
Introduction Transformation Consistency Analysis Conclusion

AModel Transformation Semantics and
Analysis Methodology for SecureUML

Achim D. Brucker
joint work with

Jürgen Doser, and Burkhart Wolff

Information Security, ETH Zurich, Switzerland

Model-Driven Engineering Languages and Systems
October , 

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion

Outline
Introduction and Background

Motivation
SecureUML

Transformation
¿e Authorization Environment
Design Model Transformation
Security Model Transformation

Consistency Analysis
Relative Consistency
Proof Obligations
Modularity Results

Conclusion

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Motivation SecureUML

Our Vision

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model

Transformation
Model−Analysis

and
Verification

su2holocl HOL−OCLArgoUML

Java

Code

Generation
C#

Phase PhasePhase
Design Transformation Verification and Code−Generation

Model
Repository

(MDR)

SecureUML

UML+OCL

(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Motivation SecureUML

Modeling Access Control with SecureUML

Meeting

start:Date
duration:Time

notify():OclVoid
cancel():OclVoid

Person

name:String

0..*

owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMeeting

Meeting:update
Meeting:delete

caller=self.owner.name

Figure: Access Control Policy for Class Meeting Using SecureUML

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Motivation SecureUML

SecureUML

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*

0..* 0..* 0..*

0..1 0..*

0..*

SecureUML
L is a UML-based notation,
L provides abstract Syntax given by MOF compliant
metamodel,

L is pluggable into arbitrary design modeling languages,
L is supported by an ArgoUML plugin.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion The Authorization Environment Design Model Transformation Security Model Transformation

¿eModel Transformation

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model−Analysis
and

Verification

Java

Code

Generation
C#

Phase PhasePhase
Design Transformation Verification and Code−Generation

su2holocl HOL−OCLArgoUML

Model

Transformation

Model
Repository

(MDR)

SecureUML

UML+OCL

(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion The Authorization Environment Design Model Transformation Security Model Transformation

From SecureUML to UML/OCL

Substitute the SecureUML model by an explicit enforcement
model using UML/OCL.

¿e transformation basically
. initializes a concrete authorization environment,
. transforms the design model,
. transforms the security model.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion The Authorization Environment Design Model Transformation Security Model Transformation

¿e Authorization Environment
Context

Principal

isInRole(role:String):Boolean

Identity

name:String

Role

name:String

getRoleByName(role:String):Role

0..*

+principal 1

0..*

identity 1

0..*

+roles 0..*

Figure: Basic Authorization Environment

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion The Authorization Environment Design Model Transformation Security Model Transformation

Design Model Transformation

Generate secured operations for each class, attribute and
operation in the design model.

L for each class C we add constructors and destructors,
L for each attribute of class C we add getter and setter
operations, and

L for each operation op of class C we add a secured wrapper:

context C::op_sec(...):...

pre: preop
post: postop = postop[f() (f_sec(), att (getAtt()]

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion The Authorization Environment Design Model Transformation Security Model Transformation

Security Model Transformation

L ¿e role hierarchy is transformed into invariants for the
Role and Identity classes,

L Security constraints are transformed as follows:
invC (invC
preop (preop
postop (let auth = authopin

if auth

then postop
else result.oclIsUndefined()

and Set{}->modifiedOnly()

endif
where authop represents the authorization requirements.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Relative Consistency Proof Obligations Modularity Results

Consistency Analysis

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model

Transformation
Model−Analysis

and
Verification

su2holocl HOL−OCLArgoUML

Java

Code

Generation
C#

Phase PhasePhase
Design Transformation Verification and Code−Generation

Model
Repository

(MDR)

SecureUML

UML+OCL

(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Relative Consistency Proof Obligations Modularity Results

Relative Consistency
L An invariant is invariant-consistent, if a satisfying state
exists:

§σ. σ à inv

L A model is global consistent, if the conjunction of all
invariants is invariant-consistent:

§σ. σ à inv and inv� and invn

L An operation is implementable if for each satisfying
pre-state there exists a satisfying post-state:

∀ σpre > Σ, self , i, . . . , in. σpre à preopÐ�

§ σpost > Σ, result. (σpre,σpost) à postop
Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Relative Consistency Proof Obligations Modularity Results

Proof Obligations

L We require:
L if a security violation occurs, the system state is preserved
L if access is granted, the model transformation preserves the
functional behavior

Which results for each operation in a security proof
obligation:

spoop �= authop implies postop < postop

L A class system is called security consistent if all spoop hold.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion Relative Consistency Proof Obligations Modularity Results

Modularity Results

Our method allows for a modular specifications and reasoning
for secure systems.

¿eorem (Implementability)
An operation op_sec of the secured system model is
implementable provided that the corresponding operation of the
design model is implementable and spoop holds.

¿eorem (Consistency)
A secured system model is consistent provided that the design
model is consistent, the class system is security consistent, and the
security model is consistent.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Introduction Transformation Consistency Analysis Conclusion

Conclusion

We presented
L a modelling approach including access control,
L a toolchain supporting our approach,
L a method for consistency analysis of access control
specifications.

Future work includes,
L automatic generation of proof obligations,
L analyzing case studies,
L better proof support for access control specifications.

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation

Appendix

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation

-

-
L provides formal, machine-checked semantics for OCL .,
L servers as a basis for examining extensions of OCL,
L is an interactive theorem prover for OCL (and UML class
models),

L publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Demo available!

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation Design Model Transformation Security Model Transformation

Design Model Transformation: Classes

L for each class C

context C::new():C

post: result.oclIsNew() and result->modifiedOnly()

context C::delete():OclVoid

post: self.oclIsUndefined() and self@pre->modifiedOnly()

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation Design Model Transformation Security Model Transformation

Design Model Transformation: Attributes

L for each Attribute att of class C

context C::getAtt():T

post: result=self.att

context C::setAtt(arg:T):OclVoid

post: self.att=arg and self.att->modifiedOnly()

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation Design Model Transformation Security Model Transformation

Design Model Transformation: Operations

L for each Operation op of class C

context C::op_sec(...):...

pre: preop
post: postop = postop[f() (f_sec(), att (getAtt()]

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

Transformation Design Model Transformation Security Model Transformation

Security Model Transformation: Role Hierarchy

L ¿e total set of roles in the system is specified by
enumerating them:

context Role

inv: Role.allInstances().name=Bag{<List of Role Names>}

¿e inheritance relation between roles is then specified by
an OCL invariant constraint on the Identity class:

context Identity

inv: self.roles.name->includes(’<Role1>’)

implies self.roles.name->includes(’<Role2>’)

Achim D. Brucker, Jürgen Doser, Burkhart Wolff Semantics and Analysis Methodology for SecureUML

