ACHIM D. BRUCKER

AN INTERACTIVE PROOF ENVIRONMENT FOR
OBJECT-ORIENTED SPECIFICATIONS

DISS. ETH. NO. 17097

AN
INTERACTIVE
PROOF ENVIRONMENT
FOR
OBJECT-ORIENTED
SPECIFICATIONS

A dissertation submitted to

ETH ZURICH

for the degree of
Doctor of Sciences

presented by
Achim D. Brucker

Diplom Informatiker, University of Freiburg, Germany
born 06.08.1975
citizen of Germany

accepted on the recommendation of
Prof. Ph.D. David Basin, examiner
Prof. Dr. Reiner Hihnle, co-examiner

Prof. Dr. Peter Miiller, co-examiner

2007

The method of “postulating” what we want has
many advantages; they are the same as the
advantages of theft over honest toil. Let us leave
them to others and proceed with our honest toil.

(Russell [103], p. 71)

ABSTRACT

We present a semantic framework for object-oriented specification lan-
guages. We develop this framework as a conservative shallow embed-
ding in Isabelle/HoL. Using only conservative extensions guarantees by
construction the consistency of our formalization. Moreover, we show
how our framework can be used to build an interactive proof environ-
ment, called HOL-0OCL, for object-oriented specifications in general and
for uML/OCL in particular.

Our main contributions are an extensible encoding of object-oriented
data structures in HOL, a datatype package for object-oriented specifica-
tions, and the development of several equational and tableaux calculi for
object-oriented specifications. Further, we show that our formal frame-
work can be the basis of a formal machine-checked semantics for ocL
that is compliant to the ocL 2.0 standard.

ZUSAMMENFASSUNG

In dieser Arbeit wird ein semantisches Rahmenwerk fiir objektorientierte
Spezifikationen vorgestellt. Das Rahmenwerk ist als konservative, flache
Einbettung in Isabelle/HoL realisiert. Durch die Beschrankung auf kon-
servative Erweiterungen kann die logische Konsistenz der Einbettung
garantiert werden. Das semantische Rahmenwerk wird verwendet, um
das interaktives Beweissystem HOL-OCL fiir objektorientierte Spezifika-
tionen im Allgemeinen und insbesondere fiir uML/OCL zu entwickeln.

Die Hauptbeitrage dieser Arbeit sind die Entwicklung einer erweiterba-
ren Kodierung objektorientierter Datenstrukturen in HOL, ein Datentyp-
Paket fiir objektorientierte Spezifikationen und die Entwicklung verschie-
dener Kalkiile fiir objektorientierte Spezifikationen. Zudem zeigen wir,
wie das formale Rahmenwerk verwendet werden kann, um eine forma-
le, maschinell gepriifte Semantik fiir ocL anzugeben, die konform zum
Standard fir ocr 2.0 ist.

CONTENTS

INTRODUCTION 11

11 Motivation 11

12 Contributions 13

1.3 Related Work 15

1.4 Overview 18

1.5 Typographic Conventions 19

FOUNDATIONS AND BACKGROUND 21
2.1 Object-oriented Specifications 21
2.2 Formal Background 30

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

3.1 Challenges 41

3.2 Theory Morphism and Structuring 45

3.3 Defining an Object-oriented Constraint Language 54
3.4 Formalizing Object-oriented Data Structures 61
3.5 Towards a Constrained Object Store 71

3.6 Equalities and Object-orientation 81

3.7 Operations for Accessing the System State 86
3.8 On Operation Specifications 87

3.9 Operation Calls 89

3.10 Operation Invocations 91

3.11 Limits to Recursive Invocations and Calls 94
3.12 Specitying Frame Properties 97

3.13 Discussion 99

A FORMAL SEMANTICS FOR UML/OCL 103
4.1 Challenges 103

4.2 A Note On oct Standards 104

4.3 A Machine-checked ocL Semantics 107
4.4 A Note On Standard Compliance 116

41

Contents

4.5 Extending ocL 125
4.6 Discussion 129

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

5.1 Challenges 131

5.2 Wityand Judgments 133

5.3 Equivalences and Congruences 135
5.4 Subcalculi 139

5.5 The Logic 144

5.6 Calculi 1 50

5.7 Discussion 1 58

APPLICATIONS 163

6.1 The HOL-OCL System 163
6.2 Case Studies 167

6.3 Discussion 172

RELATED WORK 175

7.1 Embeddings of Object-oriented Languages 175
7.2 Datatype Packages 177

7.3 Proof Support for Three-valued Logics 177

7.4 Formal ocL Semantics 178

7.5 Tool Support 179

CONCLUSION AND FUTURE WORK 183
8.1 Conclusions 183

8.2 Summary of Contributions 184
8.3 Future Work 186

THE SYNTAX OF OCL 189

THE INVOICE SYSTEM 195
B.1 Informal Description 195
B.2 Formal Specification 196

10

131

INTRODUCTION

In this chapter, we motivate our work and summarize our contributions.
Moreover, we give a first, brief overview of related work and introduce
the overall structure of this thesis.

1.1 MOTIVATION

Computer systems, both in hardware and in software, are becoming more
and more complex. Our daily life depends on the reliable and correct
behavior of such systems, e. g., electronic drive control systems used in
cars, automatic flight control systems, or medical systems. It is difficult
to get computer systems right. Formal methods are one way to ensure
the correctness of such vital systems; thus, formal techniques should
be integrated into the development process of such systems. Just like
using blueprints in common engineering practice, the development of
complex software systems requires a detailed specification describing the
data structures and the desired behavior of the system.

Specification documents can vary in their precision from informal
textual descriptions or structured text to formal specification using a
language based on mathematical logic such as Z [108] or vDM [62]. De-
pending on their precision, computer-supported techniques can be ap-
plied that assure the consistency of specification documents. For example,
type-checking or well-formedness-checking can be used to find some
inconsistencies in requirement and design documents of a system and
thus provide an a priori analysis. More evolved techniques can assure the
correct transition from a specification document to the implementation.
These techniques and their computer support are summarized under the
term formal methods. Obviously, the power of these techniques crucially
depends on the degree of formality.

Producing formal specifications and maintaining their consistency
during system development is a task that requires a lot of effort and
training. This is to an even larger extent true for the validation phase,
where techniques such as model-based testing, model-checking or inter-

11

INTRODUCTION

active theorem proving are applied. Industry has been reluctant to accept
formal methods within their daily practice so far. Although, it is mean-
while widely accepted that specification and testing activities outweigh
by far the costs of the implementation phase of a large system and that
formal methods have a positive effect here. Rather, the overwhelming
need for specification led to the development of semi-formal specification
documents that have their roots in light-weight graphical notations. A
prominent example is the Unified Modeling Language (umL) [90], which
is widely accepted by the industry for developing software following the
object-oriented methodology. Instead of using mathematical notation
such as Z or the Hoare Calculus, there is a trend to introduce formal
specification techniques featuring a syntax that is close to the syntax of
object-oriented programming languages. Usually, these formal specifi-
cations based on the specification of preconditions and postconditions.
Moreover, the choice of using a syntax similar to programming languages
helps software developers by using specification formalisms they are fa-
miliar with, both with respect to the syntax and semantics.

The definition of the UML [90] is one result of the industrial need
for computer-support of such light-weight specification methods. umL
is defined in an open standardization process led by the Object Man-
agement Group (0MG) and both oMmG standards in general and umL in
particular are widely accepted in the industry. Overall, the UML L offers
an integrated object-oriented development methodology ranging from
informal requirement analysis over object-oriented modeling (design
phase) to code-generation. This design-centered, or model-driven soft-
ware development process is known as Model Driven Architecture (MDA)
or Model Driven Engineering (MDE).

The uML provides a standard for graphical, or diagrammatic, specifi-
cation notations, representation in abstract syntax and partly also their
semantics. These notations comprise among others activity diagrams,
sequence diagrams, class diagrams and state diagrams. The latter two
notations are of particular interest from the perspective of formal meth-
ods, since they represent forms of data-oriented and behavioral model-
ing, which can be considered as well-known concepts in a new shape.
Moreover, with Unified Modeling Language (UML) version 1.3 the Object
Constraint Language (OCL), a textual annotation formalism (constraint
language) was added to the umL standard. ocL is heavily used in the
specification documents of the metamodels of the UML itself.

From the perspective of formal methods, the success of cask tools
supporting the UML opens a door for bringing formal methods a step
closer to industry. However, to turn this vision into reality, several chal-
lenges need to be faced: first, the semantics of umL/OCL is conceptually
much closer to an object-oriented programming language than to a tra-
ditional logic, although ocL comprises a version of predicate logic and

12

1.2 CONTRIBUTIONS

arithmetic. Second, much effort has to be invested to cope with the object-
oriented features of ocL in a logically clean way, allowing for adequate
symbolic computations. Third, an adequate proof methodology for object-
oriented modeling, as it is meanwhile established in the user community
of umL/0cCL, has to be developed. Overall, this will allow for applying
formal methods using a uniform specification language during the com-
plete software development process. Probably, this will increase the use of
formal methods during the development of computer systems and thus
improve the quality of software we daily use.

1.2 CONTRIBUTIONS

This thesis shows that the conservative embedding technique can be suc-
cessfully used for both defining the semantics of a specification language
and for building formal tools for the embedded language. Moreover, this
construction guarantees the correctness of the developed tools with re-
spect to the defined semantics. In particular, we confirm the following
claims:

o A shallow embedding can be used for defining the semantics of an
object-oriented specification language; including the underlying
object-oriented data structures, i. e., for modeling an object store.

o A shallow embedding can be used for developing formal tool sup-
port for a specification language used in industry.

o Defining the semantics, and also building tools, in an conservative
way, 1. e., without using (unproven) axioms, is feasible; even for
such a rich language as ocL. Moreover, we provide evidence that
the consistency guarantee of this approach outweighs the larger
effort compared to an axiomatic approach.

o A conservative embedding technique is useful to compare different
semantical variants and possible language extensions in a logical
safe way, i. e., without the risk of introducing inconsistencies.

o Developing a machine-checked formalization of a real-world, i. e.,
defined by an industrial committee, standard of a specification
language is feasible.

For supporting our thesis, we have conducted work that is both of the-
oretical and of practical importance. On the theoretical side, we provide:

o A type-safe representation of object-oriented data structures in
the typed A-calculus and in particular higher-order logic (HoL).

13

INTRODUCTION

This includes a typed, extensible umL data model supporting inher-
itance and subtyping inside the typed)-calculus with parametric
polymorphism. As a consequence of the conservativity with re-
spect to HOL, we can guarantee the consistency of the semantic
model.

A formal semantics of object-oriented data structures with invari-
ants enriched with a precondition/postcondition style specifica-
tions for operations.

An extensible encoding of object-oriented data structures into HOL.
Moreover, we developed automatic support for our encoding. This
includes also the development of a datatype package for extensible,
object-oriented data-structures with invariants.

Proof calculi for a Strong Kleene Logic over path expressions. In
particular, we provide several derived calculi for umL/ocL that
allow for formal derivations establishing the validity of umL/ocL
formulae. Automated support for such proofs is also provided.
However, since our embedding, called HOL-0CL, comprises pred-
icate logic with equality and a typed set theory, the validity of a
formula is undecidable and the logic is inherently incomplete with

respect to the class of standard models of HOL [2].

On the practical side, we developed HOL-0OCL, an interactive proof envi-
ronment for object-oriented specifications, in particular using umML/OCL.
The main design goals of HOL-OCL can be summarized as follows:

HOL-OCL implements a generic framework for object-oriented
specification languages and means to compare different semantic
variants thereof.

HOL-OCL follows semantically the ocL 2.0 standard [88].

HOL-0CL provides technical support for importing umML/ocL mod-
els in the xmi1-formats generated by conventional umL/0cL model-
ing tools.

HoL-ocL allows for analyzing umL/ocL models with all the means
provided by an up-to-date interactive, tactic-driven theorem prov-
ing environment such as Isabelle [86].

HOL-OCL also provides contributions for improving the definition and
development of the language umL/OCL itself:

14

It defines a machine-checked formalization of the semantics as
described in the standard for ocL 2.0 [88]. This is implemented as
a conservative, shallow embedding of ocL into HOL.

1.3 RELATED WORK

« The standard postulates requirements on the semantics of ocL op-
erators. The ocL semantics—which is contained in an informative,
i.e., non-normative, appendix of the standards documents—is
not formally related to these requirements. We provide formal
proofs that our formalization of the ocL semantics indeed meets
the requirements.

o Our work detected formal contradictions of the ocL standard, in
particular with respect to the derived calculi. Overall, our em-
bedding strives for compliance with the OCL 2.0 standard, i.e.,
whenever our embedding differs from the standard, we give rea-
sons for it and document this fact clearly.

« It represents a technical framework (including a graphical front-
end based on Proof General [5] and a programming interface for
sML) enabling one to implement particular formal methods based

on UML/OCL.

1.3 RELATED WORK

In this section, we give a broad but brief overview of related work. This
discussion is acting as a first classification of the overall subject of this
thesis but should neither be understood as being complete nor as provid-
ing a detailed comparison. We give an overview of formal specification
languages, formal tools, and a report on the state of the art regarding ocL.
A detailed discussion of closely related work will be given in Chapter 7.

1.3.1 Formal Specification Languages

There is a variety of formal software specification languages, mainly de-
veloped by academia. Most of the well known formal notations, e. g.,
Z [108], are not geared toward object-orientation. For example, Z is based
on set theory and first-order predicate logic without special support for
object-oriented concepts. Nevertheless, there are various object-oriented
extension for Z [106, 109] available but they fail to provide a strong link
to object-oriented methodologies as they are used in industry. Moreover,
these efforts for integrating object-orientation into well-known formal
methods are faced with the same criticism from industry as their ances-
tors: the notation used by formal methods is difficult to understand, there
is a lack of tools supporting formal methods, and the costs of using formal
methods are high.

In contrast, object-oriented specification languages like UML are highly
accepted in industry. Moreover, with Object Constraint Language (0ocCL),
which is part of UML, a semi-formal constraint language is also provided.
ocL allows for the specification of constraints which were not directly

15

INTRODUCTION

expressible within uML. Besides ocL, there are other light-weight for-
mal methods for object-oriented systems; the most prominent ones are
Alloy [59], the Java Modeling Language (yML) [70], and Spec# [6].

Alloy was one of the first languages that faced the object-oriented com-
munity by advertising itself as being compatible with graphical object
models. Its development was influenced by Z, but Alloy is geared towards
fully automatic decision procedures, i. e., parallel to defining the seman-
tics of Alloy, a specialized model-checker was developed [60]. Alloy
provides a composition that is based on adding fields which is somewhat
similar to inheritance and also a concept of reuse of formulae by explicit
parametrization, similar to functions in a functional programming lan-
guage. But this is not sufficient to model object-orientation in all its
aspects.

JML is an interface specification language that can be used to specify
the behavior of Java modules. Among other, it allows the annotation of
Java source with preconditions, postconditions and invariants using a
Java-like syntax. It combines the design by contract approach of Eiffel [78]
and the model-based specification approach of the Larch family [47] of
interface specification languages, with some elements of the refinement
calculus. More informally, one can state that JML has a similar relation to
Java as ocL has to uML or Spec# has to C#. As 7 JML and Spec# are tightly
connected to a programming language, the formal tool support for both
are geared towards program verification.

1.3.2 Formal Tools for Object-oriented Systems

While object-oriented programming is a widely accepted programming
paradigm, theorem proving over object-oriented-programs or object-
oriented-specifications is far from being a mature technology. Classes,
inheritance, subtyping, objects, and references are deeply intertwined and
represent complex concepts that are quite remote from the platonic world
of first-order logic or HOL. For this reason, there is a tangible conceptual
gap between the verification of functional and imperative programs on
the one hand and object-oriented-programs on the other.

Among the existing implementations of proof environments dealing
with subtyping and references, two categories can be distinguished:

1. into standard logic and
2. deep embeddings into a meta-logic.

As pre-compilation tools, for example, we consider Boogie for Spec# [6,
72] or Krakatoa [75] for jML. The underlying idea is to compile object-
oriented programs into standard imperative ones and to apply a verifi-
cation condition generator on the latter. While technically sometimes

16

1.3 RELATED WORK

very advanced, the foundation of these tools is quite problematic: The
compilation in itself is not verified and it is not clear if the generated
conditions are sound with respect to the (usually complex) operational
semantics.

Among the tools based on deep embeddings, there is a large body of
literature on formal models of Java-like languages, e. g., [17, 39, 41, 84,
114]. In a deep embedding of a language semantics, syntax and types are
represented by free datatypes. As a consequence, derived calculi inherit a
heavy syntactic bias in form of side conditions over binding and typing
issues. This is unavoidable if one is interested in meta-theoretic properties
such as type-safety; however, when reasoning about applications and not
over language properties, this advantage turns into a major obstacle for
efficient deduction. Thus, while proofs for type-safety, soundness of Hoare
Calculi and even soundness of verification condition generators are done,
none of the mentioned deep embeddings has been used for substantial
proof work in applications.

In contrast, the shallow embedding technique has successfully been
used, including large applications, for semantic representations of non
object-oriented languages. Examples for such embeddings are HOL itself
(in Isabelle/Pure), HOLCF (in Isabelle/HoL) [80], or HOL-Z; an embedding
of Z into Isabelle/noL [26]. These embeddings have been used for sub-
stantial applications, e. g., Basin et al. [8] present an analysis of a security
architecture using HOL-z [26]. The essence of a shallow embedding is to
represent object-language binding and typing directly in the binding and
typing machinery of the meta-language. Thus, many side conditions are
simply unnecessary; type-safety, for example, is proven implicitly when
deriving computational rules from semantic definitions. Since implicit
side conditions are “implemented” by built-in mechanisms, they can be
handled orders of magnitude faster than an explicit treatment.

1.3.3 Formal Semantics and Tools for ocL

From its very first appearance, OCL gained much interest in the research
community. These interests resulted in several tools supporting ocL and
also in many open questions about the formal foundation of ocL.
Beside several works (37, 54, 101] discussing details of the ocL semantics,
there are also early attempts for providing a formal semantics for ocL
or a subset thereof. For example, Richters and Gogolla [102] present a
formal semantics of ocL based on an untyped set theory and Cengarle
and Knapp [31] present a type inference system and a big-step operational
semantics for ocL 1.4. All these proposals for a formal ocL semantics
are based on “mathematical notation” in the style of “naive set theory,”
which in our opinion, especially for a typed object-language like ocL, is
inadequate to cover subtle subjects such as inheritance and class invariants.

17

INTRODUCTION

In particular, this also holds for the semantics presented by Richters [100]
(a derivative of [102]) which is the basis of the informative (i. e., non-
normative) semantics chapter included in recent versions of the ocL
standard [88, Appendix A]. Moreover, none of these works prov1de a
link between their formalization and the normative part of the standard,
i.e., a formal proof showing that these formal semantics fulfill the pairs
of preconditions and postconditions given in the normative part of the
standard. The development of proof calculi and automated deduction for
ocL has not been in the focus of interest so far. Furthermore, none of
the presented works aims for a formal tool support that is guaranteed to
follow the given semantics.

The formal tool support for ocL is still limited. Besides the integration
of ocL type-checkers into several CASE tools, there are mainly two dif-
ferent categories of tools that are compliant to the OcL semantics of the
standard [88]:

+ Tools for runtime checking of ocL specifications, e. g., based on
the ocL toolkit from the Un1ver51ty of Dresden [38]. This suite
consists of a Java library for representing ocL datatypes, a type-
checker, and a code generator (constraint checker) that can check
OCL constraints (invariants, precondition and postconditions) at
runtime.

+ Tools, namely USE [102] and OCLE [34], for animation of ocL spec-
ifications, allowing for the evaluation of ocL expression in the
context of a uML model. Overall, these environments can be used
to validate a UML against an OCL specification, i. e., one can check
that a given model is well-formed where the well-formedness rules
are expressed using OCL.

In particular, there is no proof environment for oct, or a subset thereof,
that is based on a semantics that is compliant to the standard, e. g., sup-
porting a three-valued logic.

1.4 OVERVIEW

This thesis is structured as follows: In Chapter 2 we present the foun-
dations of this thesis, i. e., first we give a brief introduction into object-
orientation with a particular focus on uML/OCL. Second, we introduce
the higher-order logic (HoL), the interactive tive theorem prover Isabelle/Hot,
and how it can be used for providing both a machine checked formal
semantics for a language and a formal tool for that language.

In Chapter 3, we develop a framework for defining the semantics for
object-oriented specification languages. This framework comprises build-
ing blocks for the semantics of object-oriented data structures, i. e., an

18

1.5 TYPOGRAPHIC CONVENTIONS

object store, and an object-oriented constraint language for reasoning
over these data-structures.

We use this framework in Chapter 4 for defining a formal semantics
of ocL that is compliant with the standard. Moreover, we present several
extensions of ocL and propose changes of the ocL semantics. These
extensions and changes will make ocL easier to understand and more
suitable for formal analysis.

In Chapter 5, we present several calculi for three-valued logics that
reason over path expressions, i. e., object-oriented data-structures. This
includes also the development of several sub-calcul, e. g., specialized
for the reasoning over definedness. We also discuss their use for semi-
automatic reasoning.

In Chapter 6, we give a brief overview of HOL-OCL. HOL-OCL is an in-
teractive theorem prover for UML/OCL specifications that is implemented
using the formal framework of Chapter 4. Moreover, we show the usability
of HOL-OCL in a case study.

We give a detailed discussion of related work in Chapter 7. Finally, we
conclude the thesis and discuss future work in Chapter 8.

1.5 TYPOGRAPHIC CONVENTIONS

The following typographic conventions are adopted in this thesis:

» Within umL/ocL specifications, OCL expressions are either written
inline, like self.s->includes(5), or together with their context
specification:

context A:
inv: self.s->includes(5)

Keywords are printed in a blue typeface.

« ocL formulae that are interpreted within HOL-0CL are written in-
line as self.s->includes(5), or alternatively in mathematical syn-
tax as: 5 € (self .s). We provide this mathematical notation for ocL
as an alternative concrete syntax. Overall, HOL-0oCL supports both
notations, but we prefer the mathematical one for semantic defini-
tions and proof work. Appendix A provides a brief comparison of
both concrete syntaxes for OCL.

o We use a color coding to distinguish ocL and HOL sub-expressions
in formulae containing both e. g.,

u = lift, (strictify(A X. strictify(1 Y.

Absser, "Repser X U "Repser Y1J))). (1.1)

19

INTRODUCTION

20

Overall, HOL expressions are printed using the default color, i. e.,
black. We resolve ambiguities between the underlying mathemati-
cal syntax (i. e., HOL) and the ocL level by using colors: Expressions
that are internally used within HOL-0CL, like the lifting operator
., are printed in a black typeface. Using our mathematical ocL
syntax, expressions on the ocL level, like _ A _, are written in a
purple typeface. For the concrete syntax presented in the standard,

e.g.,_ and_, we use a purple typeface.

HOL formulae are written using the usual mathematical notion,

i.e,seS.

Theory files for HoL-0cL and Isabelle/HOL are printed as follows:

theory royals_and_loyals
imports
OCL
begin
import_model "royals_and_loyals.xmi" "royals_and_loyals.ocl"
end

Keywords are printed in a blue typeface.

FOUNDATIONS AND BACKGROUND

In this chapter, we introduce the basic concepts needed for this thesis.
As this thesis is positioned between object-orientation on the one side
and formal methods on the other, this chapter is twofold: in Section 2.1
we introduce the notion and concepts of object-orientation as it is used
in this thesis. In particular, we introduce concepts like classes, objects,
and inheritance. As an example of an object-oriented specification and
modeling language, we give a short overview of the Unified Modeling
Language (UML) and the Object Constraint Language (ocL). In Section 2.2,
we introduce the formal concepts this thesis is based on. In particular,
we explain the key concepts of the interactive theorem prover Isabelle
and introduce higher-order logic (HoL). We also show how Isabelle/nor
can be used both for defining semantics and for the development of tools
supporting formal methods.

2.1 OBJECT-ORIENTED SPECIFICATIONS

In this section, we give a brief introduction to the concepts of object-
oriented specification formalisms. We assume, that the reader is some-
what familiar with object-orientation, e. g., in a way it is used in program-
ming languages like Java. We will only introduce the key concepts and
notions used in this thesis.

2.1.1 The Object-oriented Paradigm

While developed in the database community, object-orientation gained
much of its success in the programming languages community. Many
of the widely used programming languages, e. g., Java, feature object-
orientation. The object-oriented paradigm emphasizes the following key
concepts:

Class: A class defines a unit consisting of a data specification, i. e., defined
by its attributes, and its behavior, e. g., defined by its methods and
operations. The attributes, methods, and operations are also called

21

class
attribute

member

object
object identifier
reference

primitive type

boxing

basic types

encapsulation

access specifier

abstraction

inheritance

single inheritance
multiple inheritance

subtype
supertype

single subtyping

multiple subtyping

FOUNDATIONS AND BACKGROUND

members of a class. A class is the basis of modularity and structure
in an object-based or object-oriented setting.

Object: An object is an instance, 1. e., a runtime representation, of a class.

Usually, every object is uniquely identified by its object identifier
(oid) or reference.

Primitive Type: A primitive type is a type whose instances are directly

represented by their value. Many object-oriented programming
language provide primitive types for integers, real numbers and
strings. Wrapping a primitive type into a class is called boxing,
e. g., Java for example provides both the primitive type int for an
unboxed and the class type Integer for a boxed implementation
of the integers. Sometimes, primitive types are also called value
types or basic types.

Encapsulation: Using encapsulation, a class can hide details of its imple-

mentation, i.e., methods, operations, and attributes. It ensures
that an object can be changed only through well-defined interfaces.
The accessibility of class members is specified using access speci-
fiers. Common access specifiers are private, protected, and public.
Whereas private members of a class are only accessible inside the
class itself, protected parts are also accessible by subclasses. Public
members are accessible from everywhere.

Abstraction: The ability of a program to ignore the details of an object’s

(sub)class and work at a more generic level when appropriate is
called abstraction.

Inheritance: Using inheritance, a more specific element can incorporate

structure and behavior defined by a more general element. Inheri-
tance is the preferred way of extending classes and establishes a
“is-a” relationship. If a class is derived from exactly one superclass,
the relationship is called single inheritance. Otherwise, i.e., if a
class has several superclasses, it is called multiple inheritance.

Subtyping: A subtype is a datatype that is related to another, more general,

22

one (the supertype) by some notion of substitutivity, meaning
that computer programs written to operate on elements of the
supertype can also operate on elements of the subtype. More
specifically, the supertype-subtype relation is often taken to be
the one defined by the Liskov substitution principle [73]. As for
inheritance, we call this relation single subtyping if a subtype is
related to exactly one supertype. Otherwise, i. e., if a subtype has
several supertypes, we call this relation multiple subtyping.

2.10BJECT-ORIENTED SPECIFICATIONS

Polymorphism: Using polymorphism, the same method can be provided
with different types. Two common types of polymorphism are over-
loading polymorphism and overriding polymorphism. The former
is based on the overloading of operations, i. e., different variants
of the same operation of method, only differing in the types of
their arguments, are defined within the same class. The latter is
based on the overriding of operations, i. e., the re-definition of an
operation or method having the same arguments within a subtype
of inheritance hierarchy. In the case of overriding polymorphism,
the behavior of the operation of method varies depending on the
class in which the behavior is invoked.

Whereas these terms define different concepts, they are often mixed, i. e.,
subtyping is often implemented via inheritance. But, this is not necessarily
the case, e. g., subtyping can be implemented without using inheritance.
For a good understanding of object-orientation, it is important to keep
these two concepts separate. In Java, for example, implementing, also
called realizing, an interface establishes a subtype relation that is not
implemented by inheritance. Moreover, as multiple inheritance can intro-
duce several kinds of ambiguities, it is not supported in many modern
object-oriented programming languages like Java or C#. In contrast to
a class, an interfaces consists of a set of operation specifications. As all
classes implementing an interface have to provide implementations for
these operations that comply to the specification given in the interface,
multiple subtyping based on interface realization is considered to less
problematic and is also supported by languages like Java and C#.

Further, we call a language object-based if it supports the most of the
above described properties but does not support inheritance. An object-
based language that also supports inheritance is called object-oriented.

In the following, we distinguish between methods and operations.
An operation is a possibly non-executable specification of a behavioral
aspect of a class; for example, pairs of preconditions and postconditions
specify an operation. A method is an executable implementation in a
programming language, thus an operation can be implemented by several
methods (i. e., using different algorithms or even different programming
languages). Usually, one requires that a method (implementation) is a
refinement of an operation (specification).

Furthermore, in an object-oriented setting with subtyping, an expres-
sion has always a dynamic and a static type:

DEFINITION 2.1 (STATIC TYPE) A type that can be checked statically, i. e.,
at compile time, is called static type. o

DEFINITION 2.2 (DYNAMIC TYPE) A type that is inferred during runtime
is called dynamic type. o

23

polymorphism

overloading

overriding

interface

object-based
object-oriented
operation

method

static type

dynamic type

type-cast

call
invocation

late-binding

Unified Modeling
Language (umL)
class diagram

data model

FOUNDATIONS AND BACKGROUND

At a given execution point, the dynamic type must always conform to the
static type. Moreover, the static type and dynamic type of an expression
may identical. Informally, the dynamic type of an object is the type as
which the object was initially created, e. g., by calling a constructor. The
static type is the type the object is acting as. Moreover, the static type
can be changed, via type-casts, along the subtype hierarchy. For example,
assume an expression that refers to an instance of the class Account: thus
the static type of this expression is Account. Nevertheless, at a given
execution point, this expression may be assigned to an object of class
LimitedAccount (which must be a subclass of Account); in this case, the
dynamic type of the expression is LimitedAccount.

The dynamic type of an object determines which concrete implemen-
tation of an overridden method or operation is invoked. In more detail,
we distinguish between operation or method calls and invocations. An
operation call can be statically resolved, i. e., already at compile time the
concrete implementation that is called can be determined. In contrast, an
operation invocation cannot be resolved statically, i. e., due to overriding
polymorphism the concrete operation to call can only be determined
during runtime; this is also called late-binding.

2.1.2 A Short Introduction to uML/OCL

In industry, the Unified Modeling Language (UML) is probably the most
widely used object-oriented specification language. It is mainly known
as a diagrammatic specification language providing a variety of diagram
types describing the static structure, the behavior, and the interaction of
an object-oriented system. The structure diagrams like class diagrams,
component diagrams or object diagrams allow one to model the structure
and data model of a system. Using behavior diagrams like state-machine
diagrams or activity diagrams, one can also specify the intended behavior
of the system. Further, a special variant of the behavioral diagrams are the
interaction diagrams (e. g., sequence diagrams or collaboration diagrams)
for modeling the control and data flow of a system.

OBJECT-ORIENTED DATA MODELING USING UML. The core part of
the Unified Modeling Language (UML) is concerned with the modeling
of object-oriented data models, or the structure of an object-oriented
system, especially using class diagrams. A class diagram is a structural
diagram showing the classifiers (classes, interfaces, etc.) and the various
static relationships between them. A concrete class diagram usually only
shows a limited view of the overall structural system model (i. e., not every
class of a model must be visualized using a class diagram). Thus, a class
diagram is only a partial visualization of the underlying object-oriented
data model.

24

2.10BJECT-ORIENTED SPECIFICATIONS

Bank

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a
and id = id@pre
/I
/
Il
Account
& balance:Integer
& id:Integer
1..%
= getId():Integer accounts
@ getBalance():Integer
= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean
context LimitedAccount
inv: limit < 0 owner|1l
inv: limit <= balance IS EmaT
2 & id:Integer
LimitedAccount & name:String

& limit:Integer = getId():Integer
w getlLimit():Integer = setName(n:String):Boolean
= setlLimit(a:Integer):Boolean = getName():String

Figure 2.1: Modeling a simple banking scenario with umL/ocL. An Account is owned by a Customer,
which itself can have one or more accounts. An account can either be a generic account,
or one which can only be debited up to a specific limit; this is expressed using ocL invari-
ants. The behavior of the operation Account: :deposit(amount:Integer):Boolean is
specified by an ocL precondition and postcondition pair.

25

object instance
attribute
operation

generalization

association

package

namespace

pathname

visibility

FOUNDATIONS AND BACKGROUND

The class diagram in Figure 2.1 on the preceding page illustrates the
data model of a simple accounting scenario where customers can own
different kinds of accounts and transfer money between them.

In more detail: customers are modeled as a class Customer. There are
further classes modeling the different account types, a regular account
called Account and an account LimitedAccount allowing credits only up
to a specific limit. A class does not only describe a set of object instances,
i.e., record-like data consisting of attributes such as balance, but also
of behavioral aspects, i. e., operations (e. g., getBalance()) defined on
them.

The different account types are organized in a hierarchy of generaliza-
tions, e. g., the class Account generalizes the class LimitedAccount. An
UML generalization, denoted by an outlined arrow, is implemented by
inheritance and establishes a subtype relation.

Relations, as the one between customers and accounts, can be modeled
in UML using associations. An association is constrained by a multiplic-
ities, 1. e., a constraint describing how many objects can be part of an
association. In our example, the multiplicities of the association requires
that every object instance of Account is associated with exactly one object
instance of Customer. Usually, the annotation of the multiplicity one is
omitted in graphical representations. In the other direction, the associa-
tion models that an instance of class Customer is related to a (non-empty)
set of instances of class Account or its subtypes.

For structuring the design model, uML introduces a generic concept of
packages. A package allows for organizing model elements (e. g., classes,
packages) and diagrams in a hierarchy. Further, many model elements,
in particular classes and packages, introduce a namespace. Thus, the
hierarchy of such model elements induces a hierarchy of namespaces.
Elements within such a hierarchy of namespaces can be accessed using
pathnames, i. e., a path over several nested namespaces, is obtained by
concatenating the names of the namespaces (such as packages or classes)
separated by pairs of double colons, e. g., Bank: : Account.

The concept of access specifier is called visibility in uMmL. The visibility
of an attribute or operation can either be specified textually or graphi-
cally. In Figure 2.1 all class attributes are private (denoted by a closed
lock) and all operations are public (denoted by an open lock). As an
alternative, private members of a class are denoted with a prefixed “-”-
sign, e. g., -getId():Integer and public members with a “+”-sign, e. g.,
+balance:Integer. Moreover, protected members are denoted with a
prefixed “#”-sign, e. g., #1d: Integer.

THE OBJECT CONSTRAINT LANGUAGE. Pure uML diagrams are not
precise enough for supporting a formal software development process. To

26

2.10BJECT-ORIENTED SPECIFICATIONS

close this gab, the uMmL provides the Object Constraint Language (OcCL).
It is a constraint language for object-oriented designs trying to mimic the
syntax of object-oriented programming languages and thus hiding the
probably unfamiliar mathematical notions from its users. An overview of
the concrete syntax for ocL is given in Table 2.1 on the next page in EBNF
notation. This fragment, in particular, omits some syntactic variants. For
example, quantified variables must be named explicitly whereas the ocL
standard allows for omitting them.

The core of ocL is based on a three valued logic reasoning over uML path
expressions. Additionally, the octL standard also provides a library of basic
data structures (e. g., Boolean, Integer,Real, String, Set, or Sequence).
An overview of the types (classes) of the oct library is given in Figure 2.2
on page 29. In principle, ocL allows for the annotation of arbitrary umL
models. Nevertheless, the main focus of ocr is the annotation of models
describing the static structure (e. g., class diagrams) of a system. In this
context, it seems natural to make class diagrams more precise using ocL
for specifying invariants, preconditions and postconditions of operations.

An invariant is an ocL formula attached to a class, which must, infor-
mally, evaluate to true in “all” possible system states for all instances of
that class [88, p. 8]. As we will see later, requiring for an invariant that it
evaluates to true for all system states is too strong, i. e., we will relax that
requirement in certain situations (see Section 3.5.4). Using an invariant,
we can describe in ocL that the attribute id is a unique identifier for all
objects of type Account:

context Account
inv: Account::allInstances
->forAll(al, a2 | al <> a2
implies al.id <> a2.id)

Moreover, we can also constrain the effects of operations. Using a pre-
condition, we can state that only positive amounts can be deposited:

context Account::deposit(a:Integer):Boolean
pre: a > 0

Additionally, one can describe the system state after the successful execu-
tion of the operation using a postcondition, e. g.:

context Account::deposit(amount:Integer):Boolean
post: balance = balance@pre+amount
and id = id@pre

In postconditions, the operator @pre allows for accessing the previous
state. If several constraints of the same type, . g., invariants, are specified
they are semantically equivalent with their conjunction. For example, the
specification

27

Object Constraint
Language (ocCL)

invariant

precondition

postcondition

FOUNDATIONS AND BACKGROUND

contextDeclList
classifierContextDecl
invDecl
operationContextDecl
prePostDecl

operation
varDeclList
varDecl
type

expr

infixOperator ::

prefixOperator
literalExp
collLiteralExp
collKind
collLiteralPart
primitiveLiteralExp

pathName
simpleName

:= [invDecl] inv [simpleName)]

:= [classifierContextDecl | operationContextDecl] contextDecl
:= context pathName invDecl

: expr

:= context operation prePostDecl
:= [prePostDecl] pre [simpleName]

: expr
| [prePostDecl] post [simpleName] : expr

:= [pathName : :] simpleName ([varDeclList]) [: type]
:= [varDeclList , | varDecl

:= simpleName [: type] [= expr]

:= pathName | collKind (type)

:= literalExp | pathName [@pre]

| expr.simpleName [@pre] | expr->simpleName
| expr ([{expr, }expr])
| expr (expr] : type][=expr], varDecl | expr)
| expr (varDecl | expr)
| expri{expr, fexprl[@pre]
| expr->forAll (varDecl[; varDecl] | expr)
| expr->exists (varDecl[; varDecl] | expr)
| expr->iterate (varDecl[; varDecl] | expr)
| prefixOperator expr | expr infixOperator expr
| if expr then expr else expr endif
| et varDeclList in expr
— <1/l div|mod | +] - | <|> | <= |>=| = | =

| and | or | xor | implies

= - | not

:= collLiteralExp | primitiveLiteralExp

:= collKind{{collLiteralPart, }collLiteralPart}

:= Set | Bag | Sequence | Collection | OrderedSet
= expr | expr. .expr

:= Boolean | Integer | Real | String

| true | false | oclUndefined

:= [pathName: : |simpleName
:= SIMPLE_NAME

Table 2.1: A fragment of the formal grammar of ocL, omitting syntactic variants like implicit
quantified variables. We also omit some types we do not consider in this thesis, e. g.,

OclMessage.

28

2.10BJECT-ORIENTED SPECIFICATIONS

"PTOA120 JO sassepIadns pue Auy)20 Jo sassepqns

OSTe 91e SaSSe[d paufop-Iasn [[y "paufjopun o ued m@&%u [[® JO sedue)sur “9°T‘PTOALD0 Jo mmwww_u‘umﬂzw oIe m@&u 1Te RETNCE () /]

“Auy120 Jo sassepqns axe sadA) [y "ebessap)20 pue sad4) wonosqod oY) 3deoxe Areiqry prepuels 100|) Jo sad4A) oy, 12T aundig

PTOA120

V

iy

Jabajur
1UBWS1319POW120
S v/ v/ VA v/ B VAR VAR, VY
.-h.pwmvwnggo an.wucm:Umm nwﬁ.omm nmy.uwm butaas 1e9y ueajoog 91215120 2dA1120
5 L Za [
L= gl Bl B R B | |
\
~-4,U0T129710) ~-4, 9bessap120 Auy120

29

validation

verification

FOUNDATIONS AND BACKGROUND

context LimitedAccount
inv: limit < ©
inv: limit <= balance

is semantically equivalent with the following specification

context LimitedAccount
inv: limit < 0 and limit <= balance

Further, a means of structuring the ocL specification is the possibility
to name constraints explicitly. For example, by specifying

context LimitedAccount
inv limitNegative: limit < 0

we can later refer to this constraint by its symbolic name limitNegative.

Many diagrammatic uML-features can be translated to 0CL expressions
without losing any information, e. g., associations can be represented
by introducing implicit attributes into the objects with a suitable data
invariant describing the multiplicities. Some of these transformations are
already described in the umL standard [90].

2.2 FORMAL BACKGROUND

In this section, we give a brief overview of the formal foundations our
work is based on. Overall, we assume some familiarity with mathematical
notions and their use in defining language semantics formally. Thus we
will limit ourselves to a brief introduction of the key concepts of the
interactive theorem prover Isabelle/HoL and the specific method of how
we use it for both defining the semantics of a language and providing tool
support for this language.

2.2.1 Formal Analysis: Validation and Verification

We start our introduction to formal methods with a short excursion ex-
plaining where formal tools can be used during software development.
The central point of a formal software development process is to ensure
that an implementation fulfills its specification. The techniques for en-
suring that a given software meets the specified requirements are called
verification and validation.

Software validation is the process of executing or evaluating the soft-
ware and checking its behavior to ensure that it complies with its require-
ments. Often, validation is done by the utilization of various testing
approaches. Software verification is the process of determining if soft-
ware fulfills its specification or not, e. g., by proving its correctness with

30

2.2FORMAL BACKGROUND

respect to a formal specification. Thus, verification does usually not rely
on executing the software. Validation is an incomplete method, i. ., it can
only find errors but cannot guarantee the correct behavior for all possible
execution traces; verification provides this assurance.

Whereas verification is rarely used in “large-scale” software develop-
ment, testing, as a validation technique, is widely used, but normally these
efforts are not based on a formal specification. This strict separation
between verification and validation techniques is not obvious: testing can
be based on a formal specification, and thus a successful test together
with explicitly stated test hypotheses [24] is not fundamentally different
from program verification, see [24] for more details. Overall, tools that
build upon a formal machine-checked semantics, a technique this thesis
is centered around, can be used for both the development of tools for
formal verification and formal validation of (object-oriented) systems.

2.2.2 Interactive Theorem Proving and Logical Frameworks

In this section, we introduce the key concepts of higher-order logic (HOL),
logical frameworks, and interactive theorem proving using Isabelle.
Interactive theorem proving deals with the machine-supported devel-
opment of formal proofs. An interactive proof editor allows for guiding
a semi-automatic proof search where all formal details are checked and
stored by a special computer program called theorem prover. Such a theo-
rem prover can either be limited to one specific logic, or it can be generic
in the sense that it does not only support one built-in logic, but rather
is a logical framework [97] for building new tools supporting various
logics. While using a logical embedding for defining the semantics of a
language it is important to distinguish between the language (logic) that
is already known and the new language being defined. The newly defined
logic is called object-logic or object-language. Its operators and inferences
rules are described using an already supported logic, called the meta-
logic or meta-language. For example, we use higher-order logic (HoL) as
meta-logic for defining the semantics of ocL, one of our object-languages.

THE LOGICAL FRAMEWORK ISABELLE. The generic theorem prover
Isabelle [86] is a logical framework based on an LcF [45] style kernel.
The proof engine of Isabelle can directly process natural deduction rules.
The generic rule “from assumptions A; to A, infer conclusion A,.,,” is
formally written as

Al=— ...— A, — A, (2.1)
or using the notation of Isabelle it is written as

[A;.. A] = Aua, (2.2)

31

testing

theorem prover

object-logic
meta-logic

Isabelle

meta-implication

proof state
subgoal

proof goal

meta-quantifier

meta-variable

FOUNDATIONS AND BACKGROUND

where _ == _ denotes the built-in meta-implication of Isabelle. Using
the usual mathematical notation, this rule is written as

A ... Ay
An+1 ‘

(2.3)

Also more complex rules like “if assumption B can be inferred from
assumption A, infer A - B” can be expressed in Isabelle:

(A= B) = A— B. (2.4)

This rule, called implication introduction and in the mathematical litera-
ture it is written as:

[4]
B (2.5)
A— B
In this thesis, we prefer the mathematical notion, even if we describe a
system that is formalized in Isabelle.
A proof state in Isabelle contains an implicitly conjoint sequence of
Horn-clause-like rules ¢, ..., ¢, called subgoals, and ¢, which represents

the actual proof goal. Logically, the subgoals and the goal form together a
theorem of the form

O
¢

To cope with quantifiers, subgoals have a slightly more general form than
just Horn-clauses: variables may be bound by a built-in meta-quantifier,
e.g., as in the following rule:

(2.6)

/\xl,...,xm.Al;...;An

(2.7)

An+1
The meta universal quantifier A _. _ can capture the usual side-constraint
“the variables xi, ..., x,, must not occur free in the assumptions” for

quantifier rules; meta-quantified variables can be logically considered
as free variables. Further, Isabelle supports meta-variables (e. g., written
as % or ?y), which can be seen as “holes in a term” that can still be
substituted. Meta-variables are instantiated by Isabelle’s built-in higher-
order unification and occur only inside proofs.

The initial proof state is built from the theorem

? , (2.8)

¢

32

2.2FORMAL BACKGROUND

which is trivially true for any (typed) formula ¢. A theorem is proven if
a final proof state of the form ¢ is reached by factics, i. e., sML functions
allowing for the transformation of proof states. It is a key feature of
Isabelle’s design that all tactics are based on a few operations provided by
the logical core engine of Isabelle. Moreover, these core operations log all
logical operations in a derivation tree called proof object; thus, if someone
has serious doubts on the correct implementation of Isabelle, he may
generate the proof objects and check the derivations by an independent
program or just store the proof objects for archival reasons.

Isabelle supports user-programmable extensions in a logically safe way.
Several generic tactics (proof procedures) have been developed; namely a
simplifier based on higher-order rewriting and a tableaux-based proof-
search procedures based on higher-order resolution. Building upon this
basis one can, in a logically safe way, extend Isabelle to support new lan-
guages, e. g., Z [26]. Such an extension of Isabelle, if done conservatively,
provides both a logical consistent semantics for the object-logic and a
reliable interactive theorem prover environment for the object-logic.

The rationale behind Isabelle is to encode other logical languages, both
with respect to their syntax and to their deductive system. The syntax of a
language can be described using higher-order syntax and powerful pretty-
printing mechanisms. The deductive system may be specified by logical
rules in the built-in logical core language either by axioms or derived
rules (theorems).

The distinction between axioms and theorems is important. An axiom
is an unproven fact that is defined to be true. In contrast, a theorem (or
derived rule) is a proven statement.

LOGICAL FRAMEWORKS AND HIGHER-ORDER LOGIC. Classical
higher-order logic (HOL) [2, 35] is a classical logic with equality enriched
by total (parametric) polymorphic higher-order functions. HOL is based
on a typed version of the)-calculus. The types 7 are defined as

r=axé|y(r,...,7), (2.9)

where « is a type variable (the set of type variables is ranging over «, f3,
y, ...) and where the set of type constructors y contains, among others,
_ = _, bool, int, and « set. Moreover, the type system of Isabelle/ HOL
is two-staged: types are classified in type classes, e. g., &. The set of type
classes is ranging over bot, term, Annotations with the default type
class term can be omitted, i. e., instead of « :: term we may just write a.
Type classes are also called sorts.
The terms of HOL are)\-terms defined as

A:=C|V|AV.A|AA, (2.10)

33

tactics

proof object

axiom
theorem

MA-calculus

type variable
type constructor

type class

sort
A-term

type

Hilbert operator

FOUNDATIONS AND BACKGROUND

symbol meta-type description
= bool = bool negation
true bool tautology
false bool absurdity

if [bool, @, a] = a conditional
let [a,a = B] = letbinder

Table 2.2: Syntax and types of the HOL constants.

symbol meta-type description
€ (¢ = bool) = « Hilbert description
v (a = bool) = bool universal quantification
3 (a« = bool) = bool existential quantification
Ell (a = bool) = bool unique existence

Table 2.3: Syntax and types of the HOL binders.

where C is the set of constants like true, false and where V is the set
of variables like x, y, z. Abstractions and applications are written) x. e
and e ¢’ or e(e’). A subset of \-terms may be typed, i.e., terms may
be associated to types by an inductive type inference system similar to
the programming language Haskell or (to a lesser extent) sML. We do
not give a formal definition of the type inference system here and refer
the interested reader to [82], where also a type inference algorithm is
described. In the following, we will only show type-checked)-terms and
use an intuitive understanding of types.

The logical terms of HOL (see Table 2.2, Table 2.3, and Table 2.4) are
centered around the loglcal connectives. The Hilbert operator e x. P x
returns an arbitrary x that makes P x true. The Hilbert operator turns
HOL into a classical logic [95]. HOL may be interpreted in standard or
non-standard models assigning types to carrier sets, logical operators in
functions over them [46].

symbol meta-type description
o [B=y,a=B]=(a=1y) composition
= [a,] = bool equality
A [bool,bool] = bool conjunction
% [bool,bool] = bool disjunction
- [bool,bool] = bool implication

Table 2.4: Syntax and types of the HOL infix operators.

34

2.2FORMAL BACKGROUND

The logic of HOL is based on a few axioms or elementary inference rules:
the implication introduction, modus ponens, and tertium non datur:

(7]

Q (implication introduction)
P—Q ’
P—Q P
—— ,and (modus ponens)
Q
(P = true) v (P = false) : (tertium non datur)

Further only the usual laws for axiomatizing equality, reflexivity, symme-
try, transitivity, extensionality, and substitutivity) are necessary:

- (reflexivity)
t=1t
=t
- (symmetry)
t=s
r=s s=t
-, (transitivity)
r=t
x. fx=gx
/\f—g ,and (extensionality)
f=g
s=t P(s)
e (substitutivity)
P(t)

The substitutivity rule exploits the fact that term contexts (e.g., C =
A A (B v O) with the “hole” O) can be directly represented inside the
term language by a \-abstraction (e.g., C = A x. AA (B V x)), while the
usual substitution in a context C[s] is captured by the -reduction of the
)-calculus and the application C(s).

The modules of larger logical systems built on top of HOL are Isabelle
theories. Among many other constructs, they contain type and constant
declarations as well as axioms. Stating arbitrary axioms in a theory is
extremely error-prone and should therefore be avoided. Thus only a
limited form of extension mechanisms, called conservative extensions,
should be used. Using a conservative extension scheme ensures that
the extended theory is consistent (“has models”) provided the original
theory is consistent. Four different conservative extensions have been
discussed in the literature: constant definition, type definition, constant
specification, and type specification [46]. For example, the most widely
used constant definition consists of a constant declaration

cuT (2.11)

35

\-abstraction

theories

conservative
extension

constant definition

type definition

None, Some

FOUNDATIONS AND BACKGROUND

and an axiom of the form:
c=E. (2.12)

We require that ¢ has not been previously declared, the axiom is well-
typed, E is a closed expression (i. e., does not contain free variables) and
E does not contain ¢ (no recursion). A further restriction forbids type
variables in the types of constants in E that do not occur in the type 7. Asa
whole, a constant definition can be seen as an “abbreviation” which makes
the conservativity of the construction plausible [46], and the syntactic
side-conditions are checked by Isabelle automatically. The idea of an
“abbreviation” is also applied to the conservative type definition of a new
type (a1, ..., a,)T based on its representation as a set, i.e., {x | P(x)}.
In this case, the set of type constructors is extended by the constructor
T of arity n. The predicate P of type T = bool for a base type 7 constructs
a set of elements 7 set; the new type is defined to be isomorphic to this
set. Technically, this isomorphism is stated by the declaration of two
constants representing the abstraction and the representation function
and by two axioms over them. More precisely, the constant Abst of type

7= (ay,...,a,)T and the constant Repr of type (a1, ..., a,)T = Tare
declared. The two isomorphism axioms have the form:
Abst(Repr x) = x (2.13)
and
P(x) = Repr(Abst x) = x. (2.14)

The type definition is conservative if the proof obligation 3x. P(x) holds;
this assures that the type is non-empty as required by the semantics of
HOL.

An example for a definition of a simple but eminently useful datatype
of Isabelle/HoL is

« option:=None | Some «. (2.15)

This datatype allows for adding a distinguished element to an already
existing type. For example, this can be used for modeling partial maps.
In fact, the type constructor _ — _ for partial maps in Isabelle/HoL is
defined as a type synonym:

a — f3:=a = 3 option . (2.16)

On top of the HOL core language, a rich set of theories can be built
entirely by conservative definitions. In particular, one can derive a typed
set theory including least fixed-point theory, a theory of ordering, in-
cluding well-founded recursion, number theory including real number
theory and theories for data-structures like pairs, type sums and lists. A
large part of these theories consists in deriving rules over the defined
operators, in particular those that allow for simplification and (recursive)
computation.

36

2.2FORMAL BACKGROUND

2.2.3 Comparing Textbook and Combinator Style Semantics

Besides the distinction between formal and informal semantic definitions,
one can also distinguish several styles for writing a formal semantics of a
programming or specification language. In this section, we will discuss
two widely used styles for writing formal semantics: textbook-style and
combinator-style.

In textbooks, e. g., Winskel [117], formal semantics are described using
a semantic interpretation function I. For example, consider the following
definition for the addition over the Integers from the ocL standard [88,
page A-11]:

i+ iy ifi]}élandiz#l,

. (2.17)
1 otherwise.

I(+) (i1, i2) :{

This definition is chosen by the authors of [88, page A-11] as a repre-
sentative, i. e., it is the only definition given for all strict operations. An
operation is called strict, if evaluating the operation results in undefined,
denoted by L, if at least one argument is undefined. We call the style of
semantics shown in Equation 2.17 a textbook-style semantics. Normally,
such semantics are “paper and pencil” works that are on the one hand easy
to read and very useful to communicate. On the other hand, they usually
lack the formalization of rules and laws, contain informal or meta-logic
definitions. Moreover, it is easy to write inconsistent semantic definitions.

Defining a machine-checked semantics, i. e., by embedding it into a logic
supported by a theorem prover, overcomes these problems: here, formal-
ization is enforced by the underlying theorem prover and the consistency
can by guaranteed by defining the semantics conservatively. Nevertheless,
formalizing rules and laws, especially when using conservative theory ex-
tensions only, is a lot of manual work. Using a combinator-style approach
to formal semantics can reduce this work dramatically. A combinator-
style formalization of semantics factorizes common properties into spe-
cific combinators, for example consider the following definition:

+= liftz(strictify()t x. strictify(Ay. "x"+ ry"J))) , (2.18)

where strictify _ is a combinator for constructing strict operations, i. e., it
is defined as

strictify f x = if (x = L) then Lelse f x (2.19)

and lift, _ is a combinator for the context lifting of binary operations (for
more details, see Section 3.2.1), i. e., it is defined as

lift, f=Axyr f(x7)(y71). (2.20)

37

textbook-style
semantics

machine-checked
semantics

combinator-style

embedding
higher-order
abstract
syntax (HOAS)

FOUNDATIONS AND BACKGROUND

For supporting types with an explicit undefined element, we assume a
type constructor 7; that assigns to each type 7 a type lifted by L. Moreover,
the function __, denotes the injection for lifted types, the function "_" its
inverse for defined values.

Such a combinator-style approach emphasizes the semantical structure
of the language being defined and is in particular well suited for machine-
readable semantics and machine-supported proof calculi development.
Exploiting the common structure of the definitions, one can automatically
derive, from the rules of the meta-logic, a wealth of rules for the object-
logic. Moreover, for a textbook semantics that is concise enough, one
can prove the equivalence with a machine-checked formalization using a
combinator-style semantics approach.

In the following, we will present our semantics in combinator-style,
because it is more suitable for a machine-checked semantics. In particular,
one can optimize an automatic proof procedure for all definitions that
are based on the same setup of combinators. Moreover, this construction
allows for the automatic lifting of theorems from the meta-level (e. g., HoL)
to the object-level (e. g., ocL) [20]. Overall, we aim for a conservatively
developed, machine-checked semantics, because we see the following
advantages:

A Consistency Guarantee. If one only uses conservative definitions and
only derived rules for defining the formal semantics, the consis-
tency of the defined semantics is reduced to the consistency of
HoL for the entire language.

A Technical Basis for a Proof Environment. Based on the derived rules,
proof procedures (i. e., tactics) implement automated reasoning
over formulae of the defined language and the correctness proof
for the new proof systems is reduced to the correctness of a (well-
known) HOL theorem proving system.

Formalization Experience. Since our semantics is machine-checked, we
can easily change definitions and check their properties; allowing
for deepening the knowledge of the language semantics as a whole.

2.2.4 Logical Embeddings and Semantics

A theory representing syntax and semantics of a programming or speci-
fication language in another specification language is called an embed-
ding. Further, higher-order abstract syntax (HOAS) [98] is an important
concept for representing bindings in logical rules and program transfor-
mations [57] and for implementations [98].

As an example, we define the universal quantifier of HOL: it is repre-
sented in HOAs by a constant All::(a = bool) = bool, where the term

38

2.2FORMAL BACKGROUND

All() x. P(x)) is paraphrased by the usual notation V x. P(x). This is in
contrast to the usual textbook definition for predicate logic, where a free
datatype for terms and predicates, explicit substitution and well-typedness
functions over them is provided. This conventional representation re-
quires explicit side-conditions in logical rules over quantifiers preventing
variable clashes and variable capture. The representation using HOAs has
two advantages:

1. 'The substitution required by logical rules like V x. P(x) = P(t)
can be directly implemented by the 3-reduction underlying the
A-calculus.

2. The typing discipline of the typed)-calculus can be used to rep-
resent the typing of the represented language. For example, a
multi-sorted first-order logic (having syntactic categories for arith-
metic terms, list terms, etc.) is immediately possible by admitting
expressions of type nat and « list.

In short, HOAS has the advantage of “internalization” of substitution and
typing into the meta-language, which can therefore be handled signifi-
cantly more generally and substantially more efficiently by means of the
meta-logic. This is a prerequisite for using Isabelle as an implementa-
tion platform. When using HOAS style semantic definitions, this is called
a shallow embedding [18] of an object-language, as opposed to a deep
embedding:

o A deep embedding represents the abstract syntax as a datatype and
defines a semantic function I from syntax to semantics.

o A shallow embedding defines the semantics directly; each construct
is represented by some function on a semantic domain.

Assume we want to embed the Boolean operators and and or into HOL.
The semantics function I maps object-language expressions and environ-
ments to bool, where environments map variables to bool values. Using a
shallow embedding, we define directly:

xandy=)le.xeAye (2.21)
and

xory=)le.xevye. (2.22)

Shallow embedding allows for direct definitions as semantic domains and
operations on them. In contrast, in a deep embedding, we have to define
the syntax of our object-language as a recursive datatype:

expr =varvar | exprandexpr | expror expr (2.23)

39

deep embedding

shallow embedding

conservative
embedding

FOUNDATIONS AND BACKGROUND

and the explicit semantic function I:

I[varx] =)e. e(x), (2.24)
I[xandy] =)e. I[x] enI[y] e, and (2.25)
I[xory]=7re I[x]evI[y]e. (2.26)

This example reveals the main difference: compared to a shallow embed-
ding, in a deep embedding the language is clearly separated from the
underlying meta-language HOL. Moreover, semantic functions represent
obstacles for deduction that are not present in a shallow embedding. The
explicit syntax of deep embeddings enables induction proofs, however;
for some meta-theoretic analysis, this may have advantages. Since we are
interested in a concise semantic description of object-oriented specifica-
tion languages and prototypical proof support, but not meta-theory, we
have chosen a shallow embedding.
Another example for a shallow embedding is definition of the universal
quantifier:
AllP = (P =) x. true). (2.27)

The propositional function of the “body” of the quantifier must be equal
to the function that yields true for any argument. A deep representation
of the universal quantifier follows usual textbooks:

true if Sem[P(x)]y[x:=d]forall d
false otherwise.

Sem[V x. P(x)]y E{ (2.28)

Here, we assume a meta-language with well-defined concepts such as “if;’

“otherwise,” and “for all,” e. g., Zermelo-Fraenkel set theory.

As can be seen, shallow embeddings can have a remarkably different
flavor in their semantic presentation, in particular when striving for
conservativity as in the example above. However, the usual inference
rules are derived from these definitions. Thus they are equivalent in the
sense that they describe semantically the same language.

If a shallow embedding is built entirely by conservative theory exten-
sions, it is called a conservative embedding. A conservative extensions
ensures the consistency of the language definition if the underlying meta-
language is consistent.

In the following chapter, we will use these techniques for building a
formal framework for object-oriented languages. This framework, imple-
mented as a conservative shallow embedding into Isabelle/HoL, provides
both a combinator-style formal semantics and an interactive proof envi-
ronment for object-oriented specifications.

40

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

In this chapter, we present the key concepts of our framework for objected-
oriented specifications. The complete formalization is over 500 pages long
and contains several thousand definitions and theorems. This formal-
ization, including all technical details, is presented in a separate doc-
ument [21]. The foundations for our framework are motivated by the
UML/OCL scenario, i. e., we model an object-oriented system supporting
subtyping using single inheritance. Further, we model an object-oriented
constraint language for specifying state transition using invariants, precon-
ditions and postconditions. As we have to cope with undefined elements,
e. g., path expressions that are invalid in a specific system state, it seems
natural to base our specification language on a three-valued logic. More-
over, we aim for an embedding that supports the extension of existing
data models without the need of re-proving everything and thus breaking
up the closed-world assumption that is present many in state of the art
proof environments.

3.1 CHALLENGES

We aim for a shallow embedding that captures the essence of object-
orientation as it is understood in the object-oriented community. For
example, our framework should not only be object-based but truly object-
oriented in sense of Section 2.1. In particular such an embedding in HoL
must provide:

o Support for subtyping and inheritance in a type system that does
not provide a notion of subtypes.

« A notion of state, i. e., a mapping of object-references to objects
and its possible state transitions.

o Support for expressions that contain operations that refer to a pair
of pre-state and post-state (0, dpre), as for example in ocL.

41

state
state transitions

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

path expression

undefinedness

subcalculus

« Support for a semantic representation of path expressions for ad-

dressing objects within the object store (memory).

Support for undefinedness. This is important, because any syntac-
tically correct path expression can, for a specific system state, be
semantically undefined. Moreover, this also allows for a consistent
logical support for undefined expressions like 3. But, in such a
setting, many rules can only be applied for “defined” values. In
comparison to a two-valued setting, this results in additional case
splits and side-conditions for many proofs. These side-conditions
must be established by subcalculi; for example, we need rules that
infer facts like “if a + b is defined, then a and b must be defined”

A semantics for operation calls and invocations supporting late-
binding, and, if possible, overriding in a setting without closed-
world assumption, i. e., we aim for an extensible framework.

To meet these challenges we have to provide for the object-oriented

constraint language:

primitive type

« An technique for defining the semantics of the primitive types, e. g.,

Boolean, Integer, Set and collection types such as Set.

« A technique for defining the semantics for the built-in operation,

capturing the arithmetic, logic and collection theories.

« A technique for giving semantics for user-defined operations.

With respect to the underlying object-oriented data model, which results
in a semantics for path expressions, we have to provide:

object structure

« A mechanism to generate formal theories of typed object structures

associated to classes and their relationships (e. g., inheritance).

A technique for giving semantics for user-defined operations in
the context of classes, leading also to a formal semantics of path
expressions.

We have to bring both embeddings together. Among others, this
includes the definition of a semantics for path expressions and
also the definition of a semantics for invariants and operation
specifications consisting of preconditions and postconditions.

Further, we aim for mechanisms providing modularization and exten-

sibility in different ways:

42

3.1CHALLENGES

o The object store should allow for modular proofs, i. e., one should
be able to add new classes without the need of re-proving the prop-
erties of existing classes. This breaks the closed-world assumption
normally made in analysis tools for object-oriented systems. In
our view, as object-oriented systems are normally extensible sup-
porting such open-world scenarios is a corner stone for an usable
object-oriented proof environment. In particular, such systems
can be, even after the analysis, extended later.

o The embedding of the object-oriented constraint language should
be easily usable with another kind of object store. One idea is to
use a Java-like object store allowing, e. g., a distinction between L
and the “null” or “void” reference (pointer).

o The object store should be usable without the specification lan-
guage, e. g., for a programming language description that allows
for method definitions associated to an operation. Thus, one could
verify a method with respect to its operation specification in a
Hoare-logic style of reasoning.

Each of the mentioned techniques and encoding mechanisms can be
organized into levels. The core of these levels is formally defined by theory
morphisms called layers. Figure 3.1 on the next page gives an overview
of this modular architecture: on the first two levels, the encoding of the
object store and the object-oriented constraint language can be used
independently. For example, by providing an encoding of state-machines,
one could provide a constraint language for constraining state-machines,
on level 2. In more detail:

Level o: 'Thislevel defines the ground work for the embeddings. It consists
of two layers:

New Datatypes: In this layer, we define HOL types, in particular
auxiliary types for classes.

Datatype Adaption: In this layer, the HOL datatypes are adapted
as needed, e. g., we glue basic datatypes together to objects
or extend all datatypes by a special “undefined” element.

In summary, this level defines both an extensible object store and
the datatypes for the constraint language.

Level 1: This adapts the functional behavior and finalizes the embeddings.
It consists of two layers:

Functional Adaption: This layer adapts and extends the functional
behavior of our embeddings, e. g., it defines the strictness of
operations and defines the semantics of operation invoca-
tions in the context of our object store.

43

modular proof

level
layer

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

New Datatypes

el o

Object store ocL Datatypes
(universe) (library)

Extensible Datatypes with
Object Store Undefindness
Functional Adaption . .
= P Objects with

ocL Formulae

Operations

Object Store with Three-valued
Method Invocation Logic

Objects with Invariants, Preconditions and

Postconditions

Figure 3.1: Structuring embeddings into functional layers and levels improves the reusability: after
level o our architecture provides a rich library of datatypes supporting undefinedness,
after level 1 we provide an object store with method invocation on the first hand and
a three-valued logic on the other. Finally, we combine the two embeddings into a
constrained object store with method invocation.

Embedding Adaption: This layer adds infrastructure for the treat-
ment of contexts, i. e., the underlying pair of pre-state/post-
state.

In summary, this level provides an embedding of an extensible
object store with operation invocation, and constrained language
(i.e., in the case of ocL, there are only ocL formulae without
context declarations).

Level 2: This level combines the two embeddings, i. e., it introduces the
context of the constraints and defines the semantics of objects and
method invocations with respect to the validity of the correspond-
ing preconditions, postconditions and invariants.

One can view level 1 objects as raw “structural” objects, while level 2
objects preserve the semantics of class invariants.

44

3.2THEORY MORPHISM AND STRUCTURING

In the remainder of this chapter, we will explain our framework in more
detail, using the architectural overview (Figure 3.1) as a kind of road-map.
In Section 3.2, we will explain the concepts of theory morphism and show
how theory morphism can be used for implementing the level structure.
In Section 3.3, we show how our framework can be used for defining a
constraint-language for object-oriented specifications, in particular, we
present several semantic alternatives. By choosing a concrete semantics
for these alternatives, one can define the semantics of concrete object-
oriented constraint language, e. g., 0cL. Our extensible encoding of object-
oriented data-structures (object store) is explained in Section 3.4. In the
remaining sections of this chapter, we explain how the constraint language
and our object store interact, e. g., we explain our encoding of invariants
and introduce statements into the constraint language that reason over
the state of the object store.

3.2 THEORY MORPHISM AND STRUCTURING

Using a conservative embedding for defining semantics or for developing
formal tools has, in comparison to an axiomatic approach, one disadvan-
tage: one has to prove several thousand theorems for the object-language.
At the first look, this large amount of proof requirements seems to make
a conservative approach unfeasible for a language like ocL that comes
with a rich library of datatypes. Thus it seems tempting to throw the
conservatism over board and just postulate what we want. Nevertheless,
in our opinion the consistency guarantee we gain from being conservative
compensates for the toil. Moreover, we show in this section, how one
can automate this work, and thus delegate some of this honest toil to the
machine.

In particular we present an approach for deriving the mass of these the-
orems mechanically from the existing HOL library (our meta-language),
i.e., based on the already proven theorems on the HOL level, we automati-
cally try to prove similar properties for the meta-language. Our approach
assumes a layered theory morphism mapping library types and library
functions to new types and new functions of the constraint language
(i.e., ocr) while uniformly modifying some semantic properties. The
key idea is to represent the structure of the theory morphism by semantic
combinators that are organized into layers (see Figure 3.1). Further, we
introduce the concept of layered theory morphism to structure situations
where a theory morphism can be decomposed in the application of several
semantic combinators.

But first, we introduce the core notion of conservative theory morphism.
Recall the notions for HOL as introduced in Section 2.2.2, i. e., the set of
types 7, the set of type classes or sorts &, and the set of type constructors
X- We also introduced the inductively defined set of terms A, built over

45

type arity
signature

environment

typed term
typed formula

theory
theory closure

signature morphism
theory morphism

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

the set of constants C and the set of variables V. Moreover, we introduce
a type arity ar, 1. e., a finite mapping from type constructors to non-empty
lists of sorts ar : y = lists1 (&), where listy; denotes the type constructor
for non-empty lists.

A signature is a quadruple X = (&, y, ar, ¢ :: C = 7) and analogously
the quadruple I' = (&, y,ar,v: V = 7) is called an environment.

The following assumption incorporates a type inference and a notion of
well-typed term: we assume a subset of terms called typed terms (written
Asr € A) and a subset of typed terms, called typed formulae (written
Fs.r € Ay r); we require that in these notions, ar, £ and y agree in £ and
I'. For example, the set of formulae can be defined as the set of typed
terms of type bool.

We call S = (£, A) with the axioms A ¢ Fy 1 a theory. The follow-
ing assumption incorporates an inference system: with a theory closure
Th(S) < Fx,r we denote the set of formulae derivable from A; in particu-
lar, we require A € Th(S) and Th to be monotonous in the axioms, i. e.,
Sc 8" = Th(S) c Th(S") (we also use S ¢ S’ for the extension of subsets
on tuples for component-wise set inclusion).

A signature morphism is a mapping £ = X which can be naturally
extended to a specification morphism and a theory morphism.

In the following, the concepts of conservative theory morphisms are
rephrased more abstractly. If §' is the constructed by extending S conser-
vatively, we write

S'=SwE; (3.1)

where E is either a constant definition or a type definition (as introduced
in Section 2.2.2). Recall that ' = ((&, y/, ar’, C"), A") is defined as follows:
We assume S = ((&, x,ar,C),A), and P(x) of type P = R = bool for a
base type R in y. C’ is constructed from C by adding Absr : R = T and
Rep; = T = R. ' is constructed from y by adding the new type T (i.e.,
which is supposed to be not in y). The axioms A’ is constructed by adding
the two isomorphism axioms

Vx. Absy(Repy x) = x (3.2a)
and
Vx. Px — Repy(Absr x) = x (3.2b)

to the set A, i.e.:

(33)

A AL { Vx. Abst(Repy x) = x, } .

Vx.Px — Rep,(Absy x) = x

The type definition is conservative if the proof obligation 3x. P x, holds.

46

3.2THEORY MORPHISM AND STRUCTURING

Technically, conservative language embeddings are represented as spec-
ification increments E that contain the type definitions and constant def-
initions for the language elements and give a semantics in terms of a
specification S.

We use this possibility of extending a theory piecewise for structuring a
theory morphism into layers. The main idea is to collect similar extension
into the same layer. Formally, we define a layered theory morphism as
follows:

DEFINITION 3.1 (LAYERED THEORY MORPHISM) A theory morphism is
called a layered theory morphism if and only if in each form of conser-
vative extension the following decomposition into elementary theory
morphisms (layers) is possible:

1. for type synonyms (ay, .. ., a,,) T, there must be type constructors
C,; to C, such that

(@1, @) T = Co(-(Ci(T7))), (3.4)

2. for conservative type definitions (ag, ..., a,;) T, there must be
functions C; to C,, such that

(ar,...,am)T = {x :: Cn(---(Cl(T’))) | P(x)} ,and (3.5)

3. for constant definitions ¢, there must be functions E; to E,, such
that
c=(E o0-0E)(c); (3.6)

where each C; or E; are type constructors or expressions build from
semantic combinators of layer L; and the type expression T is built from
the meta-logic. Also ¢’ is a construct from the meta-logic. A layer L;
is represented by a specification defining the semantic combinators, i. e.,
constructs that perform the semantic transformation from meta-level
definitions to object-level definitions. o

Figure 3.2 on the following page illustrates the concepts of a structured
theorem morphism: based on a meta-language (e. g., HoL) with datatypes
the semantics of the object-language is defined, whereby common adap-
tion techniques are exploited and are classified into different adaptions.
Namely, we distinguish datatype adaption, the functional adaption, and
the embedding adaption.

In the following, we will present a collection of layers and their combi-
nators in more detail. We will associate the semantic combinators one by
one to the specific layers and collect them in a distinguished set SemCom.

47

specification
increment

layered theory
morphism

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

int o set

+ @] €

=T = =Y IO =S =

X+y=y+x XUy=yux

Datatype Adaption

Functional Adaption

Embedding Adaption

Boolean, Integer, a' Set,
- % _U_,_¢€
XAYy=yAX X+y=y+x xXUy=yUx

—|_,_/\

Figure 3.2: A structured theory morphism allows for mechanically deriving libraries of theorems
for the object-language (e. g., ocL) out of already proven theorem libraries for the
meta-language (e. g., HOL).

48

3.2THEORY MORPHISM AND STRUCTURING

3.2.1 Datatype Adaption

The datatype adaption establishes the link between meta-level types and
object-level types, and between meta-level constants and object-level
constants. While meta-level definitions in libraries of existing theorem
provers are usually optimized in a way that is most suitable for automatic
proof support, object-level definitions are often tied to a particular com-
putational model. Thus, a gap between these two has to be bridged. For
example, in Isabelle/HoL, the head-function applied to an empty list is
underspecified. In a typical executable object-language such as smML or
Haskell, this function should be defined to yield an exception element.
Datatype adaption copes with such failure elements, the introduction
of boundaries (e. g., maximal and minimal numbers in usual machine
representation of numbers), congruences on raw data (such as smashing;
see below) and the introduction of additional semantic structure on a
type such as being member of a specific type class.

Concepts like definedness and strictness play a major role in our frame-
work. We capture them using semantic combinators. We used Isabelle’s
concept of a type class to specify the class of all types bot (written as
a = bot) that contain the undefinedness element 1. Additionally, we
required from this class the postulate “all types must have one element
different from the undefined value” to rule out certain pathological cases
revealed during the proofs. For all types in this class, concepts such as
definedness, 1. e.,

def(x = abot) = (x # 1) (3.7)
or strictness of a function, i. e.,

isStrict f=(f 1) =1 (3.8)

are introduced.

Further, we use the type constructor 7; that assigns to each type 7 a
type lifted by L. Since any type in HOL contains at least one element, each
type 7 is in fact in the type class bot. The function _, = «a — «;, also
called “lift,” denotes the injection, the function "_" = o — «, also called
“drop;” its inverse for defined values.

We encode operations that refer to a pair of system states (0, oy,) as
functions from (0, 0y,) to their semantic value. Technically, this means
that we have to lift over the context any function occurring in the semantics
of our object-language, e.g., _ A _or _+ _. Therefore, we introduce the
type synonym V;(a) and some combinators that capture the semantic
essence of context lifting. The type synonym V,(«) is defined as follows:

Vi(a)i=1=a. (3.9)

49

datatype adaption

semantic
combinator
bot

definedness

strictness

Vi(a)

context lifting

context passing

smashing

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

For example, using these type constructors, we can define a lifted and
context-aware variant of the type Boolean:

Boolean = bool, , and (3.10)
Boolean, = V,(Boolean), (3.11)

which precisely correspond to layer o and layer 1.
On the expression level, context lifting combinators for the distribution
of contexts are defined as follows:

lifty f=A7. f (3.12)
with type a = V,(«),

lify f=Ax7 f(x7) (3.13)
with type (a =) = V;(«) = V,(f8), and

lif f=rxyr. f(x7)(y7) (3.14)

with type ([a,] = y) = [VT((x), Vf(ﬁ)] = V;(y). The types of these
combinators reflect their purpose: they “lift” operations from HOL to
semantic functions that are operations on contexts.

Operations constructed by context lifting pass the context T unchanged.
We call an operation context passing if it satisfies exactly this property,
which is expressed formally as follows:

cp(P)=(3f.Vx1.Pxt=f(xT1)71) (3.15)

with type (VT((x) = Vi ([3)) = bool. Context invariance of expressions
will turn out to be a key concept allowing for converting an equivalence
on object-logic expressions (constraints) into a congruence; thus cp will
play a major role in subcalculi for our object-oriented constraint language.

DEFINITION 3.2 (DATATYPE ADAPTION COMBINATOR) The combinators
for the datatype adaption are semantic combinators, i. e., they are included
in the set SemComSemCom:

{—b V (), ., _lifty, liftl,liftz,lift3} c SemCom . (3.16)
a

As another example for a congruence construction, we will show the
smashing on sets like data structures. For a language with a semantic
domain providing 1-element it is not clear, how they are treated in type
constructors like product, sum, list or sets. Two extremes are known in
the literature; for products, for example, we can define

(Lx)#1 {a,1,b} # 1 (3.17)

50

3.2THEORY MORPHISM AND STRUCTURING

or we can define
(Lx)=1 {a,1,b}=1. (3.18)

The variant in Equation 3.18 is called smashed product and smashed set.
The constant definition for the semantic combinator for smashing reads
as follows:

smash f x =if f 1 xthen Lelsex (3.19)

with type [[ﬁ =bot, a :: bot] = bool, cx] = a. On this basis, the type Set,
for example, is built via the type definition

aSet = {x:: (o= bot setl)‘(smash()t xX. defXAxe X')X)X = X}

(3.20)
and the type synonym
a Set, =V (aSet). (3.21)
Alternatively, we could define smashed sets directly:
a Set = {x (o bot setJ_)|L ¢ rx"}. (3.22)

This representation is easier to read whereas the representation in Equa-
tion 3.20 is based on our layered theory morphism. Therefore we prefer
the representation of Equation 3.20 as it makes the automatic derivation
of theorems over smashed sets easier.

Overall, this quotient construction for smashed data structures identi-
fies all sets containing 1 in one class which is defined to be the 1 of the
type a set. All other sets were injected into an own class. Thus, using the
(overloaded) constant definition

L = Absge L (3.23)

we embed smashed sets into the class bot. The injection Abss, (together
with the projection Reps.t) is a consequence of the conservative type
definition above (cf. Section 2.2.2).

For nested collection types such as Set (Set (Integer)), the HOL type
is Integer Set Set, and not Integer, Set, Set, since context lifting is
only necessary on the topmost level for each argument of an operation.

DEFINITION 3.3 (DATATYPE ADAPTION COMBINATOR (SET)) The combi-
nators for the datatype adaption of sets are semantic combinators, i. e.,
they are included in the set SemComSemCom:

{smash, L aSet, Absger, Repser} € SemCom . (3.24)

a

Similar definitions can be derived for other set-like data structures like
multisets (bags) or sequences, see [21] for the formal details of these
definitions.

51

functional adaption

strictify

invoke

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

3.2.2 Functional Adaption

The functional adaption is concerned with the semantic transformation of
a meta-level function into an object-level operation. Functional adaption
may involve, for example, the

o strictification of an operation, i. e., its result is undefined if one of
its arguments is undefined, or

o late-binding invocation semantics for operations. This semantic
conversion process is necessary for converting a function into an
operation using supporting overriding.

Technically, this is achieved by the strictify combinator. Overriding and
late-binding can be introduced by the combinators invoke and invokeS
described in this section.

We define a combinator strictify by

strictify f x = if x = L then Lelse f x (3.25)

with type (a ::bot = B bot) = a = f. The operator strictify yields a
strict version of an arbitrary function f defined over the type class bot.

For example, we can define a strictified version of the union operator
of HoL over the smashed type a Set as follows:

union = strictify()A x. strictify(1 y. Absser, "Repse;x” U "Repser ¥',))
(3.26)
with type [(« :: bot) Set, a Set] = « Set.

The treatment of late-binding (see Section 2.1.1) requires a particular
pre-compilation step concerning the declaration of overridden methods
discussed in Section 3.10 in more detail; in this section, we will concentrate
on the caller aspect of method invocations, i. e., how to represent sub-
expressions occurring in post conditions representing an invocation of a
user-defined operation specification for method

m(aysty,...,ayty) st (3.27)

as feature of class A. In an invocation, e. g., a sub-expression of the form
self.m(ay, ..., ay,), the semantic value of the dynamic type of self is de-
tected. This dynamic type helps to look-up the concrete operation specifi-
cation in a look-up table. This specification can be turned into a function
(by picking some function satisfying the specification), which is applied to
self as first argument together with the other arguments. This semantics
for invoke is captured in the n-indexed family of semantic combinators
invoke (non-strict invocation) and invokeS (strict invocation); the former
define call-by-name semantics, the latter call-by-value semantics. Since

52

3.2THEORY MORPHISM AND STRUCTURING

invokeS is in principle only a strictified version of invoke we only explain
invoke.

The invoke-combinator is defined for the case n = 1, for example, as
follows:

invoke C tab a result =) 1.

faresult T if tab (Least x. x € dom tabA C(a 1) € x) = Some f .
(3.28)

{arbitrary if tab (Least x. x € dom tab A C(a T) € x) = None;

Here, Least is a HOL operator selecting the least set of a set of sets, that sat-
isfies a certain property. In this case, this property is that self is contained
in one of the domains of the look-up table OpTab,, generated during the
processing of the declaration that will be discussed in Section 3.10), 1. e.,
some set (of objects) characterizing a type. For such an element of the
domain of the look-up table, the specification of the operation is selected
and returned. Recall that Some _ is a constructor of the datatype «a option.

The casting function C will be instantiated by a suitable coercion of a
dynamic type to a class type to be discussed later (see Section 3.4).

The process of selecting an arbitrary, but fixed function from a specifi-
cation (i. e., a relation) is handled by the Call-combinator, see Section 3.9
for details. It is defined essentially as the context-lifting of the Hilbert-
Operator € x. P x that just gives one result element satisfying P; if this
does not exist, the Hilbert-Operator picks an arbitrary element of this
type.

The semantic code for the call-by-value invocation c.m(ay, ..., a,) is
given by:

Call(invokeS Cps) OpTab,, ca; ... a,) (3.29)

where ¢ is assumed as an object of class C and to have a subtype of A and
Cia) is a casting-function that converts C objects to A objects.

DEFINITION 3.4 (FUNCTIONAL ADAPTION COMBINATOR) The combina-
tors for the functional adaption are semantic combinators, i. e., we in-
cluded in the set SemComSem Com:

{strictify, Call, invoke, invokeS} ¢ SemCom . (3.30)

(]

3.2.3 Embedding Adaption for Shallow Embedding

The semantic combinators for the embedding adaptions are related to the
embedding technique itself, namely the lifting over contexts. Any function

53

embedding
adaption

object-oriented
constraint language

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

fwithtype t1,...,t, = t,.1 of the object-language has to be transformed
to a function:

1111 with type [Vf(tl),...,VT(t,,)] = Vi(tps)- (3.31)

As an example for a binary function like the built-in operation _ U _
(based on union operator defined in Section 3.2.2), we present its constant
definition:

u=liftunion with type [(oc :bot) Set., a SetT] = « Set,.
(3.32)

Summing up the intermediate results of the local theory morphisms
(i. e., the layers) in the previous subsections, the definition of our running
example _ U _is given directly by:

u =lift, (strictify(A x. strictify () y.
Absse;, "Repser " U "Repser yl))) . (3-33)

One easily recognizes our standard definition scheme, having Abss; and
Repset as additional semantic combinators. During mechanical lifting of
HOL theorems to theorems of the object-logic (suchas AUB = BUA), these
operators require proofs for the invariance of the underlying quotient
constructions; i. e., in this example, it must be proved that the union on
representations of object-logic sets will again be representations of an
object-logic set, (i.e., HOL sets not containing 1).

3.3 DEFINING AN OBJECT-ORIENTED CONSTRAINT LANGUAGE

In this section, we motivate that our framework can easily be used for
defining different semantics for an object-oriented constraint language.
Intuitively, we define an object-oriented constraint language as a language
based on logic and set theory which is used for reasoning about object-
oriented data structures. Overall, such a language must provide a logic
that able to reason over path expressions and also basic datatypes like
Integers and Set. For the different building blocks, e. g., the logic, we
provide different alternative proposals for a semantics. These different
semantics can be examined and compared formally within our framework.
The semantics of a specific object-oriented constraint language, e. g., ocL,
can be easily defined by choosing the one concrete semantics for each
needed building block. In particular we show the definitions for different
three-valued logics, the definitions for basic datatypes and the definitions
for smashed and non-smashed sets.

54

3.3 DEFINING AN OBJECT-ORIENTED CONSTRAINT LANGUAGE

3.3.1 The Logical Core

Expression such as § = 42 are neither true nor false in mathematics. One
way to treat this, is by underspecification, i. e., in each model of this for-
mulae, § has another interpretation. Instead, we introduce undefinedness
(denoted by 1) into the object-logic of our framework. This decision al-
lows for the explicit treatment of undefined expressions while preserving
an extended, three-valued, form of the law of the excluded middle, i.e.,
a Boolean value is either true, false, or undefined. Thus, we introduce a
test for being defined into our object-logic, which can be easily defined
based on the concepts introduces in Section 3.2. In particular, then we
only need to lift the already introduced definedness-test def _:

0 x = lifty def x, with type Val,(a) = Boolean,. (3.34)
As a shorthand, we also introduce a test for being undefined:
dx=-0x with type Val,(a) = Boolean;. (3.35)

Of course, both functions are non-strict, e. g., 0 L is defined and, in par-
ticular, evaluates to f.

Following the overall scheme for operations, already presented in Sec-
tion 3.2, one can also require strictness for the logic:

DEFINITION 3.5 (STRICT THREE-VALUED LoGIc) For the strict three-val-
ued logic, the semantics of the connectives are defined by the following
truth tables:

AT

t 1 vIiF ot oL — | f t 1 - |
FlF f 1 Flf t 1 flt t L flt
t|f t 1 t|t t 1 t | f ot 1 t
1|1 1 1 I T 1

(]

The truth tables in Definition 3.5 reveal that the binary operations of a
strict three-valued logic are associative, commutative, and idempotent.
Following the already described definition scheme for strict operations,
this strict three-valued logic can be easily defined within our framework,
see Table 3.1 for details.

DEFINITION 3.6 (LAZY THREE-VALUED Logic) The semantics of the log-
ical connectives of the lazy three-valued logic are defined by the following
truth tables:

\ f

A t 1 VIf ot oL = | f t 1 ﬁ\
fFlf f f fFlf t 1 f ot t t flt
t|f t 1 tlt t t t | f t 1 t
Ll 1 1 LlL 11 L1 1 1 L

55

strict three-valued
logic

lazy three-valued
logic

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

- _ = lift strictify(A x. ="x", (3.36)
A= liftz(strictify(A x. strictify(1y. "x' A ryh))) (3.36b)
_V_z=Axy. ~(=xA-y) (3.36¢)

_ > _=)lxy. -xVy (3-36d)

Table 3.1: The definitions for a strict three-valued logic follow the general scheme for strict opera-
tions. The binary operations of a strict three-valued logic are associative, commutative
and idempotent.

[|

- _ = lifty strictify(A x. ="x", (3.372)
A =lift, (}ny. if (def x)

thenif (def y)then "x" A "y",

elseif "x" then L else false, (3.37b)

else L
_V_z=Axy. ~(-xA=y) (3370
Sy (3.37d)

Table 3.2: A lazy three-valued logic is often used by evaluation environments and programming lan-
guages. Due to the fact that algebraic properties like the commutativity of the conjunction
do not hold, it is not well-suited for formal reasoning.

Strong Kleene Logic

Note, that the truth tables are not symmetric which indicates that the bi-
nary operations are not commutative e. g., fA | evaluates to f, whereas | A f
evaluates to L. Obviously, in a proof environment, a non-commutative
“and” is not common and leads to complicated calculi. Nevertheless, it can
easily be defined (see Table 3.2) and it also motivates the idea of canceling
undefinedness, if the result of an operation can be uniquely determined
from its defined arguments.

A logic supporting undefinedness, while preserving the usual alge-
braic properties was introduced by Kleene [66] in which he argues that
the informal meaning for the third value (1) should be “unknown” or
“undefined”

DEFINITION 3.7 (STRONG KLEENE LoGIic) The semantics of the connec-
tives for the Strong Kleene Logic are defined by the following truth tables:

56

3.3 DEFINING AN OBJECT-ORIENTED CONSTRAINT LANGUAGE

- _ = lift strictify(A x. ="x", (3.382)
A =lift, (Axy. if (def x)

thenif (def y)then "x" A "y",
elseif "x" then L else false, (3.38b)

elseif (def y) thenif"y' then 1
else false else L)
V=Axy. ~(=xA-Y) (3.38¢)
_— _ZAXxYy. ~xVYy (3.38d)

Table 3.3: The connectives of a Strong Kleene Logic have the usual lattice properties, while allow-
ing reasoning over three-valued formulae where undefinedness is canceled whenever

possible.
Alf £t 1L v|ft 1l —|ft 1l =
flf f f f|f t L flt t t f|t
t|f t 1L tjt t t t f t 1 t | f
L] f L 1L (L t 1 1 1t 1 1

(]

Of course, the connectives for the Strong Kleene Logic can be defined in
our framework, see Table 3.3. Here we exploit that the implication can
be defined using only the logical negation and disjunction, i. e.:

A—B=-AVB. (3.392)

Moreover, for Strong Kleene Logics two other definitions for the implica-
tions are discussed in the literature [52, 56]:

A—>B=()A)v(~A) VB (3.39b)
and
A—2>Bz(ﬁA)v(A/\B). (3.39¢)

For a first comparison of these three definitions, we derived their truth
tables, see Table 3.4. Notably, their behavior differs only for undefined
operands. The difference is that the variant (3.39b) evaluates to t if the
assumption is undefined, while (3.39¢) evaluates to L.

Moreover, for all three logics, we can prove easily within our framework,
using Isabelle/HOL, that the definitions given in Table 3.1, Table 3.2 and

57

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

—|f 1 t Lole oLt Zole oLt
f ot ot f t ot ot f t ot ot
1 L 1t 1 t t ot L I
t fol t t f 1t t f Lt

Table 3.4: For Strong Kleene Logic, three different definitions of the im-
plications are discussed in literature. Their truth tables show,
that their behavior differs only for undefined operands.

Table 3.3 fulfill the corresponding truth tables given in the definitions;
[21] presents the proofs in detail. Moreover, the definition of the negation
(—_) isin all three logics identical, i. e., it is in all three definitions a strict
operation. Further it is interesting that in all three settings it is sufficient
to define the negation and the conjunction, since the definitions for the
disjunction and implications can then be expressed as negations and
conjunctions.

3.3.2 Primitive Datatypes

Primitive datatypes, or value types (see Section 3.6), e. g., Boolean, Inte-
ger, String, are defined using the previous explained datatype adaption
combinators. For example, recall the following definitions:

Boolean :=bool ,
Boolean, := V,(Boolean),
Integer:=int , and

Integer, := V;(Integer).

The constant definitions for t (true), (false), and L (undefined) of
Boolean; or 0, 1, ...of Integer, are straight-forward, using the lifting
combinators:

L with type Boolean,,
_true,) with type Boolean,,
false) with type Boolean,,
L) with type Integer,,
0,) with type Integer,, and

(
(
(«
(
(
(

1) with type Integer,.

The definition for undefinedness is done for the polymorphic constant 1.
For Boolean, we have already seen the definitions for the basic opera-
tions. The operations for the primitive datatypes are very similar to these,

58

3.3 DEFINING AN OBJECT-ORIENTED CONSTRAINT LANGUAGE

e. g., the strict addition on integers is defined as:
+ =lifty (strictify (A x. strictify(Ay. "x"+"y")))). (3.40)

Moreover, from these definitions, computational rules on numbers can be
derived, which perform computations like 3 + 4 on binary representations
of numbers.

Adding an explicit element denoting undefinedness to the “mathemati-
cal” integers and real numbers, i. e,, lifting them, changes their algebraic
structure. Whereas mathematical integers are a commutative ring with
unity and real numbers are a field, the lifted versions do not share such a
rich structure:

o The lifted integers (Integer,) contain neither and additive nor
a multiplicative inverse element for 1. Both (Integer,;+) and
(Integer,;-) form only a half-group with unity (monoid), and
thus (Integer,;+;-) does not even form a semiring (a - 0 = 0
does not hold). Nevertheless, (Integer, \ {1};+;-) is a subring
of (Integer,;+;-).

o Similarly, (Real;; +;-) do not form a semiring either, but contain
the subfield (Real, \ {1};+;-).

For the real numbers (Real,), this seems to be a dramatic loss of algebraic
structure. But one should keep in mind that still most laws required for
rings (in the case of Integer,) and fields (Real;) hold. For example,
Table 3.5 summarizes the variants of the ring laws that can be proven for
Real,, only Equation 3.41d and Equation 3.41h differ from the usual laws
for fields. The situation for Integer, is similar. Moreover, the idea of
canceling undefinedness whenever possible, e. g., by defining 1 - 0 to be 0,
is not sufficient for establishing a richer algebraic structure.

Another interesting possibility is the definition of “machine arith-
metic,” i. e., a bounded integers based on two's-complement representa-
tion. Rauch and Wolff [99] presents such a formal semantics for bounded
integers, based on the specification of the Java virtual machine (jvm), as
a shallow embedding into Isabelle/HOL. This work would fit nicely into
our framework. o

3.3.3 Collections

Using our framework, it is easy to define both a theory of non-smashed
collection types and a theory of smashed collection types. The underlying
datatype definitions are already described in Section 3.2.1. As an example,
see Table 3.6 for the definition of the core operations for non-smashed
sets. Introducing the injection Absg. and projection Reps, results in the
corresponding definitions for the smashed sets (see Table 3.7).

59

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

(x0 +x1) + (x2:Real;) = xg + (x1 + x2)

0+ (xo :Real;) = xg

(xo = Realy) +x1 = x1 + X
(x:Realy) # L

dy.x+y=0

(x0 - x1) - (x2 = Realy) = x¢ - (x1- x2)

1-(xo=Real;) = xo

X0 - (x1:Real;) = x1 - X
(x=Realy)#L x#0

dy.x-y=1

(x0:Realy) - (X1 +x2) = xo - X1 + X0 - X2

(x0+x1) - (x3:Realy) = xp X3 + X1 - X2

(3.412)
(3.41b)

(3.41¢)

(3.41d)

(3.41€)
(3.41f)

(3.418)

(3.41h)

(3.41i)

(3.41))

Table 3.5: The lifted real numbers (Real;) enjoy not all laws required for fields: there is neither
an inverse element for the addition (Equation 3.41d) nor for the multiplication (Equa-

tion 3.41h).

e = lifty (strictify (A X. strictify(Ax. x€"X",)))
_ = lifty (strictify(A X. —("X" - 1),))
U= liftz(strictify(A X. strictify(1Y. "X" U rY1J)))

n = lifty(strictify(1 X. strictify(1 Y. "X n 'Y1J)))

(3.42a)
(3.42b)

(3.42¢)

(3.42d)

Table 3.6: Defining the basic operation on non-smashed sets straight forward. Non-strict version

can be obtained by omitting the strictify combinator.

60

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

_ ! = lift; (strictify (A X. Absser,—("Repset X™ = 1),))
u=lift, (strictify(A X. strictify(1 Y.

Absger, "Repser X' U "Repser Yl)))
n =lift, (strictify(,l X. strictify(1Y.

Absser, "Repser X' N "Repser Yﬂ)))

e = lifty (strictify(A X. strictify(1x. x € "Repset X',)))

(3.432)
(3.43b)

(3.43¢)

(3.43d)

Table 3.7: The definition for the basic operation on smashed sets can be easily derived from the
definition for non-smashed sets (see Table 3.6) by introducing the injection Absge and

projection Repget.

In a similar way, we also could define datatype adaption combinators
for finite sets, albeit this is not necessary: using a suitable definition for
the size of an unbounded set, i. e., for an infinite set the size is undefined,
we can easily define a test for sets being finite

isFinite self = 0| self || of type a Set, = Boolean,. (3.44)

In assumptions, this test function isFinite _ can be easily used for restrict-
ing theorems to finite sets.

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

Systems for formally analyzing object-oriented systems can be mainly
classified into systems based on a closed-world assumption (the majority)
and systems based on an open-world-assumption:

Closed-world: In a closed-world scenario, a fixed data model is assumed,
i.e., a fixed set of classes that cannot be extended. In particular, it
is neither possible to introduce new top-level classes nor to inherit
from an existing class.

Open-world: In an open-world scenario, the underlying data-mode is
extensible, i.e., new classes can be introduced into the system
and these new classes can, in particular, override already defined
operations or methods.

Extensibility is both a key feature of object-orientation, and also a corner
stone of modular theorem proving. Therefore, we aim for an embedding

61

closed-world

open-world

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

supporting extensibility. Moreover, the construction we present in this
section allows for open-worlds, closed-worlds and even partially closed-
worlds.

Instead of constructing a “universe of all objects” (which is either un-
typed or “too large” for a (simply) typed set theory, where all type sums
must be finite), one could think of generating an object universe for each
given set of classes. For example, assume a model with the classes A, B,
and C. Moreover, we ignore subtyping and inheritance for a moment.
In this case, we would construct the universe U’ = A + B + C. Unfortu-
nately, such a construction is not extensible: If we add a new class, e. g.,
D, then the “obvious” construction U' = A + B + C + D results in a type
that is different to the type U°. Thus, the two types U° and U' (and
all values constructed over them) are incomparable. Therefore, such a
representation rules out a modular, incremental construction of larger
object systems. In particular, properties that have been proven over U°
will not hold over U'. Practically, this means that all proof scripts will
have to be rerun over an extended universe.

We solve this problem by using parametric polymorphisms for repre-
senting families for universes U’, see Figure 3.3 on the next page for a first
overview of this idea. Such a family of universes represents the “possible
class diagram extensions”. Further, we extend the scheme sketched above
by assigning to Classes not directly objects, but merely object extensions.
This “incremental” object view (also used in many implementations) al-
lows for the representation of object inheritance and leads, as we will
see, to a smooth integration of inheritance into the world of parametric
polymorphism.

3.4.1 Foundations

Object universes are the core of our notion of state, which is the building
block of our notion of context 7, which is again the building block of the
semantic domain of our expressions: 7 = « :: bot. In this section, we
focus on families of object universes U’, each of which corresponds to
a class diagram. Each U’ comprises all primitive types (Real, Integer,
String, Boolean, ...) and an extensible class type representation induced
by a class hierarchy. To each class in a given class diagram, a class type
is associated which represents the set of object instances or objects. The
structure of a U' is to provide a family of injections and projections to
and from each class type. More precisely, if we assume a class A, this
results on level o in:

mkgo) with type U = A, and (3.45)
getgo) with type A = U, (3.46)

62

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

Object .
1 _ A Object
A “ ﬁ U(aA’ﬂ(]bject) —AXOCl +ﬁ

(a) A single class A represented by the type sum A x a# + B%Iet, The type variable a# allows for introducing
subclasses of A and the type variable %t allows for introducing new top-level classes.

A
=a

Object
a p Ulus qc i gomsecsy = A x (Bx af + Cxaf +p4),
+ ﬁObject
A
B c B

(b) Extending the previous class model simultaneously with two direct subclasses of A is represented by instanti-

ating the type variable a? of ’Lll(aA’ pobsecty

Figure 3.3: Assume we have a model consisting only of one class A which “lives” in the universe
’Lll(«s,posecty that we want to extend simultaneously with two new subclasses, namely B
and C. As both new classes are derived from class A, we construct a local type polynomial
BxaP+CxaC+pA. This type polynomial is used for instantiating type variable a*. This
process results in the universe ’U% ab,aC,pa, govsect for the final class hierarchy. In particular,

the universe (Ll%ag’ac’ pa,poviecty 18 @ type instance of ’L[iaA, povsect) - Thus, properties that
have been proven over the initial universe ’Ui as,povect) are still valid over the extended

: 2
universe Ui ys yc pa govject)-

63

copy semantics

sharing semantics

attribute type

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

This functions allow us to inject any semantic value of our object-language
into some U’. Note, as we need also lifted versions of these definitions,
we will mark the different versions by different superscripts. This in turn
makes a family of states (containing “object systems”) possible:

state with type oid - U (3-47)

where _ — _ denotes the partial mapping. From this state, concrete values
may be accessed via an oid and then be projected via get&o). On this basis,
the accessor functions composing path expressions can be built.

The extensibility of a universe type is reflected by “holes” (polymorphic
variables) that can be filled when “adding” extensions to class objects,
which means adding subclasses to the class hierarchy. Our construction
will ensure that U'*" (corresponding to a particular class diagram) is just
a type instance of U’ (where UU*V is constructed by adding new classes
to U"). Thus, properties proven over object systems “living” in U’ remain
valid in U™

There are essentially two choices for an operational semantics of object
universes and thus object constructors:

Objects are references: every object has a unique identifier, sometimes
also called reference. This construction is well-known from many
widely used object-oriented programming languages like Java or
Eiffel or specification languages with copy semantics

Objects are values: the identifying representation of an objects is its value,
i.e., two objects representing the same value, are indistinguishable.
This is often called a sharing semantics.

Naturally, the choice if objects identifiers are used to identify objects has
several consequences on the meaning of “being equal” This is discussed in
more detail in Section 3.6. Having object-oriented programming language
in mind, a non-referential setting can be unintuitive. For example, a
constructor does not necessarily generate a fresh object.

In our framework, the distinction between the sharing semantics and
copy semantics is reflected in two alternative universe constructions,
namely the non-referential universe and the referential universe.

3.4.2 Type Constructions

In the following, we define several type sets which all are subsets of the
types of the HOL type system. This set, although denoted in usual set-
notation, is a meta-theoretic construct, i. e, it cannot be formalized in
HOL. We start by defining all possible types for class attributes.

DEFINITION 3.8 (ATTRIBUTE TYPE) The set 2 of attribute types is induc-
tively defined as follows:

64

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

1. {Boolean, Integer,Real,String,oid} c 2, and

2. {aSet,aSequence,aBag,aOrderedSet} cforallae.

Attributes with class types are encoded using the type oid. These object
identifiers (i. e., references) will be resolved by accessor functions for a
given state; an access failure will be represented by L.

Similar to the description in the ocL standard we represent a class by a
tuple, which is built by pairing the attribute types of the class. Moreover,
we extend this tuple by an abstract datatype for each class. This construc-
tion guarantees that each class type is unique. Thus we provide a strongly
typed universe (with regard to the object-oriented type system).

DEFINITION 3.9 (Tag TYPE) For each class C we assign a tag type t € T
which is just an abstract type that makes class types unique. The set ¥ is
called the set of tag types. o

Further, we introduce for each class a base type:

DEFINITION 3.10 (BASE Crass TYPE) The set of base class types B is de-
fined as follows:

1. classes without attributes are represented by (¢ x unit) € B, where
t € T and unit is a special HOL type denoting the empty product.

2. ifteTanda; eAforie{0,...,n}then (fxagx--xa,)eBg

Without loss of generality, we assume in our object model a common
supertype of all objects. In the case of ocL, this is 0clAny. In the case
of Java this would be Object. We can assume such a supertype without
loss of generality, because such a common supertype can always be added
to a given class structure without changing the overall semantics of the
original object model.

DEFINITION 3.11 (OBJECT) Let Object,, € T be the tag of the common

tag

supertype Object and oid the type of the object identifiers,

1. in the non-referential setting, we define
a Object := (Objecttag xap) (3.48)
as the common supertype.
2. in the referential setting, we define
a Object := ((Objecttag x 0id) x ocl) (3.49)

as the common supertype. o

65

tag type

base class type

Object

universe type

referential universe

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION
Now we have all the foundations for defining the type of our family of
universes formally:

DEFINITION 3.12 (UNIVERSE TYPE) The set of all universe types ¢ and
Unonref (abbreviated ;) is inductively defined by:

1. UY €4y is the initial universe type with one type variable (hole)

This definition covers the introduction of “direct object extensions”
by instantiating a-variables.

..... anBrrfi) € oo mom €N, i €{0,...,m}, and ¢ € B then

u(ag,...,an,ﬁl,‘..,/}m)I:ﬂi = ((C X (‘xn+1)J_) + ﬁmﬂ)] etly. (3.51)

This definition covers the introduction of “alternative object exten-
sions” by instantiating 3-variables. o

The initial universe U represents the common supertype (i e., Object)
of all classes, i. e., a simple definition would be

‘Ug = Object. (3.52)

Along the class hierarchy, class types are type instances of the types of the
superclasses.

Alternatively one can also encode values Values := Real + Integer +
Boolean + String within the initial universe type, e. g.,

U° := a Object + Values. (3.53)

As we will see later, for our framework we choose to represent also values
within the universe which makes extensions possible that need to store
values within the store. Thus we define the universes as follows:

DEFINITION 3.13 (REFERENTIAL UNIVERSE TYPE) The universe type U,..¢
of the referential universe is constructed using item 1 from Definition 3.11
in the definition of the initial universe:

7/12 = Object + Real + Integer + Boolean + String. (3.54)

o

66

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

DEFINITION 3.14 (NON-REFERENTIAL UNIVERSE TYPE) The type Unonref
of the non-referential universe is constructed using item 2 from Defini-
tion 3.11 in the definition of the initial universe:

‘Ug := a Object + Real + Integer + Boolean + String. (3.55)

(]

We pick up the idea of a universe representation without values for a class
with all its extensions (subtypes). We construct for each class a type that
describes a class and all its subtypes. They can be seen as “paths” in the
tree-like structure of universe types, collecting all attributes in Cartesian
products and pruning the type sums and f3-alternatives.

DEFINITION 3.15 (CLASs TYPE) The set of class types € is defined as fol-
lows: Let U be the universe covering, among others, class C,, and let
Co, ..., Cy_1 be the supertypes of Cy, i. e., C; is inherited from C;_;. The
class type of C,, is defined as:

1. C;e%B,ie{0,...,n}then

Cg:(COX(CIX(CZX'“X(Cnxai)l)l)l) eC. (3.56)
1

2. $lg o €, where ¢ is the set of universe types with U9 = C2.

Alternatively, one could omit the lifting of the base types of the super-
types in the definition of class types. This would lead to:

Cg:(Cox(Clx(sz-nx(CnX(xJ_)))) : (3.57)
1

We see our definition as the more general one, since it allows for “partial
objects” potentially relevant for other object-oriented semantics for pro-
gramming languages. For example Java, for which partial class objects
may occur during construction. This paves the way for establishing the
definedness of an object “lazy” Furthermore, since the injections and
projections are only built to define attribute accessors, partial objects can
be hidden on level 2, e. g., the representation of ocL formulae.

In both cases the outermost _; reflects that class objects may also
be undefined, in particular after projection from some elements in the
universe or from failing type-casts. This choice has the consequence that
the arguments of constructors may be undefined.

67

non-referential
universe

class type

kind

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

3.4.3 Instances

We provide for each class injections and projections. In the case of Object
these definitions are quite easy, e. g., using the constructors Inl and Inr for
type sums we can easily insert an Object object into the initial universe
via

mk(o)

Object self = Inlself with type a Object — ’Ug (3.58)

and the inverse function for constructing an Object object out of a uni-
verse can be defined as follows:

(0) if univ = Inlk

. univ = with type U° — a Object.
Object {8 k. true if univ=1Inrk TPe Ha

get

(3-59)

In the general case, the definitions of the injections and projections is a
little bit more complex, but follows the same schema: for the injections
we have to find the “right” position in the type sum and insert the given
object into that position. Further, we define in a similar way projectors
for all class attributes.

In a next step, we define type test functions; for universe types we need
to test if an element of the universe belongs to a specific type, i.e., we
need to test which corresponding extensions are defined. For Object we
define:

isUniv with type U — bool.

Object

©) i = true if univ =Inlk
| false if univ =Inrk

(3.60)

For class types we define two type tests: an exact one that tests if an object
is exactly of the given dynamic type and a more liberal one that tests if
an object is of the given type or a subtype thereof. Testing the latter one,
which is called kind in the ocL standard, is quite easy. We only have to
test that the base type of the object is defined, e. g., not equal to 1:

isKind®)

Object S€lf = def self with type a Object — bool. (3.61)

An object is exactly of a specific dynamic type, if it is of the given kind
and the extension is undefined, e. g.:

isTypeg)b)ject self = isKindopject /\—|((def obase) self) (3.62)

with type « Object — bool. Where base is a kind of strict operator for
accessing the second element of a pair:

.f = b b
base x = {b nx Lga b, with type (a x B) = . (3.63)
L otherwise,

68

3.4 FORMALIZING OBJECT-ORIENTED DATA STRUCTURES

The type tests for user defined classes are defined in a similar way by
testing the corresponding extensions for definedness.

Finally, we define coercions, i. e., ways to type-cast classes along their
subtype hierarchy. Thus we define for each class a cast to its direct subtype
and to its direct supertype. We need no conversion on the universe types
where the subtype relations are modeled by polymorphism. Therefore
we can define the type-casts as simple compositions of projections and
injections, e. g., consider a direct subclass Node of Object, then we can
define directly:

0
Nodefo)bject] = getobject © MKNode (3.64)

with type (a1,) Node — (ay, 81) Object, and

. 0
ObJecthlde] = getnode © MKobject (3.65)

with type (a1, f1) Object — (a1, 1) Node. These type-casts are changing
the static type of an object, while the dynamic type remains unchanged.

Note, for a universe construction without values, e. g. fl/lg :=a Object,
the universe type and the class type for the common supertype are the
same. In that case there is a particularly strong relation between class
types and universe types on the one hand and on the other there is a
strong relation between the conversion functions and the injections and
projections function. In more detail, see also Figure 3.4 on the following
page, one can understand the projections as a cast from the universe type
to the given class type and the injections as their inverse.

As reusabilty and extensibility are key concepts of object-orientation,
we aim for an open-world within our framework. Recall that our universe
construction ensures that theorems proven a given universe U will remain
valid for extensions of U.

Moreover, our construction allows to close a model in a fine-granular
way: We can block further extensions by instantiating the a’s and f’s
related to this class by instantiating them by the unit type. We consider
this fact as a solution to the long-standing problem of extensionality
for object-oriented languages, enabling to represent “open-world” and
“closed-world” assumptions as polymorphism on data universes.

Our solution is more fine-grained than the concept of finalization avail-
able in several object-oriented programming languages: First, we can
finalize a class which inhibits the inheritance from a class completely, i. e.,
a class cannot have any subclasses. Technically, this is done by instan-
tiating the & of this class with unit. Second, we can sterilize a class, i. e.,
inhibit further direct subclassing but allowing “sub-subclassing.” This is
done by instantiating the f3 of the last direct subclass with unit.

69

type-cast

finalize

sterilize

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

mkc

Universe

Object Values

Aloctany] OclAnyyy,
A

Biaj
B

Cie;
C

Figure 3.4: The type-casts, e. g., Bjc) allow the conversion of a type to

70

its direct successor or predecessor in the type hierarchy. The
injections, e. g., mkg convert a class type to the universe type
and the projections, e. g., getg, convert a universe type to a
concrete class type. For a universe without values, the class
type and the universe type of the top most class are identical.
Here, the package Universe represents the universe, i. e., the
top level class (Object) and the primitive types (Values).

3.5 TOWARDS A CONSTRAINED OBJECT STORE

3.4.4 Adaption to Higher Embedding Layers

The previous presented definitions are on the lowest layer, i. e., the intro-
duction of new datatypes. Just as the HOL definition are adopted, over
several layers, to match the object-language definitions, we have to adopt
the new definitions for object-oriented datatypes.

3.5 TOWARDS A CONSTRAINED OBJECT STORE

In this section, we bring the specifications of class invariants and the data
specifications together, i.e., we enrich the structural data model with
class invariants. Often, in object-oriented modeling, invariants are a local
property of an object, i. e., it can be locally decided if an object fulfills its
invariant or not. In this setting, a class defines a structural type. Invariants
are checked locally in a post-hoc manner, i. e., somehow it is required
that an invariant holds for all instances of a structural type. Overall, this
is similar to programming languages with runtime checking or systems
based on that idea like [79] or Spec# [6, 72].

We aim for a deep integration of invariants, i. e., a strong link between
invariants and objects. In our understanding, there is no object (on the
user level) not satisfying its invariant. We ensure this by a co-recursive
scheme that we present in this section. Our co-recursive encoding scheme
supports the encoding of recursive object structures with class invariants,
introducing the concept of a semantic type. This is in opposite to the weak
link provided in systems that do post-hoc checking of invariants.

To illustrate why we break up with the idea of post-hoc invariant check-
ing, consider the model of a linked list given in Figure 3.5 on the next page
together with a simple invariant “positive” stating that the value of the
attribute i must be positive and a second one “flip” stating that within a
given linked list, the Boolean attribute of the nodes flips while traversing
the list.

Further, consider the system state depicted in the object diagram in
Figure 3.6: Is the given system state legal, i. e., do the invariants hold for
object n1? For the first invariant, called “positive,” this can be trivially
decided only by interpreting the n1 locally. But interpreting the second
invariant, called “flip,” only locally makes not much sense. This invariant
has to be interpreted it in a global context, i. e., following the next links.
Moreover, this also requires that n2 is a valid instance of class Node and
thus one has to consider all instances that are reachable from n1 to decide
if n1 fulfills its invariant or not. Moreover, we need a construction that
can also cope with cycles in the object structure, as illustrated in the
two states in Figure 3.7 and Figure 3.8. Here, only the state in Figure 3.8
is consistent. The situation can become much more complex, involving
inheritance and more complicated object structures. Such scenarios are

71

class invariant

structural type

semantic type

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

Node

@ b: Boolean
@ i: Integer
= next: Node

context Node
inv positive: self.i >0

1 inv flip:

o self .next — self .b = - self .next.b

Figure 3.5: In this diagram we model a simple linked list: every instance of
class node can have a successor (node) and has two attributes
storing an Integer and a Boolean value. Using an invariant, we
require that the Integer attribute is positive and that the value
of the Boolean attribute is different from the Boolean value of
the next node, i. e, the Boolean attributes should flip its value
as we traverse an instance of the linked list.

Node: nl
b=t
i=42
next = n2

Node: n2 Node: n3
b:f b=f
i=42 i=42
next = n3 next = 1|

Figure 3.6: In this object diagram we illustrate an instance of our linked
list structure. Consider the first node n1 and decide if the
invariant flip for class Node holds or not.

Node: nl
b=t
i=42
next = n2

Node: n2 Node: n3
b =1~ b=t
i=42 i=42
next = n3 next = nl

Figure 3.7: In this object diagram we illustrate a second instance of our
linked list structure. Consider the first node n1 and decide if
the invariant flip for class Node holds or not.

Node: nl
b=t
i=42
next = n2

Node: n2 Node: n3
b =1~ b=t
i=42 i=42
next = n3 next = n2

Figure 3.8: In this object diagram we illustrate a third instance of our
linked list structure. Consider the first node n1 and decide if
the invariant flip for class Node holds or not.

72

3.5 TOWARDS A CONSTRAINED OBJECT STORE

our main motivation for a co-recursive construction of type and kind sets
that are aware of class invariants. Moreover, if done conservatively, this
construction will rule out invariants that are dangerous in the sense that
they could introduce logical inconsistencies, which we will discuss this in
more detail in Section 3.5.5. In Section 3.5.5 we will compare the approach
of using structural types with post-hoc invariant checking, which we
will introduce in Section 3.5.1, with semantic invariants as introduced in

Section 3.5.2.

3.5.1 Structural Types with Post-hoc Invariant Checks

In this section, we will give a brief overview of the idea of post-hoc
invariant checking, as it is for example used in the KeY [1] tool or USE [100].
These tools assume structural type and kind sets, e. g., Java classes. In this
scenario there an instance of a class can fulfill an invariant or not, i. e., only
a subset of all possible instances fulfill the class invariant. In the remainder
of this section, we will show how structural type and kind sets can be
defined within our framework and how formulae can be constructed that
allow for testing if an instance fulfills the class invariant or not.

DEFINING STRUCTURAL TYPE AND KIND SETS. Based on the type
and kind tests introduced in Section 3.4.3, we can easily define structural
type and kind sets for each class. Our constructs on level 1, i. e., isTypeEl)
and isKindEl) provide a test for structural types and kinds, e. g., for the
class Node we define:

TypeSety, 4. = {0bj : (ac, fc) Node | isTypeI(\Ilgde obj} (3.66)
and
KindSetnode = {0bj :: (ac, fc) Node | isKindI(\Ilgde obj}. (3.67)

These possibly infinite sets describe all structural objects of a specific type
or kind. In particular, the elements of these sets are not required to fulfill
the class invariants for the given type or kind.

POST-HOC INVARIANT CHECKING. Based on the structural projec-
tors and injectors (i. e., the first-level definitions), we can directly give
a semantics for formulae of our constraint language. For example, the
invariant positive of class Node can be directly described as:

invPositivenode self = self. iM >0 (3.68)
where self.i() is the access of attribute i on level 1.

Nevertheless, this is only a formula defined over our object store, in
particular, it is not an invariant. Informally, the meaning of being an

73

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

invariant is often described as follows; an invariant of a class must evaluate
to true for all instances (objects) of that class at any time. Operational
semantic definitions as used in evaluation environments, e. g., [34] or
validation environments, e. g., [100], require implicitly (on the meta-level)
that all instances are satisfying their invariants.

Consider again our linked-list example, shown in Figure 3.5 on page 72.
For environments based on a post-hoc invariant checking, the instances
nl of Figure 3.7 satisfies its invariants and thus is valid. Nevertheless, if
due to a meta-level requirement that all instances of a concrete system
state have to fulfill their invariant, the state would be rejected because
the instance n3 does not fulfill its local invariant, i.e., n3.b = n3.next.b
contradicts the requirements of the invariant flip. However, in this
concrete example, the the consistency check will not terminate for most
implementations of evaluation environments. This is caused by the fact
that these environments are usually not designed with recursive data
structures in mind.

In a proof environment, postulating that all instances fulfill their in-
variants can easily falsify the assumption of proofs (which makes them
trivial) or even introduce deep logical inconsistencies. We will discuss
this problem in more detail in Section 3.5.5.

In the next section, we present a co-recursive construction that provides
a semantic definition of types and kind sets which can guarantee, by
construction, that only objects fulfilling their invariants are of a given

type.

3.5.2 Defining Semantic Type and Kind Sets

In this section, we present a co-recursive encoding that ensures, by con-
struction, that each instance of a class fulfills the class invariants. We
extend the type discipline to be aware of invariants, i. e., being of a specific
type also ensures that the invariants of this type are fulfilled. In particular,
we introduce type sets (which can be seen as a kind of first level invariant)
which later on define a second level construct, providing a representation
that looks familiar to people involved in object-oriented modeling.

A CO-RECURSIVE TYPE AND KIND SET CONSTRUCTION. Ina
setting with subtyping, we need two characteristic type sets, a sloppy
one, the characteristic kind set, and a loose one, the characteristic type
set. We define these sets co-recursively. As basis for our co-recursive
construction, we built for each invariant a HOL representation, i. e., in each
formula where we replace recursively the logical connectives of our object-
language with their HOL counterpart by requiring the validness of the
sub-formula. This is done using the logical judgment T = P which means
that the object-logical formula P is valid (i. e., evaluates to t) in context

74

3.5 TOWARDS A CONSTRAINED OBJECT STORE

7. As we want to use these invariants for a co-recursive construction we
parametrize them over the current state 7, the object self and the type set
C we are constructing.

Recall our previous example (see Figure 3.5), where the class Node
describes a potentially infinite recursive object structure. The invariant of
class Node constrains the attribute i to values greater or equal than 0. For
this constraint, we generate

hol_inv_positive T C self = 7 &= self. iM >0, (3.69)

Further, we generate an invariant expressing the fact that next be either
undefined or of type Node:
hol_inv_type_next 7 C self = 7 = J self. next

(3.70)
v 1 self.nextM e() f. fr)' C

where _" _ denotes the point-wise application.

Now we define a function for construction the kind set for Node which
approximates the set of possible instances of the class Node and its sub-
classes:

NodeKindF ul(ac,ﬁc,ﬁN) St= ’Lll(ac,ﬁc’ﬁN) St = (ac, Bc) Node set
= ’ul(ac,ﬁc)ﬁN) St = (ac, Bc) Node set
NodeKindF =) 7. 1 X. {self | hol_inv_type_next Xself
A hol_inv_type_next 7 X self .
(3.71)

By adding the conjunct 7 = isTypeI(\jlg ge Self, we can construct another ap-
proximation function (which has obviously the same type as NodeKindF):

NodeTypeF :: ul(occ,ﬁc,ﬁN) St= rL[tfxC:ﬁC’ﬁN) St = (ac, Bc) Node set
= (UI(“C’ﬁ(I),BN) St = (ac, Bc) Node set
NodeTypeF = 1 7. A X. {self | (self € (NodeKindF 7 X))
A TisType](\Ilg e Self }
(3.72)

Thus, the characteristic kind set for the class Node can be defined as the
greatest fixed-point over the function NodeKindF:

NodeKindSet :: ut“c:ﬁC)ﬁN) St = ’Uiac)ﬁcjﬁN) St = (ac, Bc) Node set

NodeKindSet =) 7. (gfp(NodeKindF 7)) .
(3.73)

75

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

For the characteristic type set we proceed analogously. Further, we prove
automatically, using the monotonicity of the approximation functions,
the point-wise inclusion of the kind and type sets:

NodeTypeSet c NodeKindSet. (3.74)

This property represents semantically the subtype relation. This kind of
theorem remains valid if we add further classes in a class system.

Now we relate class invariants of subtypes to class invariants of super-
types. The core of the construction for characteristic sets taking the class
invariants into account is a greatest fixed-point construction (reflecting
their co-algebraic properties). We proceed by defining a new approxima-
tion for a subclass Cnode on the basis of the approximation function of
the superclass:

CnodeF=)71. 1 X.
{self | self[(ll\l)ode] € (NodeKindF 7 () o. OEIl\I)ode]) ' X)

A (o T X self)}
(3.75)

where ¢ stand for the constraints specific to the subclass. Note ¢ must
appropriately include 7 = self. next™ e() f. f7) ' X to make the implicit
recursion in the Cnode invariant explicit.

Similar to [94] we can support mutual-recursive datatype definitions
by encoding them into a type sum. However, we already have a suitable
type sum together with the needed injections and projections, namely
our universe type with the make and get methods for each class. The only
requirement is that a set of mutual recursive classes must be introduced
“in parallel,” i. e., as one extension of an existing universe.

Now we can easily introduce type and kind tests that are aware of the
invariants, i. e., which test if a given object is structural from the requested
type (or kind) and fulfills its invariant can be reduced to membership
test for the type or kind sets. Moreover, our construction for type sets
and kind sets provides for an object a tight connection between “being
of a type” and “fulfilling its invariant,” i. e, the invariant for Node can be
defined semantically as follows:

Node_sem_inv self = self € NodeKindSet (3.76)

with type (ac, Bc) Node — Boolean,.

AN OBJECT-ORIENTED INVARIANT REPRESENTATION. The se-
mantic invariant definition introduced in the previous section is not a
representation of invariants somebody used to object-oriented modeling

76

3.5 TOWARDS A CONSTRAINED OBJECT STORE

would expect. Therefore we define for each class a “user representation.”
This representation is based on the accessor introduced in the last section,
e. g., for Node we define:

Node_defined self = dself , (3.77)
Node_inv_positive self = self.i >0, and (3.78)
Node_inv self = Node_defined self

A Node_inv_positive self . (3.79)

The constraint Node_defined ensures the definedness of self, which allows
us to prove the equivalence of both invariant representations, e. g., for
Node we prove:

Node_inv self = Node_sem_inv self . (3.80)

Thus, we can provide the users of our framework with an invariant rep-
resentation that looks familiar to the user specification, e. g., expressed
using OCL:

context Node
inv positive: self.i >= 0
inv flip: not self.next.isOclUndefined()
implies self.b = not next.b

Moreover, this representations allows proving of many system properties
without the need of using co-recursive induction schemes.

Using co-induction for defining recursive datatypes allows for specifi-
cations of infinite structures. Alternatively, the introduction of a measure
function allows for restricting data-recursion to finite data-structures.
On finite data-structures, the usual inductive proof techniques can be
applied.

It would be desirable to provide support for the concept of co-recursion,
e. g., by generating specialized (co)recursion theorems for user defined
datatypes (object-structures). This would pave the way for powerful
recursion concepts in the constraint language that are not limited to
well-foundedness. Operationally, such recursion schemes would corre-
spond to lazy evaluations over cyclic data-structures known in functional
programming languages such as Haskell.

In particular, co-recursive operators over the user-defined types can
be defined such as the deep value equality under which to objects are
equal if they are describe (recursively) the isomorphic object structure
and the corresponding attribute with primitive types are equal, i. e., the
object structures are bi-similar. The issue is discussed in more detail in

Section 3.6.

77

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

3.5.3 Combining Embeddings

Combining a constraint language with our store raises another question
that is closely related to the chosen type of invariant encoding. Namely,
what should be the formal semantics of operations returning instances
(e.g., accessors, constructors); in more detail: should the returned in-
stance fulfill the invariant of its type (class). In systems using post-hoc
invariant checking, the underlying semantic construction normally does
not guarantee that a returned instance fulfills its invariant. This property
has either to be tested post-hoc or is required on the meta-level by an
assumption “all objects of the current state fulfill their invariants.”

Using our semantic invariant definition we can go one step further in
combining our constraint language embedding with our embedding of
the object-oriented store: we test if a structural object (on the first level)
fulfills its invariant and if not, we just return undefined. This is easily
achieved by defining the second level constructs using a wrapper testing
if a first level constructs fulfills its invariant. For example, we define the
accessor for attribute i of class Node as follows:

self . i®=if Node_inv self then self. i else L endif . (3.81)
As a consequence, we can easily derive the rule

T d(self. i)

_ (3.82)
7 = Node_inv self

which does not hold in a setting with structural types and post-hoc in-
variant checking.

All other, previously introduced first level constructs, are also adopted
by wrapping them in an 1if-statement.

Note, for finite system state and a closed-word scenario such a second
level construction is also possible for a system with post-hoc invariant
checking. Relaxing one of those constraint, i. e., allowing the system to
be extensible, or infinite system states, this construction can lead, if done
naively, to logical inconsistencies. In that case, the monotonicity proofs
needed for our semantic type sets will fail and reject the model, and thus
protecting the user of our system against this situation. We will discuss
this problem in more detail in Section 3.5.5.

3.5.4 Varying Invariants

For program verification projects the user defined invariants are often too
strong, at least if the invariants are not syntactically restricted to formulae
only constraining visible, i. e., being public, part of the class attributes.
In settings allowing arbitrary invariants, often the need for temporary

78

3.5 TOWARDS A CONSTRAINED OBJECT STORE

disobeying an invariant, i. e., during the construction of object structures
or inner calls, occurs. This observation by us and also by others [72]
motivates our decision for providing means for varying invariants. In the
remainder of this section, we will describe two mechanisms for providing
such relaxed invariants within a proof environment.

PROVIDING DIFFERENT TYPE SETS AND KIND SETS. The discussed
type sets and kind sets are of major importance when resolving overriding
and late-binding: If we can infer from a class invariant that some object
must be of a particular type, then late-binding method invocation can be
reduced to a straight-forward procedure call with simplified semantics.

As a default we generate for each class three different type sets and kind
sets:

1. a set based on the user-defined invariant,

2. aset allowing undefined references, i. e., all accessors to attributes
of type oid are or-ed with a corresponding ¢-statement, and

3. aset allowing undefined references and undefined primitive types,
i.e., all accessor to attributes are or-ed with a corresponding ¢-
statement.

For example, recall our model of a linked list (see Figure 3.5 on page 72).
For the last variant described above, i. e., item 3, the HOL representation
of the invariant constraining the attribute i to positive values we change

Equation 3.69 on page 75 to

hol_inv_positive_relaxed 7 C self = 7 = self . iM >0

VT E dself. i (3.83)

and repeat the construction described in Section 3.5.2.

The above enumeration is listed in ascending order, i. e., every object
that is in the first set, is also included in the other two. Such an hierarchy
of invariants allows for formally specifying relaxed variants of class in-
variants necessary during program verification. In a program state, for
example, it is not possible to create an object graph at once where all
references are defined. Rather, a program proceeds by steps with unde-
fined references (assuming a relaxed invariant/characteristic set following
item 3) ending up by establishing a stronger invariant following item 1).
Thus, the support of different invariant versions is a corner stone of suc-
cessful verification of object-oriented systems, see also [72] where the
authors argue for weakened invariants during inner calls for systems
specified using jML.

79

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

Moreover, there will be the need for even more fine-grained invariants
in verification practice. Thus, in our proof environment we support two
technical means for defining relaxed invariants:

1. define a function that converts structurally an invariant into a
relaxed one. This technique is internally used for construction the
default type and kind sets.

2. for specification languages allowing to specify conjuncts of the
invariant separately, as it is the case for ocL, we allow to switch
conjuncts individually on or off.

Overall, we see such an approach as a key feature for successful program
verification, e. g., using a shallow embedding of a small object-oriented
language like IMP++ [23].

3.5.5 Advantages of Semantic Invariants

Overall, the concept of semantic type and kind sets, as introduced in
Section 3.5.2, allows for proving many side-conditions once and for all
during the construction of these sets which otherwise lead to assump-
tions in nearly every proof over a given class. In particular for recursive
data structures the advantage of semantic invariants will become clear.
Here, the identification between “type” and the “set of objects satisfying
a class invariant” makes invariants to recursive predicates whenever the
object structure is recursive. As a consequence, the construction of a
conservative model for a system of class invariants is far from trivial.

One might ask what benefit an end-user will get from conservativity
after all. Its need becomes apparent when stating class invariants, thus
stating recursive predicates, as axioms: this results in logical inconsistency.
Consider the following constraint as an invariant of class A:

~isKind, self (3-84)

which requires for all instances of type A not to be of kind A, i. e., neither
of typeA or a subtype of A. Thus, it is in fact possible to state a variant
of Russell’s paradox which is known to introduce logical inconsistency
in naive set theory. Inconsistency means that the logic of the constraint
logic can derive any fact; this might be exploited by an automated tac-
tic accidentally. Logical inconsistency is different from an unsatisfiable
class invariant meaning “there is no instance”” In particular, in an incon-
sistent system, each class invariant can be proven both satisfiable and
unsatisfiable.

Moreover, similar problematic situations can occur, for recursive invari-
ants. Therefore, systems using an axiomatic post-hoc invariant checking

80

3.6 EQUALITIES AND OBJECT-ORIENTATION

approach, like Spec# [6, 72], restrict syntactically the allowed invariants
in a very rigid way.

Instead of restricting the set of allowed invariants syntactically, Our
conservative construction requires proofs of side-conditions which will
fail in the above described situation. Technically, it provides a model
for the mutual recursive predicates representing class invariants. This
model, i. e., the set of legal states satisfying the invariant, is a result of a
greatest fixed-point computation. The existence this greatest fixed-point
is reduced to a monotonicity argument. If the latter cannot be produced
automatically (or by user-interaction), a given class invariant will be
rejected. Thus, paradoxical situations like the one above are ruled out
while admitting the “useful” forms of recursion in class invariants.

Moreover, using semantic type sets allows for defining second level
operations, i. e., from the definedness of result of a operation, we can
directly conclude that it also fulfills its invariant. For example consider a
class A with an attribute b: : B. From the definedness of the result of the
access to attribute b we can conclude already:

T dself.b
—, (3.852)

T = dself

T = dself.b

—— ,and (3.85b)

7= A_invself

Tk dself.b
(3.85¢)

7 = B_inv self. b

We are aware that this identification between the notion of a type and its
semantics is theoretically involved and not widely used in proof environ-
ments for object-oriented languages; for example, systems like Boogie or
Key do not have this interpretation of type. In these systems the type of
a class is defined by its structure, i. e,, its attributes. Thus, there can be
both instances of a given type that fulfill the invariant of this type and
those who not fulfill the invariant of this type. We prefer the concept
of types that ensure the invariant as this eliminates the need for prov-
ing side-conditions like “in a given system state, the return value of an
attribute accessor will return an object that fulfills its invariant” Our
constructions rules out such situations and guarantees that in any visible
state, all objects fulfill their invariant. Overall, this should lead to a more
natural reasoning over object structures.

3.6 EQUALITIES AND OBJECT-ORIENTATION

Equality, in its broadest sense, is an important property for both pro-
gramming and formal reasoning. Historically, object-oriented systems

81

primitive type

value

equivalence relation

reference equality

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

are equipped with a variety of different “equalities” [65]. Answering the
question if two objects are equal is not so obvious: e. g., are two objects
equal only if their object identifier is equal (are they the same object?) or
are two objects equal if their values are equal, or are they equal if they
are observably equivalent with respect to the accessor functions? In this
section, we assume that every object has a unique identifier, called object
identifier or reference of an object.

Whereas in traditional specification formalisms the equality is defined
over values, the most basic equality over objects is the reference quality or
identity equality which is also the kind of equality that is usually provided
as a default, i. e., “built-in,” equality in object-oriented languages. Thus,
there is usually a fundamental difference between values and objects.

DEFINITION 3.16 (PRIMITIVE TYPES) The set of primitive types 3 is de-
fined inductively as follows:

1. {Boolean, Integer,Real,String, } c I3, and
2. {vSet,v Sequence,v Bag,v OrderedSet} c PforallveP.

DEFINITION 3.17 (VALUES) An instance of a primitive type, e.g., x = v
with v € 53 is called value. o

Normally one expects that an equality is an equivalence relation.

DEFINITION 3.18 (EQUIVALENCE RELATION) An equivalence relation is a
binary relation _ ~ _ over a set S for which the following properties hold:

o Reflexivity: a ~ a, foralla € S.
o Symmetry: a ~ bifand onlyif b ~ g, forall a, b € S.
o Transitivity: if a ~ band b ~ c thena ~ ¢, forall a, b € S. o

Now we introduce in an abstract way the basic qualities of object-
oriented systems, we ignore undefinedness in these definitions. In a sec-
ond step, we will show that the treatment of undefinedness is orthogonal
and can be combined with any of the following equalities.

Most object-oriented languages have the concepts of references or
object identifiers where a reference uniquely identifies an object. Thus
it seems a natural choice to use these references for defining an equality,
namely the reference quality.

DEFINITION 3.19 (REFERENCE EQuaLITY) The referential equality or ref-
erence equality is defined as follows:

1. Two values are reference equal, if they are of the same type and
represent the same value.

82

3.6 EQUALITIES AND OBJECT-ORIENTATION

2. Two objects are reference equal, if their object identifiers (refer-
ences) are equal. o

Thus, the reference equality tests if two objects represent in fact the same
object in a store. Often, the reference equality is also called identity equal-
ity; informally, it identifies an object uniquely, i. e., even objects represent-
ing the same value can be distinguished with this type of equality.

If we want to test, if two objects represent the same value we have two
options; a shallow and a deep one:

DEFINITION 3.20 (VALUE EQuaLITY) The shallow value equality or just
value equality is defined as follows:

1. Two values are shallow value equal, if they are of the same type
and represent the same value.

2. Two objects are shallow value equal, if they are of the same type
and all attributes with primitive types are pairwise shallow value
equal. o

This definition is not recursive, hence the name shallow equality. The
main idea behind the shallow equality is to compare two singular objects
as values. In contrast to this, we can define the deep value equality for
comparing the values of two object structures.

DEFINITION 3.21 (DEEP VALUE EQuALITY) The deep value equality is de-
fined as follows:

1. Two values are deep value equal, if they are of the same type and
represent the same value.
2. Two objects are deep value equal, if they are of the same type and

a) all attributes with primitive types are pairwise deep value
equal.

b) all attributes with type oid (object type) are pairwise deep
value equal if the objects they refer to are deep value equal.q

Summarizing, we have already three different equalities:

1. the reference equality which checks if two objects are in fact the
same object,

2. the shallow value equality which compares the values of the at-
tributes on the first level, and

3. the deep value equality which compares recursively the object
structure comparing the equality of the corresponding parts.

83

shallow value
equality

deep value equality

equality operator

strong equality

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

Assuming a setting, where all values and oid are defined, i. e., the classical
two-valued view, each of them is an equivalence relation on objects. It
seems to be obvious that in a universe without undefinedness Defini-
tion 3.19 refines Definition 3.21 and Definition 3.21 refines Definition 3.20.
Thus, two objects that are reference equal are also shallow equal and deep
equal. But if we have undefined values and object it is not clear how these
equalities relate to each other. First, in a world with undefinedness we
can apply the concept of strictness to equivalence relations:

Taking undefinedness into account, e. g., values and references can be
undefined, the setting gets more complicated. First we generalize the
concept of equality relations by introducing equivalence operators.

DEFINITION 3.22 (EQUALITY OPERATOR) An equality operator _ - _isa
binary operator that satisfies the following properties for a state 7 and a
context-passing P:

o Quasi-reflexivity:

TEJX
 R— (3.86)
TEXwX
o Quasi-symmetry:
TEJX TEJYy TEX-Y
(3.87)
TEYy»Xx
o Quasi-transitivity:
TEJX TEJYy TEJZ TEXwYy TEY-Z
(3.88)
TEXv2Z
 Quasi-substitutivity or quasi-congruence:
TEJdx TEJYy TEXxwy TEP(x)
(3.89)
TEP(y) .

This definition uses the logical judgment 7 = P, which means that the
object-logical formula P is valid (i. e., evaluates to t) in context 7; this
judgment is defined and discussed in Chapter 5.

In the following, we characterize certain classes of three-valued equality
operators.

DEFINITION 3.23 (STRONG EQUALITY) An equality operator _ £ _isa
strong equality if it satisfies the property: (1 = 1) = t. o

84

3.6 EQUALITIES AND OBJECT-ORIENTATION

strict strong (non-strict)

referential equality 01 = 0, 01 = 0,
A

shallow value equality 01 = 0, 01~ 0
A

deep value equality 01 ¥ 0y 01 ¥ 0,

Table 3.8: In an object-oriented setting one has to deal with several dif-
ferent equalities and all of them can be strict or non-strict. We
mark the strict variants with a dot and the non-strict one with
a triangle.

This strong equality is reflexive, symmetric, transitive and substitutive
(even for undefined values) which explains its importance in deduction.

Applying the concept of strictness to an equality operator results in the
following definition:

DEFINITION 3.24 (STRICT EQUALITY) An equality operator _ = _isa

strict equality if it evaluates to undefined whenever one of its arguments
is undefined, i. e., if the following properties hold:

(o=1)=1, (L=0)=1,and (L=1)=1. (3.90)

a

Strictly speaking, these last definitions are merely algebraic characteri-
zations and not definitions. These operation symbols were characterized
by some properties, but they are obviously not defined up to isomorphism.
In our context, two interpretations of the equalities into the semantic
domain of universes are of particular importance: when comparing ob-
jects, we can define the equality operation via HOL-equality in the object
representation in the referential or the non-referential universe (when
comparing values, we compare them via HOL-equality anyway).

Thus, the concept of strictness is orthogonal to the semantics of equal-
ity if the arguments are defined. Thus we can combine this with all of
our previous equality variants. In principle this results in six different
equalities for the object-logic (see also Table 3.8). Albeit, with respect to
the interpretation of the equality operators (assuming only objects in the
range of the state whose reference field just contains the reference to the
object in the store), strong and strict equality operators both coincide with
referential equality since we have a bijective mapping between the values
of an object and the object identifier. This is only true when comparing
objects within one state and not in constructs such as: x.a@pre = x.a.

In case of a referential universe construction, our framework allows
for the definition of the strict and strong referential equality directly, e. g.,
the strong equality

==lifb(Axy. x=y,) (3.91)

85

strict equality

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

and the strict equality
_ = _ = lifty (strictify (A x. strictify(Ay. x=1y,))). (3.92)

Both equalities have the type [(7, « :: bot), (7, a :: bot)] = Boolean,. In
the non-referential setting, these definitions result in the strict and strong
value equality, here the distinction between the shallow and deep equality
does not make sense. In the referential setting. both the shallow value
and the value equality have to be defined for each class separately. While
this can be done by a constant definition for the shallow value equality,
the deep value equality requires a recursive definition.

3.7 OPERATIONS FOR ACCESSING THE SYSTEM STATE

In this section, we define several operations that are parametrized over the
current system state, i. e., they provide a limited form of reflection. These
properties allow for restricting a specific system state and also allows
for describing the behavior of constructors within our object-oriented
constraint language. Namely we define an operation for obtaining all
object instances of a type in a given state and an operation for testing if
an instance is new.

3.71 Accessing all Instances of a State

We define an operation alllnstances _ that returns all instances (objects)
of a class in a specific type. In principle, for a given type (represented
by its kind-set), the operation alllnstances _ just returns the intersection
of this set with the range in the state ¢ = (7, 7). We define it using an
overloaded constant definition for each type, for example the definitions
for Integer, (a primitive type) and a Object, looks as follows:

alllnstances (self = Integer,) = self (3.93)
alllnstances (self a Object,) = A(7,7"). Absget(getobject ' T,)
(3.94)

of type V;(a) — a Set,. Similarly, we define an operation for accessing
all instances of the previous state, e. g.:
alllnstances@pre (self :: Integer,) = self and (3.95)
allinstances@pre (self = a Object,) = (7, 7).
AbSSet(LgetObject ' T,J) 5 (396)
also of type V;(a) — a Set,. For user-defined classes the returned set is

finite, i. e., in every system state there are only finitely many instances of
a class. For for primitive types, the returned set is infinite; for example,

86

3.8 ON OPERATION SPECIFICATIONS

for Integer, the result represents the set of all integers. One can avoid
infinite sets by defining

alllnstancesFin T =
Az, 7). if (T = Integer) v (T =Real) v (T = String)
then L elsealllnstances T (7,7"). (3.97)

This definition avoids infinite results by explicitly returning undefined
for the primitive datatypes. Additionally, we can directly define variants
of these operations for accessing all instances of the previous state. Never-
theless, we prefer the first definitions as it allows for specifying algebraic
laws like

Vx,yclnteger.x+y=y+x (3.98)

within the object-oriented constraint language.

3.7.2 Testing for New Instances

Our constraint language does not provide the concept of constructors
in the sense of an object-oriented programming language. Nevertheless,
we define a test which can be used in postconditions to test if a concrete
instance is new:

isNew self = \(7,1'). Lgetéogject(self[()bject] (1,7')) ¢rant (.99)
3.99
A mk(()%ect(selfmbjm] (r,7')) erant’,

oftype V:(a) — Boolean;. In this context “new” means that the instances
does not exist in the previous (direct predecessor) state.

3.8 ON OPERATION SPECIFICATIONS

Using preconditions and postconditions for specifying operations, espe-
cially in a three-valued constraint language, raises the questions what the
precise meaning of this “contract” should be. In particular what should
happen if a precondition of an operation is not fulfilled, e. g., it is invalid
or undefined? In a programming language one could think of several
different behaviors: The implementation of the operation might

e raise an exception,
o diverge,

o terminate without changing the system state, or

87

operation
specification

self

context object
result

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

o terminate leaving the system in an arbitrary state, even one fulfill-
ing the postcondition.

For specification languages that are based on preconditions and post-
conditions for defining an operation specification, two different interpre-
tations are found in the literature: either we require that the precondition
implies the postcondition, or stronger, that both must hold. Formally, we
define:

DEFINITION 3.25 (OPERATION SPECIFICATION) Let pre,, self ag -+ a, be
the precondition and post,, self ao -+ a, result the postcondition of the

operation op. The operation specification with implication semantics is
defined as

SIOIEP self ag -+ a, result

= 1= (pre,, self ao - an) — (post,, self ao - a, result) (3.100)
and the operation specification with conjunct semantics is defined as

Sconj

op Self ag -+ ay, result

=TE (preo‘l7 self ag -+~ a,) A (postop self ag -+ a, result) (3.101)

where in both definitions we replace all accessor occurring in the precon-
dition pre, » by their @pre-variant. o

The precondition pre is a predicate function depending on the input
parameters including the implicit input parameter self. The postcondition
post,, is a predicate function depending on the input parameter and the
implicit result parameter. The implicit parameter self represents the object
(class instance) for which the operation is called. Therefore, self is also
called context object. The return value of the operation is described by
the parameter result.

In case of S, the preconditions and postconditions are conjoint. Thus,
a false precondition simply says that there is “no transition” from a state to
its successor; this corresponds to the operational behavior of an exception,
a divergence or a deadlock. Moreover, an undefined precondition may
either result in an undefined or false operation specification; in the former
case, no statement on the implementation is made, i. e., it may behave
arbitrarily. Thus, when writing a specification, there is the possibility
to explicitly distinguish these possibilities: a precondition a > 5 makes
no statement for the case that a is an undefined object in a particular
state (provided the postcondition is valid), in d a A a > 5; however, it is
explicitly specified that there is no successor state, if a is not defined in
the previous state.

88

3.9 OPERATION CALLS

In case of Si(,';p the precondition implies the postcondition. Thus, a false
precondition allows any transition. Moreover, an undefined precondition
results in an undefined operation specification.

Furthermore, we define a totalized operation specification, enforcing
the result of the operation call or invocation to be undefined, if the pre-
condition is undefined:

DEFINITION 3.26 (TOTALIZED OPERATION SPECIFICATION) Let op be an
operation specified by the precondition pre,, self o - a,, and the post-
conditi9n post,, self ag --- a, result. The totalized operation specification
semantics is defined as

Sop Self ag -+ ay result = 7 = if d(pre,, self ag - an)

A (pre,, self ag -+ ay)
then (post,, self aq -+ ay, result) (3.102)

else @ result

endif

where in both definitions we replace all accessor occurring in the precon-
dition pre,, by their @re-variant. o

The totalized operation specification can be used alternatively. It is prefer-
able for methodological issues, namely for proofs of specification consis-
tency.

3.9 OPERATION CALLS

We distinguish built-in operations (i. e., all library operations such as the
logical operation - x, the arithmetical operation x + y or the operation
X U'Y on the collection types) and user-defined operations declared in
class diagrams. From a perspective of a user, our framework forbids the
overriding of the built-in operations. Thus it is obvious that the decision
which operation has to be “executed” can always be resolved statically.
We call this an operation call.

In contrast, user-defined operations can be overridden. Moreover, this
is considered to be a main feature of object-oriented programming. Over-
riding results in situations where it is not possible to decide statically
which implementation should be executed. We speak in such situations
of an operation invocation, which we will discuss in more detail in Sec-
tion 3.10. But also for user-defined operations there are situations where
we can resolve the implementation statically, and thus only have to ad-
dress an operation call. In this section, we will discuss which support our
framework offers for operation calls to user-defined operations.

89

totalized operation
specification

operation call

operation
invocation

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

For operation calls we define
Calf=)At. ex. fAT.x)T=1t7T (3.103)

with type Val,(«) = Boolean, = Val.(f3). Here, Hilbert’s e-operator
selects an eligible “implementation” fulfilling the operation specification.

For supporting recursive operation calls we extend the theory of well-
founded orders and the well-founded recursor wfrec from HoL. This
recursor allows for the conservative definition of a particular class of re-
cursive functions, i. e., functions that fulfill the principles of well-founded
recursion. Informally, a function is well-founded recursive, if the argu-
ments of the recursive call are smaller and the ordering is well-founded.
For example, Winskel [117] explains the formal details of well-founded
recursion.

For introducing recursive calls in a conservative way, we extend the
standard HoL methodology of well-founded recursion to object-oriented
specifications. In particular, we define:

Wrirec = LiftWf (Af x. wirec {(x,y)|rr x y1} f x) (3.104)

where liftWf is a specialized operator, similar to the already introduced
lifty, lift;, ...operators, lifting the type of wfrec. As its first argument,
Wirec expects a measurement, given as binary operation with a Boolean
result and as second it expects a functional representing the recursive
operation. Overall, the type of Wfrec is

(VT((x) = V;(«) = Boolean;)

= ((Ve(a) = Ve(B)) = Ve(a) = Vi(B))
= Vi(a) = V(). (3.105)

The overall idea of both wirec and Wirec is to abstract away the occurrence
of the recursive call.

As an example, let us assume the following postcondition for an opera-
tion m of class A, e. g., given as ocL specification:

context A::m(x:Integer):Integer
post: result = if x > 0
then x * (self.asType(A)).m(x-1)
else 1
endif

By specifying self.asType(A) we always cast the context object to an
instance of class A and thus we have a statically resolvable call here. We
follow now the idea of abstracting the occurrence of the recursive call

90

3.10 OPERATION INVOCATIONS

away by defining a recursor-variant of this postcondition. The idea is to
abstract away the occurrence of the recursive call:

post,© f self x result =
result = ifx > 1thenx - (fself (x —1))elselendif (3.106)
and to build the operation specification notions on top of it, based on the

operation specifications defined in Definition 3.25 and Definition 3.26. For
example, based on the operation specification with conjunct semantics

(Equation 3.101), we define:

conj-rec
S

f self x result T =
TE (prem self x A post)© f self x result) . (3.107)

In this case, for direct recursive calls, the corresponding operation speci-
fication is defined as S;,"™ = Wfrec M S;," " where M is an ordering,
such as

M=2xy. if(x<0) v (y<0)

then f

(3.108)
elsex >y

endif .

If this ordering is well-founded, from this definition, the original user-
specified postcondition follows from this definition. Since the critical call
is now incorporated into the well-founded recursion construction, the
definition is conservative; and provided the user gives a suitable ordering,
it can be shown that the desired specification follows from the constructed
definitions.

3.10 OPERATION INVOCATIONS

It is possible in our framework to describe any static resolution strategy
explicitly using the previously defined type and kind test predicates on the
arguments. While this would be probably sufficient for many verification
tasks, we are also interested in the limits of a conservative strategy for late-
binding. In this section, we show how the semantics of strict operation
invocations is encoded using the semantic combinator for strict invoke

defined in Section 3.2.2.
3.10.1 The Invocation Encoding Scheme

INITIAL OPERATION DEFINITION. In the following, we show the
semantic representation scheme of invocation for, potentially overrid-
den, user-defined operations by an example. Figure 3.9 on the next page

91

operation table

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

A context A:: m(a1 Hoooos@pity)it

~ pre: ¢sellf
= mart,...,anitn)it | | post: yselfa a,, result

B
C context C:: m(a1 tl,...,an B fr B

~1pre: ¢ self
- post: ¥’ selfa an result

Figure 3.9: The specification of the method m of class C overrides the
variant of that method already defined in class A.

illustrates our example: We assume the three classes A, B and C, where
C inherits from B and B inherits from A. Further, we assume that an op-
eration m, in the topmost class A, with arguments a;: t;,. .., a,: t,, and
return type ¢ is specified using the precondition @, and postcondition V.

While encoding the class model, we generate for each operation a oper-
ation table. The operation table is a look-up table collecting the overridden
operation specifications. In our example, we define:

OpTab,, =Aset =~ [V:(A), V:(t1),..., Ve(tn), V()] = Boolean;.
(3.109)
Here, _ — _ stands for the type of partial maps from the HoL library. The
main difference of partial maps compared to total functions _ = _ is that
partial functions have a domain operator dom with type & — § = « set.
Additionally, the axiom

OpTab,, A = Some(S,,) (3.110)

is generated, where S,, is one of the operation specifications defined in
Section 3.8 and where A is the characteristic type set of the class A. In

the concluding subsection, we will discuss the conservativity issue for

this type of axioms which is similar, but technically unequal to a constant
definition since the table is not defined once and for all, but point-wise
for a finite set of arguments.

INHERITANCE OF OPERATION. Now we consider the case that the
class B is declared, but the operation m is not overridden, i. e., inherited
from class A. This leads to the axioms:

OpTab,, B = Some(Sy). (3.111)

92

3.10 OPERATION INVOCATIONS

Recall that due to our object universe construction, the type of B is an
instance of the type of A even if the class B has been inserted into the
system in a later stage than the compilation of A, i.e., A and B live in
different universes. Moreover, in the later universe, the property B c A
holds and has been proven automatically.

OPERATION OVERRIDING. Now we consider the case of an operation
overriding. Here, a new declaration introduces a new specification (for
an already specified operation) for the operation m for class C (and its
subclasses) with precondition P* and postcondition Q’. Again, see Fig-
ure 3.9 on the facing page for details. Analogously to the overriding case,
the axiom

OpTab_ C = Some(S;,) (3.112)

is constructed where S, is the operation specifications describing the
new, overridden behavior.

3.10.2 Considering Conservativity

The axioms generated in the previous sections are conservative; however,
they do not fit into one of the standard schemes such as constant defini-
tion (the argument of OpTab,, and OpTab, ., are a changing constant
not allowed in this scheme). Rather, it is a finite family of constant defini-
tions, where the overall type is refined from universe to universe. In the
following, we characterize the syntax of this axiom scheme and sketch a
proof of conservativity for it.

DEFINITION 3.27 (FINITE CONSTANT DEFINITION FAMILY) A finite fam-
ily of constant definitions is a theory extension (X, A) where X is a constant
declaration ¢ :: 7; — 7, and A is a finite sequence of axioms of the form
¢ Dy = E;...cD, = E, where D; and E; are closed expressions. One fur-
ther optional rule, the catch-all rule, has the form: X ¢ {Dy,...,D,,} =—
¢ X = E,11. Furthermore, the following conditions must be satisfied:

1. ¢ does not occur in Ej.

2. ¢ can only occur in E; (in fact: in no defining expression E in a
definition except that the catch-all rule is known) in the form ¢ D;
with i < j.

3. The type of ¢ in axiom j must be an instance of the type of ¢ in
axiom i with i < j.

4. All type variables occurring in any type of a sub-term of E; must
occur in the type of ¢ D;

5. Dj = Dy = j =k, i.e, the D; must be pairwise disjoint.

93

[finite family of

constant definition

conservative

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

o

The catch-all rule is used when all classes that provide, either directly, by
inheritance, or by overriding, an implementation of the operation, are
finalized. Thus, none of these classes can be used as starting point for
further extensions.

THEOREM 3.1 (CONSERVATIVITY) A finite family of constant definitions is
conservative, i. e., provided the original theory (2, A) is consistent (“has
models”), the theory (£U X', AUA") extended by the extension (£', A") is
also consistent. O

PrOOE In case that there is a catch-all rule, translate the constant defini-
tion family into a family of constant definitions with constants cp .

In case that there is no catch-all, the constant definition family can be
replaced equivalently by the constant definition

cX=if X =D;thenEelseif .. .else E, ;. (3.113)

The axiom given in Equation 3.113 represents a constant definition family
since partial maps « — f are just a synonym for « = f option. The
pairwise disjointness follows from the full inclusion of the characteristic
sets assured by construction. n

Thus, for non-recursive operation invocations the object-oriented con-
cepts of overriding can be supported conservatively. In the next section,
we will discuss the limitations of supporting of recursive operation calls
and operation invocations conservatively.

3.11 LIMITS TO RECURSIVE INVOCATIONS AND CALLS

In this section, we will discuss how the use of recursive calls, and invo-
cations in particular, must be restricted to ensure conservativity of our
framework.

But first, let us briefly reconsider why conservativity is fundamental for
a formal framework for object-orientation. Overall, an object-oriented
model can be inconsistent in the sense that there is no state satisfying all
invariants. However, no axiom generated during encoding of a model into
our framework should introduce a logical inconsistency into the meta-
logic HOL. A logical inconsistency of the meta-logic results in an unsound
reasoning, i. e., one can prove falsity. A proof over the consistency of
an object-oriented model in the above sense should be valid in any case,
independent of any generated axioms. Thus, we require that method
definitions in class diagrams satisfy the requirements of a family of finite
constant definition.

94

3.1 LIMITS TO RECURSIVE INVOCATIONS AND CALLS

As we do not introduce any axioms for operation calls, these are unprob-
lematic, as long as recursion is well-founded (as discussed in Section 3.9).
Nevertheless, the requirement enforced by Definition 3.27 on page 93 for
operation invocations has several consequences, especially on the form
of admissible recursive operation invocations in our framework: item 1
and item 2 rule out a general recursive invocation of the operation to
be specified. Consider again the operation m specified in class C, which
overrides the operation m already defined in class A. Assume that the
postcondition ¢’ of m defined in class C is given by

v’ self ay -+ a, result =
(result =t (mself aj-+-a,)+ 1) A (a(m selfay -+ ay,)) (3.114)

On the right-hand side in the definition of ¥’ the (overridden) operation
m itself occurs. Due to late-binding, it is not possible to decide statically
which concrete operation specification (in our case either the one specified
in class A or the one specified in class C) must be use to “unfold” this
reference.

Following Section 3.2.2, the operation invocation is represented by:

Call(invokeS Cia; OpTab, self a; ... a,) (3.115)

where the occurrence of OpTab, | is an instance of item 2 of Definition 3.27
on page 93.

The example also shows why this kind of syntactic restriction is neces-
sary: from the recursive equation

(mself ay---a,) =(mself ay---a,) +1. (3.116)

and the definedness of the result one can infer 1 = 0 in the object-logic,
and then one can prove false in HOL, and then simply everything from
there.

In a proof-environment, recursive definitions are potentially dangerous.
Furthermore, our framework is designed to live with the open-world
assumption, i. e., with the potential extensibility of object universes, as
a default; further restrictions such as finalizations of class diagrams or
a self-restriction to Liskov’s Principle [73] may be added on top, but the
system in itself does not require them. This has the consequence that even
in the following variant

v’ self ay -+ a, result = result =if p ay
then(m self ay - a,) +1

11
else0® (3:117)

endif

95

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

the termination for the invocation
mself(qay) ay -+ ay, (3.118)

is undecidable (even if the operations p and q are known and terminat-
ing): a potential overriding may destroy the termination of this recursive
scheme.

In form of a pre-translation process, operation specifications with a
limited form of recursive invocations can be converted into the format
that satisfies the constraints of a finite constant definition family. In fact,
these invocations are calls to a specific, statically resolvable, operation.
These limited forms are assumed to occur in the postcondition ¢ and
can be listed as follows:

1. calls to superclass operations, i. e.,
m (self[A]) X1 Xy (3.119)
This invocation can be translated into the non-recursive call

Call Sy, self x1 -+ xp, . (3.120)

2. direct recursive well-founded invocations, i. e.,
m (self[cl) X1 Xp (3.121)

This invocation can be translated into a directly recursive call which
can be handled as described in Section 3.9.

In case of a finalized class hierarchy, the number of possible operation
specifications an operation invocation can refer to is fixed, i. e., the opera-
tion table is not extensible. In that case, in our example, the invocation

invokeS C OpTab, selfa; ... a, (3.122)
can by replaced by the case-switch:

if isType, self thenS,,
elseif isTypeg self then S,,

. ' (3.123)
elseif isTypec self then S,

else |
which selects the suitable operation specification by the type of the context
object represented by self.

Summing up, conservativity implies that only limited forms of recursive
invocations are admissible in our framework. In an open-world (no class

96

3.12 SPECIFYING FRAME PROPERTIES

finalization so far), only operation calls can be treated. In a (partially)
closed-world (the class hierarchy has been finalized), an invocation can
be expanded to a case-switch considering the dynamic type of self over
calls. For supporting invocations, we do not require that the complete
model is finalized. It is sufficient that the parts of the models containing
invocations are finalized. For example, our framework allows models
where

o parts that do not contain recursive operation specification are
extensible,

« parts that only contain recursive invocations that can be statically
resolved into calls are extensible, and

« parts that contain invocations are finalized. As invocations are
only conservative, if the operation table is fixed, all classes that are
related by inheritance must be finalized or sterilized.

Here the flexibility allowing partially closed-worlds allows for deciding
on a case by case basis which strategy to follow.

3.12 SPECIFYING FRAME PROPERTIES

When using contracts, or pairs of preconditions and postconditions for
state transition there arises the need to specify exactly which parts of the
system are allowed to be modified and which have to stay unchanged,
i.e., we have to specify the frame property of the system. Otherwise,
arbitrary relations from pre-states to post-states are allowed. For most
applications this is too general: there must be a way to express that parts of
the state do not change during a system transition, i. e., to specify the frame
properties of system transition. As an example, consider Figure 3.10 with
an particular focus on the specification of the operation deposit of the
class Account. This specification only describes which part of the system
should change, i. e., the balance of the context object (which is an Account
object) should be increased. But this is not specified, which parts of the
system should remain unchanged, e. g., the id of the context object.

One solution to solve this frame problem would be an implicit invari-
ability assumption on the meta-level which would somehow express “all
things that are not changed explicitly remain unchanged” But this is
neither formal nor precise and thus not usable within a formal framework
for object-oriented specifications.

Another possibility is to enumerate, in the postcondition of the oper-
ation, all path expressions that should remain unchanged, e. g., in our
example a first attempt to do so would be:

97

frame property

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

’
/

GEcotnt Customer

@ balance:Integer ;
& sl iiiesar & id:Integer

LId() o 1. . % owner|& name:String
= ge -Integer accounts .
— GEiEalEnEsl) Uiy - gzzl{l:rﬁé(ﬁngigi;) :Boolean
= deposit(a:Integer):Boolean = T—— :String ’
@ withdraw(a:Integer):Boolean =9 : 9

Figure 3.10: Consider a state transition constrained by the operation specification for the opera-
tion deposit. Obviously, only the attribute balance of one specific object should be
changed, but how can this be specified?

context Account::deposit(a:Integer):Boolean
post: balance = balance@pre+a
post: id = id@pre
post: owner = owner@pre
post: owner.id = owner@pre.id@pre
post: owner.name = owner@pre.name@pre

But this is also not sufficient, as it would still not describe if objects
not related to our context object (of type Account) must remain un-
changed or not. Enumerating all classes (and attributes) using static
path expressions (e. g., Customer: :name = Customer::name@pre) is te-
dious and moreover leads to contradictions if the name attribute of the
owner of the context object should be changed.

Thus, we prefer a different approach for describing the frame property
of a system transition. We propose an operation modifiedOnly _ that
allows for explicitly enumerating all objects of a given state that are al-
lowed to be modified. As a prerequisite, we define a predicate OidOf for
accessing the object identifier of an object:

0idOf 7 X = {x. (7 x) = Some(mKopject X) } (3.124)

which allows a uniform definition of modifiedOnly _ for the referential
universe and the non-referential universe:

modifiedOnly X = A(7, 7').
Vig (U (0idOf 7) * "Repser (X (7, T/))1). ti=11,. (3125)

Thus requiring modifiedOnly & in a postcondition of an operation allows
for stating explicitly that an operation is a query. Further, the following

98

3.13 DISCUSSION

equivalence holds:

(modifiedOnly X) A (modifiedOnly Y)
= modifiedOnly(Y n X). (3.126)

The two main advantages of defining the set of modifiable objects using
their semantic representations are:

1. There may be aliases, i. e., two path expressions that point to the
same object. Therefore, forbidding the assignment to one expres-
sion denoting an object does not imply that it is unchanged; it
could be changed via another path expression (reference). Our
approach solves the alias problem by referring to values and not to
(not necessarily unique) names. This paves the way to a smooth
integration of Hoare Calculi [23].

2. We allow recursive functions traversing object structures (such
as associations), such that sets of modified objects may be col-
lected and specified recursively. For example, we could specity,
that an operation of the class Customer is only allowed to change
those objects (accounts) reachable via self.accounts which have
a balance less than a specified value.

Since frame properties are an important part of the system specification,
and thus it is not astonishing, that most precondition/postcondition spec-
ification languages provide a means to specify frame properties, e.g.,
JML (70, 71] allows for explicitly enumerating a list of references [71] to
be assignable or not. We extend this schema by allowing arbitrary predi-
cates that construct the set of all objects (or references) that are allowed
to be modified. Our construction, which is in principle an extension
A-operator in Object-Z, is strictly more powerful than just enumerating
references explicitly.

3.13 DISCUSSION

In this section, we will summarize the features and limitations of our
framework for object-oriented specifications. But first, we explain the
two main components of our framework more detailed: the object store
and the object-oriented constraint language:

An object store provides the core notion of object-oriented data struc-
tures, e. g., a formalization of classes and instances including for example
concepts like inheritance and subtyping. In particular, the object store
provides the formal semantics of path expressions, i. e., expressions nav-
igating through a concrete object structure. By combining an object
store with an object-oriented constraint language, one can restrict the set

99

alias

object store

object-oriented
constraint language

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

of valid object-structures semantically, i. e., specific states are ruled out
based on their semantics. Without an object-oriented constraint language,
object-structures can only be ruled out by their structure, i. e., if they not
well-typed.

Bertino et al. [16] introduce the concept of an object-oriented query
language which is closely related to the concept of an object-oriented
constraint language we used in this chapter. In our understanding, the
main characteristics of an object-oriented constraint language are:

o an underlying logic supporting undefinedness; four different types
of equality, based on identity and values, each in a strict and non-
strict variant;

o atyped set theory and basic datatypes; path expressions for navi-
gating in the graph representing the object-structures;

« different predicates for restricting instances in a specific system
state or class hierarchy; and

o support for calling or invoking user defined operations.

Allowing the user for calling purely functional operation specifications,
i.e., query operations, within the constraint language itself allows for
a certain degree of logical extensibility. Overall, in contrast to a query
language, a constraint language constrains the set of valid system states,
i. e, the set of possible object structures.

In the following we summarize the key features of our framework.
The most important feature of our formalization of an object store is its
extensibility, i. e., its support for direct proof reuse after extending the
class model. The limitations of this constructions are in particular:

o The reuse of proof objects is limited to the extension of class hier-
archies. Merging different class hierarchies requires re-proving all
properties, e. g., by re-playing the proof scripts.

This limitation is a consequence of the fact that type sums are not
commutative; thus, the order in which -instances were created is
relevant and leads to the generation of type-incompatible construc-
tors and accessors in different class universes for the same class.
On the other hand, since the process of merging class hierarchies,
which also includes the detection of shared subclasses, is a highly
nontrivial one, one cannot expect that this phenomenon can be
coped smoothly in a type system not built for this purpose.

The two most common cases of merging different class models are
probably the parallel extension of class models and the reuse of
libraries. For these two scenarios, the proof scripts can be replayed

100

3.13 DISCUSSION

automatically, i. e., without user interaction. Moreover, these two
scenarios can also be resolved in advance by introducing abstract
classes (or only an additional type variables) that can act as exten-
sion points.

« The typing of equality expressions in our formalization is more
liberal than usual, e. g., in OcL. In particular, depending on the def-
inition of the root of the class hierarchy (e. g., 0clAny or Object),
referential or (shallow) value equality result for the constraint lan-
guage (see Section 3.6).

« Conservative support for late-binding is restricted to parts of the
class hierarchy that are finalized or sterilized. It seems to be im-
possible to encode conservatively an extensible object structure
supporting late-binding. Nevertheless, our framework supports
partial closed-worlds and thus a high degree of flexibility (see

Section 3.11).

o As most object-oriented programming languages, our framework
does not support multiple inheritance. Extending our universe
construction for supporting multiple inheritance is a highly non-
trivial task.

Nevertheless, multiple subtyping based on interfaces, as found in
Java or the UML is supported by our framework. As an interface
only specifies operation that must be implemented by classes real-
izing the interface support for subtyping is reduced to showing the
usual proof obligations for subtyping: the precondition of the class
must imply the precondition of all interfaces it realizes and the
postcondition of the interface must imply the postcondition of the
class. Of course, this does not need a special support within the
object encoding and therefore, we can support multiple subtyping
easily.

Since we aim for a framework that is object-oriented, it is reasonable
to demand that our frameworks should support the concepts introduced
in Section 2.1. From these concepts, only a few were not yet discussed in
this chapter, in particular:

o Violating the encapsulation of a class, i. e., accessing path which is
protected by access specifiers like private, protected or public,
can be checked purely statically. Thus, on the one hand an import
mechanism for specifications can already reject specifications that
violate disobey the access specifiers. On the other hand, it is debat-
able, if one should pay attention to these concepts during formal
analysis. One could even think about interpreting the forbidden

101

A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

accesses (i. e., the access to a private attribute from the outside)
as an undefined expression and as such encoding access speci-
fiers into our framework. We decided against this for two reasons:
first, it would result in a quite complex reasoning, and second, the
static check is easy and efficient. Thus, we see the access specifiers
as a kind of syntactic well-formedness rule the model has to be
compliant with.

At the moment, our framework has no direct support for associa-
tions. They can be represented by their association ends together
with additional class invariants. A pre-compilation step can imple-
ment this conversion. We will discuss this problem in more detail

in Section 4.3.1.

Packages in general and namespaces in particular are a purely syn-
tactic concept for avoiding name clashes. Thus it is not necessary
to provide semantical support for them, albeit our implementation
maps them to the namespace concept of Isabelle/HOL and thus
generates names for the logical constants that are divided into
hierarchic namespaces similar to the one used in the user model.

In the next chapter, we will show, how this framework can be used both
for giving a formal, machine-checked semantics for umL/ocL and also
for developing an interactive theorem prover for umL/OCL.

102

A FORMAL SEMANTICS FOR UML/OCL

In this chapter, we show how our framework presented in Chapter 3 can
be used to provide both a standard-compliant, machine-checked, formal
semantics and an interactive proof environment for the Object Constraint
Language (ocL), called HOL-OCL.

4.1 CHALLENGES

Formalizing, in a machine-checkable way, a real-world standard for a
specification language is always a technically challenging task. This is
especially true if, as in the case of ocL such a standard was not originally
developed with formalization in mind. The formalization of such a stan-
dard requires an in-depth analysis of the already existing description of
the language, resulting in:

o A description of missing parts of the current standard together
with proposals to fill the gaps.

o A description of inconsistencies of the current standard together
with proposals to resolve them.

« Proposals for alternative definitions or extensions of the language.

Moreover, all decisions made, e. g., for resolving inconsistencies or fixing
gaps, should capture somehow the informal intention of the authors of
the original standards. This requires, if possible intensive discussion
with them, or an intensive analysis of examples and actual usages of the
language being formalized.

Our formalization of the ocL standard [88, Appendix A] we present in
this chapter is based on the framework presented in Chapter 3. It provides
the following benefits over a paper-and-pencil formalization:

A Consistency Guarantee. Since all definitions in our formal semantics
are conservative and all rules are derived, the consistency of the
complete framework is reduced to the consistency of HoL for the

103

A FORMAL SEMANTICS FOR UML/OCL

entire language. In particularly, this holds also for HOL-OCL, the
interactive theorem prover we developed for umL/0CL.

A Technical Basis for a Proof-Environment. Based on the derived rules,
control programs (i. e., tactics) implement semi-automated reason-
ing over ocL formulae; together with a compiler for class diagrams,
this results in a general proof environment called HoL-oCL. Its
correctness is reduced to the correctness of a (well-known) HoL
theorem proving system.

Proofs for Requirement Compliance. The ocL standard contains a collec-
tion of formal requirements in its mandatory part with no estab-
lished link to the informative part [88, Appendix A]. We provide
formal proofs for the compliance of our ocL semantics with these
requirements.

Formalization Experience. Since the semantics of the whole language is
formalized and machine-checked, we extend or modify the seman-
tics while preserving consistency. This conservative formalization
allows for extending the language or examining semantic without
the risk of introducing inconsistencies in the language.

In this chapter, we will present a machine-checked semantics for ocL
in the context of UML class models which is based on the framework
presented in Chapter 3. We will start, in Section 4.2, with a brief overview
of the ocL standard. In Section 4.3 we present our formalization of the
ocL semantics and show in Section 4.4 why our semantics complies to
the standard. Moreover, we propose several extensions of the ocL in

Section 4.5.

4.2 A NOTE ON OCL STANDARDS

In this section, we give a brief overview of the official ocL standard [88]
In particular, report on the historic development and the current state of
a formal semantics for oClL as described in the different versions of the
ocy standard.

4.2.1 A Historic Overview

The uMmL and ocL standards are developed in an open process by the
Object Management Group (0MG). Such an open process leads to variety
of (intermediate) standardization documents [67]; especially for umL and
octL, which have a long history. For example, ocL was already introduced
in 1997 as a supplement to the uML standard. The different versions
of ocL 1.x are very close to each other, containing mainly an informal

104

4.2 A NOTE ON OCL STANDARDS

motivation of the intended use and semantics of ocL together with a
formal grammar of its concrete syntax. Reading these versions of the
standard leaves more questions open than it answers. These shortcomings
and open questions, like the handling of undefinedness, or recursion, were
discussed [37, 53, 74] in academia and this discussions clearly fertilized
the development towards ocL 2.0. Especially the work of Richters [100]
served as formal underpinning of the ocL 2.0 development. It was a
major break-through in the process of defining a formal semantics for
OCL. Many problems, like the handling of undefinedness, were clarified
during the ocL 2.0 standardization process, some questions however, like
the handling of recursion, are still unsolved.

In the following, we present a formalization based on the following
two documents:

1. oMG Unified Modeling Language Specification (excluding Chap-
ter 6 which describes ocL 1.5) Version 1.5 [90].

2. UML 2.0 OCL Specification [88], denoted as “omaG Final Adopted
Specification.”

More recent versions, especially [89], are an ad-hoc attempt to align the
UML 2.0 with the ocL 2.0. Among many other annoyances, new datatypes
are introduced without giving them a consistent semantics. For exam-
ple, besides OclUndefined (called invalid), also an exception element,
called null, is introduced. On the one hand, the intention of the authors
of the standard [89] is to give OclInvalid a strict and null a non-strict
semantics with respect to collection type constructors: “Note that in con-
trast with 0clInvalid null is a valid value and as such can be owned by
collections.” [89, pp. 36]. Nevertheless, null is still strict with respect to
other operations: “Any property call applied on null results in OclInvalid,
except for the operation ocllsUndefined()” [89, pp. 138]. On the other
hand, both invalid and null conform to all classifiers, in particular null
conforms to invalid and vice versa. Moreover, the conforms relationship
is antisymmetric and therefore invalid and null are actually indistin-
guishable. Considering that many of these changes were made without
giving much thought to their impact on the existing specification, the
version [89] of the ocL standard represents a considerable step back with
respect to consistency and potential for formal semantics. Moreover, the
problems we report in this chapter, are still valid for current versions of
OCL.

4.2.2 The Role of Semantics in the Standard

We claim to provide a semantic representation that is compliant with the
semantics presented in the ocL standard. In this section, we make our

105

normative
informative

A FORMAL SEMANTICS FOR UML/OCL

claim more precise, in particular we have to discuss to which parts of
the standard we claim to be compliant. Standards issued by the omg are
usually divided into normative parts and informative parts. The normative
parts define the standard. In contrast, the informative parts of the standard
are not normative, i. e., they are thought of containing motivating and
background material. Thus, any ocL compliant work must honor the
normative parts of the ocL standard whereas it can ignore the informative
ones.

The semantics of OcCL appears in the following chapters of the ocL
standard [88]:

Chapter 7 “ocL Language Description” This is a informative chapter mo-
tivating the use of ocL and introduces it in an informal way, mostly
by showing examples. We used this chapter mainly for catching
the intentions of the standard in cases where the other parts of the
standard are unclear or contradictory.

Chapter 10 “Semantics Described using umL”: 'This normative chapter de-
scribes the “semantics” of ocL using the umL itself. Merely an
underspecified “evaluation” environment is presented. Neverthe-
less, some of the information presented in this chapter is helpful
for formalizing the standard. Moreover, the chapter title reveals
that meaning of “semantics” is not always that obvious, Harel and
Rumpe [55] discusses this issue in more detail.

Chapter 11 “The ocL Standard Library”: This normative chapter is, in our
opinion, the best source of the normative part of the standard de-
scribing the intended semantics of ocL. It describes the semantics
of the ocL expressions as requirements (in form of pairs of precon-
ditions and postconditions) they must fulfill. Overall, we prove
these requirements for our embedding and thus show that our
embedding satisfies these requirements.

Appendix A “Semantics™ This informative appendix defines the syntax
and semantics of ocL formally in a textbook-style mathematical
notion. It is mostly based on the work of Richters [100].

Overall, we criticize the semantic foundations of the standard for several
reasons:

1. The normative part of the standard does not contain a formal
semantics of the language.

2. The consistency and completeness of the formal semantics given
in “Appendix A” is not checked formally.

106

4.3 A MACHINE-CHECKED OCL SEMANTICS

3. There is no proof, neither formal nor informal that the formal
semantics of informative “Appendix A” satisfies the requirements
of the normative chapter 11.

Nevertheless, we think the ocL standard [88] is mature enough to serve
as a basis for a machine-checked semantics and formal tools support.

4.3 A MACHINE-CHECKED OCL SEMANTICS

In this section, we present a formal, machine-checked semantics for ocL
based on our framework. As we already presented our framework in
Chapter 3, we only have to choose building blocks that match the ocL
semantics as described in the standard. In Section 4.4 we will discuss the
standard compliance of our semantics in detail.

For presentational reasons, we introduce an explicit semantic function
into our shallow embedding. Of course, with respect to HOL, this is just
the identity, i. e.,

Sem[x] =x with type a = «. (4.1)

4.3.1 Encoding the Underlying Data Model

ocL heavily relies on an underlying, user-defined class model, thus we
start our formalization by fixing a semantics for class models. As ocL
describes itself as a constraint language for the umL, the underlying data
model should be compatible with the umL standard [90].

THE OBJECT UNIVERSE. Using our framework, we have to decide if
ocL is based on a sharing semantics for object-structures (i. e., the non-
referential universe) or a creation semantics (i. e., the referential universe).
An interpretation of such a universe construction is given in the standard:

Each object is uniquely determined by its identifier and vice versa.
Therefore, the actual representation of an object is not important for
our purposes. (ocL Specification [88], page A-7)

On the one hand, this formulation suggests that there is no difference
between an object and its value, which would lead to a sharing semantics.
On the other hand, the normative part always identifies objects by a
reference to it, e. g.:

If self is a reference to an object, then self. property is the value of the
property property on self. (ocL Specification [88], page 15)

107

A FORMAL SEMANTICS FOR UML/OCL

As the referential universe is close to the usual programming language
semantics of object constructors we use it as the basis for our formalization
of ocL. Furthermore, in this setting, the reference to an object in the
store can always be reconstructed which paves the way for reference types
as for example in Java.

Therefore, we define the supertype of all types of the user-defined umML
models, which is called 0clAny in ocL, based on the referential variant
(item 2) in Definition 3.11, i. e.,

a 0clAny := ((OclAnytag x 0id) x ocl) . (4.2)

Overall, we suggest to resolve this ambiguity of the standard in favor of
the referential setting, which we also see as the default HOL-0CL configu-
ration.

PATH EXPRESSIONS: ACCESSORS. The path expressions of ocL, i.e.,
attribute accessor can be directly defined by the constructors and acces-
sors of our framework, see Section 3.4.3. In more detail, we define path
expressions on the basis of the level 2, as introduced in Section 3.5.3. Using
alevel 2 interpretation of path expressions guarantees that a path expres-
sion is either undefined or represents an instance fulling the invariants
of its type. For example, assume the access to a class attribute id; we
interpret the path expression self.id as follows:

Sem[self.id] = self. id® (4.3)

In Section 4.3.7 we discuss in more detail, why we propose the level 2
constructs as basis of the 0c1, semantics.

TYPES, CASTING AND TYPE TESTS. The type-casts and type tests
from of ocL can be directly defined by the corresponding operations of
our framework, i. e.,

Sem[self .oclIsTypeof (T)] = isType%z) self , (4.4a)
Sem[self .oclIsKindof (T)] = isKindéz) self ,and (4.4b)
Sem[self .oclAsType (T)] = self[(TZ]) . (4.4¢)

Where the operations isTypefz) i isKindEz) _,and _EZ]) are constructed
by applying the schema presented in Equation 3.81 on page 78 (Sec-
tion 3.5.3), based on their the corresponding level 1 operations: isTypeETr_,
isKindEl) _,and _[(1?. Recall, the level 2 operations are based on semantic
type and kind sets and thus include invariant checking. In Section 4.3.7
we discuss in more detail, why we propose the level 2 constructs as basis
of the oc1 semantics.

108

4.3 A MACHINE-CHECKED OCL SEMANTICS

We model the type 0clVoid implicitly using the lifting combinators
and the type class bot, see Section 3.2.1 for details. Moreover, the types
0clModelElementType and OclType are modeled implicitly, respectively
replaced by the characteristic type set (of a type).

LIMITATIONS OF OUR OBJECT MODEL. The main limitations, com-
pared to the uMmL standard, of our framework are:

o We limit inheritance to single inheritance and do not support
multiple inheritance. This decision is a price we have to pay for
supporting extensibility. Since multiple inheritance is known to
introduce many new problems into object-oriented methods and
moreover most object-oriented programming languages also for-
bid multiple inheritance. Moreover, we support classes implement-
ing multiple interfaces and thus, we support a specific form of
multiple subtyping. As this setting is similar to the situation for
typed object-oriented languages like Java, we think this is a reason-
able choice. Nevertheless, supporting multiple inheritance is not
possible with the presented encoding scheme, thus this is a real
limitation of our framework.

o We represent associations by their association ends together with
some OCL constraints. Gogolla and Richters [44] present such
conversions from graphical UML notations to OCL in more detail.
Moreover, we assume that association ends belong to classes par-
ticipating in an association. This is compliant to UML 1.5 [90], but
not to compliant to UML 2.0. As there is at the moment neither
a formal semantics for umL 2.0 (Broy et al. [19] report on first
work in that direction) and moreover ocL 2.0 and UML 2.0 are not
yet finally aligned. Overall, direct support for associations, e. g.,
representing them as relations, is not only desirable to be standard
compliant, but also from a formal reasoning point of view. Thus,
we see the direct support for associations, including the support for
association classes, as future work which extends our framework
naturally.

Furthermore, the ocL standard ignores visibilities on the specification
level:

The ocL specifications puts no restriction on visibility. In oct all
model elements are considered visible.

(oct Specification [88], page 63)

This decision conforms to our advice (see Chapter 3) for ignoring visibili-
ties on the specification level.

109

A FORMAL SEMANTICS FOR UML/OCL

4.3.2 Primitive Datatypes

Undefinedness is omnipresent in ocL, this gets especially clear if we look
how the standard [88, Appendix A] introduces the primitive types, or
basic types as they are called in the ocL standard:

Let A* be the set of finite sequences of characters from a finite
alphabet A. The semantics of a basic type t € Tj is a function I
mapping each type to a set:

« I(Integer) =7, U {1}

o I(Real) =Ru {1}

o I(Boolean) = {true, false} u {1}
« I(String) = A* U {1}

(ocL Specification [88], page A-9, definition A.14)

This definition corresponds directly to the lifted datatypes introduced in
Section 3.3.2, 1. e., we identify the primitive types as follows:

Sem[[Integer] = Integer,, (4.52)
Sem[Real] = Real,, (4.5b)
Sem[Boolean] = Boolean,, and (4.5¢)
Sem[String] = String,. (4.5d)

4.3.3 Encoding Built-in ocL Operations

The standard contains “principles” for the semantics of the operations,
consider for example:

In general, an expression where one of the parts is undefined will
itself be undefined. (oct Specification [88], page 15)

In other words, one could rephrase this semantic principle as “all oper-
ations are strict,” be it for standard or for user-defined operations. The
ocL standard requires as default for all operations to be strict, both for
the case of built-in like the _ + _ on Integer, or user defined operations
declared in class diagrams. Other “principles” are hidden in the semantic
definitions; for example the passing of the context. Nevertheless, these
“principles” motivated our decision for a combinator-style semantics ap-
proach in our framework. Overall, for Integer,, Real,, and String, we
can directly use the semantics introduced in Section 3.3.2.

110

4.3 A MACHINE-CHECKED OCL SEMANTICS

b, b, byand b, byorb, byxorb, bimpliesb, notb;

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false 1 false 1 L true true
true 1 1 true L 1 false

1 false false 1 L 1 i

1 true 1 true 1 true 1

1 1 1 1 1 1 1

Table 4.1: The formal semantics of the Boolean Operations as given in the
ocL standard [88, p. A-12].

Also, the defining the operations on collections is straight-forward
with one notable exception: higher-order constructs like quantifiers and
the iterators need a slightly more complicated lifting process, [21] presents
the details of this construction.

The core logic, i. e., the operations over the type Boolean are non-strict.
The standard defines the semantics of these operations by giving truth
tables (see Table 4.1). These truth tables describe the semantics of a Strong
Kleene Logic (Definition 3.7 on page 57) as defined in Section 3.3.1. Thus
we can directly reuse the definitions for a Strong Kleene Logic of our
framework:

Sem[xo and x;] = xg A x (4.6a)
Sem[xy or x1] =xVx (4.6b)
Sem[xy xor x1] = (x0 vV x1) A =(x0 A x1) (4.6¢)
Sem[xo implies x;1] = xo —> x; (4.6d)
Sem[not x] = -x (4.6€)

Moreover, other non-strict constructs such as
Sem[self .oclIsUndefined()] = ¢ self (4.7)

are defined as an exception of the “all operations are strict” rule and
are defined as lifting from the definedness predicate def introduced in
Section 3.2, without using the strictness combinator.

4.3.4 Collection Types

Besides the logical connectives, the constructors for collections are the
exceptions to the “all operations are strict” rule of ocL:

111

A FORMAL SEMANTICS FOR UML/OCL

Note that constructors having element values as arguments are de-
liberately defined not to be strict. A collection value therefore may
contain undefined values while still being well-defined.

(ocL Specification [88], page A-17)

This behavior results in a non-strict (see Equation 3.17 on page 50) se-
mantics for the collection types. Noteworthy, the normative part of the
standard omits any description of constructors of collections and thus
both smashed and non-smashed collection variants would be compliant
to the normative part of the ocL standard.

We strongly opt for a smashed collection semantics, mainly for three
reasons:

1. Smashed collection semantics coincides with the “all operation
are strict” principle. Furthermore, a non-smashed collection se-
mantics would lead to unexpected behavior, e. g., expression like
Set{}->union(Set{0clUndefined}) would be undefined, i. e., re-
sult in OclUndefined and not in Set{0clUndefined}. Thus, for
a non-smashed collection semantics with strict operations even
simple laws like @ U X = X do not hold.

2. OCL tends to define its constructs towards executability and prox-
imity to object-oriented programming languages such as Java.

3. And most important for our purpose, ocL with non-smashed
collection semantics leads to very complicated logical calculi. Just
consider the rule

o self
Veeself.de

which only holds for a smashed semantics. Without such rules,
reasoning over navigations, i. e., collections, always requires a proof
of the definedness of all elements of a navigation.

Therefore we use smashing semantics as the default for HOL-ocL. Nev-
ertheless, to study the effects of a non-smashed collection semantics on
formal reasoning, we provide a separate configuration of HoL-0OCL featur-
ing a non-smashed collection semantics.

Moreover, all collection types of the standard are defined to be finite.
Whereas the framework presented in Section 3.3.3 easily allows for the
required definitions, we suggest that the future ocL standard deviates
from this definition in two points:

112

4.3 A MACHINE-CHECKED OCL SEMANTICS

1. The constructors for collection should be defined to be strict, i. e.,
we opt for a smashed collection semantics (see Equation 3.18 on
page 2).

2. The type Set should support infinite sets.

Our preference for infinite sets is mainly motivated by the fact that this
construction allows for treatment of type sets within ocL, including the
set of all Integers.

Summarizing, we define the semantics of the core operations for col-
lections as follows:

Sem[X ->includes(x)] =x€X, (4.8a)
Sem[X ->complement()] =X ", (4.8b)
Sem[X >union(Y)]=XuUY,and (4.8¢c)

Sem[X >intersection(Y)]=XnY. (4.8d)

4.3.5 Equality

The ocL standard defines equality as the strict equality over values [88, p.
A-12] and since objects are values in the standard (see also Section 4.3.1)
we choose the strict reference quality _ = _ as the default ocL equality,

ie.,
Sem[a=b]=a=b (4.9)

Nevertheless, we strongly suggest to include the strong (reference) equal-

ity,i.e., _ = _, in future version of the standard. We suggest to use “==" as
concrete syntax for the strong equality, thus we define

Sem[a==b]=azb (4.10)

Already Cook et al. [37] proposed the inclusion of a strong equality into the
oct standard. In particular in postconditions using the result keyword
the use of the strong equality, i. e., result = ¢ (where ¢ is an arbitrary ocL
expression with the same type as the operation the postcondition belongs
to), is useful to describe explicitly that the return value of an operation can
be undefined. For example, consider the following operation specification:

context C::m(a:Integer):Integer
post: result =5 div a

What is the semantics of this operation given that the precondition does
not rule out a=0? If the standard strict equality is used this results in an
inconsistent specification. If the strong equality is used this operation
simple returns undefined when called with an argument of 0. Depending
on the circumstances, both may be reasonable. Thus we suggest to extend
ocL with a strong equality operation.

113

A FORMAL SEMANTICS FOR UML/OCL

4.3.6 Encoding User-defined Operations

The ocu standard, in its present form, forbids overriding of operations.
Thus, ocL does only support operation calls, the invocation of operations
would be an extension of the standard. We will discuss the operation
invocations in more detail in Section 4.5.1.

For defining the semantics of calls to user-defined operation specifica-
tion, as introduced in Section 3.9, we have first to define the semantics of
operation specifications (see Section 3.8 on page 87). The ocL standard
defines the semantics of operation specifications as

The semantics of an operation specification is a set R € Env x Env
defined as

[context:C:op(p1: Ths..., pn: Ty)pre :Ppost:Q] = R

where R is the set of all pre- and post-environment pairs such that
the pre-environment 7. satisfies the precondition P and the pair
of both environments satisfies the postcondition Q:

R = {(Tpre> Tpost)| Tpre F P A (Tpres Tpost) = Q}

(ocL Specification [88], page A-33, Definition A.33)

Therefore, we choose in our framework the operation semantics with con-
junct semantics (Equation 3.101 on page 88).

Finally, we have to explore, if recursive operations calls should be
supported or not. The ocL standard states:

We therefore allow recursive invocations as long as the recursion is
finite. Unfortunately, this property is generally undecidable.
(ocL Specification [88], page A-27)

which is sneaking around the underlying problem. Obviously, in a formal
proof environment which should be consistent one cannot follow this
strategy. Thus we suggest to either limit ocL only to non-recursive calls,
or introduce recursion in a way that guarantees termination. We will
discuss the latter in more detail in Section 4.5.2.

4.3.7 Encoding Invariants

The ocL standard describes the concepts of class invariants informally as:

114

4.3 A MACHINE-CHECKED OCL SEMANTICS

When the invariant is associated with a Classifier, the latter is referred
to as a “type” in this chapter. An ocL expression is an invariant of
the type and must be true for all instances of that type at any time.

(ocL Specification [88], page 8)

In our reading, this leads to an identification of the (syntactic) concept of
type with the (semantic) concept of a class invariant. Therefore, we define
the semantics of oCL invariants using the concepts of semantic types as
introduced in Section 3.5.2.

4.3.8 Context Declarations

The ocL standard [88, pp. 157] introduces several classifications of ocL
formulae based on the context the formulae is stated. Up to now we have
already seen:

o Invariant for classes, denoted by inv:, which we encode as de-
scribed in Section 3.5 and Section 4.3.7.

o Preconditions (pre:) and postconditions (post:) for operations
on which we base our operation specifications upon, see Section 3.8
for details.

Moreover, the standard defines the context declarations, which can be
easily converted into invariants, preconditions, and postconditions:

o Initialization (init) of attributes, e. g.,

context A::x:Integer
init: 5

which can be directly converted into an invariant for class A:

context A:
inv: self.oclIsNew() implies self.x =5

This formula can be considered as non-standard with regard to
the ocL standard, as oclIsNew() is syntactically only allowed in
postconditions, but it is valid in HOL-OCL.

o The “body:” keyword is a shorthand for defining post-conditions
that return the result of an evaluation of an ocL expression, e. g.,

context A::f():Integer
body: 5

can be directly converted into

115

A FORMAL SEMANTICS FOR UML/OCL

context A::f():Integer
post: result =

For invariants restricting the value of an attribute to the result of an
evaluation of an ocL expression, the shorthand “derive,” similar
to “body” for operations, is provided, e. g.,

context A::x:Integer
derive: 5

can be directly converted into

context A
inv: self.x =5

For the textual definition of new attributes and operations the
context declaration “def:” is provided. From our point of view,
there is no difference between statements defined graphically in
the case tool and those defined using this context declaration.

4.4 A NOTE ON STANDARD COMPLIANCE

When we claim to be compliant to the standard, we do not mean that
we converted “literally” the “Semantics” chapter of the ocL standard [88,
appendix A] into an Isabelle theory. The deviations from the standard
can be grouped into the following six classes:

Making the standard more precise: The most important point here is that

the standard uses naive set theory as basis for the notions type,
state, and model. For example, types were explained by some type
interpretation function that maps types to a (never described)
universe of values and objects. As we use a typed semantic domain,
these problems do not occur, e. g., within our formalization only
well-typed ocL formula are possible. This is because an ill-typed
oct formulae is also an ill- -typed HOL formula in our framework
and thus rejected already by the type-checking for HOL. Another
example for making the standard more precise is the decision for
a smashed collection semantics (see Section 3.2.1).

Presentational issues: This covers our decision to turn OCL into a shal-

116

low embedding, as well as our decision to use a combinator-style
presentation for the bulk of semantic definitions both for concep-
tual and technical reasons. In Section 4.4.1, we show why these
formulations are equivalent to the ones used in the standard.

4.4 A NOTE ON STANDARD COMPLIANCE

Generalizations and Extensions: This covers for example our decision to
use an infinite collection type Set,, since logical connections
between, e. g., .oclIsTypeOf and class invariants can therefore be
satisfactorily treated inside ocL.

Repairing glitches: 'The standard contains, as can be expected for a large
semi-formal document, several errors in local definitions which
were revealed during our formalization (see Section 4.4.2 and [21,
28]).

Proofs for Compliance Requirements: The ocL standard contains a collec-
tion of formal requirements in its mandatory part with no estab-
lished link to the informative “Appendix A” of the standard [88].
We provide formal proofs for the compliance of our ocL semantics
with these requirements (see Section 4.4.2).

Providing alternative mathematical syntax: Being the first who did sub-
stantial proof work in ocL, we early noticed the need for a compact,
mathematical notation for ocL specifications as alternative to the
programming-language like notation used in the ocL 2.0 standard.
Especially while interactive proving properties, we are favoring
the mathematical notion, as it allows for a much more concise
presentation. However, we support both syntactical variants as
input and output of your system. A table comparing the concrete
syntax of the standard and our proposal for a mathematical syntax
is given in Appendix A.

In Section 4.4.1, we formally show that our combinator style semantics
is equivalent to (a formalized version of) the textbook-style semantics
of [88, Appendix A]. Moreover, in Section 4.4.2 we show, that our seman-
tics fulfills the requirements of [88, Chapter 11]. Thus, our formalization
also provides in some sense the link between [88, Chapter 11] and [88, Ap-
pendix A] missing in the standard: using the detour of our formalization
we show (or refute) that the (informal) textbook-style semantics of the
standard fulfills the normative requirements of the standard.

4.41 Comparing Textbook-style and Combinator-style Semantics

In ChaEter 3, we use a combinator-style presentation rather than a text-
book-style presentation as it is used, for example, in the ocr standard. We
use a combinator-style presentation for reasons of conciseness as well as
better tool-support. In this section, we show that we can prove formally
the equivalence between our semantics and (a formalized version of) the
textbook-style semantics of the standard.

Let us consider the definition of strict operations over primitive types.
For these operations, the standard defines the semantics for them by just

117

A FORMAL SEMANTICS FOR UML/OCL

one example. Namely, the semantics of the addition over Integer (_+_).
It is defined in the standard [88, page A-11] as follows:

i +i, ifij#+ Landi; #1,
I(+)(i1>i2)={ll SR men (4.11)

L otherwise.

This definition uses once again the semantic function I. This semantic
function I for primitive types and basic operations is integrated in the
more general semantic interpretation function for ocL expressions:

Let Env be the set of environments 7 = (¢, §). The semantics of an
expression e € Expr, is a function I[e] : Env — I(¢) that is defined
as follows.

) 1[v](r) = B(v).

(i) Iletv = eyine;)(7) = ez (0, B{v/1[er](1)})-
(iii) I[undefined]() = L and I[w](7) = I[w].

@) Mw(en...en]r = Iw) (D) (Ie] (D). ... Mea](2)).

(ocL Specification [88], page A-26, definition A.30)

Here, 1 refers to the environment (in the sense of the standard), i.e., a
pair consisting of a map assigning variable symbols to values and a pair
of system states.

There are two more semantic interpretation functions; one concerned
with path expressions (i. e., attribute and navigation expressions [88, Def-
initions A.21], and one concerning the interpretation of preconditions
and postconditions 7 = P which is used in two different variants.

To show the equivalence of the two formalization styles, we use our
already introduced semantic function. Recall its definition as identity in
our shallow embedding:

Sem|[x] =x with type o = «a. (4.12)

Sem[E] can be thought of as the fusion of the two semantic functions
I(0) and I[E] used in the ocL standard.

Now we show for our first strict operation in ocL, the not operator,
that it is in fact an instance of the standards definition scheme:
{L—'rSem[[X}]ij if Sem[X]y # L,

1

Sem[- X]y = (4.13)

otherwise.

This is formally proven within HOL-0OcCL. Table 4.2 shows the trivial and
canonical proof: it consists of the unfolding of all combinator definitions

118

4.4 A NOTE ON STANDARD COMPLIANCE

lemma "(Sem[-x]y) = (if Sem[x]y #L then —"Sem[x]y”, else L)"
apply(simp add: OcINot_def DEF_def lifto_def lift1_def lift2_def
semfun_def)
done

Table 4.2: Proving that — _ is faithful with respect to the standard is triv-
ial and canonical: Unfolding the definitions of all combinator
definitions and the semantic function reduces the proof to an
application of the simplifier of Isabelle.

lemma "(Sem[x + y]y) = (if (Sem[x]y # L) A (Sem[y]y # L)
then "Sem[x]y" + "Sem[x]y",
else 1)"
apply(simp add: OcINot_def DEF_def lifto_def lift1_def lift2_def
semfun_def)
done

Table 4.3: Proving that _ + _ is faithful with respect to the standard is triv-
ial and canonical: Unfolding the definitions of all combinator
definitions and the semantic function reduces the proof to an
application of the simplifier of Isabelle.

(they are just abbreviations of re-occurring patterns in the textbook-style
definitions!) and the semantic function Sem which is merely a syntactic
marker in our context.

For the binary example of the integer addition, one proceeds analo-
gously and receives as result:

if Sem[X]y # L and
Sem[Y]y # L,
L otherwise.

rS _X hl rS Y hl
Sem(x + ¥y - |- SemXIy + Sem YTy,

(4.14)

Table 4.3 shows the quite simple, formal proof of this. Brucker and Wolff
[21] present the details for the remaining operations.

In the following, we summarize the differences between the textbook
definitions of the ocL standard and our combinator-style approach:

1. The standard [88, chapter A] assumes an “untyped set of values
and objects” as semantic universe of discourse. Since we reuse the
types from the HOL-library to give Boolean, Integers and Reals a
semantics, meta-expressions like {true, false} U {1} used in the
standard are simply illegal in our interpretation. This makes the
injections ,_, and projections "_" necessary.

119

A FORMAL SEMANTICS FOR UML/OCL

2. 'The semantic functions in the standard are split into I(x), I[e],
Iarr[e] 7 and 7 = P. Since we aim at a shallow embedding (which
ultimately suppresses the semantic interpretation function), we
prefer to fuse all these semantic functions into one.

3. The environment 7 in the sense of the standard is a pair of a vari-
able map and a state pair. The variable map is superfluous in a
shallow embedding (binding is treated by HOL itself), our con-
texts 7 just comprises the pair of pre-state and post-state, thus an
implementation of our notion of context.

Overall, we can show, by simple proofs that our semantics is equivalent
to the textbook-style semantics of the standard. Nonetheless, we deviate
in some points from the standard semantics for our system, HOL-OCL.
Most remarkably, we allow infinite sets and require the constructors of the
collection types to be strict. In both cases, we could adhere the standard,
but this would result in much more complicated proof calculi and would
make reasoning over OCL specification much more difficult as it already
is.

4.4.2 Compliance to the Requirements of the OCL Standard

As already described, the semantics of ocL is spread over several chap-
ters in the ocL standard and in particular, there is no normative formal
semantics. Many core concepts of OoCL are more or less stated implic-
itly, e. g., while explaining some example. For example, in the following
explanation of the role of undefinedness

In general, an expression where one of the parts is undefined will
itself be undefined. There are some important exceptions to this rule,
however. First, there are the logical operators:

o True or-ed with anything is True

o False AND-ed with anything is False
o False IMPLIES anything is True

« anything 1MPLIES True is True

The rules for or and AND are valid irrespective of the order of ar-
guments and they are valid whether the value of the other sub-
expression is known or not. (ocL Specification [88], page 15)

we learn two important details of ocL: ocL is based on a Strong Kleene
Logic. Thus, most operators of the logical type like _ and _ (written _ A _)

120

4.4 A NOTE ON STANDARD COMPLIANCE

are explicitly stated exceptions from the “all operations are strict” principle
also stated in this explanation.

Moreover, in the normative part [88, chapter 11], requirements (given
as ocL specifications) were formally stated on the standard operations of
ocL, e. g, for the implication it is stated:

context Boolean::implies(b:Boolean)
post: (not self) or (self and b)

The question, if these requirements are met by the informative semantics
description[appendix A] [88], where the semantics of the implication
is given by a truth table, is neither investigated nor even mentioned in
the standard. Table 4.1 on page 111 shows the semantics of the Boolean
operations as given in the formal semantics part of the ocr standard. Sum-
marizing, there are three descriptions of the semantics for the Boolean
operations. If we look closer on the implication, we find:

o The statement “anything implies true is true” in the informal de-
scription [88, p. 15].

« The postcondition (not self) or (self and b) in the norma-
tive part [88, p. 139].

« The truth table given in the formal semantics of the standard [88,
p. A-21].

If we analyzing this situation, we get:

o The postcondition (not self) or (self and b) does not fulfill
the informal stated requirement “anything implies true is true”

as the postcondition would evaluate to undefined in case self is
undefined.

o The formal semantics given as truth table obviously fulfills the in-
formal requirement, and thus does not comply to the requirement
given as postcondition.

One can easily deduce that one way of fixing this inconsistency would be
to change the requirement to

context Boolean::implies(b:Boolean)
post: (not self) or b

which would be semantically equivalent to the truth table given in the
formal semantics. One could argue that this is not really an inconsistency
in the standard, as the semantics of a postcondition is not clear, if the con-
text object (self) is undefined. Following this argumentation, one could
argue that the formal semantics is only a refinement of the requirement.

121

A FORMAL SEMANTICS FOR UML/OCL

It is a contribution of our work that we can in fact formally prove
the requirements are met by our semantics. In the case of the logical
connectives, compliance to the standard is proven by deriving lemmas
representing the complete truth table as required in the standard. Fur-
ther, we also prove the normative requirements, and thus connect the
informative formal semantics with the normative requirements of the
standard.

For example, the requirements of the standard [88, chapter 11] for
isEmpty over collections is given as follows:

context Collection::isEmpty():Boolean
post: result = (self->size() = 0)

which resembles the informal meaning that a collection is empty, if and
only if its size is equal to zero. As this requirement is formulated for an
abstract class, i. e., a class without implementation, we have to prove this
requirement of each subclass. Namely, we have to prove it for the classes
Set, Sequence, Bag, and OrderedSet. In particular, we will now consider
this requirement for the classes Bag and Set. For bags we formalize this
requirements as follows

self >isEmpty () = (self = (a Bag,))->size() = 0 . (415)
Instead of using operation specifications, we prefer their reformulation
as algebraic properties that are directly usable in proofs.

Using our formalization based on a smashing semantics for bags, we
can easily show that this property holds for our semantics. Table 4.4
shows the corresponding formalization in HOL-OCL, together with its
proof. The proof uses a case split (either self is defined or not) followed
by a simplification where the ocL definitions are unfolded.

For sets, the formalization of the requirement has to take into account
that we prefer the use of infinite sets. Sadly, the requirement only holds
for finite sets, as for infinite sets the size is undefined. Thus we formalize
the requirement for sets as follows:

E a(self->size())
self ->isEmpty() = (self s (a Setr)) >size() =0

(4.16)

The constraint = 8(self >size()) (the size of the set must be defined)
is a tribute to our extension of the standard to infinite sets; it has the
effect to constrain this specification to finite sets, i. e., to the domain the
requirement is intended to hold. Once again, we can easily show that
this property holds for our semantics. Table 4.5 shows the corresponding
formalization in HOL-0OCL, together with its proof.

122

4.4 A NOTE ON STANDARD COMPLIANCE

lemma "(self—>isEmpty()) = ((self = (a Bagr)) >size() = 0)"
apply(rule Bag_sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OcIMtBag_def OclStrictEq_def
Zero_ocl_int_def ss_lifting)
done

Table 4.4: Proving that the operation _->isEmpty() over bags fulfills
the requirements of the ocL standard, i. e., the postcondition
result=(self->size()=0) holds. We start the proof by apply-
ing the rule Bag sem_cases_ext, followed by a simplification
step. Overall, this results in two subgoals (either self is defined
or not). We can prove both goals by applying the simplifier
and unfolding all ocL definitions. The name ss_lifting refers to
a simplifier set that unfolds all lifting related definitions, e. g.,
lifto.

lemma "0(self >isEmpty())
—
(self—>isEmpty()) = ((self s (a Setr)) >size() = 0)"
apply(rule ext)
apply (drule_tac 7 = x in valid_elim)
apply (frule defSize_implies_finite_Sets)
apply (auto simp: OclIsEmpty_def OclSize_def OclStrictEq_def
Zero_ocl_int_def ss_lifting)
done
done

Table 4.5: Proving that the operation _->isEmpty () over sets fulfills the
requirements of the ocL standard, i.e., the postcondition
result=(self->size()=0) holds. We start the proof by ex-
ploiting extensionality and the rule valid_elim for converting
the global validity in a local one. As the size of the set is defined
we also know that the set is defined. Therefore, no case split is
needed and we can prove the property directly by applying the
automatic tactic auto with a simplifier configuration for unfold-
ing the ocL and lifting definitions. The name ss_lifting refers
to a simplifier set that unfolds all lifting related definitions, e. g.,

lift,.

123

A FORMAL SEMANTICS FOR UML/OCL

[21] presents these proofs in more detail, we use them to show that our
formalization captures the intention of the ocL standard.

4.4.3 Faithful Representing UML Object Structures

For backing our claim that the presented encoding of object structures
models faithfully encodes object-oriented data structures, e.g., in the
sense of programming languages like Java or C# or the umL standard [90]),
we prove a variety of properties. As the umL standard [90] does not
present a formal semantics for UML, we cannot give a formal proof that
we formalized class models as described in the standard. Nevertheless,
we prove for each class properties, like specific type-cast relations that are
usually considered as object-oriented. These properties cannot be proven
once and for all and thus have to be proven for each user-defined model,
e. g, during the encoding of a specific umL model. This is similar to other
datatype packages in interactive theorem provers like Isabelle/HoOL.
Among many other properties, our datatype package proves that for
each pair of classes A and B, related by a generalization (inheritance),
where B is a subclass of A it holds that every class is of the kind of its

superclass:
7 = self .oclIsTypeOf (B)

: (417)
7 = self .oclIsKindof (A)

Moreover, in that case one can cast the class as well as the more compli-
cated property:

T = dself 7 &= self .oclIsKindof (B)

7 &= self = self .oclAsType (A) .oclAsType (B) .oclAsType (A) '
(4.18)
As all type-casts are strict operations, one can from Equation 4.18 directly
infer the following rule:

7 &= 0 self 7 &= self .oclIsKindOf (B)

> (4.19)
7 = self .oclAsType (A) .oclAsType (B) .oclIsTypeOf (B)

and also

T = dself 7 &= self .oclIsKindof (B)

7= d(self .oclAsType (A) .oclAsType (B) .oclIsTypeOf (B))
(4.20)
Proving these properties is not only needed for showing that our encod-
ing captures the spirit of object-orientation, they are also a prerequisite
for a successful reasoning over object structures, i. e., as simplification
rules. Moreover, if these properties can be proven the user-defined model
already ensures some basic notion of consistency, for example consider a

124

4.5 EXTENDING OCL

model where the user defined for class B (which is a subclass of A) the
following invariant:

context B:
inv: not self.oclIsKindOf(A)

which is syntactically correct, but make no sense as the invariant con-
tradicts the generalization (inheritance) between class A and B. In this
example, our datatype package will not be able to prove the required
properties and will reject the model as being inconsistent.

4.5 EXTENDING OCL

In this section, we will propose several extensions to the ocL which
increase, in our opinion, the overall usability of ocL. Some of these
extensions will introduce new, expressive, constructs into the language.
Examples for such extensions are a well-defined semantics for recursive
operation calls or the support for specifying frame properties. Others will
not change the language itself but allow for more concise specification.
An example for such an extension is the introduction of strict Boolean
operations.

4.5.1 Operation Invocation

The, from object-oriented programming languages, well-known concept
of overriding is not yet fully supported by ocL. We believe, this is more
or less due to some accidental circumstances:

1. The umL standard [90, chapter 4.4.1] requires that operation names
are unique within the same namespace. Albeit, the uML standard
allows one to (explicitly) override methods, i. e., implementation
of operations.

2. The ocL standard [88, chapter 7.3.41] restricts the use of the pre-
condition and postcondition declarations to operations or other
behavioral features. Sadly, all ocL tools we know of do not support
the specification of preconditions and postconditions for methods.

3. Whereas the ocL standard speaks on several places of operation
calls, it does not give hints how operation overriding should be
solved, neither does it explain in detail concepts like operation
(method) calls or operation (method) invocations.

Bringing these together, one has to conclude that operation overriding is
underspecified, or even not supported in ocL. Nevertheless, we think that
overriding inherited operations or methods is a very important feature

125

A FORMAL SEMANTICS FOR UML/OCL

of object-orientation and thus should be supported by the ocL. Thus we
already provide the theoretical foundations for supporting late-binding
(and thus overriding of operations) within HOL-oCL (see Section 3.10 on
page 91 and Section 3.11 on page 94 for details), nevertheless a concrete
syntax for specifying this has to be worked out. For example, as simple
workarounds, one can ignore for operations the well-formedness con-
straint of UML that requires operation names to be unique within one
namespace, or one could introduce new context declarations allowing
one to specify preconditions and postconditions for methods.

4.5.2 Recursive Operations

The ocL standard requires that recursions should always be terminating
to rule out the problems already discussed in Section 3.11 on page 94:

The right-hand-side of this definition may refer to operations being
defined (i. e., the definition may be recursive) as long as the recursion
is not infinite. (ocL Specification [88], page 16)

and also in the formal semantics chapter the same statement is made:

For a well-defined semantics, we need to make sure that there is
no infinite recursion resulting from an expansion of the operation
call. A strict solution that can be statically checked is to forbid
any occurrences [...]. However, allowing recursive operation calls
considerably adds to the expressiveness of ocL. We therefore allow
recursive invocations as long as the recursion is n is finite. Unfortunately,
this property is generally undecidable.

(ocL Specification [88], page A-31)

We propose to restrict recursive operation calls to well-founded-recursion,
based on the semantics presented in Section 3.9 on page 89. Moreover,
we propose to extend the concrete syntax of ocL for allowing the direct
specification of a measure, which is needed for well-founded recursion.
For example, this would allow the following definition of the well-known
factorial function (in the context of a class A):

context A::fac(x:Integer):Integer
pre: true
post: if x < @ then 1 else x * f(x-1) endif
measure: m(x, y) = if x <0 ory <0
then false else x <y endif

Opverall, this would resolve the obscurities in the standard with respect
to recursive calls and moreover this paves the way for supporting formal

126

4.5 EXTENDING OCL

reasoning over recursive specifications.

4.5.3 Explicit Representation of Type Sets and Kind Sets

As already described in Section 3.5.2 on page 74 we represent types in
our framework, and thus also in HOL-OCL, via their characteristic set. As
types sets allow for specifying global properties of types in an easy way,
we propose to extend the ocL standard in two ways:

o The characteristic set, i. e., the set of all instances, can be infinite
(e.g., for the type Integer). Therefore we use an infinite set theory
for HOL-OCL. In Section 5.5.3, we discuss the advantages of this
setup in more detail.

 For supporting characteristic sets in concrete syntax of ocL we
suggest two new operations, which can be described in the style
of [88, Chapter 11] as follows:

-- Returns all possible instances of self, this may be
-- an infinite set. The Type T is equal to self
0clType: :typeSetOf()::Set(T)

and

-- Returns all possible instances of self and its

-- subtypes, this may be an infinite set. The Type T 1is
-- equal to self.

0clType: :kindSetOf()::Set(T)

In contrast to the operation allInstances(), the result of both
typeSet0f() and kindSet0f () does not depend on the system
state. Moreover, the kind sets and type sets may be infinite, even
for object types.

As we identify types by their type set, in an implementation, such as
HOL-OCL the expressions type: : typeSetOf() and type: :kindSetOf ()
can be directly mapped to the corresponding type or kind set during
loading of a specification.

For example, these operations allow one for specifying that the addition
on Integers is commutative

Integer.typeSetOf()->forall(x, y | x + y =y + Xx)

which are, for example, useful for making the requirements of the sum()
operation more precise. This operation computes the sum of all elements
by applying successively the applying an _ + _ operation, which must
be (syntactically) defined over the element type of the collection. The

127

A FORMAL SEMANTICS FOR UML/OCL

ocL standard [88, page 141] requires informally for this _ + _ operation
that is must be associative and commutative. Using our above proposed
operations one could express these two properties formally (within ocr)
as precondition of the sum() operation.

4.5.4 Strict Boolean Operators

In addition to the non-strict Boolean connectives which provide a Strong
Kleene Logic (SKL), we suggest to provide additionally a strict variant
(i. e., following Definition 3.5 on page 55). We believe that both for formal
reasoning and also for runtime checking, strict Boolean connectives are
very useful in certain situations as they can lead to a concise specifica-
tion. Thus we suggest to make both variants, i. e., strict and non-strict
Boolean connective, available within the same specification, e. g., using
the concrete syntax proposed in Table A.1 on page 190:

Sem[xo sand x1]] = xo A x1 (4.21a)
Sem[xq sor x1] = xo V x (4.21b)
Sem[xg sxor x1] = (xo V x1) A =(x0 A x1) (4.21¢)
Sem[xp simplies x1] = xg — x (4.21d)

As the negation is already a strict operation, we do not need to define it
again. Moreover, as any strict operation, they simplify the undefinedness
reasoning, see Chapter s for details.

4.5.5 Accessing All Instances of the Previous State

We believe that this is only a minor point, but nevertheless we mention
it here: The ocL standard [88, subsection 7.5] restricts the use of @ore
to properties (attribute, operations, ...) of instances of classes. Read-
ing this part of the standard literally, the standard rules out expressions
like allInstances@pre(), as allInstances() is defined as a feature of
classes (and not of an instances of a class). Overall, we suggest to explic-
itly allow allInstances@pre(). The semantics for this expression is as
obvious as for allInstances() itself, i. e.,

Sem[¢ : :allInstances ()] = alllnstances ¢ (4.22a)
and

Sem[t ::allInstances@pre()] = alllnstances@pre ¢. (4.22b)

For details, see also Section 3.7 on page 86.

128

4.6 DISCUSSION

4.5.6 Frame Properties

We already motivated in Section 3.12 on page 97 that a possibility for
specifying the frame property, i. e., all “things” that do not change during
a system transition is very important. Thus we propose to extend ocL with
means for specifying the frame property of an operation, in particular we
propose to introduce an operation ->modifiedOnly () whose semantic
is defined by the operator modifiedOnly (see Equation 3.125 on page 98):

Sem[self ->modifiedOnly ()] = modifiedOnly self . (4.23)

4.6 DISCUSSION

In this chapter, we presented a formal, machine-checked semantics for
ocL in the context of UML class models. The semantics we presented is
based on the formal framework we presented in Chapter 3. Further, we
can guarantee that our semantics is consistent, under the assumption that
Isabelle/noL itself is consistent.

In contrast to the formal semantics of the standard, i. e., [88, Appendix
A], we formally define the semantics for all operations and not only define
the semantics “by example.” [21] contains the Isabelle theory files of our
complete formalization.

Additionally, we showed that our semantics is equivalent to a formaliza-
tion of [88, Appendix A] and also that our semantics fulfills the require-
ment of [88, Chapter 11]. Thus, we indirectly showed that [88, Appendix
A] also fulfills most of the requirements of [88, Chapter 11].

Our semantics deviates from the semantics ocL standard in two points:
First we propose a smashed semantics for collections and second, we
prefer infinite sets over finite ones. The decision for a smashed semantics
is only a deviation from the informal semantics given in [88, Appendix
Al; as the normative part of the ocL standard omits a specification of the
constructors for collections, a smashed semantics is still compliant to the
normative part of the ocL standard [88]. Moreover, this decision is also
backed up by more recent version of the standard [89]. Extending the
ocL standard with support for infinite sets requires minor modifications
on several places in the standard, especially [88, Chapter 11]; for example,
the precondition of operations converting sets into sequences need to be
extended by a constraint requiring the finiteness of the set, see [21] for
details.

Moreover, our semantics is the basis for a formal tool we develop, called
HOL-OCL. As HOL-OCL is built on top of Isabelle/HOL in general and in
particular on top of the semantics we presented in this chapter, we can en-
sure that HOL-oCL implements exactly our formalized semantics. Overall,
this is, together with the consistency guarantee, one great advantage of

129

A FORMAL SEMANTICS FOR UML/OCL

building formal tools on top of well-known and reliable generic theorem
provers, e. g., Isabelle/HOL.

In the next chapter, we will present several proof calculi for our for-
malization of ocL. These calculi built the basis for the (automatic) proof
support HOL-OCL provides.

130

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

In this chapter, we develop several deduction systems for object-oriented
constraint languages in general and 0cL, as defined in Chapter 4, in partic-
ular. We define two equational calculi (UEC and LEC) usable for interactive
proofs or proofs by hand, and a tableaux calculus (LTc) geared towards
automatic reasoning. All rules we present are derived within Isabelle/HoL
from the semantic definitions presented in Chapter 3. Therefore we can
guarantee the logical soundness, with respect to the core logic HOL, of all
these rules.

5.1 CHALLENGES

Having a conservative embedding for an object-oriented constraint lan-
guage 7, e.g., OCL, as a shallow embedding into HOL, one might ask
why the development of specific calculi is necessary. Of course, one can
always unfold the definitions and thus converting, an Z formula into a
HOL expression and try to prove the latter. However, we dismiss this idea,
mainly, due to the following two reasons:

+ The semantics of HOL and the concepts of object-orientation are
not closely related, thus the encoding is quite complex. Further-
more, object-oriented constraint languages are usually very rich
languages, i. e., also providing a theory of its own datatypes. There-
fore, unfolding of all definitions to the HOL level leads to a tremen-
dous blow-up in the size of the formulae. The resulting HOL formu-
lae are not efficient to analyze, neither for automatic proof tactics
nor interactively: they are just too big.

« Unfolding all definitions of our framework and thus doing the
reasoning over a pure HOL specification broadens the gap between
the original specification (e. g., given as UML models annotated
with ocL constraints) and the representation (pure HOL formulae)
over which the verification is done. Our experience with larger
case-studies [25], carried out in using a similar proof-environment

131

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

for Z [26], shows that around half of the flaws found during formal
verification are fixed by correcting the specification and half of
them are caused by misstating the verification goals. Thus, for
every flaw found one has to decide if it is caused by a failure in
the specification or not. This decision is much easier if the formal
analysis is carried out in the same language the specification is
written in.

Therefore, we are strongly in favor for supporting proofs on the level
of the object-oriented specification. This strategy does not only avoid
the blow-up in the representation of the specification, it also provides
effective means to communicate with the designers and domain experts
of the original specifications.

Developing proof calculi that allow for a good integration into the
generic proof tactics of Isabelle is a challenge in itself. Moreover develop-
ing them for a object-oriented constraint language L over object structures
such as ocL (over uML object models), Spec# (over C# models), or yML
(over Java models) provides several additional difficulties:

o The logic itself is three-valued as it has to support means of ex-
ception handling. Moreover a strict evaluation model (similar to
programming languages) is usually the default. In contrast, the
meta-logic and the proof support provided by Isabelle are opti-
mized for two-valued reasoning.

« We do not only have the logic but also a rich datatype theory with
collection types which influence the overall flavor of the language.
As consequence, a good combination of specialized subcalculi for
all these types is a prerequisite for supporting automated reasoning
in practically relevant reasoning work.

Proof calculi for formal languages with this flavor are rarely explored;
especially for ocL no proof calculi supporting a Strong Kleene Logic are
published. Moreover, the ocL standard does not provide any calculi and
furthermore also neither a proof method nor a formal methodology. We
therefore develop a formal methodology by ourselves, based on previous
work [51, 63] for three valued logic and based on own experiences with
the development of an interactive proof environment [26]. We extend this
work by providing support object-oriented data models and developing
a tool-supported methodology. The focus of our discussion of calculi
in this section is mostly on the subset of our framework described in
ChaEter 4; this will result in an interactive theorem prover environment
for uML/oCL called HOL-OCL. An overview of the architecture of this
system is given in Section 6.1.1, the technical aspects of this system are
described elsewhere [21].

132

5.2 VALIDITY AND JUDGMENTS

In Section 5.2, we discuss the validity of formulae and derive basic prop-
erties of validity statements. Based on this discussion, we will in Section 5.3
introduce several equality and congruence relations over formulae which
will serve as the basis for the calculi we develop. In Section 5.4 we present
two subcalculi optimized for reasoning over two distinct properties of
7 formulae: undefinedness and context passingness (see Section 5.4.1).
Moreover, we will present a setup for arithmetic computations and cal-
culi for converting a fragment of object-oriented specifications into HOL.
On this basis, we will describe the logic of our framework in Section 5.5
and develop proof calculi in Section 5.6. We conclude this chapter with
some remarks on the development of automated proof support for the
presented calculi and a general discussion how the presented calculi are

related to ocL (Section 5.7).

5.2 VALIDITY AND JUDGMENTS

In this section, we will introduce a notion of validity of Z formulae. On
this basis, we will also discuss a first characterization of valid formulae.

5.2.1 Validity of Formulae

Recall that formulae of our constraint language Z depend on a context (see
Section 3.2.1 for details), thus we can define the validity of a formula with
respect to a concrete context 7, or with respect to all contexts. Therefore,
we introduce the notion of local validity and, moreover, we generalize
validity to judgments of the form:

(1= P) = (P(7) = true,), (5.1a)
(lef P)=(P(r) = Lfalsej) ,and (5.1b)
(r=,P) = (P(1) = L,). (5.1¢)

As a shorthand for all three variants, we will write 7 =, P for x € {1, f, t}.

We will write 7 = P for 7=, P and use this as our default notion of validity.
Further, we generalize local validity judgments to a notion of global

validity judgments, sometimes also called universal validity judgments:

(r:t P) = (V T. TE: P) , (5.2a)
(bf P) = (V T. TE; P) ,and (5.2b)
(DZLP)E(VT.TF:LP). (5.20)

In analogy to local validity, we will write =, P for x € {1,f,t} asa
shorthand for all three variants and we will write = P for =, P. Overall,
global validity captures the fact, that a formula is valid for all contexts.

133

local validity

global validity

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

Naturally, we can build both a local congruence, and a global con-
gruence based on our validity notion. Moreover, the global and local
congruences are related via the following three theorems:

AT (teX)=(t=Y) A7t (15:X)=(15¢Y)

, (5.3a)
X=Y
Nt (r=X)=(trY) At (15 X)=(1F.Y) cand (5.3b)
X-Y
N7 (75: X) = (T Y))({/\T-(T’ZLX):(TH Y) _ (5.3¢)

Since a validity statement like 7 = X has the type bool in HOL, all equalities
in the premises of these rules can be seen as logical equivalences

TEX<TEY. (5.4)

As such, they can be decomposed into implications from left to right and
vice versa.

In principle, reasoning over formulae of our constraint language can
either be based on a decomposition strategy of judgments or on exploiting
equivalences between formulae or judgments over them. In the latter
case, the transport of knowledge of contexts is a major technical issue in
reasoning over such formulae which turns out to be even more important
(i. e., more fundamental) than reasoning over definedness of subterms.
We will treat both reasoning over contexts and definedness in separate
subcalculi (see Section 5.4.1 and Section s5.4.2). Overall, there is a notable
similarity to labeled deduction systems [43, 112].

5.2.2 A Theory of Basic Judgment

Following the definitions introduced in the previous section, we can easily
check the following link between judgments and equalities:

(TtZA)=(AT=LtI‘ueJ)=(AT=tT). (5.5)

Moreover, the following analogous equations reveal that only one kind
of judgments is needed. As canonical form we take the validity judgment,
i. e, for the global validity:

(X=1)=(=9X), (5.62)
(X=f)=(k-X),and (5.6b)
(X=t)=(=X); (5.6¢)

134

5.3 EQUIVALENCES AND CONGRUENCES

and for the local validity:

Xt=17)=(1=9¢X), (5.6d)
(Xt=f1)=(rE-X),and (5.6€)
(Xt=t71)=(r=X). (5.6f)

Applied from right to left, these theorems reveal also the character
of judgments as rewrite-rules that can be used by automatic rewriting
procedures. From these equalities, the base cases for judgments follow
directly, i. e., for the global validity:

-(= 1), (5.7a)
-(=1), (5.7b)
Et; (5.7¢)
and for the local validity:
=(rE 1), (5.7d)
-(tEf), (5.7€)
TET. (5.7)

An important property of judgments is related to the three-valuedness
of 1, i.e., quadrium non datur:

(TIZA)V(TIZ—\A)V(‘H:aA). (5.8)

With this rule, a defined formula can be converted into formulae which
are true or which are false; this gives rise for six corresponding case-split
lemmas.

5.3 EQUIVALENCES AND CONGRUENCES

In this section, we refine the notion of congruence and equivalence; in
particular we will introduce several different equivalence relations for
formulae of our constraint language. These equivalences will be one
building block of the calculi we will present in Section 5.6.

5.3.1 Basic Equivalences and Congruences

We distinguish four equivalences over formulae of our constraint lan-
guage:

uc: Universal (Formula) Congruence (uc). This equivalence is a congru-
ence. It requires that two formulae A and B, both of type Boolean.,
agree in all contexts 7 and in all three truth values of type Boolean.,

135

quadrium non
datur

Universal
(Formula)
Congruence (uc)

Local (Formula)
Equivalence (LE)

Universal
Judgement
Equivalence (UJE)

Local Judgement
Equivalence (LJE)

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

i.e., they are equal with respect to the meta (HOL) equality. They
have the form

A =B, - A,=B,
or . (5.9)
A=B Ans1 = By

LE: Local (Formula) Equivalence (LE). This equivalence requires that
two formulae agree on all three truth values of Boolean, in a specific
context 7. They have the form

H, - H,
or . (5.10)
ATr=BT A, 17=B,T

The premises H; can have the form A 7 = B 7 or instances of this
scheme such as 7 =, A.

UJE: Universal Judgement Equivalence (ujg). This equivalence requires
that two formulae for all contexts 7 agree on one value x from
Boolean,. They have the form =, A = =, B or Horn-clauses over
them.

LJE: Local Judgement Equivalence (LjE). This equivalence requires that
two formulae agree on a specific truth value x of type Boolean; in a
specific context 7, i. e., T =x A = T =, B or horn-clauses over them.

All three possible kinds of judgments, namely = A (universal validity),
¢ A (universal invalidity), and &, A (universal undefinedness), can be
converted into each other. Thus, we can choose just one of them as
representative; the same holds for the local counterparts (e. g., the local
validity 7 = A)). In both cases, we choose the validity as representative
judgment.

Moreover, the UjE-format is only of notational interest: it is not possible
to build a complete calculus using only ujE-rules. For example, consider
the valid rule

=EJdA E=0JB
(FAAB)=((=A)A(B))

(5.11)

This rule holds due to distribution of universal quantification over _ A _
An analogue version for the disjunction of our object-oriented constraint
language Z does not hold, i. e., only the following variant holds:

=EJdA EJB
(FAVB)=(Yr.(rEA) Vv (rEB))

(5.12)

136

5.3 EQUIVALENCES AND CONGRUENCES
The LE-format, however, is flexible enough to build complete calculi.
For example, consider

TEJA TEOJB
(r=ArB)=((r=A)A(TEB))

(5.13)

as a propositional equivalence or

(teVxeS.AAB)=(Vx. (1ExeS) — (1= A))
/\(Vx. (TI:xES)—>(TI:B)) (5.14)

as an equivalence on predicates.

Judgments are propositional and formulae in the form of LJE can be
decomposed into implications from left-to-right and from right-to-left.
Thus, there is another line to automated reasoning over Z-formulae: they
can be turned into a tableau calculus (LTC, see Section 5.6.3).

Unfortunately, there is a trade-off between completeness of the various
calculi based on these equivalences and deductive efficiency. uc is the
only congruence that can be directly processed by Isabelle’s simplifier;
normalizations in Uc can be computed relatively efficiently. While uc
comprises several thousands of rules (among them, the strictness and
computational rules of operators) it does not form a complete calculus for
several reasons: Some properties in 7 are inherently context dependent,
in particular when referring to paths. Others are difficult to formalize
as a universal congruence. On the other end of the spectrum, since
local judgments, e. g., T = A, are simply propositions, they are extremely
flexible. When extending LjE rules to equivalences over propositional
(predicative) formulae, it is not difficult at all to convert them into a fairly
abstract but still provably complete calculus with safe rules. Safe rules are
rules whose application yield an equivalent transformation of the proof
state. Their use is “safe” in the sense that no logical content is lost.

With respect to LT, it is well-known that the complexity for tableaux-
based reasoning in Strong Kleene Logic is higher than tableaux-based
reasoning for two-valued logics [49]. However, the logic is only one little
fragment of the overall problem of building decision procedures for frag-
ments of our constraint language: Most operations are strict, and from
the data-invariants, definedness of many literals can be inferred, such that
large fragments of the language are in fact two-valued. Furthermore, we
do not only obtain the logic but also a rich datatype theory with collection
types which give the overall language a flavor in its own. As consequence,
a good combination of all these types of calculi is a prerequisite for devel-
oping procedures for automated reasoning that are applicable in realistic
case-studies.

137

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

5.3.2 On the Relationship Between the Different Forms of Equivalence

In this section, we will explore briefly how the different forms of equiv-
alence (i. e., UG, LE, LJE, and LTC) relate to each other. In particular, the

following characterizations between statements in these forms of equiva-
lence hold:

o Universal (Formula) Congruence can be converted into Local
(Formula) Equivalence as follows:

(A=B)=(V1.At=Br1). (5.15)

o Universal (Formula) Congruence can be expressed in Local Judge-
ment Equivalence by the following two equations:

(A=B)=((vVr.(rr4)=(r+B))

AV (TEPA) = (T?:@B)))

(5.16a)

and

(A=B)=((vVz.(rr4)=(r~B))
(5.16b)
/\(VT. (r=-A)=(1E ﬁB))).

These two equations implicitly exploit the “quadrium non datur”
(Equation 5.8): If two formulae agree in two truth-values, they
have also to agree on the third.

o Local (Formula) Equivalence can be expressed in Local Judgement
Equivalence by the following two equations:

(Ar=B7)=(((r~4) = (r+B))

A(r=94) = (= 7B)))

(5.17a)

and
(Ar=B7)=(((r=4)=(r+B))

A((r+~4) = (1= -B))).

They also also implicitly exploit the “quadrium non datur” (Equa-
tion 5.8).

o The relation of Local Judgement Equivalence to equivalence is
described by:

(5.17b)

((TD:A):(leB)):((Ti:A—>Ti:B)

A(TEB— TE A)). 518)

138

5.4 SUBCALCULI

This characterization justifies an own tableaux calculus on the basis
of local judgments. This rule is the starting point for the develop-
ment of the Local Tableaux Calculus (LTC) (see Section 5.6.3).

o The connection of strong equality to Local (Formula) Equivalence
is described by:

(Tb(aéb)):(arzbr). (5.19)

5.4 SUBCALCULI

In this section, we introduce our first calculi for our framework. These
calculi are specialized to particular tasks, for example handling undefined-
ness or reasoning over context-passingness.

5.4.1 Reasoning about Context-Passingness

In the following, we discuss the first subcalculus, the reasoning over
context-passingness. Revising the definition (see Equation 3.15 on page 50)

cp(P)=(3f.VX1.PX1=f(X1)1) (5.20)

that appears in Section 3.2.1, one might wonder why this definition is so
important for reasoning in Z. An answer can be drawn from the following
rule:
Atr=Brt cpP

PAt=PBt
In other words, any Local (Formula) Equivalence A 7 = B ris in facta
congruence for all terms P X that are context passing. As a consequence,
being context passing (cp _) is a pre-requisite for replacing a term by an-
other in some (context-passing) term P X. Thus P can also be interpreted
as the “surrounding term” marked by the “position” X. Since global equiv-
alence is semantically closely connected to strong equality, this means that
all sorts of term-rewriting in our constraint language, e. g., ocL, will be
constrained to “adequate surrounding terms,” i. e., terms that are context
passing. Context-passingness is a tribute to the fact that the typing of our
logic depends on the context; it can be seen as an invariant of semantic
functions representing the operations.

The inference rules for establishing context-passingness are contained
in Table 5.1 and follow an inductive scheme over the structure of the
expressions of the constraint language: The base-cases (Equation 5.22a
and Equation 5.22b) are straight-forward, i. e., constant expressions or
identities are context passing. The lemmas presented in Equation s5.22c,
Equation 5.22d, and Equation 5.22¢ contain the step-cases and work for
all operators that had been defined via the context lifting combinators.

(5.21)

139

context-passingness

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

m (5.22a)
p(1X. X) (5.22b)
m (5.22¢)
p
= (5.22d)
cp(1 X. lift f(PX))
cp P cpP’
cp(1 X. lift, £(P X)(P' X)) (5.22¢)

Table 5.1: The core rules of the subcalculus for context passingness.

We presented all operations of our framework in combinator-style,
therefore, with these combinators, these generic step-cases pave the way
for the automatic generation of one cp-rule with a uniquely defined pat-
tern for each operator. Thus, for all expressions built entirely from op-
erators (which is for example the case for all formulae of the original
system specification) of 7, the derivation of cp P formulae are done fully
automatic by backward chaining (using both the Isabelle simplifier as
well as the Isabelle classical reasoner).

5.4.2 Reasoning about Undefinedness and Definedness

Definedness and undefinedness are indeed opposite concepts, i. ., they
satisfy the rule of the excluded middle for all X in all types:

TEdXVvTEIX. (5.23)

This gives, of course, rise to case-split techniques that can be applied
automatically in calculi based on Universal Judgement Equivalence or
Local Judgement Equivalence.

However, we focus on strict operations as, for example, it is the case
for ocL. For strict operations, the use of undefinedness in deduction is
easier than its counterpart.

Undefinedness can be propagated throughout a proof state via forward
reasoning and exploited via rewriting. The forward reasoning part is

140

5.4 SUBCALCULI

Jof=t ot=t dlL="~ (5.24)

00X =t o(-X)=0X (5.25)
I(XAdX)=t (-XndX)=t (5.26)
00X AX)=t1 00X A-X)=t (5.27)
a(X=2Y)=t 0(X=Y)=0XA0Y (5.28)
0fX=0X 0fXY=0XA0Y (5.29)

(a) The core definedness rules hold for all strict operations f.

d(if X thenYelseZendif) =d XA (XAJdYV-XAdZ) (5.30)
I(XAY)=(0XA0dY)Vv-Xv-Y (5.31)
I(XVvY)=(0@XAdY)vXVvY (5.32)

(X—Y)=(0XA0dY)Vv-XVY (5.33)

(b) Strong definedness rules.

TEJX 7TEJY 7TEOJZ

7E d(if X then Yelse Zendif) (5:34)

TE0X TEOJY
TEIX—Y) (5.35)

TE0dX TEOJY
CrEA(XVvY) (5:36)

TEJX 71EJY
T rRA(XAY) (5-37)

cpP

(tEd(VxeS. Px))=(r=dSA((3x. TExeSA-TE Px) (5.38)

V(Vx.TEJdxATEXES — TE dPx)))

(c) Weak definedness rules.

Table 5.2: The definedness calculi.

141

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

covered by rules like
T=@dX cpP
PXt=Pl.rt
and several variants used for technical purposes. After replacing a term
X by L, strictness rules like f 1 Y or f Y 1 can reduce the size of subgoals
drastically.

We now focus on the far more involved treatment of definedness. The
core of reasoning over definedness is in fact representable in a Universal
(Formula) Congruence calculus. It is summarized in Table 5.2a. This rule
set contains also a class of rules for “strict standard operations f” With
this set of operations, we refer to operations that had been defined by
constant definitions of the form:

(5.39)

f = lifty (strictify (A x. strictify(1y. g "x'"y",))). (5.40)

As in the case of the generation of cp-inference rules, we exploit the
combinator-style definitions of the standard operators here and generate
this type of rules in pre-computation steps once and for all.

This strong definedness calculus can be extended to quantifiers as
follows:

cpP
I(VxeS.Px)=9dSA ((jxg S. (=Px)) v (VxeS. an)) (5.41a)
and
cpP
d(3xeS. Px)=aSA((VxeS. (~Px))v(IxeS. 9Px)) (5.41b)

The power, but also a major drawback of this type of calculus based on
Universal (Formula) Congruence stems from the rules listed in Table 5.2b.
They result in the generation of numerous case splits, which are often
unnecessary: if we know that all variables in a subgoal are defined (and
this is an important special case that we can achieve by initial case-splits
done once and for all), simple conditional rules leading to direct backward-
chaining are sufficient.

To overcome this drawback, we derived the following alternative rule-
setlisted in Table 5.2¢. It reduces the burden of applicability to the question,
if the definedness of a term can be derived. By the way, the (7 = d x)-part
in the last rule is strictly speaking redundant (as we will see when we
discuss the Set-theory in more detail), but facilitates the establishment of
7 = d Px since this additional assumption will be used if x occurs in (the
instance of) P x.

142

5.4 SUBCALCULI

5.4.3 Arithmetic Computational Rules

An important source of deduction is computation. Computation is needed
when 7 = 3 +5 = 4 is refuted. So far, we have only used declarative
concepts to introduce numbers; the question arises how this can be used
for computation and deduction.

This problem is by no means new and deeply intertwined with the
existing solution in Isabelle/HoL. In the HOL library, a type bin for bi-
nary two’s complement representation has been introduced by classical,
conservative means. The Isabelle parser is configured to parse a literal
like 3 to bitstring representation using two's complement, i. e., (101);.
Further, an axiomatic class num is defined providing a function decla-
ration numberOf : bin = « : num that can be overloaded for each
type declared to be an instance of class num. Thus, for new datatypes,
just a new function is defined that converts a bitstring representation
to this new type. In the library, such a conversion has been provided,
for example, for int. Based on these definitions, suitable rules have been
derived that perform the integer operations like addition on the two's
complement representation directly; these rules can be directly processed
by the simplifier.

With respect to the types Integer,, Real; and String, we can proceed
analogously. For example, after declaring Integer, to be an instance of
num, we provide the following definition numberOf for the representa-
tion conversion:

(numberOf :: bin = Integer,) b

= lifto ((numberOf ::bin = int)b,). (5.42)
Thus, the “new” numberOf with type bin = Integer, is the context-
lifted, 1-lifted version of the “old” numberOf on integers (HOL). From

this definition, among others, the following rules can be derived::
d(numberOfa) = t, (5.43a)
(numberOfa) + (numberOfb) = numberOf(a +, b), (5.43b)
(numberOfa) - (numberOfb) = numberOf(a -, b),and (5.43¢)

—iszero(numberOf(a —, b))

((numberOfa) 2 (numberOfb)) = f

Thus, besides definedness-related computations (“all values are defined”),
computations in 7 were mapped directly to computations in the underly-
ing meta-logic HOL. This setup enables the standard simplifier of Isabelle
to handle arithmetic on the level of 7 automatically. For example, the
simplifier refutes judgments like

(5.43d)

TE3+2=7 (5.44)

143

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

fully automatically, i. e., without user interaction. In the following, we
give a short sample proof:

lemma"[t=3=C;7t= C+2=(7:Integer,)]
—
TE=AAB"
apply(ocl_hypsubst, simp)
done

The first proof method ocl_hypsubst canonizes the proof state, i. e., re-
places the variables with their values. The intermediate proof state looks
as follows:

[r=3+2=(7=1Integer,);]=—71T=AAB (5.45)

The standard simplifier (configured to use the derived rules above auto-
matically) computes the addition, refutes the judgment and thus proves
the goal. Moreover, we can prove

TEJCir=C+2=(7:1Integer,)V (D =2+3) (5.46)
5.4

TED=5

by using a similar proof script:

lemma "[t= @ C;t= C+2=(7:Integer,) Vv (D=2+3)]

g
TED=5"
apply(ocl_hypsubst, simp)

done

This script proves the goal by combining reasoning over undefinedness
and arithmetic, i. e., from the undefinedness of C, we can directly infer
D = 2 + 3 must hold in the assumption; thus D is defined and by using
the presented arithmetic rules, i. e., computing 2 + 3, we can solve the
proof goal.

5.4.4 Conversion to HOL

For a fragment of our constraint language, that is built for expressions
that are always defined, a “conversion” into standard HOL formulae over
Local Judgement Equivalences are possible. The propositional part of the
translation is described in Table s5.3a, the predicative part in Table 5.3b.
The rules for the other collection types are accordingly.

5.5 THE LOGIC

In this section, we introduce the core rules of the underlying logic, namely
rules for reasoning over equalities, the logical connectives and also the
integration of a typed set theory.

144

5.5 THE LOGIC

TEOJA
(tE-A)=(-TEA)

TEJA 71EJB
(tEAAB)=(r=AATEB)
TEJA TEOJB
(r=AVvB)=(r=AVvTEB)

T=J0A T1FOJB
(rEA—B)=(1=A— 7k B)

(a) Propositional Conversion

7= 09(S::(B::bot) Set,) cpP
(rEVxeS. P(x::t=B))=(Vx.1ExcS— 7= Px)

7= 09(S::(B::bot) Set,) cpP

(r=E(FxeS. P(x::7=p)))=3x.t=xcSATE (Px))

(b) Predicative Conversion

Table 5.3: Conversion to HOL

145

(5.47)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

core-logic
propositional
fragment

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

5.5.1 Reasoning over Equality

The strong equality satisfies the usual properties except the Leibniz rule
(substitutivity):

— (5.53a)
TEa=a
TEazb
—— ,and (5.53b)
TEbza
TEazb TEb=C
(5.53¢)

11>

TEazc
Instead of substitutivity, the following, slightly weaker, form of substitu-
tivity (for context passing P) holds:

T=a=b 17=Pa cpP

(5.53d)
TEPD

This side-constraint is not surprising, since by Equation 5.19 shown in
Section 5.3.2 we know that strong equality and global equivalence are
semantically equivalent.

The following two lemmas

TEda TEJD ()
5.54a
(azb)r=(azb)r
and
TEa=b
R (5.54b)
TEa=b

show that strict equality is indeed convertible into strong equality.

5.5.2 Core-Logic (Boolean)

With core-logic we refer to the sub-language consisting of the logical
connectives - _, _A_,_V_,_—_, etc., which we also call the propositional
fragment of our logic (in the sense of a propositional multi-valued logics).
For each operator, we derive computational rules representing the truth
tables of the logical connectives (see Definition 3.7 on page 57), e. g., for
_ A _ the following rules hold: o

fAf=f, fAt=f, fal=f, (5.552)
tAf=f, tAat=t, tAL=1, (5.55b)
LAf=f, LAt=1,and LAL=1. (5.55¢)

146

5.5 THE LOGIC

Beside such computational rules, the core-logic enjoys a lattice-like struc-
ture with the rules shown in Table 5.4a.

Table 5.4b shows the rules that deal with logical reasoning related to
implication. However, the rules for Universal (Formula) Congruence
do not form a complete calculus. The problem is hidden in the only
conditional rule, which has to be rephrased as rule for Local (Formula)
Equivalence to achieve completeness. Unfortunately, this conditional rule
corresponds to applying the “assumption” and is therefore particularly
vital in deduction. The Boolean case-split rule in Table 5.4c¢ is interest-
ing for automated reasoning. Applying case-splits consequently over all
Boolean variables yields proof procedures of sufficient power, i. e., many
facts over the library are proven using such a proof procedure.

5.5.3 Set Theory and Logic

Set theory is the theory of membership, i.e., x € S, on the one hand and
set constructions like comprehensions, i.e., (x € S|P x|, on the other.

In our framework, we have a typed form of a set theory which rules out,
for example, Russel’s Paradox. With respect to typedness, the set theory
of our framework is more related to set theory of HOL, but more distant
to the one of zr. Undefinedness, on the other hand, is a distinguishing
feature. As we already explained in Section 3.3.3, the inclusion of elements
in a set may result in an undefined set (smashed semantics) or in a set,
that just contains undefined elements (non smashed semantics). In this
section, we will limit ourselves to the case of a smashed semantics for
the selection types, which is also our proposal for the ocL semantics (see
Section 4.3.4. On the deduction level, smashed semantics boils down to

the following rule:
TEXxES

(t=dx)n(tEPS)
This has the consequence, that whenever we eliminate a universal or exis-
tential quantification, we know that the variable over which a quantifier
ranges is defined. In itself, this is also useful to deduce that the body of a
quantifier is defined.

In the following, we discuss the core of the collection theories at the
example of the set theory. For brevity, we omit the type constraints from
this presentation. Quantifiers and set constructors in our object-oriented
framework have an operational character with respect to undefinedness;
in the standard, quantifiers were defined via iterators, hence fold-like
constructs which also reflect the behavior in case of undefinedness. This
represents a particular challenge for deduction; on the other hand, many
constraint languages over data-structures that support undefinedness,
like ocL, Spec#, or vbDM have the same characterizations.

(5.59)

147

membership
comprehensions

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

fAX=F tvX=t

tAX=X fvX=X

XANX=X Xv X=X

XAY=YAX XvY=YvX
XA(YANZD)=(XAY)AZ Xv((YvzZ)=(XvY)vZz

-(-X)=X (XAY)==(-XVv-Y)

(XVvY)AZ=(XAZ)V(YNZ) (XAY)vZ=(XVvZ)A(YVZ)
ZA(XVY)=(ZAX)V(ZAY) ZV(XAY)=(ZVX)A(ZVY)

~(XAY)=-Xv-Y ~(XVY)=-XA-Y

(a) Lattice

X—f=-X X—t=t
f—X=t t— X=X
0X =t
X—X)=t
X—Y=-XVvY
X—(YAZ)=(X—Y)A(X— 2)
X—(YvZ)=(X—Y)v(X— 2)
(XAY)—Z=X—(Y—2)
(XVvY)—Z=(X—2)A (Y —2)
X—(Y—2)=Y—(X—2)

(b) Logic

P1=P'1 Pt=P't Pf=P'f cp(P) cp(P)
PX=PX

(c) Boolean Case-Split: Trichotomy

Table 5.4: The Core of the uc Calculus (“Propositional Calculus”)

148

(5.56a)
(5.56b)
(5.56¢)
(5.56d)
(5.56¢€)
(5.56f)
(5.568)
(5.56h)

(5.561)

(5.57a)
(5.57b)

(5.57¢)

(5.57d)
(5.57€)
(5.571)
(5.578)
(5.57h)

(5.571)

(5.58)

5.5 THE LOGIC

For the quantifiers of our framework the following general Universal
(Formula) Congruence-rules hold:

Vxel.Px=1 (5.60)
Jxel.Px=1 (5.61)
—— ,and
Vxed.Px=t (5.62)
Jxe@.Px=f (5.63)
The following two rules
TEJdX TEJa cpP
- (5.64)
(VxeXlnsertXa.Px)T:((Pa)/\(VxEX.Px))T
and
TEJX 1EJY
(5.65)

(Vxe(XuY).Px)r=((VxeX.Px)A(VxeY.Px))T

allow for the elimination of quantifications over known finite sets via com-
putation. Besides, there is a tableaux calculus for quantifier elimination
that can be directly derived from the rules, extending the calculus shown
in Table 5.3b.

The core of the set theory of our framework is the relation between
the element-hood, i. e., membership (x € S), and the set comprehension
((x € S|P x))) and the relation to equality. In particular, they provide a
form of set extensionality:

t=acS t=¢(Pa) cpP

(QxeS|PxD)T=LT ' (5-66)
TEXES
TEdS TEJa Ax. leaz(Px) cpP (5.67)
(leae((]xeS|Px[))):(TI:Pa/\leaeS),
TEXxES
TEJS TEJa TEaeS N«x. r;:a:(Px) cpP (5.68)
(r=ae((xeSPx))=(r=Pa) »and
TEJX
A x. (XGS)T;(XET)T (5.69)
St=Tr .

149

Universal
Equational

Calculus (UEC)

reduction rules
(R-rules)

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

5.6 CALCULI

In this section, we present several calculi for our framework. In particular,
we develop a tableaux calculus that is especially well-suited for automated
deduction.

5.6.1 A Universal Equational Calculus

The basis of a Universal Equational Calculus (UEc) for our framework
are Horn-clauses over universal congruences; due to the rich algebraic
structure of Strong Kleene Logic, UEC allows for logical reasoning in
formulae and local validity judgments. A proof of a formula in UEC is a
derivation of a formula to t.

Based on the elementary reduction rules (R-rules) for the logical oper-
ators, it is not difficult to derive the laws of the surprisingly rich algebraic
structure of Strong Kleene Logic: both_ A _and _ v _ enjoy associativity,
commutativity and idempotency. The logical operators also satisfy both
distributivity and the de Morgan laws. It is essentially this richness and
algebraic simplicity that we will exploit in the applications.

Thelogical implication is also representable in this equational reasoning
style, which is quite intuitive and therefore greatly facilitates “by-hand-
proofs,” see Table 5.4b. These rules form the core of the logical calculus.
However, the crucial assumption rule

I(X)=t

m (5.70)

that allows one to deduce that a fact follows from a list of assumptions
leads to a complication:

AN NALANBANAggN--NA, — B
=AAN-NA,NB— B
=A AAA,—> (B—> B)
only under the additional assumption d(B) = t, we can conclude
=AANNA,— T
and thus, resolve our proof goal to:
=t
This means that a subcalculus for the definedness predicate is needed.

Moreover, this means that each application of the assumption rule leads
to a sub-proof over the definedness of the assumption. Therefore, we

consider two alternative definitions of the implication, namely _ — _ (de-

fined in Equation 3.39b) [52] and _ 2, _ (defined in Equation 3.39¢) [56].

5.6 CALCULI

Recall, that a comparison of all three implication variants is given in
Table 3.4 on page 58.
1
For the first variant, i.e., _ — _, the counterparts to rules appearing
in Table 5.4b on page 148 hold, except for two details:

1. We have (X N X) = t such that the subproof for d B = t is not
necessary. The handling of this implication in proofs is therefore
more intuitive. In principle, this could be a motivation to prefer this
variant of implication over the default one (_ N _). In particular,
if a difference in proof complexity could be shown.

2. However, the problem is only shifted to the “reductio ad absurdum”-
rule (X — f) = - X, whose counterpart requires now the proviso
for definedness.

. . 2
For the second variant, i.e., _— _, the situation is even worse: besides

the obvious fact, that the crucial rule L 2t does not hold, also the
following rules from Table 5.4b do not hold:

(XvY)-52Z)= (X Z)A (Y 2), (571)
(XAY)52Z)=(X—> (Y —>2)),and (5.72)
X5 (Y- 52)=Y 5 (X5 2). (5.73)

As both non-standard variants introduce, from the deduction point of
view, unnecessary complications (especially the second variant with its
dramatic algebraic deficiencies), we will in the following only consider
the standard implication, i.e., _ — _

A FURTHER PROOF PRINCIPLE OF UEC: TRICHOTOMY. An inter-
esting technique for proving P X = P’ X is based on a case split over 1, t
or f. The enabling rule Table 5.4c is called trichotomy; it requires a partic-
ular constraint over the treatment of the implicit context T inside P and
P’. In principle, it would suffice to require that 7 is changed “on its way
through P and P" in the same way. However, since all constructs of our
framework, including the logical connectives are lifted over the contexts,
we apply a slightly stronger restriction, namely that 7 is unchanged, i. e.,
P or P’ are context passing with respect to 7. It turns out that this concept
is necessary for other calculi, too. As already discussed in Section 5.4.1,
the property of being context passing can easily inferred in a backward
proof whose size is equal to the size of the term. These inferences use
inherently higher-order concepts.

151

trichotomy

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

Ar=A'7 Atr=A"t Br=B't Ar=A'"tr Br=B'7 (78)
5.74
(~A)r=(-A")r (AvB)r=(A'"VB)r (AeB)r=(A®B)r
(a) Congruence Rules for the Operations = _, _ Vv _,and _ & _.
[+ A] [z A]
T J(A) Br=B'rt T d(A) Br=B'rt (5.75)
(AAB)r=(AAB) 1 (A—B)r=(A—B)r1
[rEA] [T A]
Br=B'rt Cr=C'r (5.76)
(if AthenBelseCendif) 7= (if Athen B’ else C' endif) t
(b) Context Rules for the operations _ A _, _— _,and if _then_else_endif.
TEA Ptr=Ptr cp(P) cp(P")
(5.77)
PAr=P A7t
TEfA Pfr=Pfr cp(P) cp(P)
(5.78)
PAT=P A~
e, A Plt=P 17 cp(P) cp(P")
(5.79)
PAr=P A7t

(c) Propagation of the Local Validity.

Table 5.5: The Local Equational Calculus (ﬁ).

5.6.2 A Local Equational Calculus

Analogously to universal equality, a local validity calculus can be de-
veloped: Local Equational Calculus (LEC). Table 5.5a shows the general
scheme of Local Equational Calculus (LEC) congruence rules. For example,
this general schema is applicable for the negation (- _), disjunction (_Vv _)
or the exclusive or (_ ® _). For several operators, stronger logical rules
can be derived, that accumulate semantic knowledge for sub-derivations
from the context in which they are applied in; these rules are presented
in Table 5.5b. This information can be used by the third group of rules
in Table 5.5¢, which allows for generalizing sub-terms in larger contexts
(which must be context-passing) according to assumptions.

152

5.6 CALCULI

The calculus LEC is particularly suited for backward-proofs; when
applied bottom-up, formulae were decomposed deterministically via the
congruence and the context rules. During this process, semantic context
knowledge is accumulated in the assumption list, which can be exploited
via the propagation rules who replace sub-terms by t, f, or L which
leads in combination with UEC in practice to drastic simplifications of the
current proof goal. A proof in LEC is a derivation that leads to A7 = tr,
which is notationally equivalent to 7 = A.

5.6.3 The Judgment Tableaux Calculus LTC

The conversion technique discussed in Section 5.4.4 requires reasoning
on side-conditions such as cp P or definedness 0 X. The question arises,
if this can be avoided when performing a logical decomposition of the 7
formulae directly.

The tableaux methodology is one of the most popular approaches to
design and implement proof-procedures. While originally developed for
first-order theorem proving, renewed research activity is being devoted
to investigating tableaux systems for intuitionistic, modal, temporal and
many-valued logics, as well as for new families of logics, such as non-
monotonic and sub-structural logics. Many of these recent approaches
are based on a special labeling technique on the level of judgments, called
labeled deduction [7, 43, 112]. Of course, labeling can also be embedded
into a higher-order, classical meta-logic. Being a special case of a many-
valued logic, tableaux calculi for Strong Kleene Logic based on labeled
deduction have been extensively studied [49, 51, 64]. In this section, we
present a tableaux calculus for the predicative fragment of Z, i.e., for
Strong Kleene Logic roughly following [64]. It is designed to be processed
by the generic proof procedures of Isabelle and thus leads directly to an
implementation in HOL-OCL.

Tableau proofs may be viewed as trees where the nodes are sets of
formulae. Tableau rules extend the leaves of a tree by a new subtree,
i.e., by adding leaves below, where the latter case is called “branching”
and is used for case splits. Classical tableau rules capture the full logical
content of the expanded connective. Backtracking from a rule application
is never necessary. The goal of the process is to construct trees in a
deterministic manner, where the leaves can eventually all be detected as
“closed,” i. e., a logical contradiction is detected. This last step, however,
may be combined with the non-deterministic search for a substitution
making this contradiction possible. Table 5.6 presents the core of LTC,
which we will discuss in the sequel in more detail.

A NATURAL DEDUCTION TABLEAUX CALCULUS FOR HOL. The
particular format of a rule as a Horn-clause is the reason for the well-

153

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

[rEA] [rE=-A] [-(z=-4)]
7= 0d(A) R R TEA (5.80)
R 7= d(A)
[~(7+ - 4)] [~(z & - 4)]
TEA TEPA rEA TE-3(A) (5.81)
TE-0d(A) TEJA
(a) Definedness Introduction and Elimination
TE -(-A) TEA TEJ(-A) TEPA
TEA tr(cA) tEPA 1rJ(A) 68
(b) Negation
[rE A, 7F B] [rE-A] [rF-B]
TEAAB R 7= -(AAB) R R (5.83)
R R
[r+ 4,7+ B] [(r = ~B)]
1:2 TEA TEB lezﬂA (5.84)
7= (AAB) m
[r=aB)] [r=3(a)] [r-a(B)]
TE-9(A) TEA TEB (5.85)
7= J(AAB)
[rEJA,T=9B] [t=9A1EB] [tFATEF¢B]
= J(AAB) R R R (5.86)
R
(c) Conjunction Introduction and Elimination
TEATE-A TEATEJA TE-ATEJA
X - — (5.87)
TEJI(A TEA TE-A
@R - 7 o(A) 7 o(A) 659

(d) Contradictions

Table 5.6: The core of LTC.

154

5.6 CALCULI

known symmetry of rule-sets (similar to sequent calculi): for each logical
connective, two corresponding rules, called introduction and elimination
rules, have to be introduced; the former act on conclusions of a goal, the
latter on one of the assumptions.

As already mentioned, the Tableaux Method requires decomposition
rules that capture the full logical content of the expanded connective,
i.e., no information is lost. It is instructive to consider the example of
the disjunction introduction rule (Equation 5.89) and the disjunction
elimination rule (Equation 5.90) for HOL, which are usually presented in
the textbooks as:

(5]

A (5.89)

(Disjunction Introduction)
AV

(Al (5]
AvB R R (5.90)
—— (Disjunction Elimination)

R

Using the introduction rule (Equation 5.89), a proof state (which has
again the format of a Horn-clause)

X
(5.91)
YVZ
can be transformed into
X ~Z
_ (5.92)
Y

This proof state transformation does not lose the information that the goal
is satisfiable if Z holds (this leads to a contradiction in the assumption
list). Moreover, a proof state of the form

XvY A
Z

(5.93)

can be transformed via the elimination rule (Equation 5.90) into the two
subgoals

X A Y A

—— and ——— . (5.94)
Z Z
Overall, this proof state transformation performs a case distinction.

Keeping these remarks in mind, the presentation of LTc in Table 5.6 is
pretty much straight-forward: first, we present groups of tableaux rules

155

destruction rules

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

for definedness (0 _), negation (- _) and conjunction (_ A _), and we
conclude with a group of rules for closing clauses. Moreover, negative
judgments can be replaced by HoL-disjunctions as a consequence of the
following fundamental property for judgments, namely that judgment is
either valid or invalid or undefined (see Section 5.2.2).

Four (see Table 5.6a) of the six cases for definedness rules are straight-
forward, while the latter two constitute contradictions and are presented
as closure rules later (see Table 5.6d).

Now, we consider the case for the negation (- _) in Table 5.6b. These
rules are a consequence of —(—(X)) = X and eliminate these situations at
the root of a formula. These elimination rules have a particularly simple
form and can therefore be used directly as destruction rules, i.e., a rule
that destroy a premise, that are used to weaken assumptions in a Horn-
clause directly. The last two rules of the group are notational equivalences
resulting from our notational conventions for validity (= _); they are thus
not explicitly inserted into the rule set.

Finally, we describe the rules for closing a goal. The underlying HoL
system already includes three rules that resolve satisfiable Horn-clauses,
namely the (HOL) not-elimination, classical contradiction, not-introduc-
tion rule and the assumption rule (from left to right):

-P] [P
-P P false false p (5.95)
R P -P P

Besides these HOL-logical rules for closing a goal, there are also Z-logical
rules motivated by the satisfiability of a Horn-clause (Table 5.6d).

This gives rise to a useful format of a proof state in LTC; it is a Horn-
clause of one of the two forms:

H,...H;,~(H;,)...~(H,) Hi...Hi,=(Hi1)...~(Hp)
Hm+1 _‘(Hm+1)

(5.96)
where H; has the form 7 =¢, A;. Standard proof states in UEC can be
converted automatically in proof states of this form via one of the bridge-
theorems (Equation 5.3a, Equation 5.3b, and Equation 5.3¢ on page 134).
The elimination and introduction rules shown above reduce or split proof
steps of this form in logically equivalent steps to new ones. Eventually,
the process results in a sequence of Horn-clauses with labeled literals.

HANDLING QUANTIFIERS. In the following, we discuss an extension
of the propositional Z fragment to a language with bounded quantifiers
introduced for collections. For brevity, we will concentrate on the quanti-
fiers on Set,.

156

5.6 CALCULI

[7 = P(2x)]

A\ x. Tk P(x)
TEVxeS. P(x)

[T p:as]
TE JP(%)
TE@VxeS. P(x)

[TE%eS] [tE-%eS]
TEVxeS. P(x) R R
R

TEJVxeS. P(x) R R
R

TEXEeS TE-P(%)

TE-VxeS. P(x)

TE-VxeS. P(x) N« R
R

[r=9S] [remeS,1e9P(%x)]

[TExc¢ S, 7= P(x)]

(a) Skolem

I(X)=t=>VxeX. t=t
oX)=t=>VxeX.f=1
VxeX.P(x)AQ(x)=VxeX.P(x)
AV xeX. Q(x)

(b) Distributivity

cp(P) Ax. cp(P'x)
cp(AX. ¥ (PX) (Ax. (P' x X)))

(c) Context Passing for Quantifiers

Table 5.7: Extensions of LTC: quantifiers.

157

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)
(5.103)

(5.104)

(5.105)

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

First, we present some universal equalities of the universal quantifiers,
which also satisfy the usual context passing rules (Table 5.7c). With respect
to strictness rules, the universal quantifier (and its dual the existential
quantifier) follows the usual scheme:

Vxel.Px=1, (5.106)
dxel.Px=1, (5107)
V1eX. P=1,and (5.108)
J1eX. P=1. (5.109)

The distributivities of Strong Kleene Logic can be extended to the quan-
tifiers, see Table 5.7b. If x € § is valid, we know that x must be defined.
This is a characteristic property of smashed sets that yields the following
property:

TEx€ES

(5.110)
TEJX

We present the rules for the bounded universal quantifier. These rules
are simply variations of standard quantifier rules in HOL, but subsume
also definedness-reasoning. We start with the usual introduction and
elimination rules for valid judgments. We use meta-quantifier and meta-
variables to represent Skolem terms and terms for witnesses; respectively
(constructed during the proof at need via unification and resolution), see
Table s5.7a.

The following introduction and elimination rules capture the essence
for undefined quantifiers: if the set S is defined (implying that each ele-
ment in it is defined), then there must be an instance of the quantifier body
P that is undefined. On the other hand, from an undefined quantifier we
have a case split for undefined S or for witnesses of undefined P(?x): The
rules for the existential quantifiers follow easily from the definition and
rules above and are omitted here.

5.7 DISCUSSION

In this chapter, we presented derived calculi, i. e., all presented rules are
proven, for the object-oriented constraint language 7. Deriving the calculi
guarantees the logical soundness, with respect to the core logic HOL, of
all presented calculi. As we focused on the specific configuration of our
framework described in Chapter 4 we will discuss briefly, how Z and ocL
relate to each other. A second point we discuss briefly in this section is
the aspect of automated reasoning, based on the presented calculi, within
HOL-OCL.

158

5.7 DISCUSSION

5.71 Calculi for ocL

The oct standard does in general not provide any information how rea-
soning over OCL specifications should be carried out, and in particular, it
does not present any calculi. But already the semantics presented in the
standard [88, Appendix A] makes heavy use of the notion of validity. In
particular, it already introduces the notion of local validity. For example,
the validity for postconditions is explained as follows:

(Upre) Gpost) = Q Iff I[[Q]](Gprex Upost) = true

(ocL Specification [88], page A.33)

To avoid confusion with our notion of context 7, we changed the definition
of the standard to use o for referring to the pre-state and post-state, which
the standard denotes in this section by 7. and 7ps. Moreover, in this
definition, the variable assignment 3, as occurring in the ocr standard
is hidden syntactically. Denoting 8 explicitly, results in the following
definition of local validity:

(Opre» Opost) £ Q ifand only if I[Q[((0pre> B)> (Opost> B)) = true
(5.111)

for all variable assignments 3. As we use a shallow embedding technique
into a typed domain, the variable assignment is superfluous. Moreover,
we abbreviate the state pair (Opre, Opost) With the context 7. Therefore, our
notion of local validity, introduced in Section 5.2.1 is a generalization of
the notion of the standard. Thus, the calculi we presented in this chapter
are directly applicable to umL/OCL specifications.

5.7.2 Towards Automated Deduction

At the moment, HOL-oCL provides only proof procedures for substitution
that are specific to Z, respectively ocL. In fact, these proof procedures
are the counterpart of substitution tactics Isabelle [86] provides for HOL.
These substitution tactics for Z serve as an abstract interface to the various
rules that express local congruences, strict and strong equalities and
congruences hidden in local judgments as pointed out in Section 5.2.2.
For the moment, this tactic setup allows for a step-by-step reasoning
using the rules of the logic and uc-rules (including computational rules)
in the Isabelle simplifier. Provided that sufficient information on the
definedness of free variables is available in a proof state, this enables a
conversion to HOL formulae with the rules discussed in Section 5.4.4 pos-
sible. A converted formula can be treated by the standard Isabelle proof
procedures. This covers a certain extent of logical reasoning automatically.

159

CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

However, the situation is clearly not yet satisfactory for larger, appli-
cation oriented projects involving formal proofs. Here is a list of the
most painful shortcomings when comparing it with proofs in “pure” Is-
abelle/HOL:

o Thelibrary on datatypes and on datatype-oriented rules is far from
being sufficiently developed.

o An arithmetic decision procedure is missing.

« Allrules of the LE-format are not usable by the simplifier. Since the
complete core calculus and many datatype-oriented rules are in
this format, the proof engineer is limited to elementary proof tech-
niques excluding the simplifier whenever these rules are involved
in a proof.

o Rules of the LE-format are also excluded from the classical reasoner.

o Our systems lacks a combined automatic tactic integrating all
these procedures. Such an integrated tactic would be applicable as
automatic procedures in many situations.

Partly, the situation is comparable to HOL ten years ago—and a fair
comparison to similar logical languages has to take into account that the
development of HoL libraries and proof procedures needed this time.
For ocL, the development of proof procedures and, more critically, the
technical support of formal methods based on ocL is still at the beginning.
The latter will have to cope with path-expressions, modifies-only-clauses,
and refinement-like situations.

In the following, we will summarize our ideas about potential future
tactics to reason over OCL automatically.

With respect to arithmetic, besides a step-by-step reasoning, only the
following paths to use automated procedures seem to be viable: defined
arithmetic terms have to be converted (by unfolding semantic combi-
nators and blowing away the cascades of definedness-conditions) into
pure HoL arithmetic formulae and reuse the existing procedure (the adap-
tion approach). Alternatively, the arithmetic tactic of Isabelle must be
rewritten to cope with definedness issues (the re-engineering approach).

With respect to rewriting, we see (besides the not very attractive re-
engineering approach) the following techniques to adapt to existing Is-
abelle technology:

Proof object transformation. Since one can instantiate the simplifier with
new equalities obeying the Leibniz rule, one can run it in an unsafe-
mode without checking the side conditions for context passingness.
Proof objects generated in an unsafe mode could be extended to

160

5.7 DISCUSSION

tull proof objects where the missing parts are reconstructed. It
remains to be explored how costly this approach would be (in
development time as well as runtime; previous experience [96]
suggests that at least the runtime costs are insignificant).

Making context-passing explicit. One can transform the proof states and
rules in a format where context-passingness is encoded directly
at all positions in a term. As a consequence, the simplifier can
process the transformed rules directly. Additionally to the conver-
sion tactics that perform this term-transformation in forward and
backward proof, the major changes for this technique boil down
to the management of transformed and re-transformed rule-sets
used by the simplifier.

In the next chapter, we will present a brief overview of the HOL-0OCL,
an instance of our framework providing an interactive theorem prover
for umL/OCL, system architecture. Further, we report on case studies we
carried out using HOL-OCL.

161

APPLICATIONS

In this chapter, we show the application of the framework and its calculi
we presented in the previous chapters. In Section 6.1 we give an overview
of the system architecture of the HOL-0CL system and in Section 6.2 we
report on case studies that we carried out using HOL-OCL.

6.1 THE HOL-OCL SYSTEM

In this section, we present the HOL-OCL system. HOL-OCL is an interactive
theorem prover for umML/OCL specifications that we developed on the
basis of our framework, i.e., it is developed as a conservative, shallow
embedding into Isabelle/HoL. This construction ensures the consistency
of our logical framework and also the correctness with respect to the
semantics presented in the previous chapters.

6.1.1 An Architectural Overview

HOL-OCL is integrated into a framework [27] supporting a formal, model-
driven software development process. Technically, HoL-ocL is based on a
repository for umL/ocL models, called sugsml, and on Isabelle/HoL; both
are written in Standard Meta Language (sML). In particular, HoL-0CL
is based on the sML interface of Isabelle/HoL and the uML/0CcL model
repository. As front-end, HoL-ocCL provides a special instance of Proof
General 5] and a documentation generation. Figure 6.1 on the next page
gives an overview over the main system components of HOL-0oCL. In this
section, we briefly describe the main components of the HOL-0OCL system,
namely:

o The underlying data repository, called sugsml, which provides the
xmi1 import facilities.

o The datatype package, or encoder, which encodes umL/ocL models
into HOL-OCL, i. e., from a user’s perspective it provides the xm1
import facilities.

163

HOL-OCL

sugqsml

datatype package

APPLICATIONS

HOL-0CL User Interface (based on Proof General)
Datatype Package Theory Morpher

Proof Document
(Theory Files)

Isabelle/HOL

UML/OCL
Specification

sML (Standard ML)

Figure 6.1: Overview of the HOL-OCL architecture. Specifications written in umML/OCL are imported
into the model repository sugsml, written in sML. The theory morpher for lifting proven
lemmas from the HOL to the ocL level is developed on top of Isabelle/noL and is in
itself the base tool for developlng the HOL-OCL library. The datatype package encodes
the umL/0cL models and proves already several properties over the specification. The
formal analysis of the specification is carried out using a user interface based on Proof
General.

164

6.1 THE HOL-OCL SYSTEM

o The theory morpher which derives many of the core ocL theorems
by “lifting” them based on the corresponding theorems already
proven for HOL.

o The HOL-OCL library which provides the core theorems needed for
verification and also a formal semantics for OCL.

6.1.2 The Model Repository: suqsml

The model repository sugsml [27] provides an interface to models ex-
pressed using the UML core (mainly class diagrams and statemachines)
and ocCL expressions. ns. For these models, sugsml provides an import mecha-
nism based on the xm1 Metadata Interchange (xmr1) [92]. XM is a standard-
ized, Extensible Markup Language (XML)- based file format for exchanging
uML models. Most Computer Aided Software Engineering (cASE) tools
for uML can export models in xm1, which then can be imported into
HOL-OCL.

For class models, su4sml resembles the tree structure given by the con-
tainment hierarchy. For example, a class contains attributes, operations,
or statemachines. 0CL expressions naturally translate into an abstract sML
datatype in sML. This abstract datatype is modeled closely following the
standard ocL 2.0 metamodel. In addition to these datatype definitions, the
rep051tory structure defines a couple of normalization functions, for ex-
ample for converting association ends into attributes with corresponding
type, together with an invariant expressing the cardinality constraint.

6.1.3 The Encoder: An Object-oriented Datatype Package

Encoding object-oriented data structures in HOL, as described in Sec-
tion 3.4, is a tedious and error-prone activity if done manually. Thus it
should be supported by an automated datatype package. In the theorem
prover community, a datatype package [77] is a module that allows one
to introduce new datatypes and automatically derive certain properties
over them.

During the encoding, our datatype packages extends the given theory
by a HOL-OCL-representation of the given umML/0cL model. This is done
in an extensible way, i. e., classes can be added later on to an existing
theory preserving all proven properties. In fact, any import represents
such an extension, even the very first one which extends the HOL-OCL
library. The obvious tasks of the datatype package are:

1. declare HOL types for the classifiers of the model,

2. encode the core data model and the operations defined on it into
HOL, and

165

theory morpher

HOL-OCL library

APPLICATIONS

3. encode the ocL specification (including invariants and operation
specifications) and combine it with the core data model.

Opverall, the datatype package encodes conservatively the user supplied
model following the schema presented in Section 3.5. Among others,
this includes the definition of type and kind sets or the operation speci-
fications. Moreover, the datatype package automatically proves several
properties over the encoded model. In fact, the most important task is
probably not that obvious: the package has to generate formal proofs that
the generated encoding of object-structures is a faithful representation of
object-orientation. This strategy, i. e., stating entirely conservative defini-
tions and formally proving the datatype properties for them, ensures two
very important properties:

1. our encoding fulfills the required properties (see Section 4.4.3),
otherwise the proofs would fail, and

2. doing all definitions conservatively together with proving all prop-
erties ensures the consistency of our model (provided that HOL is
consistent and Isabelle/HOL is a correct implementation).

6.1.4 The Theory Morpher

The theory morpher provides automatic support for lifting theorems from
the HOL level to the HOL-OCL level. This is based on our organization
of the library, i. e., as a layered theory morphism. The theory morpher,
or lifter, is a tactic-based program that lifts meta-level theorems to their
object-level counterparts and meta-level prover configurations to object-
level ones.

Such an automatic theory morpher is possible because we define our
shallow embedding along a global semantic transformation from one lan-
guage level to another. We generalized the underlying conceptual notions
into a generic framework that shows that the overall technique is applica-
ble in a wide range of embeddings in type systems; embedding-specific
dependencies arise only from the specifications of semantic combinator
(the layers), and technology specific dependencies from the used tactic
language.

6.1.5 The Library

An important part of HOL-OCL is a collection of Isabelle theory files de-
scribing the formalization of the framework presented in Chapter 3 and
Chapter 4. These theories, providing over 10 0oo UML/OCL specific defini-
tions and theorems, cover the core of umL/0cL; ; the propertles of basic
types such as Integer, Real, and String as well as collection types such

166

6.2 CASE STUDIES

as Bag, Sequence and Set, and also the common superclass OclAny. Be-
sides the model-specific part covered by the datatype package described
in Section 6.1.3, the library with its body of derived rules represents the
generic part of data-structure related reasoning in ocL. Moreover, these
theories also contain new proof tactics written in SML.

6.2 CASE STUDIES

In this section, we report briefly on case studies we carried out using
HOL-OCL. In particular, we report on our experiences in using a conserva-
tive import mechanism based on a datatype package and show how basic
properties of a user supplied specification can be proven.

6.21 Encoding User Specifications

Among others, we used the following specifications as case studies for
HOL-OCL:

Invoice: 'This is a model of a simple warehouse. It is a well-known case
study for comparing specification formalisms, e. g., Frappier and
Habrias [42] give an overview of several formalizations of this case
study using different formalisms. The complete specification of
this model is presented in Appendix B.

eBank: This model is an extension of the model presented in Section 2.1.2,
e. g., customers can also trade currencies and own a checkbook.

Company: This is a simple company model which is used in the ocL
standard [88, Chapter 7] for introducing ocL informally.

Royals and Loyals: 'This is a model of a bonus card system for customers.
This model is used by Warmer and Kleppe [116] for introducing
OCL.

All these models are imported into HOL-OCL using our conservative
datatype-package (see Section 6.1.3). This requires proofs of several prop-
erties which can fail for inconsistent models. Already for the smallest
model, Invoice, over 600 theorems are proven fully automatically by
our datatype package during import of that model. Among others, the
following properties are proven during import:

o For each class invariant, the co-recursive construction described
in Section 3.5.2 is performed. This also includes proofs that the
invariant representation used in this construction is monotone. If
an invariant is supplied by the user that is not monotone, the proof
will fail and the model will therefore be rejected during import.

167

APPLICATIONS

Invoice eBank Company Royals and Loyals

number of classes 3 8 7 13
number of attributes 5 15 10 27
number of associations 3 5 6 12
number of operations 7 8 2 17
number of generalizations o 3 o 2
size of ocL specification (lines) 149 114 210 520
generatemheorems 647 1444 1312 2516
time needed for import (in seconds) 12 42 49 136

Table 6.1: Importing different umL/OCL specifications into HoL-ocL. The number of generated
theorems depends on the size of the input model, i. e., of the number of classes, attributes,
associations, operations, generalizations, and oCL constraints; the time for encoding the
models depends on the number of theorems generated and also on their complexity.

o For each class, it is proven that the objects can be cast along the
generalization (subtyping) hierarchy, see Section 4.4.3 for details.

o For each 2nd level constant (see Section 3.2) defined during import,
the package tries to prove that the constant is strict and context-
passing. The model can still be imported if these proofs fail.

All these proofs use the calculi presented in Section 5.6 in combination
with both specialized tactics we developed ourselves and standard Isabelle
tactics. Moreover, the conservative definitions for overloaded operations
are generated. This includes user-defined operations as well as ocL opera-
tions like type-casts such as self->asType (0clAny), which also require
several proofs done automatically by the HOL datatype package of Isabelle.
Table 6.1 describes the size of each of the above mentioned models
together with the number of generated theorems and the time needed
for importing them into HOL-0oCL. The number of generated theorems
depends linearly on the number of classes, attributes, associations, op-
erations and ocCL constraints. For generalizations, a quadratic number
(with respect to the number of classes in the model) of casting definitions
have to be generated and also a quadratic number of theorems have to
be proven. The time for encoding the models depends on the number of
theorems generated and also on the complexity on their complexity.
Notably, even the Royals and Loyals model can be imported in ca. 2
minutes, even though more than 2500 theorems are proven during import.
We owe these quite reasonable times for model import mainly to our
extensible universe construction, as described in Section 3.4. Recall that
importing a user-supplied model already represents such an extension
of the initial model, i.e., the HOL-OCL library. Without an extensible
universe construction we would have to replay the proof scripts for large

168

6.2 CASE STUDIES

Warehouse

& getFirstInvoicable():0rder
1l|warehouse

0..* \/ products
Product
id:Integer
stock:Integer
Product () :Product

bb

-

== supply(qty:Integer):Boolean

= release(qty:Integer):Boolean

1 /\ product
0..x|orders
Order

& id:Integer
& quantity:Integer
& state:String
@ Order(prd:Product, qty:Integer):0Order
= cancel():Boolean
= invoice():Boolean

Figure 6.2: The Invoice case study models a simple system for invoicing orders; thus we need to
model at least products, orders, and a warehouse managing the orders and products.

parts of the library. This is in our opinion of extra-ordinary value for
practical work.

6.2.2 Proving Properties of uML/0cL Models

In the following, we use the Invoice model for showing some examples of
how HOL-0OCL can be used for formally proving properties of a umL/0CcL
model. These examples show that HOL-0CL can be used for analyzing
models in general and in particular that it is a good starting point for the
development for further machine-supported methodologies, like object-
oriented refinement notions.

The main purpose of the Invoice system is to invoice orders, i. e., for
a minimal system we need to model products, orders, and a warehouse.
Figure 6.2 presents the umL data model of the Invoice system and Table 6.2
presents an excerpt of the ocL specification. For the complete informal
and formal specification, see Appendix B.

As an example, we require that our specification fulfills at least the
following requirements:

1. The postcondition of a constructor should imply the class invariant,
i. e., the constructor creates a valid class fulfilling its invariant. Thus

169

APPLICATIONS

context Product
inv isNat: self.stock >= 0

context Product::Product():Product
pre : true
post: self.stock = 0 and self.oclIsNew()

context Product::supply(qty:Integer):Boolean
pre: qty > 0
post: self.stock = self@pre.stock + qty

context Product::release(qty:Integer):Boolean
pre: self.stock >= qty and qty > 0
post: self.stock = self@pre.stock - qty

Table 6.2: ocL specification of the class Product. We mainly require, that
the stock is non-negative and describe the basic behavior of
operations for supplying and releasing products.

we prove for each constructor ¢ (with postcondition post_) of class
C (with invariant inv¢) the following rule:
T &= post, self

. (6.1)
7 k= inve self

2. The class invariant and the precondition of an operation should
be satisfiable in the same state, i. e., there exists at least one system
state in which the operation can be called. This can be formal-
ized for a class C (with invariant inv¢) and an operation m (with
precondition pre,,) as follows:

Jay - ay, self 1. (1= inve self) A (T pre,, self ai -+ a,) '
(6.2)

After loading the model into HOL-OCL, the first requirement for the
class Product can be formulated as follows:

lemma "7 = Product_Boolean. post self result
—
Product. inv self"

Where Product_Boolean. postis alogical constant describing the postcon-
dition of the constructor Product () and Product. inv is a logical constant
representing the invariant of the class Product. As a first step of our proof,
we unfold these constants using the Isabelle simplifier:

170

6.2 CASE STUDIES

apply(simp add: Product_post Product_inv)

resulting in a proof state representing the following proof obligation
(using the ocL notation):

7 &= self . stock = 0 and self .oclIsNew()
—
T = 0 <=self . stock

Applying the safe tactic,

apply(safe)

which is configured to use LTC (see Section 5.6.3) resolves the goal nearly.
Note, except _ and _, all operations are strict. Moreover, _ and _ is only
valid, ifand only if, both arguments are t rue. Therefore, the assumption of
this proof state already ensures the definedness of both self and self . stock.
The remaining proof state looks as follows:

[7 &= self . stock = 0; 7 = self .oclIsNew()]
—

TE0<=0

This obligation is easily proven by our ocL simplifier:

apply(ocl_simp)
done

Summarizing, we have formally proven that the postcondition of the
constructor Product: :Product () :Product guarantees the invariant of
the class Product.

As a second example, we prove that the conjunction of the precondi-
tion of the operation Product::release(qty:Integer):Boolean and
the invariant of class Product is satisfiable, i. e., there is a system state in
which the operation release(qty:Integer):Boolean can be called. We
formalize this requirement as follows:

lemma
"3 gty self 7. (7 = Product. inv self)
A(7 = release_Integer_Boolean. pre self qty)"

After unfolding the definitions using the Isabelle simplifier

apply(simp add: supply_pre Product_inv)

we get the following proof state:

Jqtyself 7', (1,7") = 0 <=self . stock
A(T, ") E gty < self . stock and 0 < gty

171

APPLICATIONS

Using the existential introduction rule (exI) we construct witnesses for a
satisfying state. In particular, we set the quantity gty to 1 and construct
an instance of the class Product with no extension and the attributes id
and stock store the value 1.

apply(rule_tac x="1" in exI)
apply(rule_tac x="1(a, b). (_((OclAny_key. OclAny,
oid :: 0id), noext(Product_key. Product, 1, 1,),),)"
in exI)
apply(rule exI)+

We can prove the resulting proof obligation using the following script:

apply(rule safe)
apply(simp_all add: Product.stock_def Product.stock_def
ss_lifting localValid2sem
Zero_ocl_int_def One_ocl_int_def OclStrongEq_def
OclLess_def OclLe_def)
done

Summarizing, we have formally proven that there exists at least one state
that allows for the execution of the operation release(qty:Integer) of
class Product.

6.3 DISCUSSION

In this chapter, we presented the system architecture of HoL-ocL and re-
ported on some case studies. On the technical side, the most distinguish-
ing feature of HOL-OCL is its use of Isabelle/HOL as a generic framework
for tool development, instead of using it as a back-end tool only. On the
theoretical side, our tool is based on a conservative shallow embedding.
Using a generic interactive theorem prover as a framework for building
new tools has several advantages: if done conservatively, the consistency
of the underlying semantics can be guaranteed and the correctness with
respect to this semantics is guaranteed by construction. Moreover, be-
sides the obvious benefits like the reuse of rewriting and simplification
algorithms we also get additional benefits like the reuse of user interfaces
or the generation of proof documents. Overall, this shows the usability of
our approach for building tools based on a machine-checked semantics.

Moreover, our experience shows that an extensible object store guar-
antees reasonable times for importing models. Already the first import
of a model extends the existing base library which in our approach can
be stored as a library of pre-compiled proof objects. There is no need for
the time consuming task of replaying proof scripts for the base library
while importing a user-defined model. Of course, this also allows for

172

6.3 DISCUSSION

the incremental loading of large models, which helps in analyzing large
specifications.

However, the formal analysis HOL-OCL requires a fair amount of ex-
pertise in interactive theorem proving in general and Isabelle/HoL in
particular. Thus, future extensions of the system should not only improve
the degree of automation of the system but also provide support spe-
cialized support for analysis methodologies. For example, the presented
consistency analysis could be supported by the fully automated generation
of proof obligations and specialized tactics. Moreover, instead of describ-
ing a witnesses, 1. e., a satisfying system state or scenario in a textual form,
the corresponding object-diagram could also be part of the umL model.
Extending our datatype-package with support for object diagrams would
then allow for proving simple consistency proof obligations without user
intervention. We will discuss this and other possible extension in more

detail in Section 8.3.

173

RELATED WORK

In the previous chapters, we introduced a formal semantics for object-
oriented data models and object-oriented constraint languages over these
data models. We developed calculi for this for our framework and showed
how this framework can be used to give a formal, machine-checked se-
mantics for ocL. In this chapter, we will discuss related work which is
as manifold as the list of topics discussed in this thesis: in Section 7.1 we
discuss formal semantics for object-oriented systems in general. Further,
we discuss the formal tool support for ocL (Section 7.5), formal seman-
tics for ocL (Section 7.4), proof support for three-valued logics, and the
embedding of object-oriented languages into theorem provers.

71 EMBEDDINGS OF OBJECT-ORIENTED LANGUAGES

Embedding languages into theorem provers has a long history [3, 18].
The technique was originally developed in the context of embedding
hardware description languages (e. g., Boulton et al. [18] compare the
embedding of three different hardware description languages). Nowadays,
logical embeddings into theorem provers are a widely used technique for
both reasoning about the embedded language itself and reasoning about
specifications written in the object-language.

711 Deep Embeddings of Object-oriented Languages

There is various work based on a deep embedding of a Java-like language.
Among these works are paper-and-pencil formalizations like 39, 41], but
also many machine-checked semantics like [84, 85, 110, 113, 115]. In a deep
embedding of a language semantics, syntax and types are represented by
free datatypes. As a consequence, derived calculi inherit a heavy syntactic
bias in form of side-conditions over binding and typing issues. This is
unavoidable if one is interested in meta-theoretic properties such as type-
safety, which all of the above mentioned works are aiming at. However,
when reasoning about applications and not about language properties,
this advantage turns into a major obstacle for efficient deduction. Thus,

175

RELATED WORK

while various proofs for type-safety [39, 41, 85, 113], soundness of Hoare
calculi [114], and even soundness of verification condition generators [83,
105] have been provided, none of the mentioned deep embeddings has
been used for substantial proof work in applications.

712 Shallow Embeddings of Object-oriented Languages

Using a shallow embedding for encoding an object-oriented language
is still challenging. There are several encodings of classes as records,
e.g., Aredo [4] presents such an encoding for pvs [93]. But this simple
interpretation of classes as records does not provide support of object-
oriented concepts like subtyping or inheritance.

Although there are several works on object-oriented semantics based
on deep embeddings, there are only a few for shallow embeddings: Smith
et al. [107] (a direct follow-up of Santen [104]) and Yatake et al. [118].
Moreover, there are shallow embeddings of a Java-like memory model by
Jacobs and Poll [61] and Meyer and Poetzsch-Heftter [79].

The approach of Smith et al. [107], however, puts emphasis on a univer-
sal type for the method table of a class. This results in local universes for
input and output types of methods and the need for reasoning about class
isomorphisms; as the authors admit, this “creates considerable formal
overhead” For example, subtyping on objects must be expressed implicitly
via refinement.

Yatake et al. [118] developed a conservative, shallow embedding of class
models into the HOL system [46]. They also provide a tool that generates
applications specific, i. e., depending on the class model, theories using a
non-extensible encoding schema. Similar to our construction, the store
model presented by Yatake et al. [118] provides cast operations directly
on the object store. Also similar properties about the encoding of class
models are proven during the import of a class model.

The underlying encoding used by the Loop tool [61] and Jive [79]
shares same basic ideas with respect to the object model. However, the
overall construction is based on a closed-world assumption and thus not
extensible. Although several papers, e. g., [61], model class invariants as
co-inductive definitions, none of these ideas has been implemented in a
tool.

With respect to extensibility of data-structures, the idea of using para-
metric polymorphism is well-known in HOL research communities; for
example, extensible records and their application for some form of subtyp-
ing has been described in HOOL [81]. Since only one extension possibility
is provided by the presented encoding, this results in a restricted form of
inheritance; namely, type conversions are only possible if a class has at
most one direct subclass. In our notion, the work of Naraschewski and
Wenzel [81] provides only a-extensions whereas our encoding generalizes

176

72 DATATYPE PACKAGES

this by providing a-extensions and f3-extensions.

Thus, while the basic concepts in our approach of representing subtyp-
ing by the subsumption relation on polymorphic types are not new [81,
104], we extended these works by including concepts such as undefined-
ness, mutual recursion between object instances, dynamic types, recursive
method invocation and extensible class hierarchies. In particular, the ex-
tensionality of our constructions allows for an efficient implementation
of an object-oriented datatype package.

7.2 DATATYPE PACKAGES

All approaches presented in Section 7.1.2 have two details in common:
they are not extensible and only supported by tools generating theory
files (using the concrete syntax of the underlying theorem prover) which
are imported into the theorem prover.

In contrast, our extensible encoding of object-oriented data structures
allows for implementing a datatype package. Datatype packages have
been considered mostly in the context of HOL or functional programming
languages. Going back to ideas of Milner, systems like [15, 77] build over a
S-expression like term universe (co)-inductive sets which are abstracted to
(freely generated) datatypes. The inductive package presented by Paulson
[94] also uses subsets of the zF set universe i. Overall, we extend this
work into a generic datatype package for object-oriented data-structures.
The underlying extensible encoding allows even the incremental import
of object-oriented models.

Huffman et al. [58] suggested a universe construction based on Scott’s
reflexive domains. This work does not present a datatype package. It is
merely a library construction geared towards functional programming
languages like Haskell and not towards object-oriented programming
languages.

73 PROOF SUPPORT FOR THREE-VALUED LOGICS

The construction of specialized decision and semi-decision procedures
for many-valued logics such as Strong Kleene Logic has been investigated
before. Most of this work is based on semantic tableaux methods. Ex-
amples for such works are Kerber and Kohlhase [63] and Beckert et al.
[13]. The development of the tableaux-based proof-procedure (for two-
valued logics) in Isabelle has been deeply influenced by the lean TAP [11]
algorithm. Interestingly, lean TAP itself is just the “bare bones” version of
its ancestor ;TAP [13] which was developed especially for Strong Kleene
Logic. Thus, in some sense our work re-introduces three-valued reason-
ing into an implementation of lean TAP. However, one of our design goals

177

RELATED WORK

is to provide suitably abstract calculi for Strong Kleene Logic that can
be processed in a generic prover engine, even one that is optimized for
two-valued reasoning.

74 FORMAL OCL SEMANTICS

The widely and successful use of umL in industry attracted many re-
searchers to look at UML in general and ocL in particular. The quite infor-
mal nature of earlier versions of the ocL standard [87] stimulated a large
variety of research on ocL. For example, there are various works [14, 31-
33,37, 53, 54, 68, 76, 100, 101] that either propose a formal semantics of
0ocL, or discuss semantic problems thereof. Most of them are based on
the informal description given in the ocL 1.x standard. Most notable of
these earlier works is the work of Richters [100] which also builds the
basis for the formal semantics given in recent version of the ocL standard,
e., [88, Appendix A].

Several of these works simplify the semantics of ocL drastically: even
though the very first version ocL standard [87] already introduces a Strong
Kleene Logic, several approaches, e. g., [14, 68] base their semantics on
a classical two-valued one. There are mainly two motivations of using a
two-valued logic: first, there are a variety of tools available for classical
logics that can be reused and second, Hahnle [50] argues that at least for
specifying structured software systems approaches based on a two-valued
logic based on the underspecification of total functions are superior. The
latter argumentation motivated the use of a two-valued logic for the
KeY tool. The underlying translation of the ocL syntax into a first-order
dynamic logic is described by Beckert et al. [14]. 4]. Motivated by the available
tools for two-valued logics, Kyas [68] provides a direct translation of the
OcL syntax into HOL as defined by pvs system. Of course, a direct mapping
can neither be sound nor complete with respect to a semantics based on
a Strong Kleene Logic.

Previous semantic definitions of ocL version 2.0, i. e., [88, Appendix A],
are based on mathematical notation in the style of naive set theory, which
is in our view inadequate to cover subtle subjects of object-orientation.
In particular, we criticize the use of naive set theory for introducing the
notions of type, state, and model. For example, types were explained by a
type interpretation function I(t) [88, introduced in Definition A.14] map-
ping to a (never described) universe of values and objects. The expression
interpretation function I[E] assumes that variables and key operator sym-
bols have been annotated with type expressions like in _ =, _. Therefore
typing is a prerequisite of the semantic construction of ocL. I[E] uses
these type annotations to project and inject into subsets of the universe de-
scribed by I(t) without proof or argument that these definitions actually
respect the typing. Also, the standard does not specify what correct typ-

178

7.5 TOOL SUPPORT

ings are (the semantic function is defined for arbitrary typings), whether
they are unique, and how to derive them. Using for our embedding a
typed semantic domain resolves this problems automatically.

Recently, there seems to be a trend to define the semantics of ocL
using ocL itself; either directly by using Qv and ocL by Markovi¢ and
Baar [76] or indirectly by using sequence diagrams by Chiaradia and
Pons [33]. Whereas the authors of [76] are aware of the circularity they
are introducing and argue that the use a specific semantics given by a
proprietary tool solves this problem, the authors of [33] are not aware of
the problem. From our point of view, both approaches are not adequate
for defining a semantics.

75 TOOL SUPPORT

Since ocL was introduced, many tools supporting ocL in one way or
the other were developed. Toval et al. [111] present a comparison of tools
supporting ocL. The tools they present in this comparison can be classified
into three categories: type-checker, runtime constraint checkers, and
execution environments that allow for the simulation and validation of
models. Examples for the latter category, which is most closely related to
the work presented in this thesis, are the USE tool [102] and ocLE [34]:

« The UML Specification Environment (USE) [102] allows the anima-
tion of UML/OCL specifications. A USE specification contains a
textual description of a model using ; features found in UML class
diagrams (classes, associations, etc.). Expressions written in ocL
are used to specify additional integrity constraints on the model,
A model can be animated to validate the specification against
non-formal requirements. System states (snapshots of a running
system) can be created and manipulated during an animation.

o The Object Constraint Language Environment (ﬂ) [34] is a
CASE tool with first-class support for ocL. In particular, OCLE
allows for the interactive evaluation of 0cL expressions and thus
checking well-formedness rules of a UML specification.

Another, in our view important, category of ocL tools are proof en-
vironments for ocL; besides the work presented in ‘in this thesis, there are
only two other proof environments supporting o0CL, namely the KeY [1]
tool and ocLvp [68]. Moreover, there are several pro proof environments for
JML (e. g., Jive and LooP) and Spec# (e. g., Boogie), which we include in
the following discussion:

o The KeY tool [1, 10] is an integrated formal specification and verifi-
cation environment for specifications consisting of Hoare-style an-
notations of Java programs. In contrast to HOL-OCL, the semantics

179

RELATED WORK

object model
subtyping
inheritance
extensible
conservative

embedding

constraint language
conservative
invariants

embedding

datatype package
meta-logic

HOL-OCL KeY ooﬁ%_ Boogie Jive rooH,_
UML Java S<:L_ C# Java Java
multiple multiple multiple multiple multiple multiple
single single single single single single
yes no no yes no no
yes no no no yes no

shallow shallow deep pre-compilation shallow pre-compilation
ocCL|2.0 dynamic logic! moL Spec# JML JML
yes no yes no yes no
semantic/structural structural structural structural structral manual
shallow pre-compilation ~ shallow pre-compilation shallow shallow
yes no no no no no
HOL dynamic Logic HOL specialized HOL HOL

' The KeY tool provides a frontend for using ocL|1.x as concrete input syntax.
> The ocrvp|tool provides a frontend for using oCL|2.x as concrete input syntax.

Table 7.1: Comparing proof environments for object-oriented constraint languages.

180

7.5 TOOL SUPPORT

used in the KeY tool is not compliant to ocL standard (nevertheless,
it supports OCL 1.x as concrete input syntax). In particular, the KeY
tool is based on a direct mapping of OCL syntax to a first-order
dynamic logic [14]. The dynamic-logic used is two-valued, i. e.,
it does not support undefinedness within the logic. Moreover, it
does not attempt to build up the theory of its constraint language
by definitional axioms and thus has not formally investigated the
issue of consistency.

o The Object Constraint Language Verification Platform (ocLvp) [68,
69] provides a formalization of UML class diagrams, state charts
and ocL using HOL as provided by pvs [93]. The ocLvP tool directly
translates ocL formulae into HOL formulae using a direct mapping,
i.e., deliberately ignoring the Strong Kleene Logic of ocL. Neither
is the underlying embedding of class diagrams extensible, nor
does the tool provide support for invariants, preconditions and
postconditions. ocL formulae are directly mapped to HOL formulae
and operations to HOL functions.

« Boogie [6, 72] is a compile-time assertion checker for Spec#. We
classify Boogie as a pre-compilation tool, i. e., a Spec# program
is compiled into a standard imperative program which is used as
input of a verification condition generator. The generated veri-
fication conditions are handled in an automatic theorem prover.
While this architecture provides powerful tools that can handle
large inputs, the theoretical foundation is problematic. For exam-
ple, the compilation itself is not verified, and it is not clear if the
generated conditions are sound. Moreover, the overall approach
depends on the degree of automation that can be achieved by the
underlying (automatic) theorem prover.

o The Jive [79] tool provides an environment for doing Hoare-style
verification of Java programs. The underlying encoding of object
structures is based on a shallow embedding of the Java memory
model into IsabellenoL. The overall construction is based on a
closed-world assumption and several properties, e. g., some aspects
of subtyping, are handled on the level of the Hoare-logic instead
of the object store. Moreover, due to the closed-world model, Jive
cannot provide an extensible data package, thus, for every analysis,
large portion of the core systems must be re-proven. The same
criticism is also valid for the Loop tool [61].

Table 7.1 shows a summary of this comparison. Notably, Boogie and
HOL-OCL are the only tools that are based on an extensible construction
of the underlying data-store. In our experience a key feature needed for

181

RELATED WORK

providing an efficient and scalable implementation. HOL-OCL is the only
environment providing semantical invariants, including their support in
an object-oriented datatype package. Also, it is the only proof environ-
ment based on an OCL semantics conforming to the standard [88], e. g.,
supporting a three-valued logic.

Most of these tools provide a wealth of additional features that are not
covered here. We deliberately restricted the comparison to the main topics
of this thesis: the theorem prover component and the underlying embed-
dings of class models and constraint languages. For example, we exclude
code-generation, code-verification, or proof-animation techniques that
are also provided by several of these environments from this comparison.

182

CONCLUSION AND FUTURE WORK

In this chapter, we draw conclusions, summarize the contributions of this
thesis and give an outlook on future work.

8.1 CONCLUSIONS

This thesis shows that a shallow embedding of an object-oriented specifi-
cation language into HOL is possible and can serve several purposes: First,
it provides a consistent framework for examining language features. Sec-
ond, it can provide a machine-checked semantics for an industrial defined
specification language. Third, it provides the basis for formal tools that, if
implemented conservatively on top of a theorem prover environment, are
guaranteed to be correct with respect to their formalization. And fourth,
it enables the formal analysis of object-oriented specifications.

A flexible formal framework for object-orientation can be used to
examine language features and discuss extensions of an existing language.
This is not only useful during the development and standardization of
a specification language but also for tool implementers providing tools
for a subset or a semantic variation of a language. If a formal framework
for a specification language is based on a conservative embedding, the
consistency of all these variants can be guaranteed without the need of
additional proofs. Inconsistencies introduced by extending the language
are recognized immediately. In our view, this is an important prerequisite
for providing different semantical extensions in a consistent way. For
example, this also provides a formal understanding of the concept of
“semantic deviation points” as introduced in the umL standard [91].

A standard containing a machine-checked semantics cannot only guar-
antee interoperability between different tools on the syntactical level but
also on the semantical level. Especially the latter allows for the exchange of
specifications between different tools without changing the interpretation
of a specification. Thereby it does not matter if these tools are formal, like
theorem provers or model-checkers or semi-formal like code-generators;
there will always be a strong semantical link between the results of ap-

183

CONCLUSION AND FUTURE WORK

plying different tools on the same input. Overall, this brings MDE to a
semantical level.

Embedding a specification language in a shallow and conservative way
into a theorem prover results directly in a proof environment for that
language. Thus, such an embedding is both a machine-checked semantics
and the source code of an implementation. Overall, this method for
defining semantics and building tools guarantees the consistency of the
semantics and the correctness of the implementation.

Today formal methods are mainly used together with a software de-
velopment process using a procedural programming language like C or
functional programming languages like Haskell. An interactive theo-
rem prover for object-oriented specifications enables the use of a formal
analysis together with an object-oriented development process and object-
oriented programming languages. For example, this also allows for the
use of object-oriented specification for certifying systems with respect to
EAL7 (“Formally Verified Design and Tested”) of the Common Criteria
international standard [36].

8.2 SUMMARY OF CONTRIBUTIONS

In this section, we summarize the most important contributions of this
thesis.

In Chapter 3, we introduced a framework for object-oriented specifica-
tions. This framework is presented as a conservative, shallow embedding
into Isabelle/H_OL. It comprises an object store, i. e., a formalization of
an object-oriented data structures and an object-oriented constraint lan-
guage.

As a novel feature, our encoding of object-oriented data structures is
extensible. This extensibility is a basis for the implementation of efficient
tools based on this encoding. Moreover, it allows for the incremental
formal analysis of specifications, i. e., the underlying data model can be
extended without the time-consuming task of replaying proof scripts. As
already the import of a user-supplied specification represents an extension
of the base library containing several thousands of theorems, the exten-
sionality is a cornerstone for building formal tools for object-oriented
systems.

Our object-oriented constraint language can cope with undefinedness,
e. g., introduced by path expressions that are not valid within a concrete
system state. Moreover, we discuss several “semantic deviation points”
for object-oriented constraint languages. Thus we provide a framework
and a tool for a large variety of object-oriented constraint languages. The
semantics of a concrete constraint language can be defined by selecting a
specific subset of these semantical building blocks.

184

8.2SUMMARY OF CONTRIBUTIONS

Both embeddings are structured using conservative theory morphisms
using semantic combinators. This technique allows for the automatic
derivation of theorems based on already proven theorems over the meta-
logic possible. Thus, structuring an embedding using semantic combina-
tors makes a conservative embedding technique for a real-world language
feasible.

The modular way our semantics is organized allows for extending our
framework in various ways. For example, by introducing temporal aspects
or general recursion. The former may be used to give a formal semantics
also to the other umML diagrams such as state diagrams or sequence dia-
grams, while the latter may provide the basis for to the development of
powerful and executable libraries within our framework.

In Chapter 4, we presented a formal, machine-checked semantics of
ocL based on the framework we presented in Chapter 3. Our formal ocL
semantics is compliant to the ocL 2.0 standard [88]. In particular, we
provide, for the first time, formal proofs showing that a formal semantics
conforms to the normative requirements of the standard. Moreover, we
also show, that our semantics is a machine-checked formalization of
the informative semantics given in the ocL standard [88, Appendix A].
Thus, we provide the missing link between the formal semantics in the
informative part [88, Appendix A] (based on the work of Richters [100])
of the standard and the normative part of the standard.

In Chapter 5, we derived several calculi and proof techniques for our
framework, i. e., for an object-oriented constraint language. Since deriving
means that we proved all rules with an interactive theorem prover, we can
guarantee both the consistency of the semantics as well as the soundness
of the calculi. Moreover, we developed automatic proof support for the
derived calculi UEG, LEC, and LTC. In particular, the calculi led to rewriting
and tableau-based decision procedures for certain fragments of our object-
oriented constraint language. The development of HOL-OCL itself and also
the case studies we carried out indicates that for predominantly strict
language, there is sufficiently high potential for a efficient deduction
in general and in particular that tools for effective reasoning over such
language can be built on top of generic theorem prover environments
such as Isabelle. Thus, we provided the basis for deduction-based ocL
tools.

In Chapter 6, we presented an architecture for building formal tools that
are based on a theorem prover like Isabelle/HoL. Based on our framework,
we used this architecture for building HOL-OCL, an interactive theorem
prover for umML/OCL. Moreover, we show the potential of using such
tools by carrying out some case studies. Thus, we have provided a solid
basis for turning object-oriented modeling in uML/OCL into a formal
method. Moreover, our case studies showed that an extensible universe
construction provides a reasonable fast import of user-defined models.

185

CONCLUSION AND FUTURE WORK

8.3 FUTURE WORK

In this section, we discuss some directions of further work. In particu-
lar, we discuss theoretical and technical extension of our framework to
improve usability and to open new areas of research and application.

8.3.1 Extending our Formal Framework

IMPROVING PROOF sUPPORT. While our existing proof procedures
for OCL are quite satisfactory, more work has to be done to increase effi-
ciency and to cover larger fragments of the language (e. g., automated pro-
cedures for arithmetic). Moreover, the integration of special techniques
for multi-valued logics, e. g., based on Héhnle [48] and the integration of
external tools, i. e., model checkers, should improve the efficiency of our
semi-automated techniques for three-valued logics.

SUPPORT FOR BEHAVIORAL SPECIFICATIONS. The UML offers sev-
eral diagram types for specifying the behavior of a system, e. g., by using
state diagrams (a variant of state machines). An embedding of state di-
agrams into our framework, e. g., supporting ocL formulae as guards,
would allow for the combination of behavioral and data-oriented speci-
fications within one consistent formal framework. As the semantics of
state diagrams in the UML standard is not precise, a formal semantics for
state diagrams matching the intention of the standard has to be developed
and integrated into our framework.

SUPPORT FOR ANALYSIS TECHNIQUES. The development of various
techniques known from formal methods, like refinement or retrench-
ment [12] need to be adopted to the three-valued setting of umL/0cCL. In
particular, such methodologies should be supported by HOL-OCL itself,
e. g., by generating, and if possible, resolving, the corresponding proof
obligations automatically.

SUPPORT FOR DOMAIN-SPECIFIC ANALYSIS METHODS. Develop-
ing domain-specific extensions for our framework, i. e., extending the
embedding and developing proof support thereof, is another interesting
area for future research. For example, SecureUML [9] is a uML dialect
that allows for specifying role-based access control within umL/0ocL spec-
ifications. Extending our framework to support directly reasoning over
SecureUML specifications is a rewarding task. This would include the
development of a formal, machine checked semantics for SecureUML and
the development of specialized proof support for access control specifica-
tions. Alternatively, one could use model-transformations [29] for con-
verting a SecureUML model into a pure umL/0ocL model. Whereas such

186

8.3 FUTURE WORK

a transformation approach does not need an embedding of SecureUML
into HOL-OCL, the resulting representation is less abstract which results
in more complicated proofs.

8.3.2 Developing a Formal Tool Chain

Aiming for the broader acceptance of formal methods a deep integration
into a tool-supported software development process, e. g., based on the
MDA or MDE approach, is desirable. Besides a deeper integration into
common CASE tools (e. g., in a similar way as the integration of the KeY
tool [30]), we especially focus on bringing verification, model-based
testing and code-generation closer together. In particular, such a tool
chain [27] could include the integration of specification-based testing
techniques, e. g., based on HOL-TESTGEN [22]. This would allow for
generating test cases from the same specification the formal analysis is
done. Therefore, testing can be used to validate that the implementation,
which contains user-implemented parts, is in fact a refinement of the
formal specification.

8.3.3 Applications.

Besides larger case studies, e. g., consistency analysis of specifications or
formal analysis in the area of secure and safe system development, we see a
great potential for a formal refinement calculus for ocL. Such a refinement
calculus would allow for using HOL-OCL in a consistent way over several
stages of a formally supported software development cycle and is in our
opinion a cornerstone for applying formal methods successfully.

Moreover, combining HOL-oCL with embeddings of programming lan-
guages like IMp++ [23] or pJava [85] allows for integrated formal reasoning
over specifications and code.

187

THE SYNTAX OF OCL

ocL, being advertised with the slogan “Mathematical Foundation, But No
Mathematical Symbols” [116], is normally written using a concrete syntax
that is inspired by object-oriented programming languages. Whereas
this textual notation pleases the people coming from object-oriented
programming languages, it looks awkward for people coming from the
mathematics and formal methods field. Especially for proof work, there
seems a need for a compact, mathematical notation. Thus we developed a
mathematics-oriented OCL syntax, as an alternative to the programming-
language like notation used in the ocL 2.0 standard. For example, compare
the textual presentation of the proof rule:

7= S>includes(x) tEnot(Px) cpP

(Aa)
7= S->forall(x|P(x)).IsDefined()
to its presentation in mathematical notation:
TExeS 1E-(Px) cpP
(A.2)

TEJ(VxeS. P(x))

Clearly, both the concrete syntax of the standard and our mathematical
syntax, have their advantages and disadvantages and therefore we support
both of them in HOL-OCL. A user of HOL-OCL can mix both syntaxis
arbitrarily, i. e, the user is free to choose the syntax he or she likes best.
Moreover, the system can also be configured to check that only one of the
syntaxis is used in a consistent manner or convert terms from one syntax
to the other, e. g., for presentation purposes.

In Table A.1 we provide a brief comparison between the different con-
crete syntaxis for 0cL, namely the syntax as proposed in the ocL standard,
our textual notation that tries to follow the standard syntax as close as
possible, and finally our new mathematical syntax. The table follows the
octl library presentation from the standard [88, Chapter 11], constructs
that are not supported by HOL-OCL are written in a typeface, e. g.,

. Extension to the ocL standard are written in a green
typeface, e.g., x sand y.

189

THE SYNTAX OF OCL

Table A.1: Comparison of different concrete syntax variants for ocL

ocL (standard)

mathematical HOL-oCL

X =Yy x=y
x <>y xty
X 1=y x=y
X ~y x=y

§‘ X i~y Xy

= %

) =~

o A
o0.oclIsNew() 0.oclIsNew()
0.oclIsUndefined() do
0.0clAsType(t) 0 .oclAsType (t)
0.oclIsType(t) 0 .oclIsTypeOf (t)
0.0clIsKindOf(t) 0 .oclIsKindof ()
t::allInstances() t::alllnstances()
t::typeSet0f() t::typeSet0f()
t::kindSetO0f () t::kindSet0f ()

(9]

o>

©

%)

wn

[0}

=

—

)

o

.'g 0clUndefined 1

= o.oclIsUndefined() do

S o.oclIsDefined() do
X +y xX+y
X -y x-y
X %y x-y
-X - X
X /'y x/y
x.abs () ||

_ x.floor() |x]

® x.round() [x]

o
x.max(y) max(x, y)
x.min(y) min(x, y)
X <y x<y
X >y x>y
X <=y x<y
X >=y xzy

- X -y X —)’

:’-; X +y xX+y

E xxy x-y
x /'y x|y

190

Continued on next page

oCL mathematical HOL-oCL
-X —-x
. x.abs() ||
;? x.div(y) xdivy
= x.mod(y) xmod y
x.max(y) max(x, y)
x.min(y) min(x, y)
s.size() [s]
s.concat(z) sz
@ s.substring(i,j) s .substring(i, j)
T s.toInteger() s .toInteger()
Y s.toReal() s .toReal()
s.toUpper() s .toUpper()
s.toLower() s .toLowert()
[=p =p
t|=p TEp
true t
false f
X ory XVy
X Xor 'y XDy
c X andy XNy
§ not x - X
é x implies y x—1>y
xX—y
2
x—y
X sory xVy
X sxor y xdy
x sand y XAy
x simplies y xX—y
if ¢ then x else y endif ifcthenxelse yendif
X->size() HXH
X->includes(y) yeX
X->excludes(y) yiX
X->count(y) X ->count(y)
X->includesAll(Y) Xcy
X->excludesAll(Y) XoY
c X->isEmpty() g=X
-E' X->notEmpty () a+X
E X->sum() X ->sum()
5 X->product(Y) XxY
X->exists(e:T|P(e)) JeeX. P(e)
X->forAll(e:T|P(e)) VeeX. P(e)

X->isUnique(e:T|P(e))
X->any(e:T|P(e))

X >isUnique (e: T|P(e))
X->any(e:T|P(e))

Continued on next page

191

THE SYNTAX OF OCL

192

OCL

mathematical HOL-oCL

X->one(e:T|P(e))

X ->one(e: T|P(e))

X->collect(e:T|P(e)) {lec X|P(e)[}
Set{} (%)
X->union(Y) XuY
X =Y X=Y
X->intersection(Y) XnY
X->complement(Y) X!
X -Y X-Y
X->including(y) insert y X
X->excluding(y) y->excluding(X)

» X->symmetricDifference(Y) XeyvYy

& X->count(y) X ->count(y)
X->flatten() X1
X->asSet () X ->asSet()
X->asOrderedSet () X->asOrderedSet()
X->asSequence() X ->asSequence()
X->asBag() X ->asBag()
X->select(e:T|P(e)) (eeX|P(e))
X->reject(e:T|P(e)) JeeX|P(e)(
X->collectNested(e:T|P(e)) {{lee X|P(e)|}}
X->sortedBy(e:T|P(e)) X ->sortedBy (e: T|P(e))
X->iterate(x; r=c| P(x, r)) X-iterate(x; r=c|P(x,r))
OrderedSet{} ()
X=Y X=Y

- X->append(y) X@y

o X->prepend(y) y#X

g X->insertAt(i,y) X->insertAt(i, y)

'g X->subOrderedSet(i,j) X ->subOrderedSet (i, j)
X->at (i) hiX
X->index0f(y) Xnty
X->first() h1X
X->last() hs X
Bag{} 8)
X=Y X=zY
X->union(Y) XuY
X->intersection(Y) X!
X->including(y) insert y X
X->excluding(y) y->excluding(X)
X->count (y) X ->count(y)

2 X->flatten() X1

@ X->asBag() X ->asBag()
X->asSequence() X ->asSequence()
X->asSet () X ->asSet()

Continued on next page

OCL

mathematical HOL-OCL

X->asOrderedSet ()

X->asOrderedSet ()

X->select(e:T|P(e))
X->reject(e:T|P(e))
X->collectNested(e:T|P(e))
X->sortedBy(e:T|P(e))
X->iterate(x; r=c| P(x, r))

(e X|[P(e))

Je e X | P(e)(
{leeX|P(e)[}}

X >sortedBy (e: T|P(e))
X->iterate(x; r=c|P(x,r))

Sequence

Sequence{}
X->count()

X=Y

X->union(Y)
X->flatten()
X->append(y)
X->prepend(y)
X->insertAt(i,y)
X->subSequence(i,j)

(]

X->count(y)

X=Y

XuY

1]

Xaey

y#X
X->insertAt(i, y)

X ->subSequence(1,)

X->at(1i) hiX
X->index0f(y) Xnty
X->first() th

X->last() hs X
X->including(y) insert y X
X->excluding(y) y->excluding(X)
X->asBag() X ->asBag()
X->asSequence() X ->asSequence()
X->asSet() X ->asSet()
X->asOrderedSet () X->asOrderedSet ()
X->select(e:T|P(e)) (e X|P(e))
X->reject(e:T|P(e)) JeeX|P(e)(

X->collectNested(e:T|P(e))
X->sortedBy(e:T|P(e))
X->iterate(x; r=c| P(x, r))

{{lee X|P(e)[}}
X >sortedBy (e: T|P(e))
X->iterate(x; r=c|P(x,7))

let e=x in P(s) end

lete =x1inP(s)end

193

THE INVOICE SYSTEM

In this section, we present a well-known case study for comparing specifi-
cation formalisms, e. g., Frappier and Habrias [42] give an overview of
several formalization of this case study using different formalisms.

B.1 INFORMAL DESCRIPTION

Frappier and Habrias [42] describe the invoice system informally as fol-
lows:

1. The subject is to invoice orders.

2. To invoice is to change the state of an order (to change it from the
state “pending” to “invoiced”).

3. On an order, we have one and one only reference to an ordered
product of a certain quantity. The quantity can be different to other
orders.

4. 'The same reference can be ordered on several different orders.

5. The state of the order will be changed into “invoiced” if the ordered
quantity is either less or equal to the quantity which is in stock
according to the reference of the ordered product.

6. You have to consider the following two cases:

a) Case1:
All the ordered references are references in the stock. The
stock or the set of orders may vary:

o due to the entry of new orders or canceled orders;

o due to having a new entry of quantities of products in
stock at the warehouse.

195

THE INVOICE SYSTEM

But, we do not have to take these entries into account. This
means that you will not receive two entry flows (orders, en-
tries in stock). The stock and the set of orders are always
given to you in an up-to-date state.

b) Case 2:
You do have to take into account the entries of

o new orders;
« cancellations of orders;

o entries of quantities in the stock.

B.2 FORMAL SPECIFICATION

In this section, we present a formalization of the Invoice case-study using
uML/OCL. Dupuy et al. [40] already present a UML specification for the
invoice system. But this specifications lacks any usage of ocL. Moreover,
the use of UML is quite informal, e. g., their specification is untyped. Our
work is inspired by the formalization of Dupuy et al. [40], in fact, we
restrict ourselves to making their specification more rigid. For example,
we provide full type annotation and complete the diagrammatic part of
uML with a detailed ocL specification.

Figure B.1 shows the data model of our case study is quite simple. For
realizing item 6a we only need the classes Product and Order. For realiz-
ing the item 6b, we also model a class Warehouse. Figure 6.2 presents the
uML data model of the Invoice system. Table B.1 presents the ocL specifi-
cation for constraining the state part of the system, i. e., constraining the
datatypes. For example, uML/0OcL does not provide a datatype for natural
numbers, therefore we use the datatype Integer and constrain the corre-
sponding attributes to positive values. Table B.2 describes the behavior of
the Invoice case-study, i. e., the precondition and postconditions of the
operations. Overall, this completes the ocL specification.

Finally, Table B.3 presents the complete theory file containing the proofs
explained in Chapter 6.

196

B.2 FORMAL SPECIFICATION

Warehouse

@ getFirstInvoicable():0rder

1|warehouse
0..x \/ products
Product
& id:Integer
& stock:Integer
@ Product():Product
= supply(qty:Integer):Boolean
= release(qty:Integer):Boolean
1 /\ product
0..x|orders
Order
& id:Integer
& quantity:Integer
& state:String

Order(prd:Product, qty:Integer):0Order
cancel () :Boolean
invoice():Boolean

Figure B.1: The Invoice Case-study models a simple system for invoicing orders; thus we need to
model at least products, orders, and a warehouse managing the orders and products.

197

THE INVOICE SYSTEM

-- The stock of a Product is always a natural number, i.e., it is a
-- positive Integer. This also ensures the definedness of the stock.
context Product

inv isNat: self.stock >= 0

-- The Product id is unique.
context Product
inv idUnique: self.allInstances()
->forAll(pl:Product, p2:Product | pl.id <> p2.id)

-- The quantity of an Order is always a natural number, i.e., it is
-- a positive Integer. This also ensures the definedness of the
-- quantity.
context Order
inv isNat: self.quantity >= 0

-- The state of an Order should either be ‘pending’ or ‘invoiced’.
-- As a direct support for enumeration is not well developed in most
-- CASE tools, we use a String and constrain it to the two
-- alternatives using an invariant.
context Order
inv stateRange: (self.state = 'pending’)
or (self.state = ’'invoiced’)

-- The Order id is unique.
context Order
inv idUnique: self.allInstances()
->forAll(ol:0rder, 02:0rder | ol.id <> 02.id)

-- There is one and only one Warehouse.
context Warehouse
inv isStatic: self.alllnstances()->size() =1

Table B.1: Constraining the data specification of the Invoice case-study.

198

B.2 FORMAL SPECIFICATION

-- Initialize the state of an Order
context Order::state : String
init: ’pending’

-- Create a new Order
context Order::0rder(prd:Product,qty:Integer):void
pre: qty > 0
pre: self.warehouse.products->exists(x:Product | x = prd)
pre: not prd.oclIsUndefined()
post: self.oclIsNew() and self.quantity = qty and self.orderedProduct = prd

-- The state of the order will be changed into "invoiced" if the ordered quantity
-- 1s either less or equal to the quantity which is in stock according to the

-- reference of the ordered product.

context Order::invoice() : void

pre: self.state = 'pending’
and self.quantity <= self.orderedProduct.stock
post: self.state = "invoiced’ and self.quantity = self.quantity@pre

and self.orderedProduct = self.orderedProduct@pre
and self.orderedProduct.stock = self.orderedProduct@pre.stock - self.quantity

-- Cancel order as an opposite operation to invoice order
context Order::cancel() : void
pre: self.state = "invoiced’
post: self.state = ’'pending’
and self.quantity = self.quantity@pre and self.product = self.product@pre
and self.product.stock = self.product@pre.stock + self@pre.quantity

-- Create a new Order
context Product::Product():void
pre : true
post: self.stock = 0 and self.oclIsNew()

-- Add quantity of the product to the stock
context Product::supply(qty:Integer):void
pre: qty > 0
post: self.stock = self.stock@pre + qty

-- Remove quantity of the product from the stock
context Product::release(qty:Integer):void

pre: self.stock >= qty

post: self.stock = self.stock@pre - qty

-- Warehouse management
context Warehouse::getFirstInvoicable():0rder
pre: self.orders->exists(x:0rder

x.state = 'pending’ and x.quantity <= x.orderedProduct.stock)
body: self.orders->any(x:0rder
x.state = 'pending’ and x.quantity <= x.orderedProduct.stock)

Table B.2: Specifying the behavior of the Invoice case-study.

199

THE INVOICE SYSTEM

theory invoices
imports

OCL
begin

import_model "invoices.xmi" "invoices.ocl"

lemma "7 = Product_Boolean. post self result
——
Product. inv self"
apply(simp add: Product_post Product_inv)
apply(safe)
apply(ocl_simp)
done

lemma "3 gty self 7. (7 = Product. inv self)
A(7 E release_Integer_Boolean. pre self gty)"
apply(simp add: supply_pre Product_inv)
apply(rule_tac x="1"in exI)
apply(rule_tac x="1(a, b). (_((OclAny_key. OclAny, oid :: oid),
noext(Product_key. Product, 1,, 1,),),)"
in exI)
apply(rule exI)+
apply(rule safe)
apply(simp_all add: Product.stock_def Product.stock_def
ss_lifting localValid2sem
Zero_ocl_int_def One_ocl_int_def OclStrongEq_def
OclLess_def OclLe_def)
done

end

Table B.3: An theory file for HOL-ocL showing a formal analysis of the
Invoice case-study.

200

BIBLIOGRAPHY

References are in alphabetical order. References with more than one
author are sorted according to the first author.

(1]

(2]

(3]

(4]

(5]

(6]

Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hahnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY tool. Software and Systems Modeling, 4(1):32—54, 2005.
doi: 10.1007/510270-004-0058-x. (Cited on pages 73 and 179.)

Peter B. Andrews. Introduction to Mathematical Logic and Type
Theory: To Truth through Proof. Kluwer Academic Publishers,
Dordrecht, 2nd edition, 2002. ISBN 1-402-00763-9. (Cited on
pages 14 and 33.)

Catia M. Angelo, Luc J. M. Claesen, and Hugo De Man. De-
grees of formality in shallow embedding hardware description
languages in HOL. In Jeffrey J. Joyce and Carl-Johan H. Seger,
editors, Higher Order Logic Theorem Proving and Its Applications
(HUG), volume 780 of Lecture Notes in Computer Science, pages
89-100, Heidelberg, 1994. Springer-Verlag. 1SBN 3-540-57826-9.
doi: 10.1007/3-540-57826-9_127. (Cited on page 175.)

Demissie B. Aredo. Formalizing umL class diagrams in pvs. In
oorsLa’99 Workshop on Rigorous Modeling and Analysis with the
uML: Challenges and Limitations, Denver, Colorado, Denver, Col-
orado, UsA, November 1999. (Cited on page 176.)

David Aspinall. Proof General: A generic tool for proof develop-
ment. In Susanne Graf and Michael I. Schwartzbach, editors, Tools
and Algorithms for Construction and Analysis of Systems, (TACAS),
volume 1785 of Lecture Notes in Computer Science, pages 38—42,
Heidelberg, 2000. Springer-Verlag. 1SBN 3-540-67282-6. (Cited on
pages 15 and 163.)

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. In Gilles Barthe, Lilian Burdy,

201

http://dx.doi.org/10.1007/s10270-004-0058-x
http://dx.doi.org/10.1007/3-540-57826-9_127

BIBLIOGRAPHY

(8]

[10]

[11]

[12]

[13]

202

Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors,
Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (cassis), volume 3362 of Lecture Notes in Computer Science,
pages 49-69, Heidelberg, 2005. Springer-Verlag. 1sBN 978-3-540-
24287-1. doi: 10.1007/b105030. (Cited on pages 16, 71, 81, and 181.)

David A. Basin, Sean Matthews, and Luca Vigano. Natural deduc-
tion for non-classical logics. Studia Logica, 60(1):119-160, 1998.
ISSN 0039-3215. doi: 10.1023/A:1005003904639. Special issue on
Natural Deduction edited by Frank Pfenning and Wilfried Sieg.
(Cited on page 153.)

David A. Basin, Hironobu Kuruma, Kazuo Takaragi, and Burkhart
Wolff. Verification of a signature architecture with HOL-Zz. In
John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM
2005: Formal Methods, volume 3582 of Lecture Notes in Computer
Science, pages 269-285, Heidelberg, 2005. Springer-Verlag. 1sBN
978-3-540-27882-5. doi: 10.1007/11526841_19. (Cited on page 17.)

David A. Basin, Jirgen Doser, and Torsten Lodderstedt. Model
driven security: from uML models to access control infrastructures.
AcM Transactions on Software Engineering and Methodology, 15(1):
39-91, January 2006. I1SSN 1049-331X. (Cited on page @.)

Bernhard Beckert and André Platzer. Dynamic logic with non-
rigid functions. In Ulrich Furbach and Natarajan Shankar, edi-
tors, Automated Reasoning (IJCAR), volume 4130 of Lecture Notes
in Computer Science, pages 266—280, Heidelberg, 2006. Springer-
Verlag. 1SBN 978-3-540-37187-8. doi: 10.1007/11814771_23. (Cited
on page 179.)

Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-
based deduction. Journal of Automated Reasoning, 15(3):339-358,
1995. doi: 10.1007/BF00881804. (Cited on page 177.)

Bernhard Beckert and Steffen Schlager. Refinement and retrench-
ment for programming language data types. Formal Aspects of
Computing, 17(4):423-442, 2005. doi: 10.1007/500165-005-0073-X.
(Cited on page 186.)

Bernhard Beckert, Stefan Gerberding, Reiner Hahnle, and Werner
Kernig. The many-valued tableau-based theorem prover ;TAP. In
Deepak Kapur, editor, Automated Deduction—CADE-11, volume
607 of Lecture Notes in Computer Science, pages 758-760, Hei-
delberg, 1992. Springer-Verlag. 1SBN 978-3-540-55602-2. doi:
10.1007/3-540-55602-8_219. (Cited on page 177.)

http://dx.doi.org/10.1007/b105030
http://dx.doi.org/10.1023/A:1005003904639
http://dx.doi.org/10.1007/11526841_19
http://dx.doi.org/10.1007/11814771_23
http://dx.doi.org/10.1007/BF00881804
http://dx.doi.org/10.1007/s00165-005-0073-x
http://dx.doi.org/10.1007/3-540-55602-8_219
http://dx.doi.org/10.1007/3-540-55602-8_219

[14]

[15]

[16]

[17]

(18]

[19]

[20]

BIBLIOGRAPHY

Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translating
the Object Constraint Language into first-order predicate logic. In
Serge Autexier and Heiko Mantel, editors, Verification Workshop
(VERIFY), pages 113-123, 2002. (Cited on pages 178 and 181.)

Stefan Berghofer and Markus Wenzel. Inductive datatypes in HoL—
lessons learned in formal-logic engineering. In Yves Bertot, Gilles
Dowek, André Hirschowitz, C. Paulin, and Laurent Théry, editors,
Theorem Proving in Higher Order Logics (TPHOLS), volume 1690 of
Lecture Notes in Computer Science, pages 19-36, Heidelberg, 1999.
Springer-Verlag. 1SBN 3-540-66463-7. (Cited on page ﬂ.)

Elisa Bertino, Mauro Negri, Giuseppe Pelagatti, and Licia Sbat-
tella. Object-oriented query languages: The notion and the issues.
1EEE Transaction on Knowledge and Data Engineering, 4(3):223-237,
1992. doi: 10.1109/69.142014. (Cited on page 100.)

Gavin M. Bierman and Matthew J. Parkinson. Effects and effect
inference for a core Java calculus. Electronic Notes in Theoretical
Computer Science, 82(7):1-26, 2003. doi: 10.1016/S1571-0661(04)
80803-X. (Cited on page 17.)

Richard Boulton, Andrew Gordon, Michael J. C. Gordon, John
Harrison, John Herbert, and John Van Tassel. Experience with
embedding hardware description languages in HOL. In Victoria
Stavridou, Thomas F. Melham, and Raymond T. Boute, editors,
Proceedings of the IFIP TC10/WG 10.2 International Conference on
Theorem Provers in Circuit Design: Theory, Practice and Experi-
ence, volume A-10 of 1FIP Transactions, pages 129-156, Nijmegen,
The Netherlands, 1993. North-Holland Publishing Co. 1sBN 0-444-
89686-4. (Cited on pages 39 and 175.)

Manfred Broy, Michelle L. Crane, Jiirgen Dingel, Alan Hartman,
Bernhard Rumpe, and Bran Selic. 2nd umL 2 semantics symposium:
Formal semantics for uML. In Thomas Kiihne, editor, Models in
Software Engineering— Workshops and Symposia at MODELS 2006,
volume 4364 of Lecture Notes in Computer Science, pages 318—323,
Genua, Italy, 2006. Springer-Verlag. 1sSBN 978-3-540-69488-5. doi:
10.1007/978-3-540-69489-2_39. (Cited on page 109.)

Achim D. Brucker and Burkhart Wolff. Using theory morphisms
for implementing formal methods tools. In Herman Geuvers
and Freek Wiedijk, editors, Types for Proofs and Programs (TYPES),
volume 2646 of Lecture Notes in Computer Science, pages 59-77,
Heidelberg, 2003. Springer-Verlag. 1sBN 3-540-14031-X. (Cited on
page 38.)

203

http://dx.doi.org/10.1109/69.142014
http://dx.doi.org/10.1016/S1571-0661(04)80803-X
http://dx.doi.org/10.1016/S1571-0661(04)80803-X
http://dx.doi.org/10.1007/978-3-540-69489-2_39
http://dx.doi.org/10.1007/978-3-540-69489-2_39

BIBLIOGRAPHY

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

204

Achim D. Brucker and Burkhart Wolff. The HoL-ocL book. Tech-
nical Report 525, ETH Zurich, Zurich, Switzerland, 2006. (Cited

Achim D. Brucker and Burkhart Wolff. HOL-TESTGEN 1.0.0 user
guide. Technical Report 482, ETH Zurich, April 2005. (Cited on

page 187.)

Achim D. Brucker and Burkhart Wolff. A package for extensible
object-oriented data models with an application to IMP++. In Serge
Autexier and Heiko Mantel, editors, Verification Workshop (VER-
IFY), pages 58-84, August 2006. (Cited on pages 80, 99, and 187.)

Achim D. Brucker and Burkhart Wolff. Symbolic test case gen-
eration for primitive recursive functions. In Jens Grabowski
and Brian Nielsen, editors, Formal Approaches to Software Test-
ing (FATES), volume 3395 of Lecture Notes in Computer Science,
pages 16-32. Springer-Verlag, Linz, 2005. ISBN 3-540-25109-X.
doi: 10.1007/b106767. (Cited on page 31.)

Achim D. Brucker and Burkhart Wolff. A verification approach for
applied system security. International Journal on Software Tools
for Technology, 7(3):233—247, 2005. ISSN 1433-2779. doi: 10.1007/
$10009-004-0176-3. (Cited on page 131.)

Achim D. Brucker, Frank Rittinger, and Burkhart Wolff. HOL-Z
2.0: A proof environment for Z-specifications. Journal of Universal
Computer Science, 9(2):152—172, February 2003. 1SSN 0948-6968.
(Cited on pages 17, 33, and 132.)

Achim D. Brucker, Jiirgen Doser, and Burkhart Wolff. An Mmpa
framework supporting ocL. Electronic Communications of the
EASST, 5, 2006. 1SSN 1863-2122. (Cited on pages 163, 165, and 187.)

Achim D. Brucker, Jiirgen Doser, and Burkhart Wolff. Semantic is-
sues of ocL: Past, present, and future. Electronic Communications
of the EASST, 5, 2006. 1SN 1863-2122. (Cited on page 117.)

Achim D. Brucker, Jiirgen Doser, and Burkhart Wolff. A model
transformation semantics and analysis methodology for secureuml.
In Oscar Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio,
editors, Model Driven Engineering Languages and Systems (MoD-
ELS), volume 4199 of Lecture Notes in Computer Science, pages 306—
320, Heidelberg, 2006. Springer-Verlag. 1SBN 978-3-540-45772-5.
doi: 10.1007/11880240_22. (Cited on page 186.)

http://dx.doi.org/10.1007/b106767
http://dx.doi.org/10.1007/s10009-004-0176-3
http://dx.doi.org/10.1007/s10009-004-0176-3
http://dx.doi.org/10.1007/11880240_22

[30]

[31]

[32]

(33]

[34]

(35]

[36]

(37]

(38]

BIBLIOGRAPHY

Richard Bubel and Reiner Héhnle. Integration of informal and
formal development of object-oriented safety-critical software. In-
ternational Journal on Software Tools for Technology, 7(3):197-211,
2005. ISSN 1433-2779. doi: 10.1007/510009-004-0166-5. (Cited on

page 187.)

Marfa Victoria Cengarle and Alexander Knapp. A formal seman-
tics for ocL 1.4. In Martin Gogolla and Cris Kobryn, editors, umr
2001— The Unified Modeling Language. Modeling Languages, Con-
cepts, and Tools, volume 2185 of Lecture Notes in Computer Science,
pages 118-133, Heidelberg, 2001. Springer-Verlag. 1SBN 3-540-42667-
1. (Cited on pages 17 and 178.)

Maria Victoria Cengarle and Alexander Knapp. ocCL 1.4/5 vs. 2.0
expressions formal semantics and expressiveness. Software and
Systems Modeling, 3(1):9-30, 2004. ISSN 1619-1366. doi: 10.1007/
$10270-003-0035-9.

Juan Martin Chiaradia and Claudia Pons. Improving the ocL
semantics definition by applying dynamic meta modeling and
design patterns. Electronic Communications of the EASST, 5, 2006.
1SN 1863-2122. (Cited on pages 178 and 179.)

Dan Chiorean, Mihai Pasca, Adrian Carcu, Cristian Botiza, and
Sorin Moldovan. Ensuring umL models consistency using the ocL
environment. Electronic Notes in Theoretical Computer Science,
102:99-110, 2004. doi: 10.1016/j.entcs.2003.09.005. (Cited on
pages 18, 74, and 179.)

Alonzo Church. A formulation of the simple theory of types.
Journal of Symbolic Logic, 5(2):56-68, June 1940. (Cited on page 33.)

Common Criteria. Common criteria for information technol-
ogy security evaluation (version 3.1), Part 3: Security assurance
components, September 2006. Available as document CCMB-
2006-09-003. (Cited on page 184.)

Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe,
Jos Warmer, and Alan Wills. The amsterdam manifesto on ocL. In
Tony Clark and Jos Warmer, editors, Object Modeling with the ocL:
The Rationale behind the Object Constraint Language, volume 2263
of Lecture Notes in Computer Science, pages 115-149, Heidelberg,
2002. Springer-Verlag. 1SBN 3-540-43169-1. (Cited on pages 17, 105,
113, and 178.)

Birgit Demuth, Heinrich Hussmann, and Ansgar Konermann. Gen-
eration of an ocL 2.0 parser. In Thomas Baar, editor, Workshop on

205

http://dx.doi.org/10.1007/s10009-004-0166-5
http://dx.doi.org/10.1007/s10270-003-0035-9
http://dx.doi.org/10.1007/s10270-003-0035-9
http://dx.doi.org/10.1016/j.entcs.2003.09.005
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf

BIBLIOGRAPHY

[39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

206

Tool Support for ocL and Related Formalisms—Needs and Trends,
Technical Report LGL-REPORT-2005-001, pages 38—52. EPFL, 2005.
(Cited on page 18.)

Sophia Drossopoulou and Susan Eisenbach. Describing the se-
mantics of Java and proving type soundness. In Jim Alves-Foss,
editor, Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science, pages 41-82, Heidelberg, 1999. Springer-
Verlag. 1sBN 3-540-66158-1. (Cited on pages 17, 175, and 176.)

Sophie Dupuy, Anges Front-Conte, and Christophe Saint-Marcel.
Using uML with a behaviour-driven method. In Frappier and
Habrias [42], chapter 6. 1SBN 1-85233-353-7. (Cited on page 196.)

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A
programmer’s reduction semantics for classes and mixins. In Jim
Alves-Foss, editor, Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science, pages 241-269, Heidel-
berg, 1999. Springer-Verlag. 1sBN 3-540-66158-1. (Cited on pages 17,
175, and 176.)

Marc Frappier and Henri Habrias, editors. Software Specification
Methods: An Overview Using a Case Study. Formal Approaches to
Computing and Information Technology. Springer-Verlag, London,
2000. ISBN 1-85233-353-7. (Cited on pages 167, 195, and 206.)

Dov M. Gabbay. Labelled Deductive Systems, volume 1 of Oxford
Logic Guides. Oxford University Press, Inc., New York, NY, Usa,
1997. ISBN 978-0-198-53833-2. (Cited on pages 134 and 153.)

Martin Gogolla and Mark Richters. Expressing umL class dia-
grams properties with ocL. In Tony Clark and Jos Warmer, edi-
tors, Object Modeling with the ocL: The Rationale behind the Object
Constraint Language, volume 2263 of Lecture Notes in Computer
Science, pages 85-114, Heidelberg, 2002. Springer-Verlag. 1sBN
3-540-43169-1. (Cited on page 109.)

Mike Gordon. From LCF to HOL: a short history. In Gordon
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language,
and Interaction: Essays in Honour of Robin Milner, pages 169-185.
MIT Press, Cambridge, Massachusetts, 2000. ISBN 978-0-262-16188-
6. (Cited on page 31.)

Mike J. C. Gordon and Tom E Melham. Introduction to HOL: a
theorem proving environment for higher order logic. Cambridge
University Press, New York, NY, USA, July 1993. 1SBN 0-521-44189-7.
(Cited on pages 34, 35, 36, and 176.)

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

BIBLIOGRAPHY

John V. Guttag and James J. Horning. Larch: Languages and Tools
for Formal Specification. Texts and Monographs in Computer Sci-
ence. Springer-Verlag, New York, NY, USA, 1993. ISBN 0-387-94006-
5. (Cited on page 16.)

Reiner Hahnle. Automated Deduction in Multiple-valued Logics.
Oxford University Press, Inc., New York, NY, USA, 1994. ISBN
0-19-853989-4. (Cited on page 186.)

Reiner Hihnle. Efficient deduction in many-valued logics. In
International Symposium on Multiple-Valued Logics (1SMVL), pages
240-249, Los Alamitos, CA, USA, 1994. IEEE Computer Society.
ISBN 0-8186-5650-6. doi: 10.1109/ismvl.1994.302195. (Cited on
pages 137 and 153.)

Reiner Hahnle. Many-valued logic, partiality, and abstraction in
formal specification languages. Logic Journal of the 1GPL, 13(4):
415-433, July 2005. doi: 10.1093/jigpal/jzio32. (Cited on page 178.)

Reiner Hahnle. Tableaux for many-valued logics. In Marcello
D’Agostino, Dov Gabbay, Reiner Hihnle, and Joachim Posegga,
editors, Handbook of Tableau Methods, pages 529-580. Kluwer Aca-
demic Publishers, Dordrecht, 1999. 1SBN 978-0-792-35627-1. (Cited
on pages 132 and 153.)

Reiner Hihnle. Towards an efficient tableau proof procedure
for multiple-valued logics. In Egon Borger, Hans Kleine Biin-
ing, Michael M. Richter, and Wolfgang Schonfeld, editors, Com-
puter Science Logic (csL), volume 533 of Lecture Notes in Computer
Science, pages 248-260, Heidelberg, 1991. Springer-Verlag. 1sBN
978-3-540-54487-6. doi: 10.1007/3-540-54487-9_62. (Cited on
pages 57 and 150.)

Ali Hamie, Franco Civello, John Howse, Stuart Kent, and Richard
Mitchell. Reflections on the Object Constraint Language. In Jean
Bézivin and Pierre-Alain Muller, editors, The Unified Modeling
Language. «UML»’98: Beyond the Notation, volume 1618 of Lec-
ture Notes in Computer Science, pages 162-172, Heidelberg, 1998.
Springer-Verlag. 1SBN 3-540-66252-9. doi: 10.1007/b72309. (Cited
on pages 105 and 178.)

Ali Hamie, John Howse, and Stuart Kent. Interpreting the Object
Constraint Language. In Proceedings of Asia Pacific Conference in
Software Engineering (APSEC), pages 288-295, Los Alamitos, CA,
USA, 1998. IEEE Computer Society. ISBN 0-8186-9183-2. doi: 10.
1109/apsec.1998.733731. (Cited on pages 17 and 178.)

207

http://dx.doi.org/10.1109/ismvl.1994.302195
http://dx.doi.org/10.1093/jigpal/jzi032
http://dx.doi.org/10.1007/3-540-54487-9_62
http://dx.doi.org/10.1007/b72309
http://dx.doi.org/10.1109/apsec.1998.733731
http://dx.doi.org/10.1109/apsec.1998.733731

BIBLIOGRAPHY

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

208

David Harel and Bernhard Rumpe. Meaningful modeling: What’s
the semantics of “semantics”? 1EEE Computer, 37(10):64-72, Oc-
tober 2004. 1SSN 0018-9162. doi: 10.1109/MC.2004.172. (Cited on
page 106.)

Rolf Hennicker, Heinrich HufSmann, and Michel Bidoit. On the
precise meaning of OcL constraints. In Tony Clark and Jos Warmer,
editors, Object Modeling with the ocL: The Rationale behind the
Object Constraint Language, volume 2263 of Lecture Notes in Com-
puter Science, pages 69-84, Heidelberg, 2002. Springer-Verlag. 1sBN
3-540-43169-1. (Cited on pages 57 and 150.)

Gérard Huet and Bernard Lang. Proving and applying program
transformations expressed with second order patterns. Acta In-
formatica, 11(1):31-55, 1978. doi: 10.1007/BF00264598. (Cited on
page 38.)

Brian Huffman, John Matthews, and Peter White. Axiomatic con-
structor classes in Isabelle/HoLCF. In Joe Hurd and Thomas F. Mel-
ham, editors, Theorem Proving in Higher Order Logics (TPHOLS),
volume 3603 of Lecture Notes in Computer Science, pages 147-162,
Heidelberg, 2005. Springer-Verlag. 1sBN 978-3-540-28372-0. doi:
10.1007/11541868_10. (Cited on page 177.)

Daniel Jackson. Alloy: a lightweight object modelling notation.
AcM Transactions on Software Engineering and Methodology, 11(2):
256-290, 2002. ISSN 1049-331X. doi: 10.1145/505145.505149. (Cited
on page 16.)

Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: the
Alloy constraint analyzer. In International Conference on Software
Engineering (ICSE), pages 730-733, New York, NY Usa, June 2000.
ACM Press. ISBN 1-58113-206-9. doi: 10.1109/ICSE.2000.870482.
(Cited on page 16.)

Bart Jacobs and Erik Poll. Java program verification at Nijmegen:
Developments and perspective. In Kokichi Futatsugi, Fumio Mi-
zoguchi, and Naoki Yonezaki, editors, Software Security— Theories
and Systems (1sss), volume 3233 of Lecture Notes in Computer Sci-
ence, pages 134-153, Heidelberg, 2004. Springer-Verlag. 1sBN 978-3-
540-23635-1. doi: 10.1007/b102118. (Cited on pages 176 and 181.)

Clift B. Jones. Systematic Software Development Using vbM. Pren-
tice Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition, 1990.
0-13-880733-7. (Cited on page 11.)

http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1007/BF00264598
http://dx.doi.org/10.1007/11541868_10
http://dx.doi.org/10.1007/11541868_10
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1109/ICSE.2000.870482
http://dx.doi.org/10.1007/b102118

[63]

[64]

[65]

[66]

(67]

(68]

[69]

[70]

[71]

BIBLIOGRAPHY

Manfred Kerber and Michael Kohlhase. A mechanization of strong
kleene logic for partial functions. In Alan Bundy, editor, Auto-
mated Deduction—cADE-12, volume 814 of Lecture Notes in Com-
puter Science, pages 371-385, Heidelberg, 1994. Springer-Verlag.
ISBN 3-540-58156-1. doi: 10.1007/3-540-58156-1_26. (Cited on
pages 132 and 177.)

Manfred Kerber and Michael Kohlhase. A tableau calculus for par-
tial functions. In Collegium Logicum—Annals of the Kurt-Gédel-
Society, volume 2, pages 21-49. Springer-Verlag, New York, nv,
USA, 1996. ISBN 3-211-82796-X. (Cited on page 153.)

Setrag N. Khoshafian and George P. Copeland. Object identity. In
Object-oriented programming systems, languages and applications
(oopsLA), pages 406416, New York, NY UsA, 1986. ACM Press.
ISBN 0-89791-204-7. doi: 10.1145/28697. 28739 (Clted on page 82.)

Stephen C. Kleene. Introduction to Meta Mathematics. Wolters-
Noordhoft Publishing, Amsterdam, 1971. ISBN 0-7204-2103-9. Orig-
inally published by Van Nostrand, 1952. (Cited on page 56.)

Cris Kobryn. uMmL 2001: a standardization odyssey. Commu-
nications of the AcM, 42(10):29-37, 1999. ISSN 0001-0782. doi:
10.1145/317665.317673. (Cited on page 104.)

Marcel Kyas. Verifying ocL Specifications of umL Models: Tool
Support and Compositionality. PhD thesis, University of Leiden,
Berlin, 2006. (Cited on pages 178, 179, and 181.)

Marcel Kyas, Harald Fecher, Frank S. de Boer, Mark van der
Zwaag, Jozef Hooman, Tamarah Arons, and Hillel Kugler. For-
malizing UML models and OcL constraints in pvs. Electronic
Notes in Theoretical Computer Science, pages 39—47, 2004. doi:
10.1016/j.entcs.2004.09.027. (Cited on page 181.)

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A nota-
tion for detailed design. In Haim Kilov, Bernhard Rumpe, and
Ian Simmonds, editors, Behavioral Specifications of Businesses and
Systems, pages 175-188. Kluwer Academic Publishers, Dordrecht,
1999. ISBN 978-0-7923-8629-2. (Cited on pages 16 and 99.)

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David R. Cok, Peter Miiller, Joseph Kiniry, and Patrice
Chalin. yML reference manual (revision 1.2), February 2007. Avail-
able from http://www.jmlspecs.org. (Cited on page 99.)

209

http://dx.doi.org/10.1007/3-540-58156-1_26
http://dx.doi.org/10.1145/28697.28739
http://dx.doi.org/10.1145/317665.317673
http://dx.doi.org/10.1145/317665.317673
http://dx.doi.org/10.1016/j.entcs.2004.09.027
http://dx.doi.org/10.1016/j.entcs.2004.09.027
http://www.jmlspecs.org

BIBLIOGRAPHY

[72]

(73]

[74]

[75]

[76]

[77]

(78]

210

K. Rustan M. Leino and Peter Miiller. Modular verification of
static class invariants. In John Fitzgerald, Ian J. Hayes, and An-
drzej Tarlecki, editors, FM 2005: Formal Methods, volume 3582 of
Lecture Notes in Computer Science, pages 26—42, Heidelberg, 200s5.
Springer-Verlag. 1SBN 978-3-540-27882-5. doi: 10.1007/11526841_4.
(Cited on pages 16, 71, 79, 81, and 181.)

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion
of subtyping. Acm Transactions on Programming Languages and
Systems, 16(6):1811-1841, November 1994. ISSN 0164-0925. doi:
10.1145/197320.197383. (Cited on pages 22 and 95.)

Luis Mandel and Maria Victoria Cengarle. On the expressive power
of ocL. In Jeannette M. Wing, Jim Woodcock, and Jim Davies,
editors, World Congress on Formal Methods in the Development of
Computing Systems (FM), volume 1708 of Lecture Notes in Com-
puter Science, pages 854-874, Heidelberg, 1999. Springer-Verlag.
ISBN 3-540-66587-0. (Cited on page 105.)

Claude Marché and Christine Paulin-Mohring. Reasoning about
Java programs with aliasing and frame conditions. In Joe Hurd
and Thomas F. Melham, editors, Theorem Proving in Higher Order
Logics (TPHOLS), volume 3603 of Lecture Notes in Computer Science,
pages 179-194, Heidelberg, 2005. Springer-Verlag. 1SBN 978-3-540-
28372-0. doi: 10.1007/11541868_12. (Cited on page 16.)

Salida Markovi¢ and Thomas Baar. An ocL semantics specified
with QvT. In Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio, editors, Model Driven Engineering Languages and
Systems (MoDELS), volume 4199 of Lecture Notes in Computer
Science, pages 661-675, Heidelberg, 2006. Springer-Verlag. 1sBN
978-3-540-45772-5. doi: 10.1007/11880240_46. (Cited on pages 178
and 179.)

Thomas F. Melham. A package for inductive relation definitions
in HOL. In Myla Archer, Jennifer J. Joyce, Karl N. Levitt, and
Phillip J. Windley, editors, International Workshop on the HOL The-
orem Proving System and its Applications (TPHOLS), pages 350-357,
Los Alamitos, CA, Usa, 1992. IEEE Computer Society. ISBN 0-8186-
2460-4. (Cited on pages 165 and 177.)

Bertrand Meyer. Object-Oriented Software Construction. Prentice
Hall, Inc., Upper Saddle River, NJ, usa, 1988. ISBN 0-13-629031-0.
(Cited on page 16.)

http://dx.doi.org/10.1007/11526841_4
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1007/11541868_12
http://dx.doi.org/10.1007/11880240_46

[79]

[80]

(81]

(82]

[83]

[84]

(85]

(86]

BIBLIOGRAPHY

Jorg Meyer and Arnd Poetzsch-Heffter. An architecture for
interactive program provers. In Susanne Graf and Michael I
Schwartzbach, editors, Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1785 of Lecture Notes in
Computer Science, pages 63-77, Heidelberg, 2000. Springer-Verlag.
ISBN 3-540-67282-6. (Cited on pages 71, 176, and 181.)

Olaf Miiller, Tobias Nipkow, David von Oheimb, and Oskar Slo-
tosch. HOLCF = HOL + LCF. Journal of Functional Programming, 9
(2):1191-223, 1999. (Cited on page 17.)

Wolfgang Naraschewski and Markus Wenzel. Object-oriented
verification based on record subtyping in higher-order logic. In
Jim Grundy and Malcolm C. Newey, editors, Theorem Proving
in Higher Order Logics (TPHOLS), volume 1479 of Lecture Notes
in Computer Science, pages 349-366, Heidelberg, 1998. Springer-
Verlag. ISBN 3-540-64987-5. doi: 10.1007/BFb0055146. (Cited on
pages 176 and 177.)

Tobias Nipkow. Order-sorted polymorphism in Isabelle. In Gérard
Huet and Gordon Plotkin, editors, Workshop on Logical Environ-
ments, pages 164-188. Cambridge University Press, New York, NY,
USA, 1993. ISBN 0-521-43312-6. (Cited on page 34.)

Tobias Nipkow. Winskel is (almost) right: Towards a mechanized
semantics textbook. Formal Aspects of Computing, 10(2):171-186,
1998. doi: 10.1007/5001650050009. (Cited on page 176.)

Tobias Nipkow and David von Oheimb. Javag;s; is type-safe—
definitely. In acm Symp. Principles of Programming Languages
(PopL), pages 161-170, New York, NY Usa, 1998. ACM Press. 1SBN
0-89791-979-3. doi: 10.1145/268946.268960. (Cited on pages 17
and 175.)

Tobias Nipkow, David von Oheimb, and Cornelia Pusch. uJava:
Embedding a programming language in a theorem prover. In
Friedrich L. Bauer and Ralf Steinbriiggen, editors, Foundations
of Secure Computation, volume 175 of NaTO Science Series F: Com-
puter and Systems Sciences, pages 117-144, Amsterdam, The Nether-
lands, 2000. 108 Press. 1SBN 978-1-58603-015-5. (Cited on pages 175,

176, and 187.)

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HoL—A Proof Assistant for Higher-Order Logic, volume 2283
of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,
2002. (Cited on pages 14, 31, and 159.)

211

http://dx.doi.org/10.1007/BFb0055146
http://dx.doi.org/10.1007/s001650050009
http://dx.doi.org/10.1145/268946.268960

BIBLIOGRAPHY

(87]

(88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

212

Object Management Group. Object constraint language specifi-
cation (version 1.1), September 1997. Available as omG document
ad/97-08-08. (Cited on page 178.)

Object Management Group. UML 2.0 OCL specification, October

2003. Available as oMG document ptc/03-10-14. (Cited on pages 14,
117, 118, 119, 120, 121, 122, 125, 126, 127, 128, 129, 159, 167, 178, 182, 185,
and 189.)

Object Management Group. UML 2.0 OCL specification, April 2006.

Available as omMG document formal/06-05-o1. (Cited on pages 105
and 129.)

Object Management Group. Unified modeling language speci-
fication (version 1. 5) March 2003. Available as oMG document

Object Management Group. UML 2.0 superstructure specification,
July 2005. Available as omG document formal/o5-07-04. (Cited
on page 183.)

Object Management Group. OMG XML metadata interchange (xmr)
specification (version 1.1), November 2000. Available as oMG
document formal/oo-11-02. (Cited on page 165.)

Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and Man-
dayam K. Srivas. pvs: Combining specification, proof checking,
and model checkmg In Rajeev Alur and Thomas A. Henzinger,
editors, Computer Aided Verification (cav), volume 1102 of Lec-
ture Notes in Computer Science, pages 411-414, Heidelberg, 1996.
Springer-Verlag. 1SBN 3-540-61474-5. doi: 10.1007/3-540-61474-5_
91. (Cited on pages 176 and 181.)

Lawrence C. Paulson. A fixedpoint approach to (co)inductive
and (co)datatype definitions. In Gordon Plotkin, Colin Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction: Essays
in Honour of Robin Milner, pages 187-211. MIT Press, Cambridge,
Massachusetts, 2000. ISBN 978-0-262- 16188-6. (Cited on pages 76

and 177.)

Lawrence C. Paulson. A formulation of the simple theory of types
(for Isabelle). In Per Martin-Léf and Grigori Mints, editors, coLoG-
88, volume 417 of Lecture Notes in Computer Science, pages 246
274, Heidelberg, 1990. Springer-Verlag. 1SBN 3-540-52335-9. doi:
10.1007/3-540-52335-9_58. (Cited on page 34.)

http://www.omg.org/cgi-bin/doc?ad/97-08-08
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/00-11-02
http://dx.doi.org/10.1007/3-540-61474-5_91
http://dx.doi.org/10.1007/3-540-61474-5_91
http://dx.doi.org/10.1007/3-540-52335-9_58
http://dx.doi.org/10.1007/3-540-52335-9_58

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

BIBLIOGRAPHY

Lawrence C. Paulson. Generic automatic proof tools. In Robert
Veroft, editor, Automated reasoning and its applications: essays
in honor of Larry Wos, pages 23-47. MIT Press, Cambridge, Mas-
sachusetts, 1997. 1SBN 978-0-262-22055-2. (Cited on page 161.)

Frank Pfenning. Logical frameworks. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, vol-
ume 2, chapter 17, pages 1063-1147. Elsevier Science Publishers,
Amsterdam, 2001. ISBN 0-444-50812-0. (Cited on page 31.)

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In
Conference on Programming Language Design and Implementation
(PLDI), pages 199-208, New York, NY Usa, 1988. ACM Press. 1SBN
0-89791-269-1. doi: 10.1145/53990.54010. (Clted on page 38.)

Nicole Rauch and Burkhart Wolff. Formalizing Java’s two’s-com-
plement integral type in Isabelle/HOL. Electronic Notes in Theoret-
ical Computer Science, 80:1-18, 2003. doi: 10.1016/S1571-0661(04)
80808-9. (Cited on page 59.)

Mark Richters. A Precise Approach to Validating umL Models and
ocL Constraints. PhD thesis, Universitdt Bremen, Logos Verlag,
Berlin, BISS Monographs, No. 14, 2002. (Cited on pages 18, 73, 74,

105, 106, 178, and 185.)

Mark Richters and Martin Gogolla. On formalizing the umL ob-
ject constraint language ocL. In Tok Wang Ling, Sudha Ram,
and Mong-Li Lee, editors, Conceptual Modeling—ER ’98, volume
1507 of Lecture Notes in Computer Science, pages 449—464, Hei-
delberg, 1998. Springer-Verlag. 1SBN 978-3-540-65189-5. doi:
10.1007/b68220. (Cited on pages 17 and 178.)

Mark Richters and Martin Gogolla. ocL: Syntax, semantics, and
tools. In Tony Clark and Jos Warmer, editors, Object Modeling
with the ocL: The Rationale behind the Object Constraint Language,
volume 2263 of Lecture Notes in Computer Science, pages 42—68,
Heidelberg, 2002. Springer-Verlag. 1SBN 3-540-43169-1. (Cited on
pages 17,18, and 179.)

Bertrand Russell. Introduction to Mathematical Philosophy.
George Allen & Unwin, London, 1919. (Cited on page s.)

Thomas Santen. A Mechanized Logical Model of Z and Object-
Oriented Specification. PhD thesis, Technical University Berlin,
June 1999. (Cited on pages 176 and 177.)

213

http://dx.doi.org/10.1145/53990.54010
http://dx.doi.org/10.1016/S1571-0661(04)80808-9
http://dx.doi.org/10.1016/S1571-0661(04)80808-9
http://dx.doi.org/10.1007/b68220
http://dx.doi.org/10.1007/b68220

BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

214

Norbert Schirmer. Verification of Sequential Imperative Programs
in Isabelle/HOL. PhD thesis, Technische Universitit Miinchen,
2006. (Cited on page ﬁ.)

Graeme Smith. The Object Z Specification Language. Advances in
Formal Methods Series. Kluwer Academic Publishers, Dordrecht,
2000. ISBN 0-7923-8684-1. (Cited on page 15.)

Graeme Smith, Florian Kammiiller, and Thomas Santen. Encod-
ing Object-Z in Isabelle/HoL. In Didier Bert, Jonathan P. Bowen,
Martin C. Henson, and Ken Robinson, editors, ZB 2002: Formal
Specification and Development in Z and B, volume 2272 of Lec-
ture Notes in Computer Science, pages 82—-99, Heidelberg, 2002.
Springer-Verlag. 1SBN 3-540-43166-7. (Cited on page ﬁ.)

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall,
Inc., Upper Saddle River, NJ, usa, 2nd edition, 1992. 1SBN 0-139-
78529-9. (Cited on pages 11 and 15.)

Susan Stepney, Rosalind Barden, and David Cooper, editors. Ob-
ject Orientation in Z, Workshops in Computing, Heidelberg, 1992.
Springer-Verlag. 1sBN 3-540-19778-8. (Cited on page 15.)

Don Syme. Proving Java type soundness. In Jim Alves-Foss,
editor, Formal Syntax and Semantics of Java, volume 1523 of Lec-
ture Notes in Computer Science, pages 83-118, Heidelberg, 1999.
Springer-Verlag. 1SBN 3-540-66158-1. (Cited on page 175.)

José Ambrosio Toval, Victor Requena, and José Luis Fernandez.
Emerging ocL tools. Software and Systems Modeling, 2(4):248-261,
December 2003. 1SSN 1619-1366. doi: 10.1007/510270-003-0031-0.
(Cited on page 179.)

Luca Vigano. Labelled Non-Classical Logics. Kluwer Academic Pub-
lishers, Dordrecht, 2000. 1SBN 0-7923-7749-4. (Cited on pages 134
and 153.)

David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,
Type Safety and Hoare Logic. PhD thesis, Technische Universitt
Miinchen, 2001. (Cited on pages 175 and 176.)

David von Oheimb and Tobias Nipkow. Hoare logic for Nano-
Java: Auxiliary variables, side effects, and virtual methods revis-
ited. In Lars-Henrik Eriksson and Peter Alexander Lindsay, editors,
FME 2002: Formal Methods—Getting IT Right, volume 2391 of Lec-
ture Notes in Computer Science, pages 89-105, Heidelberg, 2002.
Springer-Verlag. 1SBN 3-540-43928-5. (Cited on pages 17 and 176.)

http://dx.doi.org/10.1007/s10270-003-0031-0

[115]

[116]

[117]

[118]

BIBLIOGRAPHY

David von Oheimb and Tobias Nipkow. Machine-checking the
Java specification: Proving type-safety. In Jim Alves-Foss, editor,
Formal Syntax and Semantics of Java, volume 1523 of Lecture Notes
in Computer Science, pages 119-156, Heidelberg, 1999. Springer-
Verlag. 1sBN 3-540-66158-1. (Cited on page 175.)

Jos Warmer and Anneke Kleppe. The Object Constraint Language:
Getting Your Models Ready for mpa. Addison-Wesley Longman,
Inc., Reading, MA, usa, 2nd edition, August 2003. ISBN 0-321-
17936-6. (Cited on pages 167 and 189.)

Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, Cambridge, Massachusetts, 1993. ISBN 0-262-23169-7.

(Cited on pages 37 and 90.)

Kenro Yatake, Toshiaki Aoki, and Takuya Katayama. Imple-
menting application-specific object-oriented theories in HOL. In
Dang Van Hung and Martin Wirsing, editors, Theoretical As-
pects of Computing—ICTAC 2005, volume 3722 of Lecture Notes in
Computer Science, pages 501-516, Springer-Verlag, 2005. Springer-
Verlag. ISBN 3-540-29107-5. doi: 10.1007/11560647_33. (Cited on
page 176.)

215

http://dx.doi.org/10.1007/11560647_33

LIST OF ACRONYMS

ACM

APSEC

CADE

CASE

CASSIS

CAV

COLOG

CSL

EAL

EASST

EBNF

EPFL

ETH

FME

HOAS

HOL

HOLCF

HOOL

HUG

Association for Computing Machinery

Asia Pacific Conference in Software Engineering
Automated Deduction

Computer Aided Software Engineering

Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices

Computer Aided Verification

International Conference on Computer Logic
Conference on Computer Science Logic
Evaluation Assurance Level

European Association of Software Science and Technology
Extended Backus-Naur Form

Eole Polytechnique Fédérale de Lausanne
Eidgendssische Technische Hochschule
Formal Methods Europe

higher-order abstract syntax

higher-order logic

HOL + LCE

An object-oriented specification and verification
environment.

Higher-Order Logic User’s Group

217

LIST OF ACRONYMS

ICTAC International Colloquium on Theoretical Aspects of
Computing

ICSE International Conference on Software Engineering

IEEE Institute of Electrical and Electronic Engineers

IFIP International Federation for Information Processing

IJCAR International Joint Conference on Automated Reasoning

IMP A simple imperative programming language

ISMVL International Symposium on Multiple-Valued Logics

1SSS Software Security—Theories and Systems

JML Java Modeling Language

JVM Java virtual machine

LCF Logic for Computable Functions

LE Local (Formula) Equivalence

LEC Local Equational Calculus

LJE Local Judgement Equivalence

LOOP Logic of Object-Oriented Programming

LTC Local Tableaux Calculus

MDA Model Driven Architecture

MDE Model Driven Engineering

MIT Massachusetts Institute of Technology

MOoDELS Model Driven Engineering Languages and Systems

NATO North Atlantic Treaty Organization

NY New York

oCL Object Constraint Language

OCLE Object Constraint Language Environment

ocLve Object Constraint Language Verification Platform

OMG Object Management Group

218

OOPSLA

PLDI

POPL

PVS

QVT

SKL

SML

TACAS

TPHOLS

TYPES

19/¢]

UEC

UJE

UML

USA

USE

VERIFY

VDM

XMI

XML

ZF

LIST OF ACRONYMS
International Conference on Object-oriented Programming
Systems, Languages and Applications

Programming Language Design and Implementation
Symposium on Principles of Programming Languages

Pvs Verification System

Query/View/Transformation

Strong Kleene Logic

Standard Meta Language

Tools and Algorithms for the Construction and Analysis of
Systems

Theorem Proving in Higher Order Logics
Types for Proofs and Programs
Universal (Formula) Congruence
Universal Equational Calculus
Universal Judgement Equivalence
Unified Modeling Language
United States of America

UML Specification Environment
Verification Workshop

Vienna Development Method
XML Metadata Interchange
Extensible Markup Language

Zermelo-Fraenkel

219

INDEX

Page numbers in italic type refer to main entries and definitions. The
normal printed numbers refer to the use of an index entry.

symbols

« option, 36
Vi(a), 49
38,49
- 3849
71,38, 49

A
abstraction, 22, 34
access specifier, 22
adaption
datatype, 43, 49
embedding, 44, 53
functional, 43, 52
alias, 99
Alloy, 16
application, 34
arithmetic, 143
association, 26, 109
attribute type, 64
attribute, 21, 26

axiom, 33, 35

B

base class type, 65
Boogie, 16, 181
bot, 49

boxing, 22

C

call, 24
class, 21, 24, 26

class invariant, see invariant
class type, 62, 67
closed-world, 42, 43, 61
coercion, 69
combinator, 37
comprehensions, 147
computation, 143
congruence, 134
conservative, 13, 45, 46, 94
extension, 35
type definition, 51
consistent, 35
constant, 34
constraint language, 12
object-oriented, 42, 43, 54, 100,
131,184 T
constructor
type, 36, 45, 50
context, 120
declaration, 115
lifting, 37, 49, 50
object, 88
passing, 50,139
core-logic, 146
C#,23,124

D
data model, 24
data structure
smashed, 51, 147
datatype
recursive, 39

221

(DATATYPE PACKAGE — KIND)

datatype package, 14, 163, 165, 177
definedness, 49, 49, 134
definition

constant, 35, 35, 47, 51, 54, 58
finite family, 93

type, 35, 36
destruction rules, 156
diagram

activity, 12,24

class, 12, 24, 24, 62, 64, 110
extension, 62

collaboration, 24

component, 24

object, 24

sequence, 12, 24

state, 12, 24, 186

E
embedding, 38,131,175
conservative, 13, 40
deep, 16, 39, 175
shallow, 13, 17, 39, 41, 176, 183
encapsulation, 22
encoder, 163
environment, 46
equality, 81, 113
identity, 83
operator, 84
reference, 82
strict, 85
strong, 84, 146
value
deep, 83
shallow, 83
equivalence, 134, 138
relation, 82
extensionality, 35

F
finalize, 69, 96
formal method, 11
formula

typed, 46
frame property, 97

222

INDEX

G

generalization, 26

H

Haskell, 49

higher-order logic, see HOL

Hilbert operator, 34

HOAS, 38

HOL, 13, 31, 45,183

HOL-OCL, 14, 19, 103, 163, 163, 185
architecture, 163
encoder, 165
library, 165, 166

HOL-Z, 17

HOLCF, 17

HOOL, 176

Horn-clause, 153

I
implementation, 23
implication, 147, 150
introduction, 32, 35
informative, 106
inheritance, 22, 23, 26, 41, 42, 62,
109
multiple, 22
single, 22
instance, 22, 86
interface, 23, 24, 109
invalid, 105
invariant, 27, 44, 71,108, 114
invocation, 24
invoke, 52

Isabelle, 14, 18, 20, 30, 31, 143, 172
isomorphism, 46

J

Java, 17, 21, 23, 65, 73, 124, 175
Jive, 71,176, 181

IML, 16, 132

judgment, 143

K

KeY, 73,179
kind, 68

INDEX

Krakatoa, 16

L
labeling, 153
)-abstraction, 35
A-calculus, 33
A-term, 33
late-binding, 24,52
layer, 43
LE, 136
Least, 53
level, 43
lift, 49
LJE, 136
logic
propositional fragment, 146
three-valued
Kleene, 56
lazy, 55
strict, 55
logical framework, 31
logical judgment, 74, 84
LOOP tool, 176

M

MDA, 12, 163, 187
MDE, 12, 163, 184, 187
member, 22
membership, 147
meta-implication, 32
meta-language, 17, 31, 45
meta-logic, 31, 38
meta-quantifier, 32
meta-variable, 32
metamodel, 12
method, 21, 22, 23
model-checking, 1
modular proof, 43
modus ponens, 35
multiplicity, 26

N

namespace, 26
natural deduction rules, 31

(KRAKATOA - POLYMORPHISM)

None, 36
normative, 106
null, 105
number, 143

O

Object, 65

object, 22, 62, 86
identifier, 22
instance, 26, 62
store, 13, 42, 43, 66, 99,184
structure, 42

object-based, 23

object-language, 17

object-logic, 31, 33, 38

object-orientation, 21

object-oriented, 23

OCL, 12-15, 19, 27, 103, 132, 178
semantics, 103,178
syntax, 27, 189

OCLE, 18,179

OclUndefined, 105

0clvoid, 109

OCLVP, 181

OMG, 12,104

open-world, 43, 61, 69
callaz o
invocation, 42, 89
overloading, 23
overriding, 23, 52, 89
specification, 87, 88

totalized, 89

strict, 37
table, 92
P
package, 26

partial map, 92

path expression, 42, 108

pathname, 26

polymorphism, 23
overloading, 23
overriding, 23

223

(POSTCONDITION —~ THEOREM)

private, 22
proof
formal, 31
goal, 32
modular, 43
object, 33, 33, 160
procedure, 153
procedures, 186
state, 32, 32
Proof General, 15, 163
proof procedure, 33
protected, 22
public, 22

Q

quadrium non datur, 135
quantifier, 147, 156
QVT, 179

R

recursion, 126

reduction rules (R-rules), 150
reference, 22

refinement, 186

reflexivity, 35

requirement, 30

result, 88
retrenchment, 186
rule

derived, 33
S
SecureUML, 186
self, 88

semantic combinator, 49
semantics, 45
combinator-style, 37, 117
copy, 64
formal, 37
machine-checked, 37, 107, 183

224

INDEX

sharing, 64
textbook, 37, 117
SemCom, 47, 50, 51, 53
set theory, 147
signature, 46
signature morphism, 46
simplifier, 143, 144, il_
smashing, 50, 51
SML, 163
Some, 36
sort, 33, 45
soundness, 158
specification, 11, 23, 30
increment, 47
morphism, 46
Spec#, 16, 71, 132, 181
state, 41
transition, 41
sterilize, 69
strictify, 52
strictness, 49, 49
Strong Kleene Logic, 14, 56
sugsml, 163, 165
subcalculus, 42, 50
subgoal, 32
substitution, 39
subtype, 22, 23, 26, 76
subtyping, 23, 41, 62, 109
multi}%,z__z -
single, 22
superclass, 22
supertype, 22, 65, 66
symmetry, 35
system state, 86

T
tactics, 33
tag type, 65
term, 45
typed, 46
tertium non datur, 35
testing, 31
model-based, 11
theorem, 33, 33

INDEX

theorem prover, 12, 31
theory, 35, 46
closure, 46
morpher, 165, 166
morphism, 46, 54, 185
layered, 45, 47
transitivity, 35
trichotomy, 151
type, 34
arity, 46
basic, 22
class, 33
constructor, 33
dynamic, 23
semantic, L_l T
static, 23
structural, 71
value, 22, 58
variable, 33
type set, E
type-cast, 24, 69, 108
type-checking, 1

§)

UG, 135
UEC, 150
U, 136

UML, 12, 14, 15, 19, 24, 24, 178, 183

undefined, 43
undefinedness, 42, 134
universal, 136
unification
higher-order, 32
universal quantifier
meta, 32
universe
non-referential, 64, 67
referential, 64, 66
universe type, 66

USE, 18, 73, 179

e
validation, 11, 30, 30

(THEOREM PROVER - Z)

validity, 133, 159
global, 133
local, 133, 159
universal, 133, 136

value, 22, 82

variable, 34

VDM, 11

verification, 30, 30

visibility, 26, 109
private, 22
protected, 22
public, 22

X

XMI, 14

Z
Z,11,15

225

CURRICULUM VITA

since 01/2003

06/2000-12/2002

06/2000

01/1995-05/2000

Research Assistant at the Information Security Group,
headed by Prof. David Basin, ETH Zurich, Switzerland.

Research Assistant at the Chair for Software Engi-
neering, headed by Prof. David Basin, University of
Freiburg, Germany.

Diplom Informatiker (Masters of Computer Science),
University of Freiburg, Germany.

Title of thesis: Verifikation von Dividieren mit Word-
Level-Decision-Diagrams (Verification of Division Cir-
cuits using Word-level Decision-diagrams), supervi-
sed by Prof. Dr. Bernd Becker.

Student of computer science with second subject mi-
crosystems engineering at the University of Freiburg,
Germany.

227

	Abstract
	Abstract
	Zusammenfassung

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work
	1.3.1 Formal Specification Languages
	1.3.2 Formal Tools for Object-oriented Systems
	1.3.3 Formal Semantics and Tools for OCL

	1.4 Overview
	1.5 Typographic Conventions

	2 Foundations and Background
	2.1 Object-oriented Specifications
	2.1.1 The Object-oriented Paradigm
	2.1.2 A Short Introduction to UML/OCL
	Object-oriented data modeling using UML.
	The Object Constraint Language.

	2.2 Formal Background
	2.2.1 Formal Analysis: Validation and Verification
	2.2.2 Interactive Theorem Proving and Logical Frameworks
	The Logical Framework Isabelle.
	Logical Frameworks and Higher-order Logic.

	2.2.3 Comparing Textbook and Combinator Style Semantics
	2.2.4 Logical Embeddings and Semantics

	3 A Framework for Object-oriented Specification
	3.1 Challenges
	3.2 Theory Morphism and Structuring
	3.2.1 Datatype Adaption
	3.2.2 Functional Adaption
	3.2.3 Embedding Adaption for Shallow Embedding

	3.3 Defining an Object-oriented Constraint Language
	3.3.1 The Logical Core
	3.3.2 Primitive Datatypes
	3.3.3 Collections

	3.4 Formalizing Object-oriented Data Structures
	3.4.1 Foundations
	3.4.2 Type Constructions
	3.4.3 Instances
	3.4.4 Adaption to Higher Embedding Layers

	3.5 Towards a Constrained Object Store
	3.5.1 Structural Types with Post-hoc Invariant Checks
	Defining Structural Type and Kind Sets.
	Post-hoc Invariant Checking.

	3.5.2 Defining Semantic Type and Kind Sets
	A Co-Recursive Type and Kind Set Construction.
	An Object-oriented Invariant Representation.

	3.5.3 Combining Embeddings
	3.5.4 Varying Invariants
	Providing Different Type Sets and Kind Sets.

	3.5.5 Advantages of Semantic Invariants

	3.6 Equalities and Object-orientation
	3.7 Operations for Accessing the System State
	3.7.1 Accessing all Instances of a State
	3.7.2 Testing for New Instances

	3.8 On Operation Specifications
	3.9 Operation Calls
	3.10 Operation Invocations
	3.10.1 The Invocation Encoding Scheme
	Initial Operation Definition.
	Inheritance of Operation.
	Operation Overriding.

	3.10.2 Considering Conservativity

	3.11 Limits to Recursive Invocations and Calls
	3.12 Specifying Frame Properties
	3.13 Discussion

	4 A Formal Semantics for UML/OCL
	4.1 Challenges
	4.2 A Note On OCL Standards
	4.2.1 A Historic Overview
	4.2.2 The Role of Semantics in the Standard

	4.3 A Machine-checked OCL Semantics
	4.3.1 Encoding the Underlying Data Model
	The Object Universe.
	Path expressions: Accessors.
	Types, Casting and Type Tests.
	Limitations of our Object Model.

	4.3.2 Primitive Datatypes
	4.3.3 Encoding Built-in OCL Operations
	4.3.4 Collection Types
	4.3.5 Equality
	4.3.6 Encoding User-defined Operations
	4.3.7 Encoding Invariants
	4.3.8 Context Declarations

	4.4 A Note On Standard Compliance
	4.4.1 Comparing Textbook-style and Combinator-style Semantics
	4.4.2 Compliance to the Requirements of the OCL Standard
	4.4.3 Faithful Representing UML Object Structures

	4.5 Extending OCL
	4.5.1 Operation Invocation
	4.5.2 Recursive Operations
	4.5.3 Explicit Representation of Type Sets and Kind Sets
	4.5.4 Strict Boolean Operators
	4.5.5 Accessing All Instances of the Previous State
	4.5.6 Frame Properties

	4.6 Discussion

	5 Calculi for Object-oriented specifications
	5.1 Challenges
	5.2 Validity and Judgments
	5.2.1 Validity of Formulae
	5.2.2 A Theory of Basic Judgment

	5.3 Equivalences and Congruences
	5.3.1 Basic Equivalences and Congruences
	5.3.2 On the Relationship Between the Different Forms of Equivalence

	5.4 Subcalculi
	5.4.1 Reasoning about Context-Passingness
	5.4.2 Reasoning about Undefinedness and Definedness
	5.4.3 Arithmetic Computational Rules
	5.4.4 Conversion to HOL

	5.5 The Logic
	5.5.1 Reasoning over Equality
	5.5.2 Core-Logic (Boolean)
	5.5.3 Set Theory and Logic

	5.6 Calculi
	5.6.1 A Universal Equational Calculus
	A Further Proof Principle of UEC: Trichotomy.

	5.6.2 A Local Equational Calculus
	5.6.3 The Judgment Tableaux Calculus LTC
	A Natural Deduction Tableaux Calculus for HOL.
	Handling Quantifiers.

	5.7 Discussion
	5.7.1 Calculi for OCL
	5.7.2 Towards Automated Deduction

	6 Applications
	6.1 The HOL-OCL System
	6.1.1 An Architectural Overview
	6.1.2 The Model Repository: su4sml
	6.1.3 The Encoder: An Object-oriented Datatype Package
	6.1.4 The Theory Morpher
	6.1.5 The Library

	6.2 Case Studies
	6.2.1 Encoding User Specifications
	6.2.2 Proving Properties of UML/OCL Models

	6.3 Discussion

	7 Related Work
	7.1 Embeddings of Object-oriented Languages
	7.1.1 Deep Embeddings of Object-oriented Languages
	7.1.2 Shallow Embeddings of Object-oriented Languages

	7.2 Datatype Packages
	7.3 Proof Support for Three-valued Logics
	7.4 Formal OCL Semantics
	7.5 Tool Support

	8 Conclusion and Future Work
	8.1 Conclusions
	8.2 Summary of Contributions
	8.3 Future Work
	8.3.1 Extending our Formal Framework
	Improving Proof Support.
	Support for Behavioral Specifications.
	Support for Analysis Techniques.
	Support for Domain-specific Analysis Methods.

	8.3.2 Developing a Formal Tool Chain
	8.3.3 Applications.

	A The Syntax of OCL
	B The Invoice System
	B.1 Informal Description
	B.2 Formal Specification

	Bibliography
	List of Acronyms
	Index

