinement
can only be established for the case that the user is not
root) which were systematically introduced by the ab-
straction predicate R.

On the other hand, the higher degree of detail on
the implementation architecture makes a formalization
of new types of security properties possible: For exam-
ple, since the crucial concept directory is present on the
implementation level and since the existence of files can
only be established by having access to all parent direc-
tories of a file, one can express confidentiality properties
such as “the user can not find out that a file with name z
exists in some directory of the repository” on this level.

5 Conclusion

5.1 Discussion

We demonstrate a method for analyzing the security in
off-the-shelve system components thus made amenable
to formal, machine-based analysis. The method proceeds
as follows: First, specify the system architecture (as a
framework for formal security properties), second, spec-
ify the implementation architecture (validated by in-
specting informal specifications or testing code), third,
set up the security technology mapping as a refinement,
and fourth, prove refinements and security properties by
mechanized proofs. The demonstration of the method
follows a case study of a security problem for a real sys-
tem, the CVS client/server architecture. We believe that
the method is applicable for a wider range of problems
such as mission-critical e-commerce applications or e-
government applications.

The core of our approach is based on the presentation
of the security technology mapping as data refinement
problem. In general, it has been widely recognized that
security properties can not be easily refined — actually,
finding refinement notions that preserve security prop-
erties is a hot research topic [8l[14]. However, standard
refinement proof technology has still its value here since
it checks that abstract security requirements are indeed
achieved by a mapping to concrete security technology,
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and that implicit assumptions on this implementation
have been made explicit. Against implementation spe-
cific attacks, we believe that specialized security prop-
erty refinement techniques will be limited to restricted
aspects. For this problem, in most cases the answer will
be an analysis on the implementation level, possibly by
reusing results from the abstract level.

In our approach, the analysis is based on interactive
theorem proving while security analysis is often based
on model-checking techniques for logics like LTL, the pu-
calculus or process algebras like CSP. While these tech-
niques offer a high degree of automation, they possess
well-known and obvious limitations: the state-space must
usually be finite and in practice be very small, and the
analysis tends to be infeasible for many models, in par-
ticular those imposed by system specifications. As a con-
sequence, proof engineers tend to develop oversimplified
and unsystematically abstracted system models. In con-
trast, in our approach technical concerns like the size
of the system state-space, aesthetic concerns like natu-
ralness of the modeling (in our example, we use archi-
tectural modeling) or methodological needs like realis-
tic treatments of system specifications do not represent
fundamental obstacles to the analysis. In particular the
latter paves the way for the reuse of standard system
models like POSIX. Moreover, we have the full flexibil-
ity of Z and HOL to express security properties at need.

Our case study shows that the presented technology
and method makes the treatment of complex security
problems possible. Naturally, the question arises how
long the formalization and the proof work took. This
question is hard to answer, partly because the method
and technical components had been developed during
the project, partly because library theorems had to be
proven, partly because some contributors needed time to
learn Isabelle. The overall case study took about 18 man
months, including the development of tool support. An
substantial part (about six man months) was the for-
malization and testing (i.e. reverse engineering) of the
system which was done by Achim Brucker and Burkhart
Wolff. The proof work was done by Frank Rittinger, Har-
ald Hiss and Burhart Wolff. Using our tool support, we
estimate that someone with experience in theorem prov-
ing would be able to solve a similar task (specifying a
similarly complex system and proving the core security
properties) in less than 10 months. By improving the
general technology (e.g. better front-ends and tatic sup-
port) a further speed-up by a factor two seems feasible.

5.2 Related Work

Sandhu and Ahn described in [12] a method for embed-
ding role-based access control with the discretionary ac-
cess control provided by standard Unix systems. Our
model used this construction for providing the static
roles, but extended it to a dynamic model.

Wenzel developed a specification of the basic Unix
functionality, which was done in Isabelle/HOL and is
part of the actual Isabelle [9] distribution. On the file
system part, only a simple access model, not supporting
groups and the concepts of set-id bits, is formalized.

Our behavioral analysis is based on the same founda-
tions as Paulson’s inductive method for protocol verifi-
cation [I0]. Beyond the obvious difference, that Paulson
research focus is on analysis (the language of protocols
is deliberately small and restrictive) and not on mod-
eling, technical differences consist merely in some de-
tails: Paulson uses specialized induction schemes which
are automatically derived from the protocol-rules; these
are considered as inductive rules defining the set of sys-
tem traces. In contrast, we use standard induction over
transitive relations, which leads to a different organiza-
tion of the specification and the security properties and
leads to different tactic support.

5.3 Future Work

In our opinion, amazingly little work has been addressed
to the specification of the POSIX interface; due to its
often not intuitive features, its importance for security
implementations and its high degree of reuse, this is a
particularly rewarding target. We believe that our for-
malization is a starting point for a comprehensive, more
complete model of the filesystem related commands.

Clearly, the formal proofs established so far do not
represent a complete analysis of the (real) CVS-Server.
Many more security properties can be formulated, and,
by setting up different operation restrictions R;, “best-
practice” security policies can be formally investigated.
Moreover, in order to make implementation level secu-
rity analysis more feasible, it could be highly rewarding
to develop techniques and methods to reuse (abstract)
system level proofs on the more concrete levels.
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