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Our Vision
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Modeling Access Control with SecureUML

Meeting

start:Date
duration:Time

notify():OclVoid
cancel():OclVoid

Person

name:String

0..*

owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMeeting

Meeting:update
Meeting:delete

caller=self.owner.name

Figure: Access Control Policy for Class Meeting Using SecureUML

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML



Introduction Transformation Consistency Analysis Conclusion Motivation SecureUML

SecureUML
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SecureUML
L is a UML-based notation,
L provides abstract Syntax given by MOF compliant
metamodel,

L is pluggable into arbitrary design modeling languages,
L is supported by an ArgoUML plugin.
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¿eModel Transformation
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From SecureUML to UML/OCL

Substitute the SecureUML model by an explicit enforcement
model using UML/OCL.

¿e transformation basically
. initializes a concrete authorization environment,
. transforms the design model,
. transforms the security model.
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¿e Authorization Environment
Context

Principal

isInRole(role:String):Boolean

Identity

name:String

Role

name:String

getRoleByName(role:String):Role

0..*

+principal 1

0..*

identity 1

0..*

+roles 0..*

Figure: Basic Authorization Environment
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Design Model Transformation

Generate secured operations for each class, attribute and
operation in the design model.

L for each class C we add constructors and destructors,
L for each attribute of class C we add getter and setter
operations, and

L for each operation op of class C we add a secured wrapper:

context C::op_sec(...):...

pre: preop
post: postop = postop[f() ( f_sec(), att ( getAtt()]
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Security Model Transformation

L ¿e role hierarchy is transformed into invariants for the
Role and Identity classes,

L Security constraints are transformed as follows:
invC ( invC
preop ( preop
postop ( let auth = authopin

if auth

then postop
else result.oclIsUndefined()

and Set{}->modifiedOnly()

endif
where authop represents the authorization requirements.
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Consistency Analysis
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Relative Consistency
L An invariant is invariant-consistent, if a satisfying state
exists:

§σ. σ à inv

L A model is global consistent, if the conjunction of all
invariants is invariant-consistent:

§σ. σ à inv and inv� and invn

L An operation is implementable if for each satisfying
pre-state there exists a satisfying post-state:

∀ σpre > Σ, self , i, . . . , in. σpre à preopÐ�

§ σpost > Σ, result. (σpre,σpost) à postop
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Proof Obligations

L We require:
L if a security violation occurs, the system state is preserved
L if access is granted, the model transformation preserves the
functional behavior

Which results for each operation in a security proof
obligation:

spoop �= authop implies postop < postop

L A class system is called security consistent if all spoop hold.
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Modularity Results

Our method allows for a modular specifications and reasoning
for secure systems.

¿eorem (Implementability)
An operation op_sec of the secured system model is
implementable provided that the corresponding operation of the
design model is implementable and spoop holds.

¿eorem (Consistency)
A secured system model is consistent provided that the design
model is consistent, the class system is security consistent, and the
security model is consistent.
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Conclusion

We presented
L a modelling approach including access control,
L a toolchain supporting our approach,
L a method for consistency analysis of access control
specifications.

Future work includes,
L automatic generation of proof obligations,
L analyzing case studies,
L better proof support for access control specifications.
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Transformation

-

-
L provides formal, machine-checked semantics for OCL .,
L servers as a basis for examining extensions of OCL,
L is an interactive theorem prover for OCL (and UML class
models),

L publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Demo available!
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Design Model Transformation: Classes

L for each class C

context C::new():C

post: result.oclIsNew() and result->modifiedOnly()

context C::delete():OclVoid

post: self.oclIsUndefined() and self@pre->modifiedOnly()
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Design Model Transformation: Attributes

L for each Attribute att of class C

context C::getAtt():T

post: result=self.att

context C::setAtt(arg:T):OclVoid

post: self.att=arg and self.att->modifiedOnly()
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Design Model Transformation: Operations

L for each Operation op of class C

context C::op_sec(...):...

pre: preop
post: postop = postop[f() ( f_sec(), att ( getAtt()]
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Security Model Transformation: Role Hierarchy

L ¿e total set of roles in the system is specified by
enumerating them:

context Role

inv: Role.allInstances().name=Bag{<List of Role Names>}

¿e inheritance relation between roles is then specified by
an OCL invariant constraint on the Identity class:

context Identity

inv: self.roles.name->includes(’<Role1>’)

implies self.roles.name->includes(’<Role2>’)
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