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�emethod of “postulating” what we want has
many advantages; they are the same as the

advantages of the� over honest toil. Let us leave
them to others and proceed with our honest toil.

(Russell [], p. )





ABSTRACT

We present a semantic framework for object-oriented specification lan-

guages. We develop this framework as a conservative shallow embed-

ding in Isabelle/. Using only conservative extensions guarantees by

construction the consistency of our formalization. Moreover, we show

how our framework can be used to build an interactive proof environ-

ment, called -, for object-oriented specifications in general and

for / in particular.

Our main contributions are an extensible encoding of object-oriented

data structures in , a datatype package for object-oriented specifica-

tions, and the development of several equational and tableaux calculi for

object-oriented specifications. Further, we show that our formal frame-

work can be the basis of a formal machine-checked semantics for 

that is compliant to the  . standard.

ZUSAMMENFASSUNG

In dieser Arbeit wird ein semantisches Rahmenwerk für objektorientierte

Spezifikationen vorgestellt. Das Rahmenwerk ist als konservative, flache

Einbettung in Isabelle/ realisiert. Durch die Beschränkung auf kon-

servative Erweiterungen kann die logische Konsistenz der Einbettung

garantiert werden. Das semantische Rahmenwerk wird verwendet, um

das interaktives Beweissystem - für objektorientierte Spezifika-

tionen im Allgemeinen und insbesondere für / zu entwickeln.

Die Hauptbeiträge dieser Arbeit sind die Entwicklung einer erweiterba-

ren Kodierung objektorientierter Datenstrukturen in , ein Datentyp-

Paket für objektorientierte Spezifikationen und die Entwicklung verschie-

dener Kalküle für objektorientierte Spezifikationen. Zudem zeigen wir,

wie das formale Rahmenwerk verwendet werden kann, um eine forma-

le, maschinell geprü�e Semantik für  anzugeben, die konform zum

Standard für  . ist.
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INTRODUCTION

In this chapter, we motivate our work and summarize our contributions.

Moreover, we give a first, brief overview of related work and introduce

the overall structure of this thesis.

. 

Computer systems, both in hardware and in so�ware, are becoming more

and more complex. Our daily life depends on the reliable and correct

behavior of such systems, e. g., electronic drive control systems used in

cars, automatic flight control systems, or medical systems. It is difficult

to get computer systems right. Formal methods are one way to ensure

the correctness of such vital systems; thus, formal techniques should

be integrated into the development process of such systems. Just like

using blueprints in common engineering practice, the development of

complex so�ware systems requires a detailed specification describing the

data structures and the desired behavior of the system.

Specification documents can vary in their precision from informal

textual descriptions or structured text to formal specification using a

language based on mathematical logic such as Z [] or  []. De-

pending on their precision, computer-supported techniques can be ap-

plied that assure the consistency of specification documents. For example,

type-checking or well-formedness-checking can be used to find some

inconsistencies in requirement and design documents of a system and

thus provide an a priori analysis. More evolved techniques can assure the

correct transition from a specification document to the implementation.

�ese techniques and their computer support are summarized under the

term formal methods. Obviously, the power of these techniques crucially

depends on the degree of formality.

Producing formal specifications and maintaining their consistency

during system development is a task that requires a lot of effort and

training. �is is to an even larger extent true for the validation phase,

where techniques such as model-based testing, model-checking or inter-
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active theorem proving are applied. Industry has been reluctant to accept

formal methods within their daily practice so far. Although, it is mean-

while widely accepted that specification and testing activities outweigh

by far the costs of the implementation phase of a large system and that

formal methods have a positive effect here. Rather, the overwhelming

need for specification led to the development of semi-formal specification

documents that have their roots in light-weight graphical notations. A

prominent example is the Unified Modeling Language () [], which

is widely accepted by the industry for developing so�ware following the

object-oriented methodology. Instead of using mathematical notation

such as Z or the Hoare Calculus, there is a trend to introduce formal

specification techniques featuring a syntax that is close to the syntax of

object-oriented programming languages. Usually, these formal specifi-

cations based on the specification of preconditions and postconditions.

Moreover, the choice of using a syntax similar to programming languages

helps so�ware developers by using specification formalisms they are fa-

miliar with, both with respect to the syntax and semantics.

�e definition of the  [] is one result of the industrial need

for computer-support of such light-weight specification methods. 

is defined in an open standardization process led by the Object Man-

agement Group () and both  standards in general and  in

particular are widely accepted in the industry. Overall, the  offers

an integrated object-oriented development methodology ranging from

informal requirement analysis over object-oriented modeling (design

phase) to code-generation. �is design-centered, or model-driven so�-

ware development process is known as Model Driven Architecture ()

or Model Driven Engineering ().

�e  provides a standard for graphical, or diagrammatic, specifi-

cation notations, representation in abstract syntax and partly also their

semantics. �ese notations comprise among others activity diagrams,

sequence diagrams, class diagrams and state diagrams. �e latter two

notations are of particular interest from the perspective of formal meth-

ods, since they represent forms of data-oriented and behavioral model-

ing, which can be considered as well-known concepts in a new shape.

Moreover, with Unified Modeling Language () version . the Object

Constraint Language (), a textual annotation formalism (constraint

language) was added to the  standard.  is heavily used in the

specification documents of the metamodels of the  itself.

From the perspective of formal methods, the success of  tools

supporting the  opens a door for bringing formal methods a step

closer to industry. However, to turn this vision into reality, several chal-

lenges need to be faced: first, the semantics of / is conceptually

much closer to an object-oriented programming language than to a tra-

ditional logic, although  comprises a version of predicate logic and
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arithmetic. Second, much effort has to be invested to cope with the object-

oriented features of  in a logically clean way, allowing for adequate

symbolic computations. �ird, an adequate proof methodology for object-

oriented modeling, as it is meanwhile established in the user community

of /, has to be developed. Overall, this will allow for applying

formal methods using a uniform specification language during the com-

plete so�ware development process. Probably, this will increase the use of

formal methods during the development of computer systems and thus

improve the quality of so�ware we daily use.

. 

�is thesis shows that the conservative embedding technique can be suc-

cessfully used for both defining the semantics of a specification language

and for building formal tools for the embedded language. Moreover, this

construction guarantees the correctness of the developed tools with re-

spect to the defined semantics. In particular, we confirm the following

claims:

• A shallow embedding can be used for defining the semantics of an

object-oriented specification language; including the underlying

object-oriented data structures, i. e., for modeling an object store.

• A shallow embedding can be used for developing formal tool sup-

port for a specification language used in industry.

• Defining the semantics, and also building tools, in an conservative

way, i. e., without using (unproven) axioms, is feasible; even for

such a rich language as . Moreover, we provide evidence that

the consistency guarantee of this approach outweighs the larger

effort compared to an axiomatic approach.

• A conservative embedding technique is useful to compare different

semantical variants and possible language extensions in a logical

safe way, i. e., without the risk of introducing inconsistencies.

• Developing a machine-checked formalization of a real-world, i. e.,

defined by an industrial committee, standard of a specification

language is feasible.

For supporting our thesis, we have conducted work that is both of the-

oretical and of practical importance. On the theoretical side, we provide:

• A type-safe representation of object-oriented data structures in

the typed λ-calculus and in particular higher-order logic ().


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�is includes a typed, extensible  data model supporting inher-

itance and subtyping inside the typed λ-calculus with parametric

polymorphism. As a consequence of the conservativity with re-

spect to , we can guarantee the consistency of the semantic

model.

• A formal semantics of object-oriented data structures with invari-

ants enriched with a precondition/postcondition style specifica-

tions for operations.

• An extensible encoding of object-oriented data structures into .

Moreover, we developed automatic support for our encoding. �is

includes also the development of a datatype package for extensible,

object-oriented data-structures with invariants.

• Proof calculi for a Strong Kleene Logic over path expressions. In

particular, we provide several derived calculi for / that

allow for formal derivations establishing the validity of /

formulae. Automated support for such proofs is also provided.

However, since our embedding, called -, comprises pred-

icate logic with equality and a typed set theory, the validity of a

formula is undecidable and the logic is inherently incomplete with

respect to the class of standard models of  [].

On the practical side, we developed -, an interactive proof envi-

ronment for object-oriented specifications, in particular using /.

�e main design goals of - can be summarized as follows:

• - implements a generic framework for object-oriented

specification languages and means to compare different semantic

variants thereof.

• - follows semantically the  . standard [].

• - provides technical support for importing / mod-

els in the -formats generated by conventional / model-

ing tools.

• - allows for analyzing / models with all the means

provided by an up-to-date interactive, tactic-driven theorem prov-

ing environment such as Isabelle [].

- also provides contributions for improving the definition and

development of the language / itself:

• It defines a machine-checked formalization of the semantics as

described in the standard for  . []. �is is implemented as

a conservative, shallow embedding of  into .





.  

• �e standard postulates requirements on the semantics of  op-

erators. �e  semantics—which is contained in an informative,

i. e., non-normative, appendix of the standards documents—is

not formally related to these requirements. We provide formal

proofs that our formalization of the  semantics indeed meets

the requirements.

• Our work detected formal contradictions of the  standard, in

particular with respect to the derived calculi. Overall, our em-

bedding strives for compliance with the  . standard, i. e.,

whenever our embedding differs from the standard, we give rea-

sons for it and document this fact clearly.

• It represents a technical framework (including a graphical front-

end based on Proof General [] and a programming interface for

) enabling one to implement particular formal methods based

on /.

.  

In this section, we give a broad but brief overview of related work. �is

discussion is acting as a first classification of the overall subject of this

thesis but should neither be understood as being complete nor as provid-

ing a detailed comparison. We give an overview of formal specification

languages, formal tools, and a report on the state of the art regarding .

A detailed discussion of closely related work will be given in Chapter .

.. Formal Specification Languages

�ere is a variety of formal so�ware specification languages, mainly de-

veloped by academia. Most of the well known formal notations, e. g.,

Z [], are not geared toward object-orientation. For example, Z is based

on set theory and first-order predicate logic without special support for

object-oriented concepts. Nevertheless, there are various object-oriented

extension for Z [, ] available but they fail to provide a strong link

to object-oriented methodologies as they are used in industry. Moreover,

these efforts for integrating object-orientation into well-known formal

methods are faced with the same criticism from industry as their ances-

tors: the notation used by formal methods is difficult to understand, there

is a lack of tools supporting formal methods, and the costs of using formal

methods are high.

In contrast, object-oriented specification languages like  are highly

accepted in industry. Moreover, with Object Constraint Language (),

which is part of , a semi-formal constraint language is also provided.

 allows for the specification of constraints which were not directly
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expressible within . Besides , there are other light-weight for-

mal methods for object-oriented systems; the most prominent ones are

Alloy [], the Java Modeling Language () [], and Spec# [].

Alloy was one of the first languages that faced the object-oriented com-

munity by advertising itself as being compatible with graphical object

models. Its development was influenced by Z, but Alloy is geared towards

fully automatic decision procedures, i. e., parallel to defining the seman-

tics of Alloy, a specialized model-checker was developed []. Alloy

provides a composition that is based on adding fields which is somewhat

similar to inheritance and also a concept of reuse of formulae by explicit

parametrization, similar to functions in a functional programming lan-

guage. But this is not sufficient to model object-orientation in all its

aspects.

 is an interface specification language that can be used to specify

the behavior of Java modules. Among other, it allows the annotation of

Java source with preconditions, postconditions and invariants using a

Java-like syntax. It combines the design by contract approach of Eiffel []

and the model-based specification approach of the Larch family [] of

interface specification languages, with some elements of the refinement

calculus. More informally, one can state that  has a similar relation to

Java as  has to  or Spec# has to C#. As  and Spec# are tightly

connected to a programming language, the formal tool support for both

are geared towards program verification.

.. Formal Tools for Object-oriented Systems

While object-oriented programming is a widely accepted programming

paradigm, theorem proving over object-oriented-programs or object-

oriented-specifications is far from being a mature technology. Classes,

inheritance, subtyping, objects, and references are deeply intertwined and

represent complex concepts that are quite remote from the platonic world

of first-order logic or . For this reason, there is a tangible conceptual

gap between the verification of functional and imperative programs on

the one hand and object-oriented-programs on the other.

Among the existing implementations of proof environments dealing

with subtyping and references, two categories can be distinguished:

. into standard logic and

. deep embeddings into a meta-logic.

As pre-compilation tools, for example, we consider Boogie for Spec# [,

] or Krakatoa [] for . �e underlying idea is to compile object-

oriented programs into standard imperative ones and to apply a verifi-

cation condition generator on the latter. While technically sometimes
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very advanced, the foundation of these tools is quite problematic: �e

compilation in itself is not verified and it is not clear if the generated

conditions are sound with respect to the (usually complex) operational

semantics.

Among the tools based on deep embeddings, there is a large body of

literature on formal models of Java-like languages, e. g., [, , , ,

]. In a deep embedding of a language semantics, syntax and types are

represented by free datatypes. As a consequence, derived calculi inherit a

heavy syntactic bias in form of side conditions over binding and typing

issues. �is is unavoidable if one is interested inmeta-theoretic properties

such as type-safety; however, when reasoning about applications and not

over language properties, this advantage turns into a major obstacle for

efficient deduction. �us, while proofs for type-safety, soundness ofHoare

Calculi and even soundness of verification condition generators are done,

none of the mentioned deep embeddings has been used for substantial

proof work in applications.

In contrast, the shallow embedding technique has successfully been

used, including large applications, for semantic representations of non

object-oriented languages. Examples for such embeddings are  itself

(in Isabelle/Pure),  (in Isabelle/) [], or -; an embedding

of Z into Isabelle/ []. �ese embeddings have been used for sub-

stantial applications, e. g., Basin et al. [] present an analysis of a security

architecture using - []. �e essence of a shallow embedding is to

represent object-language binding and typing directly in the binding and

typing machinery of the meta-language. �us, many side conditions are

simply unnecessary; type-safety, for example, is proven implicitly when

deriving computational rules from semantic definitions. Since implicit

side conditions are “implemented” by built-in mechanisms, they can be

handled orders of magnitude faster than an explicit treatment.

.. Formal Semantics and Tools for 

From its very first appearance,  gained much interest in the research

community. �ese interests resulted in several tools supporting  and

also in many open questions about the formal foundation of .

Beside several works [, , ] discussing details of the  semantics,

there are also early attempts for providing a formal semantics for 

or a subset thereof. For example, Richters and Gogolla [] present a

formal semantics of  based on an untyped set theory and Cengarle

and Knapp [] present a type inference system and a big-step operational

semantics for  .. All these proposals for a formal  semantics

are based on “mathematical notation” in the style of “naïve set theory,”

which in our opinion, especially for a typed object-language like , is

inadequate to cover subtle subjects such as inheritance and class invariants.
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In particular, this also holds for the semantics presented by Richters []

(a derivative of []) which is the basis of the informative (i. e., non-

normative) semantics chapter included in recent versions of the 

standard [, Appendix A]. Moreover, none of these works provide a

link between their formalization and the normative part of the standard,

i. e., a formal proof showing that these formal semantics fulfill the pairs

of preconditions and postconditions given in the normative part of the

standard. �e development of proof calculi and automated deduction for

 has not been in the focus of interest so far. Furthermore, none of

the presented works aims for a formal tool support that is guaranteed to

follow the given semantics.

�e formal tool support for  is still limited. Besides the integration

of  type-checkers into several  tools, there are mainly two dif-

ferent categories of tools that are compliant to the  semantics of the

standard []:

• Tools for runtime checking of  specifications, e. g., based on

the  toolkit from the University of Dresden []. �is suite

consists of a Java library for representing  datatypes, a type-

checker, and a code generator (constraint checker) that can check

 constraints (invariants, precondition and postconditions) at

runtime.

• Tools, namely  [] and  [], for animation of  spec-

ifications, allowing for the evaluation of  expression in the

context of a  model. Overall, these environments can be used

to validate a  against an  specification, i. e., one can check

that a given model is well-formed where the well-formedness rules

are expressed using .

In particular, there is no proof environment for , or a subset thereof,

that is based on a semantics that is compliant to the standard, e. g., sup-

porting a three-valued logic.

. 

�is thesis is structured as follows: In Chapter  we present the foun-

dations of this thesis, i. e., first we give a brief introduction into object-

orientation with a particular focus on /. Second, we introduce

the higher-order logic (), the interactive theorem prover Isabelle/,

and how it can be used for providing both a machine checked formal

semantics for a language and a formal tool for that language.

In Chapter , we develop a framework for defining the semantics for

object-oriented specification languages. �is framework comprises build-

ing blocks for the semantics of object-oriented data structures, i. e., an
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object store, and an object-oriented constraint language for reasoning

over these data-structures.

We use this framework in Chapter  for defining a formal semantics

of  that is compliant with the standard. Moreover, we present several

extensions of  and propose changes of the  semantics. �ese

extensions and changes will make  easier to understand and more

suitable for formal analysis.

In Chapter , we present several calculi for three-valued logics that

reason over path expressions, i. e., object-oriented data-structures. �is

includes also the development of several sub-calculi, e. g., specialized

for the reasoning over definedness. We also discuss their use for semi-

automatic reasoning.

In Chapter , we give a brief overview of -. - is an in-

teractive theorem prover for / specifications that is implemented

using the formal framework of Chapter . Moreover, we show the usability

of - in a case study.

We give a detailed discussion of related work in Chapter . Finally, we

conclude the thesis and discuss future work in Chapter .

.  

�e following typographic conventions are adopted in this thesis:

• Within / specifications,  expressions are either written

inline, like self.s->includes(5), or together with their context

specification:

context A:

inv: self.s->includes(5)

Keywords are printed in a blue typeface.

•  formulae that are interpreted within - are written in-

line as self .s->includes(), or alternatively in mathematical syn-
tax as:  ∈ (self .s). We provide this mathematical notation for 
as an alternative concrete syntax. Overall, - supports both

notations, but we prefer the mathematical one for semantic defini-

tions and proof work. Appendix A provides a brief comparison of

both concrete syntaxes for .

• We use a color coding to distinguish  and  sub-expressions

in formulae containing both e. g.,

∪ ≡ li�(strictify(λ X . strictify(λ Y .

AbsSet⌞⌜RepSet X⌝ ∪ ⌜RepSet Y⌝⌟))) . (.)
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Overall,  expressions are printed using the default color, i. e.,

black. We resolve ambiguities between the underlying mathemati-

cal syntax (i. e., ) and the  level by using colors: Expressions

that are internally used within -, like the li�ing operator

⌞_⌟ are printed in a black typeface. Using our mathematical 
syntax, expressions on the  level, like _ ∧ _, are written in a
purple typeface. For the concrete syntax presented in the standard,

e. g., _ and_, we use a purple typeface.

•  formulae are written using the usual mathematical notion,

i. e., s ∈ S.

• �eory files for - and Isabelle/ are printed as follows:

theory royals_and_loyals

imports

OCL

begin

import_model "royals_and_loyals.xmi" "royals_and_loyals.ocl"

end

Keywords are printed in a blue typeface.
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FOUNDATIONS AND BACKGROUND

In this chapter, we introduce the basic concepts needed for this thesis.

As this thesis is positioned between object-orientation on the one side

and formal methods on the other, this chapter is twofold: in Section .

we introduce the notion and concepts of object-orientation as it is used

in this thesis. In particular, we introduce concepts like classes, objects,

and inheritance. As an example of an object-oriented specification and

modeling language, we give a short overview of the Unified Modeling

Language () and theObject Constraint Language (). In Section .,

we introduce the formal concepts this thesis is based on. In particular,

we explain the key concepts of the interactive theorem prover Isabelle

and introduce higher-order logic (). We also show how Isabelle/

can be used both for defining semantics and for the development of tools

supporting formal methods.

. - 

In this section, we give a brief introduction to the concepts of object-

oriented specification formalisms. We assume, that the reader is some-

what familiar with object-orientation, e. g., in a way it is used in program-

ming languages like Java. We will only introduce the key concepts and

notions used in this thesis.

.. �e Object-oriented Paradigm

While developed in the database community, object-orientation gained

much of its success in the programming languages community. Many

of the widely used programming languages, e. g., Java, feature object-

orientation. �e object-oriented paradigm emphasizes the following key

concepts:

Class: A class defines a unit consisting of a data specification, i. e., defined class

by its attributes, and its behavior, e. g., defined by itsmethods and attribute

operations. �e attributes, methods, and operations are also called
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members of a class. A class is the basis of modularity and structuremember

in an object-based or object-oriented setting.

Object: An object is an instance, i. e., a runtime representation, of a class.object

Usually, every object is uniquely identified by its object identifierobject identifier

(oid) or reference.reference

Primitive Type: A primitive type is a type whose instances are directlyprimitive type

represented by their value. Many object-oriented programming

language provide primitive types for integers, real numbers and

strings. Wrapping a primitive type into a class is called boxing,boxing

e. g., Java for example provides both the primitive type int for an

unboxed and the class type Integer for a boxed implementation

of the integers. Sometimes, primitive types are also called value

types or basic types.basic types

Encapsulation: Using encapsulation, a class can hide details of its imple-encapsulation

mentation, i. e., methods, operations, and attributes. It ensures

that an object can be changed only through well-defined interfaces.

�e accessibility of class members is specified using access speci-access specifier

fiers. Common access specifiers are private, protected, and public.

Whereas private members of a class are only accessible inside the

class itself, protected parts are also accessible by subclasses. Public

members are accessible from everywhere.

Abstraction: �e ability of a program to ignore the details of an object’s

(sub)class and work at a more generic level when appropriate is

called abstraction.abstraction

Inheritance: Using inheritance, a more specific element can incorporateinheritance

structure and behavior defined by a more general element. Inheri-

tance is the preferred way of extending classes and establishes a

“is-a” relationship. If a class is derived from exactly one superclass,

the relationship is called single inheritance. Otherwise, i. e., if asingle inheritance

class has several superclasses, it is calledmultiple inheritance.multiple inheritance

Subtyping: A subtype is a datatype that is related to another, more general,subtype

one (the supertype) by some notion of substitutivity, meaningsupertype

that computer programs written to operate on elements of the

supertype can also operate on elements of the subtype. More

specifically, the supertype-subtype relation is o�en taken to be

the one defined by the Liskov substitution principle []. As for

inheritance, we call this relation single subtyping if a subtype issingle subtyping

related to exactly one supertype. Otherwise, i. e., if a subtype has

several supertypes, we call this relationmultiple subtyping.multiple subtyping
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Polymorphism: Using polymorphism, the same method can be provided polymorphism

with different types. Two common types of polymorphism are over-

loading polymorphism and overriding polymorphism. �e former

is based on the overloading of operations, i. e., different variants overloading

of the same operation of method, only differing in the types of

their arguments, are defined within the same class. �e latter is

based on the overriding of operations, i. e., the re-definition of an overriding

operation or method having the same arguments within a subtype

of inheritance hierarchy. In the case of overriding polymorphism,

the behavior of the operation of method varies depending on the

class in which the behavior is invoked.

Whereas these terms define different concepts, they are o�en mixed, i. e.,

subtyping is o�en implemented via inheritance. But, this is not necessarily

the case, e. g., subtyping can be implemented without using inheritance.

For a good understanding of object-orientation, it is important to keep

these two concepts separate. In Java, for example, implementing, also

called realizing, an interface establishes a subtype relation that is not

implemented by inheritance. Moreover, as multiple inheritance can intro-

duce several kinds of ambiguities, it is not supported in many modern

object-oriented programming languages like Java or C#. In contrast to

a class, an interfaces consists of a set of operation specifications. As all interface

classes implementing an interface have to provide implementations for

these operations that comply to the specification given in the interface,

multiple subtyping based on interface realization is considered to less

problematic and is also supported by languages like Java and C#.

Further, we call a language object-based if it supports the most of the object-based

above described properties but does not support inheritance. An object-

based language that also supports inheritance is called object-oriented. object-oriented

In the following, we distinguish between methods and operations.

An operation is a possibly non-executable specification of a behavioral operation

aspect of a class; for example, pairs of preconditions and postconditions

specify an operation. A method is an executable implementation in a method

programming language, thus an operation can be implemented by several

methods (i. e., using different algorithms or even different programming

languages). Usually, one requires that a method (implementation) is a

refinement of an operation (specification).

Furthermore, in an object-oriented setting with subtyping, an expres-

sion has always a dynamic and a static type:

D . (S T) A type that can be checked statically, i. e.,

at compile time, is called static type. ◻ static type

D . (D T) A type that is inferred during runtime

is called dynamic type. ◻ dynamic type
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At a given execution point, the dynamic type must always conform to the

static type. Moreover, the static type and dynamic type of an expression

may identical. Informally, the dynamic type of an object is the type as

which the object was initially created, e. g., by calling a constructor. �e

static type is the type the object is acting as. Moreover, the static type

can be changed, via type-casts, along the subtype hierarchy. For example,type-cast

assume an expression that refers to an instance of the class Account: thus

the static type of this expression is Account. Nevertheless, at a given

execution point, this expression may be assigned to an object of class

LimitedAccount (which must be a subclass of Account); in this case, the

dynamic type of the expression is LimitedAccount.

�e dynamic type of an object determines which concrete implemen-

tation of an overridden method or operation is invoked. In more detail,

we distinguish between operation or method calls and invocations. An

operation call can be statically resolved, i. e., already at compile time thecall

concrete implementation that is called can be determined. In contrast, an

operation invocation cannot be resolved statically, i. e., due to overridinginvocation

polymorphism the concrete operation to call can only be determined

during runtime; this is also called late-binding.late-binding

.. A Short Introduction to /

In industry, the Unified Modeling Language () is probably the most

widely used object-oriented specification language. It is mainly known

as a diagrammatic specification language providing a variety of diagram

types describing the static structure, the behavior, and the interaction of

an object-oriented system. �e structure diagrams like class diagrams,

component diagrams or object diagrams allow one to model the structure

and data model of a system. Using behavior diagrams like state-machine

diagrams or activity diagrams, one can also specify the intended behavior

of the system. Further, a special variant of the behavioral diagrams are the

interaction diagrams (e. g., sequence diagrams or collaboration diagrams)

for modeling the control and data flow of a system.

-    . �e core part of

the Unified Modeling Language () is concerned with the modelingUnified Modeling

Language () of object-oriented data models, or the structure of an object-oriented

system, especially using class diagrams. A class diagram is a structuralclass diagram

diagram showing the classifiers (classes, interfaces, etc.) and the various

static relationships between them. A concrete class diagram usually only

shows a limited view of the overall structural systemmodel (i. e., not every

class of a model must be visualized using a class diagram). �us, a class

diagram is only a partial visualization of the underlying object-oriented

data model.data model
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Bank

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context LimitedAccount
inv: limit < 0
inv: limit <= balance

LimitedAccount

limit:Integer

getLimit():Integer
setLimit(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

LimitedAccount

limit:Integer

getLimit():Integer
setLimit(a:Integer):Boolean

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context LimitedAccount
inv: limit < 0
inv: limit <= balance Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..*

owner 1

Figure .:Modeling a simple banking scenariowith /. An Account is owned by a Customer,

which itself can have one or more accounts. An account can either be a generic account,

or one which can only be debited up to a specific limit; this is expressed using  invari-

ants. �e behavior of the operation Account::deposit(amount:Integer):Boolean is

specified by an  precondition and postcondition pair.
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�e class diagram in Figure . on the preceding page illustrates the

data model of a simple accounting scenario where customers can own

different kinds of accounts and transfer money between them.

In more detail: customers are modeled as a class Customer. �ere are

further classes modeling the different account types, a regular account

called Account and an account LimitedAccount allowing credits only up

to a specific limit. A class does not only describe a set of object instances,object instance

i. e., record-like data consisting of attributes such as balance, but alsoattribute

of behavioral aspects, i. e., operations (e. g., getBalance()) defined onoperation

them.

�e different account types are organized in a hierarchy of generaliza-generalization

tions, e. g., the class Account generalizes the class LimitedAccount. An

 generalization, denoted by an outlined arrow, is implemented by

inheritance and establishes a subtype relation.

Relations, as the one between customers and accounts, can be modeled

in  using associations. An association is constrained by a multiplic-association

ities, i. e., a constraint describing how many objects can be part of an

association. In our example, the multiplicities of the association requires

that every object instance of Account is associated with exactly one object

instance of Customer. Usually, the annotation of the multiplicity one is

omitted in graphical representations. In the other direction, the associa-

tion models that an instance of class Customer is related to a (non-empty)

set of instances of class Account or its subtypes.

For structuring the design model,  introduces a generic concept of

packages. A package allows for organizing model elements (e. g., classes,package

packages) and diagrams in a hierarchy. Further, many model elements,

in particular classes and packages, introduce a namespace. �us, thenamespace

hierarchy of such model elements induces a hierarchy of namespaces.

Elements within such a hierarchy of namespaces can be accessed using

pathnames, i. e., a path over several nested namespaces, is obtained bypathname

concatenating the names of the namespaces (such as packages or classes)

separated by pairs of double colons, e. g., Bank::Account.

�e concept of access specifier is called visibility in . �e visibilityvisibility

of an attribute or operation can either be specified textually or graphi-

cally. In Figure . all class attributes are private (denoted by a closed

lock) and all operations are public (denoted by an open lock). As an

alternative, private members of a class are denoted with a prefixed “-”-

sign, e. g., -getId():Integer and public members with a “+”-sign, e. g.,

+balance:Integer. Moreover, protected members are denoted with a

prefixed “#”-sign, e. g., #id:Integer.

   . Pure  diagrams are not

precise enough for supporting a formal so�ware development process. To
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close this gab, the  provides the Object Constraint Language (). Object Constraint

Language ()It is a constraint language for object-oriented designs trying to mimic the

syntax of object-oriented programming languages and thus hiding the

probably unfamiliar mathematical notions from its users. An overview of

the concrete syntax for  is given in Table . on the next page in 

notation. �is fragment, in particular, omits some syntactic variants. For

example, quantified variables must be named explicitly whereas the 

standard allows for omitting them.

�e core of  is based on a three valued logic reasoning over path

expressions. Additionally, the  standard also provides a library of basic

data structures (e. g., Boolean, Integer, Real, String, Set, or Sequence).

An overview of the types (classes) of the  library is given in Figure .

on page . In principle,  allows for the annotation of arbitrary 

models. Nevertheless, the main focus of  is the annotation of models

describing the static structure (e. g., class diagrams) of a system. In this

context, it seems natural to make class diagrams more precise using 

for specifying invariants, preconditions and postconditions of operations.

An invariant is an  formula attached to a class, which must, infor- invariant

mally, evaluate to true in “all” possible system states for all instances of

that class [, p. ]. As we will see later, requiring for an invariant that it

evaluates to true for all system states is too strong, i. e., we will relax that

requirement in certain situations (see Section ..). Using an invariant,

we can describe in  that the attribute id is a unique identifier for all

objects of type Account:

context Account

inv: Account::allInstances

->forAll(a1, a2 | a1 <> a2

implies a1.id <> a2.id)

Moreover, we can also constrain the effects of operations. Using a pre- precondition

condition, we can state that only positive amounts can be deposited:

context Account::deposit(a:Integer):Boolean

pre: a > 0

Additionally, one can describe the system state a�er the successful execu-

tion of the operation using a postcondition, e. g.: postcondition

context Account::deposit(amount:Integer):Boolean

post: balance = balance@pre+amount

and id = id@pre

In postconditions, the operator @pre allows for accessing the previous

state. If several constraints of the same type, e. g., invariants, are specified

they are semantically equivalent with their conjunction. For example, the

specification
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contextDeclList ∶∶= [classifierContextDecl ∣ operationContextDecl] contextDecl
classifierContextDecl ∶∶= context pathName invDecl

invDecl ∶∶= [invDecl] inv [simpleName] : expr
operationContextDecl ∶∶= context operation prePostDecl

prePostDecl ∶∶= [prePostDecl] pre [simpleName] : expr
∣ [prePostDecl] post [simpleName] : expr

operation ∶∶= [pathName ::] simpleName ( [varDeclList] ) [: type]
varDeclList ∶∶= [varDeclList ,] varDecl

varDecl ∶∶= simpleName [: type] [= expr]
type ∶∶= pathName ∣ collKind ( type )

expr ∶∶= literalExp ∣ pathName [@pre]
∣ expr.simpleName [@pre] ∣ expr->simpleName

∣ expr([{expr,}expr])
∣ expr(expr[:type][=expr],varDecl|expr)
∣ expr(varDecl | expr)
∣ expr[{expr,}expr][@pre]
∣ expr->forAll(varDecl[;varDecl]|expr)
∣ expr->exists(varDecl[;varDecl]|expr)
∣ expr->iterate(varDecl[;varDecl]|expr)
∣ prefixOperator expr ∣ expr infixOperator expr
∣ if expr then expr else expr endif
∣ let varDeclList in expr

infixOperator ∶∶= * ∣ / ∣ div ∣ mod ∣ + ∣ - ∣ < ∣ > ∣ <= ∣ >= ∣ = ∣ <>
∣ and ∣ or ∣ xor ∣ implies

prefixOperator ∶∶= - ∣ not
literalExp ∶∶= collLiteralExp ∣ primitiveLiteralExp

collLiteralExp ∶∶= collKind{{collLiteralPart,}collLiteralPart}
collKind ∶∶= Set ∣ Bag ∣ Sequence ∣ Collection ∣ OrderedSet

collLiteralPart ∶∶= expr ∣ expr..expr
primitiveLiteralExp ∶∶= Boolean ∣ Integer ∣ Real ∣ String

∣ true ∣ false ∣ oclUndefined
pathName ∶∶= [pathName::]simpleName

simpleName ∶∶= SIMPLE_NAME

Table .: A fragment of the formal grammar of , omitting syntactic variants like implicit

quantified variables. We also omit some types we do not consider in this thesis, e. g.,

OclMessage.





. - 

O
c
l
A
n
y

O
c
l
T
y
p
e

O
c
l
S
t
a
t
e O
c
l
M
o
d
e
l
E
l
e
m
e
n
tB
o
o
l
e
a
n

R
e
a
l

I
n
t
e
g
e
r

S
t
r
i
n
g

O
c
l
M
e
s
s
a
g
e

T
C
o
l
l
e
c
t
i
o
n

T

S
e
t

T
B
a
g

T
S
e
q
u
e
n
c
e

T
O
r
d
e
r
e
d
S
e
t

T

O
c
l
V
o
i
d

F
ig
u
re
.
:
�
e
ty
p
e
s
o
f
th
e



st
a
n
d
a
rd
li
b
ra
ry
,
e
x
c
e
p
t
th
e
c
o
ll
e
c
ti
o
n
ty
p
e
s
a
n
d
O
c
l
M
e
s
s
a
g
e
.
A
ll
ty
p
e
s
a
re
su
b
c
la
ss
e
s
o
f
O
c
l
A
n
y
.

M
o
re
o
v
er
,
a
ll
ty
p
es
a
re
su
p
er
cl
a
ss
es
o
f
O
c
l
V
o
i
d
,
i.
e.
,
in
st
a
n
ce
s
o
f
a
ll
ty
p
es
ca
n
b
e
u
n
d
efi
n
e
d
.
A
ll
u
se
r-
d
efi
n
e
d
cl
a
ss
es
a
re
a
ls
o

su
b
cl
a
ss
e
s
o
f
O
c
l
A
n
y
a
n
d
su
p
e
rc
la
ss
e
s
o
f
O
c
l
V
o
i
d
.





  

context LimitedAccount

inv: limit < 0

inv: limit <= balance

is semantically equivalent with the following specification

context LimitedAccount

inv: limit < 0 and limit <= balance

Further, a means of structuring the  specification is the possibility

to name constraints explicitly. For example, by specifying

context LimitedAccount

inv limitNegative: limit < 0

we can later refer to this constraint by its symbolic name limitNegative.

Many diagrammatic -features can be translated to  expressions

without losing any information, e. g., associations can be represented

by introducing implicit attributes into the objects with a suitable data

invariant describing the multiplicities. Some of these transformations are

already described in the  standard [].

.  

In this section, we give a brief overview of the formal foundations our

work is based on. Overall, we assume some familiarity with mathematical

notions and their use in defining language semantics formally. �us we

will limit ourselves to a brief introduction of the key concepts of the

interactive theorem prover Isabelle/ and the specific method of how

we use it for both defining the semantics of a language and providing tool

support for this language.

.. Formal Analysis: Validation and Verification

We start our introduction to formal methods with a short excursion ex-

plaining where formal tools can be used during so�ware development.

�e central point of a formal so�ware development process is to ensure

that an implementation fulfills its specification. �e techniques for en-

suring that a given so�ware meets the specified requirements are called

verification and validation.

So�ware validation is the process of executing or evaluating the so�-validation

ware and checking its behavior to ensure that it complies with its require-

ments. O�en, validation is done by the utilization of various testing

approaches. So�ware verification is the process of determining if so�-verification

ware fulfills its specification or not, e. g., by proving its correctness with


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respect to a formal specification. �us, verification does usually not rely

on executing the so�ware. Validation is an incomplete method, i. e., it can

only find errors but cannot guarantee the correct behavior for all possible

execution traces; verification provides this assurance.

Whereas verification is rarely used in “large-scale” so�ware develop-

ment, testing, as a validation technique, is widely used, but normally these testing

efforts are not based on a formal specification. �is strict separation

between verification and validation techniques is not obvious: testing can

be based on a formal specification, and thus a successful test together

with explicitly stated test hypotheses [] is not fundamentally different

from program verification, see [] for more details. Overall, tools that

build upon a formal machine-checked semantics, a technique this thesis

is centered around, can be used for both the development of tools for

formal verification and formal validation of (object-oriented) systems.

.. Interactive �eorem Proving and Logical Frameworks

In this section, we introduce the key concepts of higher-order logic (),

logical frameworks, and interactive theorem proving using Isabelle.

Interactive theorem proving deals with themachine-supported devel-

opment of formal proofs. An interactive proof editor allows for guiding

a semi-automatic proof search where all formal details are checked and

stored by a special computer program called theorem prover. Such a theo- theorem prover

rem prover can either be limited to one specific logic, or it can be generic

in the sense that it does not only support one built-in logic, but rather

is a logical framework [] for building new tools supporting various

logics. While using a logical embedding for defining the semantics of a

language it is important to distinguish between the language (logic) that

is already known and the new language being defined. �e newly defined

logic is called object-logic or object-language. Its operators and inferences object-logic

rules are described using an already supported logic, called the meta- meta-logic

logic or meta-language. For example, we use higher-order logic () as

meta-logic for defining the semantics of , one of our object-languages.

   . �e generic theorem prover

Isabelle [] is a logical framework based on an  [] style kernel. Isabelle

�e proof engine of Isabelle can directly process natural deduction rules.

�e generic rule “from assumptions A to An , infer conclusion An+” is

formally written as

A Ô⇒ . . .Ô⇒ An Ô⇒ An+ (.)

or using the notation of Isabelle it is written as

⟦A; . . . ;An⟧ Ô⇒ An+ , (.)
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where _Ô⇒ _ denotes the built-in meta-implication of Isabelle. Usingmeta-implication

the usual mathematical notation, this rule is written as

A . . . An
.

An+
(.)

Also more complex rules like “if assumption B can be inferred from

assumption A, infer A→ B” can be expressed in Isabelle:

(AÔ⇒ B) Ô⇒ AÐ→ B . (.)

�is rule, called implication introduction and in the mathematical litera-

ture it is written as:

[A]⋅⋅⋅
B

.
AÐ→ B

(.)

In this thesis, we prefer the mathematical notion, even if we describe a

system that is formalized in Isabelle.

A proof state in Isabelle contains an implicitly conjoint sequence ofproof state

Horn-clause-like rules ϕ, . . ., ϕn , called subgoals, and ϕ, which representssubgoal

the actual proof goal. Logically, the subgoals and the goal form together aproof goal

theorem of the form

ϕ . . . ϕn
.

ϕ
(.)

To cope with quantifiers, subgoals have a slightly more general form than

just Horn-clauses: variables may be bound by a built-inmeta-quantifier,meta-quantifier

e. g., as in the following rule:

⋀ x , . . . , xm . A; . . . ;An
.

An+
(.)

�e meta universal quantifier⋀_. _ can capture the usual side-constraint
“the variables x, . . ., xm must not occur free in the assumptions” for

quantifier rules; meta-quantified variables can be logically considered

as free variables. Further, Isabelle supportsmeta-variables (e. g., writtenmeta-variable

as ?x or ?y), which can be seen as “holes in a term” that can still be

substituted. Meta-variables are instantiated by Isabelle’s built-in higher-

order unification and occur only inside proofs.

�e initial proof state is built from the theorem

ϕ
,

ϕ
(.)
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which is trivially true for any (typed) formula ϕ. A theorem is proven if

a final proof state of the form ϕ is reached by tactics, i. e.,  functions tactics

allowing for the transformation of proof states. It is a key feature of

Isabelle’s design that all tactics are based on a few operations provided by

the logical core engine of Isabelle. Moreover, these core operations log all

logical operations in a derivation tree called proof object; thus, if someone proof object

has serious doubts on the correct implementation of Isabelle, he may

generate the proof objects and check the derivations by an independent

program or just store the proof objects for archival reasons.

Isabelle supports user-programmable extensions in a logically safe way.

Several generic tactics (proof procedures) have been developed; namely a

simplifier based on higher-order rewriting and a tableaux-based proof-

search procedures based on higher-order resolution. Building upon this

basis one can, in a logically safe way, extend Isabelle to support new lan-

guages, e. g., Z []. Such an extension of Isabelle, if done conservatively,

provides both a logical consistent semantics for the object-logic and a

reliable interactive theorem prover environment for the object-logic.

�e rationale behind Isabelle is to encode other logical languages, both

with respect to their syntax and to their deductive system. �e syntax of a

language can be described using higher-order syntax and powerful pretty-

printing mechanisms. �e deductive system may be specified by logical

rules in the built-in logical core language either by axioms or derived

rules (theorems).

�e distinction between axioms and theorems is important. An axiom axiom

is an unproven fact that is defined to be true. In contrast, a theorem (or theorem

derived rule) is a proven statement.

   - . Classical

higher-order logic () [, ] is a classical logic with equality enriched

by total (parametric) polymorphic higher-order functions.  is based

on a typed version of the λ-calculus. �e types τ are defined as λ-calculus

τ ∶= α ∶∶ ξ ∣ χ(τ, . . . , τ) , (.)

where α is a type variable (the set of type variables is ranging over α, β, type variable

γ, . . .) and where the set of type constructors χ contains, among others, type constructor

_ ⇒ _, bool, int, and α set. Moreover, the type system of Isabelle/

is two-staged: types are classified in type classes, e. g., ξ. �e set of type type class

classes is ranging over bot, term, . . .. Annotations with the default type

class term can be omitted, i. e., instead of α ∶∶ term we may just write α.

Type classes are also called sorts. sort

�e terms of  are λ-terms defined as λ-term

Λ ∶= C ∣ V ∣ λ V . Λ ∣ Λ Λ , (.)
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symbol meta-type description

¬ bool⇒ bool negation

true bool tautology

false bool absurdity

if [bool, α, α] ⇒ α conditional

let [α, α ⇒ β] ⇒ β let binder

Table .: Syntax and types of the  constants.

symbol meta-type description

ε (α ⇒ bool) ⇒ α Hilbert description

∀ (α ⇒ bool) ⇒ bool universal quantification

∃ (α ⇒ bool) ⇒ bool existential quantification

∃! (α ⇒ bool) ⇒ bool unique existence

Table .: Syntax and types of the  binders.

where C is the set of constants like true, false and where V is the set

of variables like x, y, z. Abstractions and applications are written λ x . e

and e e′ or e(e′). A subset of λ-terms may be typed, i. e., terms may

be associated to types by an inductive type inference system similar totype

the programming language Haskell or (to a lesser extent) . We do

not give a formal definition of the type inference system here and refer

the interested reader to [], where also a type inference algorithm is

described. In the following, we will only show type-checked λ-terms and

use an intuitive understanding of types.

�e logical terms of  (see Table ., Table ., and Table .) are

centered around the logical connectives. �e Hilbert operator є x . P xHilbert operator

returns an arbitrary x that makes P x true. �e Hilbert operator turns

 into a classical logic [].  may be interpreted in standard or

non-standard models assigning types to carrier sets, logical operators in

functions over them [].

symbol meta-type description

○ [β ⇒ γ, α ⇒ β] ⇒ (α ⇒ γ) composition

= [α, α] ⇒ bool equality

∧ [bool, bool] ⇒ bool conjunction

∨ [bool, bool] ⇒ bool disjunction

→ [bool, bool] ⇒ bool implication

Table .: Syntax and types of the  infix operators.
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�e logic of  is based on a few axioms or elementary inference rules:

the implication introduction, modus ponens, and tertium non datur:

[P]⋅⋅⋅
Q

,
P Ð→ Q

P Ð→ Q P
, and

Q

.
(P = true) ∨ (P = false)

(implication introduction)

(modus ponens)

(tertium non datur)

Further only the usual laws for axiomatizing equality, reflexivity, symme-

try, transitivity, extensionality, and substitutivity) are necessary:

,
t = t
s = t

,
t = s

r = s s = t
,

r = t

⋀ x . f x = g x
, and

f = g

(reflexivity)

(symmetry)

(transitivity)

(extensionality)

s = t P(s)
.

P(t)
(substitutivity)

�e substitutivity rule exploits the fact that term contexts (e. g., C =
A ∧ (B ∨ ◻) with the “hole” ◻) can be directly represented inside the
term language by a λ-abstraction (e. g., C = λ x . A∧ (B ∨ x)), while the λ-abstraction

usual substitution in a context C[s] is captured by the β-reduction of the

λ-calculus and the application C(s).
�e modules of larger logical systems built on top of  are Isabelle

theories. Among many other constructs, they contain type and constant theories

declarations as well as axioms. Stating arbitrary axioms in a theory is

extremely error-prone and should therefore be avoided. �us only a

limited form of extension mechanisms, called conservative extensions, conservative

extensionshould be used. Using a conservative extension scheme ensures that

the extended theory is consistent (“has models”) provided the original

theory is consistent. Four different conservative extensions have been

discussed in the literature: constant definition, type definition, constant

specification, and type specification []. For example, the most widely

used constant definition consists of a constant declaration constant definition

c ∶∶ τ (.)
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and an axiom of the form:

c ≡ E . (.)

We require that c has not been previously declared, the axiom is well-

typed, E is a closed expression (i. e., does not contain free variables) and

E does not contain c (no recursion). A further restriction forbids type

variables in the types of constants in E that do not occur in the type τ. As a

whole, a constant definition can be seen as an “abbreviation” which makes

the conservativity of the construction plausible [], and the syntactic

side-conditions are checked by Isabelle automatically. �e idea of an

“abbreviation” is also applied to the conservative type definition of a newtype definition

type (α , . . . , αn)T based on its representation as a set, i. e., {x ∣ P(x)}.
In this case, the set of type constructors is extended by the constructor

T of arity n. �e predicate P of type τ ⇒ bool for a base type τ constructs

a set of elements τ set; the new type is defined to be isomorphic to this

set. Technically, this isomorphism is stated by the declaration of two

constants representing the abstraction and the representation function

and by two axioms over them. More precisely, the constant AbsT of type

τ ⇒ (α , . . . , αn)T and the constant RepT of type (α , . . . , αn)T ⇒ τ are

declared. �e two isomorphism axioms have the form:

AbsT(RepT x) = x (.)

and

P(x) Ô⇒ RepT(AbsT x) = x . (.)

�e type definition is conservative if the proof obligation ∃x . P(x) holds;
this assures that the type is non-empty as required by the semantics of

.

An example for a definition of a simple but eminently useful datatype

of Isabelle/ isNone, Some

α option ∶=None ∣ Some α . (.)

�is datatype allows for adding a distinguished element to an already

existing type. For example, this can be used for modeling partial maps.

In fact, the type constructor _ ⇀ _ for partial maps in Isabelle/ is
defined as a type synonym:

α ⇀ β ∶= α ⇒ β option . (.)

On top of the  core language, a rich set of theories can be built

entirely by conservative definitions. In particular, one can derive a typed

set theory including least fixed-point theory, a theory of ordering, in-

cluding well-founded recursion, number theory including real number

theory and theories for data-structures like pairs, type sums and lists. A

large part of these theories consists in deriving rules over the defined

operators, in particular those that allow for simplification and (recursive)

computation.
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.. Comparing Textbook and Combinator Style Semantics

Besides the distinction between formal and informal semantic definitions,

one can also distinguish several styles for writing a formal semantics of a

programming or specification language. In this section, we will discuss

two widely used styles for writing formal semantics: textbook-style and

combinator-style.

In textbooks, e. g., Winskel [], formal semantics are described using

a semantic interpretation function I. For example, consider the following

definition for the addition over the Integers from the  standard [,

page A-]:

I(+)(i , i) =
⎧⎪⎪⎨⎪⎪⎩

i + i if i /= � and i /= � ,
� otherwise.

(.)

�is definition is chosen by the authors of [, page A-] as a repre-

sentative, i. e., it is the only definition given for all strict operations. An

operation is called strict, if evaluating the operation results in undefined,

denoted by �, if at least one argument is undefined. We call the style of
semantics shown in Equation . a textbook-style semantics. Normally, textbook-style

semanticssuch semantics are “paper and pencil” works that are on the one hand easy

to read and very useful to communicate. On the other hand, they usually

lack the formalization of rules and laws, contain informal or meta-logic

definitions. Moreover, it is easy to write inconsistent semantic definitions.

Defining amachine-checked semantics, i. e., by embedding it into a logic machine-checked

semanticssupported by a theorem prover, overcomes these problems: here, formal-

ization is enforced by the underlying theorem prover and the consistency

can by guaranteed by defining the semantics conservatively. Nevertheless,

formalizing rules and laws, especially when using conservative theory ex-

tensions only, is a lot of manual work. Using a combinator-style approach combinator-style

to formal semantics can reduce this work dramatically. A combinator-

style formalization of semantics factorizes common properties into spe-

cific combinators, for example consider the following definition:

_ + _ ≡ li�(strictify(λ x . strictify(λ y. ⌞⌜x⌝ + ⌜y⌝⌟))) , (.)

where strictify _ is a combinator for constructing strict operations, i. e., it

is defined as

strictify f x ≡ if(x = �) then� else f x (.)

and li� _ is a combinator for the context li�ing of binary operations (for

more details, see Section ..), i. e., it is defined as

li� f ≡ λ x y τ. f (x τ) (y τ) . (.)
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For supporting types with an explicit undefined element, we assume a

type constructor τ� that assigns to each type τ a type li�ed by �. Moreover,
the function ⌞_⌟ denotes the injection for li�ed types, the function ⌜_⌝ its
inverse for defined values.

Such a combinator-style approach emphasizes the semantical structure

of the language being defined and is in particular well suited for machine-

readable semantics and machine-supported proof calculi development.

Exploiting the common structure of the definitions, one can automatically

derive, from the rules of the meta-logic, a wealth of rules for the object-

logic. Moreover, for a textbook semantics that is concise enough, one

can prove the equivalence with a machine-checked formalization using a

combinator-style semantics approach.

In the following, we will present our semantics in combinator-style,

because it is more suitable for a machine-checked semantics. In particular,

one can optimize an automatic proof procedure for all definitions that

are based on the same setup of combinators. Moreover, this construction

allows for the automatic li�ing of theorems from themeta-level (e. g., )

to the object-level (e. g., ) []. Overall, we aim for a conservatively

developed, machine-checked semantics, because we see the following

advantages:

A Consistency Guarantee. If one only uses conservative definitions and

only derived rules for defining the formal semantics, the consis-

tency of the defined semantics is reduced to the consistency of

 for the entire language.

A Technical Basis for a Proof Environment. Based on the derived rules,

proof procedures (i. e., tactics) implement automated reasoning

over formulae of the defined language and the correctness proof

for the new proof systems is reduced to the correctness of a (well-

known)  theorem proving system.

Formalization Experience. Since our semantics is machine-checked, we

can easily change definitions and check their properties; allowing

for deepening the knowledge of the language semantics as a whole.

.. Logical Embeddings and Semantics

A theory representing syntax and semantics of a programming or speci-

fication language in another specification language is called an embed-embedding

ding. Further, higher-order abstract syntax () [] is an importanthigher-order

abstract

syntax ()

concept for representing bindings in logical rules and program transfor-

mations [] and for implementations [].

As an example, we define the universal quantifier of : it is repre-

sented in  by a constant All ∶∶(α ⇒ bool) ⇒ bool, where the term
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All(λ x . P(x)) is paraphrased by the usual notation ∀ x . P(x). �is is in
contrast to the usual textbook definition for predicate logic, where a free

datatype for terms and predicates, explicit substitution andwell-typedness

functions over them is provided. �is conventional representation re-

quires explicit side-conditions in logical rules over quantifiers preventing

variable clashes and variable capture. �e representation using  has

two advantages:

. �e substitution required by logical rules like ∀ x . P(x) Ô⇒ P(t)
can be directly implemented by the β-reduction underlying the

λ-calculus.

. �e typing discipline of the typed λ-calculus can be used to rep-

resent the typing of the represented language. For example, a

multi-sorted first-order logic (having syntactic categories for arith-

metic terms, list terms, etc.) is immediately possible by admitting

expressions of type nat and α list.

In short,  has the advantage of “internalization” of substitution and

typing into the meta-language, which can therefore be handled signifi-

cantly more generally and substantially more efficiently by means of the

meta-logic. �is is a prerequisite for using Isabelle as an implementa-

tion platform. When using  style semantic definitions, this is called

a shallow embedding [] of an object-language, as opposed to a deep

embedding:

• A deep embedding represents the abstract syntax as a datatype and deep embedding

defines a semantic function I from syntax to semantics.

• A shallow embedding defines the semantics directly; each construct shallow embedding

is represented by some function on a semantic domain.

Assume we want to embed the Boolean operators and and or into .

�e semantics function I maps object-language expressions and environ-

ments to bool, where environmentsmap variables to bool values. Using a

shallow embedding, we define directly:

x and y ≡ λ e . x e ∧ y e (.)

and

x or y ≡ λ e . x e ∨ y e . (.)

Shallow embedding allows for direct definitions as semantic domains and

operations on them. In contrast, in a deep embedding, we have to define

the syntax of our object-language as a recursive datatype:

expr = var var ∣ expr and expr ∣ expr or expr (.)
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and the explicit semantic function I:

I⟦var x⟧ = λ e . e(x) , (.)

I⟦x and y⟧ = λ e . I⟦x⟧ e ∧ I⟦y⟧ e , and (.)

I⟦x or y⟧ = λ e . I⟦x⟧ e ∨ I⟦y⟧ e . (.)

�is example reveals the main difference: compared to a shallow embed-

ding, in a deep embedding the language is clearly separated from the

underlying meta-language . Moreover, semantic functions represent

obstacles for deduction that are not present in a shallow embedding. �e

explicit syntax of deep embeddings enables induction proofs, however;

for some meta-theoretic analysis, this may have advantages. Since we are

interested in a concise semantic description of object-oriented specifica-

tion languages and prototypical proof support, but not meta-theory, we

have chosen a shallow embedding.

Another example for a shallow embedding is definition of the universal

quantifier:

All P ≡ (P = λ x . true) . (.)

�e propositional function of the “body” of the quantifier must be equal

to the function that yields true for any argument. A deep representation

of the universal quantifier follows usual textbooks:

Sem⟦∀ x . P(x)⟧γ ≡
⎧⎪⎪⎨⎪⎪⎩

true if Sem⟦P(x)⟧γ[x ∶= d] for all d
false otherwise.

(.)

Here, we assume a meta-language with well-defined concepts such as “if,”

“otherwise,” and “for all,” e. g., Zermelo-Fraenkel set theory.

As can be seen, shallow embeddings can have a remarkably different

flavor in their semantic presentation, in particular when striving for

conservativity as in the example above. However, the usual inference

rules are derived from these definitions. �us they are equivalent in the

sense that they describe semantically the same language.

If a shallow embedding is built entirely by conservative theory exten-

sions, it is called a conservative embedding. A conservative extensionsconservative

embedding ensures the consistency of the language definition if the underlying meta-

language is consistent.

In the following chapter, we will use these techniques for building a

formal framework for object-oriented languages. �is framework, imple-

mented as a conservative shallow embedding into Isabelle/, provides

both a combinator-style formal semantics and an interactive proof envi-

ronment for object-oriented specifications.
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A FRAMEWORK FOR OBJECT-ORIENTED SPECIFICATION

In this chapter, we present the key concepts of our framework for objected-

oriented specifications. �e complete formalization is over  pages long

and contains several thousand definitions and theorems. �is formal-

ization, including all technical details, is presented in a separate doc-

ument []. �e foundations for our framework are motivated by the

/ scenario, i. e., we model an object-oriented system supporting

subtyping using single inheritance. Further, we model an object-oriented

constraint language for specifying state transition using invariants, precon-

ditions and postconditions. As we have to cope with undefined elements,

e. g., path expressions that are invalid in a specific system state, it seems

natural to base our specification language on a three-valued logic. More-

over, we aim for an embedding that supports the extension of existing

data models without the need of re-proving everything and thus breaking

up the closed-world assumption that is present many in state of the art

proof environments.

. 

We aim for a shallow embedding that captures the essence of object-

orientation as it is understood in the object-oriented community. For

example, our framework should not only be object-based but truly object-

oriented in sense of Section .. In particular such an embedding in 

must provide:

• Support for subtyping and inheritance in a type system that does

not provide a notion of subtypes.

• A notion of state, i. e., a mapping of object-references to objects state

and its possible state transitions. state transitions

• Support for expressions that contain operations that refer to a pair

of pre-state and post-state (σ , σpre), as for example in .
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• Support for a semantic representation of path expressions for ad-path expression

dressing objects within the object store (memory).

• Support for undefinedness. �is is important, because any syntac-undefinedness

tically correct path expression can, for a specific system state, be

semantically undefined. Moreover, this also allows for a consistent

logical support for undefined expressions like  . But, in such a

setting, many rules can only be applied for “defined” values. In

comparison to a two-valued setting, this results in additional case

splits and side-conditions for many proofs. �ese side-conditions

must be established by subcalculi; for example, we need rules thatsubcalculus

infer facts like “if a + b is defined, then a and b must be defined.”

• A semantics for operation calls and invocations supporting late-

binding, and, if possible, overriding in a setting without closed-

world assumption, i. e., we aim for an extensible framework.

To meet these challenges we have to provide for the object-oriented

constraint language:

• An technique for defining the semantics of the primitive types, e. g.,primitive type

Boolean, Integer, Set and collection types such as Set.

• A technique for defining the semantics for the built-in operation,

capturing the arithmetic, logic and collection theories.

• A technique for giving semantics for user-defined operations.

With respect to the underlying object-oriented data model, which results

in a semantics for path expressions, we have to provide:

• Amechanism to generate formal theories of typed object structuresobject structure

associated to classes and their relationships (e. g., inheritance).

• A technique for giving semantics for user-defined operations in

the context of classes, leading also to a formal semantics of path

expressions.

• We have to bring both embeddings together. Among others, this

includes the definition of a semantics for path expressions and

also the definition of a semantics for invariants and operation

specifications consisting of preconditions and postconditions.

Further, we aim for mechanisms providing modularization and exten-

sibility in different ways:
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• �e object store should allow formodular proofs, i. e., one should modular proof

be able to add new classes without the need of re-proving the prop-

erties of existing classes. �is breaks the closed-world assumption

normally made in analysis tools for object-oriented systems. In

our view, as object-oriented systems are normally extensible sup-

porting such open-world scenarios is a corner stone for an usable

object-oriented proof environment. In particular, such systems

can be, even a�er the analysis, extended later.

• �e embedding of the object-oriented constraint language should

be easily usable with another kind of object store. One idea is to

use a Java-like object store allowing, e. g., a distinction between �
and the “null” or “void” reference (pointer).

• �e object store should be usable without the specification lan-

guage, e. g., for a programming language description that allows

for method definitions associated to an operation. �us, one could

verify a method with respect to its operation specification in a

Hoare-logic style of reasoning.

Each of the mentioned techniques and encoding mechanisms can be

organized into levels. �e core of these levels is formally defined by theory level

morphisms called layers. Figure . on the next page gives an overview layer

of this modular architecture: on the first two levels, the encoding of the

object store and the object-oriented constraint language can be used

independently. For example, by providing an encoding of state-machines,

one could provide a constraint language for constraining state-machines,

on level . In more detail:

Level : �is level defines the groundwork for the embeddings. It consists

of two layers:

New Datatypes: In this layer, we define  types, in particular

auxiliary types for classes.

Datatype Adaption: In this layer, the  datatypes are adapted

as needed, e. g., we glue basic datatypes together to objects

or extend all datatypes by a special “undefined” element.

In summary, this level defines both an extensible object store and

the datatypes for the constraint language.

Level : �is adapts the functional behavior and finalizes the embeddings.

It consists of two layers:

Functional Adaption: �is layer adapts and extends the functional

behavior of our embeddings, e. g., it defines the strictness of

operations and defines the semantics of operation invoca-

tions in the context of our object store.
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Le
ve
l New Datatypes

Datatype Adaption

Object store
(universe)

 Datatypes
(library)

Le
ve
l Functional Adaption

Embedding Adaption

Objects with
Operations  Formulae

Le
ve
l Combining

Embeddings
Objects with Invariants, Preconditions and

Postconditions

Extensible
Object Store

Datatypes with
Undefindness

Object Store with
Method Invocation

�ree-valued
Logic

Figure .: Structuring embeddings into functional layers and levels improves the reusability: a�er

level  our architecture provides a rich library of datatypes supporting undefinedness,

a�er level  we provide an object store with method invocation on the first hand and

a three-valued logic on the other. Finally, we combine the two embeddings into a

constrained object store with method invocation.

Embedding Adaption: �is layer adds infrastructure for the treat-

ment of contexts, i. e., the underlying pair of pre-state/post-

state.

In summary, this level provides an embedding of an extensible

object store with operation invocation, and constrained language

(i. e., in the case of , there are only  formulae without

context declarations).

Level : �is level combines the two embeddings, i. e., it introduces the

context of the constraints and defines the semantics of objects and

method invocations with respect to the validity of the correspond-

ing preconditions, postconditions and invariants.

One can view level  objects as raw “structural” objects, while level 

objects preserve the semantics of class invariants.
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In the remainder of this chapter, we will explain our framework inmore

detail, using the architectural overview (Figure .) as a kind of road-map.

In Section ., we will explain the concepts of theory morphism and show

how theory morphism can be used for implementing the level structure.

In Section ., we show how our framework can be used for defining a

constraint-language for object-oriented specifications, in particular, we

present several semantic alternatives. By choosing a concrete semantics

for these alternatives, one can define the semantics of concrete object-

oriented constraint language, e. g., . Our extensible encoding of object-

oriented data-structures (object store) is explained in Section .. In the

remaining sections of this chapter, we explain how the constraint language

and our object store interact, e. g., we explain our encoding of invariants

and introduce statements into the constraint language that reason over

the state of the object store.

.    

Using a conservative embedding for defining semantics or for developing

formal tools has, in comparison to an axiomatic approach, one disadvan-

tage: one has to prove several thousand theorems for the object-language.

At the first look, this large amount of proof requirements seems to make

a conservative approach unfeasible for a language like  that comes

with a rich library of datatypes. �us it seems tempting to throw the

conservatism over board and just postulate what we want. Nevertheless,

in our opinion the consistency guarantee we gain from being conservative

compensates for the toil. Moreover, we show in this section, how one

can automate this work, and thus delegate some of this honest toil to the

machine.

In particular we present an approach for deriving the mass of these the-

orems mechanically from the existing  library (our meta-language),

i. e., based on the already proven theorems on the  level, we automati-

cally try to prove similar properties for the meta-language. Our approach

assumes a layered theory morphism mapping library types and library

functions to new types and new functions of the constraint language

(i. e., ) while uniformly modifying some semantic properties. �e

key idea is to represent the structure of the theory morphism by semantic

combinators that are organized into layers (see Figure .). Further, we

introduce the concept of layered theory morphism to structure situations

where a theorymorphism can be decomposed in the application of several

semantic combinators.

But first, we introduce the core notion of conservative theorymorphism.

Recall the notions for  as introduced in Section .., i. e., the set of

types τ, the set of type classes or sorts ξ, and the set of type constructors

χ. We also introduced the inductively defined set of terms Λ, built over
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the set of constants C and the set of variables V . Moreover, we introduce

a type arity ar, i. e., a finite mapping from type constructors to non-emptytype arity

lists of sorts ar ∶ χ ⇒ list≥(ξ), where list≥ denotes the type constructor
for non-empty lists.

A signature is a quadruple Σ = (ξ, χ, ar, c ∶∶ C ⇒ τ) and analogouslysignature

the quadruple Γ = (ξ, χ, ar, v ∶∶ V ⇒ τ) is called an environment.environment

�e following assumption incorporates a type inference and a notion of

well-typed term: we assume a subset of terms called typed terms (writtentyped term

ΛΣ,Γ ⊆ Λ) and a subset of typed terms, called typed formulae (writtentyped formula

FΣ,Γ ⊆ ΛΣ,Γ); we require that in these notions, ar, ξ and χ agree in Σ and

Γ. For example, the set of formulae can be defined as the set of typed

terms of type bool.

We call S = (Σ,A) with the axioms A ⊆ FΣ,Γ a theory. �e follow-theory

ing assumption incorporates an inference system: with a theory closuretheory closure

�(S) ⊆ FΣ,Γ we denote the set of formulae derivable from A; in particu-

lar, we require A ∈�(S) and� to be monotonous in the axioms, i. e.,

S ⊆ S′ →�(S) ⊆�(S′) (we also use S ⊆ S′ for the extension of subsets

on tuples for component-wise set inclusion).

A signature morphism is a mapping Σ ⇒ Σ which can be naturallysignature morphism

extended to a specification morphism and a theory morphism.theory morphism

In the following, the concepts of conservative theory morphisms are

rephrased more abstractly. If S′ is the constructed by extending S conser-

vatively, we write

S′ = S ⊎ E ; (.)

where E is either a constant definition or a type definition (as introduced

in Section ..). Recall that S′ = ((ξ, χ′ , ar′ ,C′),A′) is defined as follows:
We assume S = ((ξ, χ, ar,C),A), and P(x) of type P ∶∶ R ⇒ bool for a
base type R in χ. C′ is constructed from C by adding AbsT ∶ R⇒ T and

RepT ∶∶ T ⇒ R. χ′ is constructed from χ by adding the new type T (i. e.,

which is supposed to be not in χ). �e axioms A′ is constructed by adding

the two isomorphism axioms

∀x . AbsT(RepT x) = x (.a)

and

∀x . P x → RepT(AbsT x) = x (.b)

to the set A, i. e.:

A′ = A∪ { ∀x . AbsT(RepT x) = x ,

∀x . P x → RepT(AbsT x) = x
} . (.)

�e type definition is conservative if the proof obligation ∃x . P x, holds.
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Technically, conservative language embeddings are represented as spec- specification

incrementification increments E that contain the type definitions and constant def-

initions for the language elements and give a semantics in terms of a

specification S.

We use this possibility of extending a theory piecewise for structuring a

theory morphism into layers. �emain idea is to collect similar extension

into the same layer. Formally, we define a layered theory morphism as

follows:

D . (L T M) A theory morphism is

called a layered theory morphism if and only if in each form of conser- layered theory

morphismvative extension the following decomposition into elementary theory

morphisms (layers) is possible:

. for type synonyms (α , . . . , αm)T , there must be type constructors
C to Cn such that

(α , . . . , αm)T = Cn(⋯(C(T ′))) , (.)

. for conservative type definitions (α , . . . , αm)T , there must be
functions C to Cn such that

(α , . . . , αm)T = {x ∶∶ Cn(⋯(C(T ′))) ∣ P(x)} , and (.)

. for constant definitions c, there must be functions E to En such

that

c = (En ○ ⋯ ○ E)(c′) ; (.)

where each C i or E i are type constructors or expressions build from

semantic combinators of layer L i and the type expression T
′ is built from

the meta-logic. Also c′ is a construct from the meta-logic. A layer L i
is represented by a specification defining the semantic combinators, i. e.,

constructs that perform the semantic transformation from meta-level

definitions to object-level definitions. ◻

Figure . on the following page illustrates the concepts of a structured

theoremmorphism: based on a meta-language (e. g., ) with datatypes

the semantics of the object-language is defined, whereby common adap-

tion techniques are exploited and are classified into different adaptions.

Namely, we distinguish datatype adaption, the functional adaption, and

the embedding adaption.

In the following, we will present a collection of layers and their combi-

nators in more detail. We will associate the semantic combinators one by

one to the specific layers and collect them in a distinguished set SemCom.





   - 

Meta-language (e.g., )

Datatype:
Operations:
Rules:

bool
¬_, _ ∧ _

x ∧ y = y ∧ x

int
−_, _ + _

x + y = y + x

α′ set
_ ∪ _, _ ∈ _
x ∪ y = y ∪ x

Datatype Adaption

Functional Adaption

Embedding Adaption

Object-language (e.g., )

Datatype:
Operations:
Rules:

Booleanτ
¬_, _ ∧ _

x ∧ y = y ∧ x

Integerτ
−_, _ + _

x + y = y + x

α′ Setτ
_ ∪ _, _ ∈ _
x ∪ y = y ∪ x

Figure .: A structured theory morphism allows for mechanically deriving libraries of theorems

for the object-language (e. g., ) out of already proven theorem libraries for the

meta-language (e. g., ).





.    

.. Datatype Adaption

�e datatype adaption establishes the link between meta-level types and datatype adaption

object-level types, and between meta-level constants and object-level

constants. While meta-level definitions in libraries of existing theorem

provers are usually optimized in a way that is most suitable for automatic

proof support, object-level definitions are o�en tied to a particular com-

putational model. �us, a gap between these two has to be bridged. For

example, in Isabelle/, the head-function applied to an empty list is

underspecified. In a typical executable object-language such as  or

Haskell, this function should be defined to yield an exception element.

Datatype adaption copes with such failure elements, the introduction

of boundaries (e. g., maximal and minimal numbers in usual machine

representation of numbers), congruences on raw data (such as smashing;

see below) and the introduction of additional semantic structure on a

type such as being member of a specific type class.

Concepts like definedness and strictness play a major role in our frame-

work. We capture them using semantic combinators. We used Isabelle’s semantic

combinatorconcept of a type class to specify the class of all types bot (written as

α ∶∶ bot) that contain the undefinedness element �. Additionally, we bot

required from this class the postulate “all types must have one element

different from the undefined value” to rule out certain pathological cases

revealed during the proofs. For all types in this class, concepts such as

definedness, i. e., definedness

def(x ∶∶ α ∶∶ bot) ≡ (x /= �) (.)

or strictness of a function, i. e., strictness

isStrict f ≡ ( f �) = � (.)

are introduced.

Further, we use the type constructor τ� that assigns to each type τ a

type li�ed by �. Since any type in  contains at least one element, each
type τ� is in fact in the type class bot. �e function ⌞_⌟ ∶∶ α → α�, also ⌞_⌟
called “li�,” denotes the injection, the function ⌜_⌝ ∶∶ α� → α, also called ⌜_⌝
“drop,” its inverse for defined values.

We encode operations that refer to a pair of system states (σ , σpre) as
functions from (σ , σpre) to their semantic value. Technically, this means
thatwe have to li� over the context any function occurring in the semantics

of our object-language, e. g., _ ∧ _ or _ + _. �erefore, we introduce the
type synonym Vτ(α) and some combinators that capture the semantic
essence of context li�ing. �e type synonym Vτ(α) is defined as follows: Vτ(α)

Vτ(α) ∶= τ ⇒ α . (.)
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For example, using these type constructors, we can define a li�ed and

context-aware variant of the type Boolean:

Boolean = bool� , and (.)

Booleanτ = Vτ(Boolean) , (.)

which precisely correspond to layer  and layer .

On the expression level, context li�ing combinators for the distributioncontext li�ing

of contexts are defined as follows:

li� f ≡ λ τ. f (.)

with type α ⇒ Vτ(α),
li� f ≡ λ x τ. f (x τ) (.)

with type (α ⇒ β) ⇒ Vτ(α) ⇒ Vτ(β), and
li� f ≡ λ x y τ. f (x τ) (y τ) (.)

with type ([α, β] ⇒ γ) ⇒ [Vτ(α),Vτ(β)] ⇒ Vτ(γ). �e types of these
combinators reflect their purpose: they “li�” operations from  to

semantic functions that are operations on contexts.

Operations constructed by context li�ing pass the context τ unchanged.

We call an operation context passing if it satisfies exactly this property,context passing

which is expressed formally as follows:

cp(P) ≡ (∃ f . ∀ x τ. P x τ = f (x τ) τ) (.)

with type (Vτ(α) ⇒ Vτ(β)) ⇒ bool. Context invariance of expressions
will turn out to be a key concept allowing for converting an equivalence

on object-logic expressions (constraints) into a congruence; thus cp will

play a major role in subcalculi for our object-oriented constraint language.

D . (D A C) �e combinators

for the datatype adaption are semantic combinators, i. e., they are included

in the set SemComSemCom:

{_� ,V_(_), ⌞_⌟, ⌜_⌝, li� , li� , li� , li�} ⊆ SemCom . (.)

◻

As another example for a congruence construction, we will show the

smashing on sets like data structures. For a language with a semanticsmashing

domain providing �-element it is not clear, how they are treated in type
constructors like product, sum, list or sets. Two extremes are known in

the literature; for products, for example, we can define

(�, x) /= � {a, �, b} /= � (.)


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or we can define

(�, x) = � {a, �, b} = � . (.)

�e variant in Equation . is called smashed product and smashed set.

�e constant definition for the semantic combinator for smashing reads

as follows:

smash f x ≡ if f � x then� else x (.)

with type [[β ∶∶ bot, α ∶∶ bot] ⇒ bool, α] ⇒ α. On this basis, the type Set,

for example, is built via the type definition

α Set = {x ∶∶ (α ∶∶ bot set�)∣(smash(λ x X . def X ∧ x ∈ ⌜X⌝) X) X = X}
(.)

and the type synonym

α Setτ ∶= Vτ(α Set) . (.)

Alternatively, we could define smashed sets directly:

α Set = {x ∶∶ (α ∶∶ bot set�)∣� ∉ ⌜x⌝} . (.)

�is representation is easier to read whereas the representation in Equa-

tion . is based on our layered theory morphism. �erefore we prefer

the representation of Equation . as it makes the automatic derivation

of theorems over smashed sets easier.

Overall, this quotient construction for smashed data structures identi-

fies all sets containing � in one class which is defined to be the � of the
type α set. All other sets were injected into an own class. �us, using the

(overloaded) constant definition

� ≡ AbsSet � (.)

we embed smashed sets into the class bot. �e injection AbsSet (together

with the projection RepSet) is a consequence of the conservative type

definition above (cf. Section ..).

For nested collection types such as Set(Set(Integer)), the  type

is Integer Set Setτ and not Integerτ Setτ Setτ since context li�ing is

only necessary on the topmost level for each argument of an operation.

D . (D A C (S)) �e combi-

nators for the datatype adaption of sets are semantic combinators, i. e.,

they are included in the set SemComSemCom:

{smash, � ∶∶ α Set, AbsSet , RepSet} ⊆ SemCom . (.)

◻

Similar definitions can be derived for other set-like data structures like

multisets (bags) or sequences, see [] for the formal details of these

definitions.
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.. Functional Adaption

�e functional adaption is concerned with the semantic transformation offunctional adaption

a meta-level function into an object-level operation. Functional adaption

may involve, for example, the

• strictification of an operation, i. e., its result is undefined if one of

its arguments is undefined, or

• late-binding invocation semantics for operations. �is semantic

conversion process is necessary for converting a function into an

operation using supporting overriding.

Technically, this is achieved by the strictify combinator. Overriding and

late-binding can be introduced by the combinators invoke and invokeS

described in this section.

We define a combinator strictify bystrictify

strictify f x ≡ if x = � then� else f x (.)

with type (α ∶∶ bot⇒ β ∶∶ bot) ⇒ α ⇒ β. �e operator strictify yields a

strict version of an arbitrary function f defined over the type class bot.

For example, we can define a strictified version of the union operator

of  over the smashed type α Set as follows:

union ≡ strictify(λ x . strictify(λ y. AbsSet⌞⌜RepSet x⌝ ∪ ⌜RepSet y⌝⌟))
(.)

with type [(α ∶∶ bot) Set, α Set] ⇒ α Set.

�e treatment of late-binding (see Section ..) requires a particular

pre-compilation step concerning the declaration of overridden methods

discussed in Section . inmore detail; in this section, wewill concentrate

on the caller aspect of method invocations, i. e., how to represent sub-

expressions occurring in post conditions representing an invocation of a

user-defined operation specification for method

m(a ∶∶ t , . . . , an ∶∶ tn) ∶∶ t (.)

as feature of class A. In an invocation, e. g., a sub-expression of the form

self .m(a , . . . , an), the semantic value of the dynamic type of self is de-
tected. �is dynamic type helps to look-up the concrete operation specifi-

cation in a look-up table. �is specification can be turned into a function

(by picking some function satisfying the specification), which is applied to

self as first argument together with the other arguments. �is semantics

for invoke is captured in the n-indexed family of semantic combinatorsinvoke

invoke (non-strict invocation) and invokeS (strict invocation); the former

define call-by-name semantics, the latter call-by-value semantics. Since





.    

invokeS is in principle only a strictified version of invoke we only explain

invoke.

�e invoke-combinator is defined for the case n = , for example, as
follows:

invokeC tab a result ≡ λ τ.

⎧⎪⎪⎨⎪⎪⎩

arbitrary if tab (Least x . x ∈ dom tab ∧ C(a τ) ∈ x) = None ;
f a result τ if tab (Least x . x ∈ dom tab ∧ C(a τ) ∈ x) = Some f .

(.)

Here, Least is a  operator selecting the least set of a set of sets, that sat-

isfies a certain property. In this case, this property is that self is contained

in one of the domains of the look-up table OpTabm generated during the

processing of the declaration that will be discussed in Section .), i. e.,

some set (of objects) characterizing a type. For such an element of the

domain of the look-up table, the specification of the operation is selected

and returned. Recall that Some_ is a constructor of the datatype α option.

�e casting function C will be instantiated by a suitable coercion of a

dynamic type to a class type to be discussed later (see Section .).

�e process of selecting an arbitrary, but fixed function from a specifi-

cation (i. e., a relation) is handled by the Call-combinator, see Section .

for details. It is defined essentially as the context-li�ing of the Hilbert-

Operator ε x . P x that just gives one result element satisfying P; if this

does not exist, the Hilbert-Operator picks an arbitrary element of this

type.

�e semantic code for the call-by-value invocation c.m(a , . . . , an) is
given by:

Call(invokeS C[A] OpTabm c a . . . an) (.)

where c is assumed as an object of class C and to have a subtype of A and

C[A] is a casting-function that converts C objects to A objects.

D . (F A C) �e combina-

tors for the functional adaption are semantic combinators, i. e., we in-

cluded in the set SemComSemCom:

{strictify, Call, invoke, invokeS} ⊆ SemCom . (.)

◻

.. Embedding Adaption for Shallow Embedding

�e semantic combinators for the embedding adaptions are related to the embedding

adaptionembedding technique itself, namely the li�ing over contexts. Any function
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f with type t , . . . , tn → tn+ of the object-language has to be transformed

to a function:

I⟦ f ⟧ with type [Vτ(t), . . . ,Vτ(tn)] ⇒ Vτ(tn+) . (.)

As an example for a binary function like the built-in operation _ ∪ _
(based on union operator defined in Section ..), we present its constant

definition:

_ ∪ _ ≡ li� union with type [(α ∶∶ bot) Setτ , α Setτ] ⇒ α Setτ .

(.)

Summing up the intermediate results of the local theory morphisms

(i. e., the layers) in the previous subsections, the definition of our running

example _ ∪ _ is given directly by:

_ ∪ _ ≡ li�(strictify(λ x . strictify(λ y.

AbsSet⌞⌜RepSet x⌝ ∪ ⌜RepSet y⌝⌟))) . (.)

One easily recognizes our standard definition scheme, having AbsSet and

RepSet as additional semantic combinators. During mechanical li�ing of

 theorems to theorems of the object-logic (such asA∪B = B∪A), these
operators require proofs for the invariance of the underlying quotient

constructions; i. e., in this example, it must be proved that the union on

representations of object-logic sets will again be representations of an

object-logic set, (i. e.,  sets not containing �).

.   -  

In this section, we motivate that our framework can easily be used for

defining different semantics for an object-oriented constraint language.object-oriented

constraint language Intuitively, we define an object-oriented constraint language as a language

based on logic and set theory which is used for reasoning about object-

oriented data structures. Overall, such a language must provide a logic

that able to reason over path expressions and also basic datatypes like

Integers and Set. For the different building blocks, e. g., the logic, we

provide different alternative proposals for a semantics. �ese different

semantics can be examined and compared formally within our framework.

�e semantics of a specific object-oriented constraint language, e. g., ,

can be easily defined by choosing the one concrete semantics for each

needed building block. In particular we show the definitions for different

three-valued logics, the definitions for basic datatypes and the definitions

for smashed and non-smashed sets.
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.. �e Logical Core

Expression such as  =  are neither true nor false in mathematics. One
way to treat this, is by underspecification, i. e., in each model of this for-

mulae,  has another interpretation. Instead, we introduce undefinedness

(denoted by �) into the object-logic of our framework. �is decision al-
lows for the explicit treatment of undefined expressions while preserving

an extended, three-valued, form of the law of the excluded middle, i. e.,

a Boolean value is either true, false, or undefined. �us, we introduce a

test for being defined into our object-logic, which can be easily defined

based on the concepts introduces in Section .. In particular, then we

only need to li� the already introduced definedness-test def _:

∂ x ≡ li�⌞def x⌟ with type Valτ(α) ⇒ Booleanτ . (.)

As a shorthand, we also introduce a test for being undefined:

/∂ x ≡ ¬ ∂ x with type Valτ(α) ⇒ Booleanτ . (.)

Of course, both functions are non-strict, e. g., ∂ � is defined and, in par-
ticular, evaluates to f.

Following the overall scheme for operations, already presented in Sec-

tion ., one can also require strictness for the logic:

D . (S T- L) For the strict three-val- strict three-valued

logicued logic, the semantics of the connectives are defined by the following

truth tables:

∧̇ f t �
f f f �
t f t �
� � � �

∨̇ f t �
f f t �
t t t �
� � � �

Ð̇→ f t �
f t t �
t f t �
� � � �

¬
f t

t f

� �
◻

�e truth tables in Definition . reveal that the binary operations of a

strict three-valued logic are associative, commutative, and idempotent.

Following the already described definition scheme for strict operations,

this strict three-valued logic can be easily defined within our framework,

see Table . for details.

D . (L T- L) �e semantics of the log-

ical connectives of the lazy three-valued logic are defined by the following lazy three-valued

logictruth tables:

∧⃗ f t �
f f f f

t f t �
� � � �

∨⃗ f t �
f f t �
t t t t

� � � �

Ð⃗→ f t �
f t t t

t f t �
� � � �

¬
f t

t f

� �
◻
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¬_ ≡ li� strictify(λ x . ⌞¬⌜x⌝⌟)
_ ∧̇ _ ≡ li�(strictify(λ x . strictify(λ y. ⌞⌜x⌝ ∧ ⌜y⌝⌟)))
_ ∨̇ _ ≡ λ x y. ¬(¬ x ∧̇ ¬ y)

_ Ð̇→ _ ≡ λ x y. ¬ x ∨̇ y

(.a)

(.b)

(.c)

(.d)

Table .:�e definitions for a strict three-valued logic follow the general scheme for strict opera-

tions. �e binary operations of a strict three-valued logic are associative, commutative

and idempotent.

¬_ ≡ li� strictify(λ x . ⌞¬⌜x⌝⌟)
_ ∧⃗ _ ≡ li� (λ x y. if (def x)

then if (def y) then⌞⌜x⌝ ∧ ⌜y⌝⌟
else if⌜x⌝ then� else⌞false⌟

else�
_ ∨⃗ _ ≡ λ x y. ¬(¬ x ∧⃗ ¬ y)

_Ð→ _ ≡ λ x y. ¬ x ∨⃗ y

(.a)

(.b)

(.c)

(.d)

Table .: A lazy three-valued logic is o�en used by evaluation environments and programming lan-

guages. Due to the fact that algebraic properties like the commutativity of the conjunction

do not hold, it is not well-suited for formal reasoning.

Note, that the truth tables are not symmetric which indicates that the bi-

nary operations are not commutative e. g., f∧⃗� evaluates to f, whereas�∧⃗f
evaluates to �. Obviously, in a proof environment, a non-commutative
“and” is not common and leads to complicated calculi. Nevertheless, it can

easily be defined (see Table .) and it also motivates the idea of canceling

undefinedness, if the result of an operation can be uniquely determined

from its defined arguments.

A logic supporting undefinedness, while preserving the usual alge-

braic properties was introduced by Kleene [] in which he argues that

the informal meaning for the third value (�) should be “unknown” or
“undefined.”

D . (S K L) �e semantics of the connec-

tives for the Strong Kleene Logic are defined by the following truth tables:Strong Kleene Logic


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¬_ ≡ li� strictify(λ x . ⌞¬⌜x⌝⌟)
_ ∧ _ ≡ li� (λ x y. if (def x)

then if (def y) then⌞⌜x⌝ ∧ ⌜y⌝⌟
else if⌜x⌝ then� else⌞false⌟

else if (def y) then if⌜y⌝ then�
else⌞false⌟ else�)

_ ∨ _ ≡ λ x y. ¬(¬ x ∧ ¬ y)
_Ð→ _ ≡ λ x y. ¬ x ∨ y

(.a)

(.b)

(.c)

(.d)

Table .:�e connectives of a Strong Kleene Logic have the usual lattice properties, while allow-

ing reasoning over three-valued formulae where undefinedness is canceled whenever

possible.

∧ f t �
f f f f

t f t �
� f � �

∨ f t �
f f t �
t t t t

� � t �

Ð→ f t �
f t t t

t f t �
� � t �

¬
f t

t f

� �

◻

Of course, the connectives for the Strong Kleene Logic can be defined in

our framework, see Table .. Here we exploit that the implication can

be defined using only the logical negation and disjunction, i. e.:

AÐ→ B ≡ ¬A∨ B . (.a)

Moreover, for Strong Kleene Logics two other definitions for the implica-

tions are discussed in the literature [, ]:

A
Ð→ B ≡ (/∂ A) ∨ (¬A) ∨ B (.b)

and

A
Ð→ B ≡ (¬A) ∨ (A∧ B) . (.c)

For a first comparison of these three definitions, we derived their truth

tables, see Table .. Notably, their behavior differs only for undefined

operands. �e difference is that the variant (.b) evaluates to t if the

assumption is undefined, while (.c) evaluates to �.
Moreover, for all three logics, we can prove easily within our framework,

using Isabelle/, that the definitions given in Table ., Table . and


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Ð→ f � t

f t t t

� � � t

t f � t

Ð→ f � t

f t t t

� t t t

t f � t

Ð→ f � t

f t t t

� � � �
t f � t

Table .: For Strong Kleene Logic, three different definitions of the im-

plications are discussed in literature. �eir truth tables show,

that their behavior differs only for undefined operands.

Table . fulfill the corresponding truth tables given in the definitions;

[] presents the proofs in detail. Moreover, the definition of the negation

(¬_) is in all three logics identical, i. e., it is in all three definitions a strict
operation. Further it is interesting that in all three settings it is sufficient

to define the negation and the conjunction, since the definitions for the

disjunction and implications can then be expressed as negations and

conjunctions.

.. Primitive Datatypes

Primitive datatypes, or value types (see Section .), e. g., Boolean, Inte-

ger, String, are defined using the previous explained datatype adaption

combinators. For example, recall the following definitions:

Boolean ∶= bool� ,
Booleanτ ∶= Vτ(Boolean) ,
Integer ∶= int� , and
Integerτ ∶= Vτ(Integer) .

�e constant definitions for t (true), f (false), and � (undefined) of
Booleanτ or 0, 1, . . .of Integerτ are straight-forward, using the li�ing

combinators:

� ≡ li�(⌞�⌟) with type Booleanτ ,

t ≡ li�(⌞true⌟) with type Booleanτ ,

f ≡ li�(⌞false⌟) with type Booleanτ ,

� ≡ li�(⌞�⌟) with type Integerτ ,

0 ≡ li�(⌞⌟) with type Integerτ , and

1 ≡ li�(⌞⌟) with type Integerτ .

�e definition for undefinedness is done for the polymorphic constant �.
For Boolean, we have already seen the definitions for the basic opera-

tions. �e operations for the primitive datatypes are very similar to these,


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e. g., the strict addition on integers is defined as:

_+_ ≡ li�(strictify(λ x . strictify(λ y. ⌞⌜x⌝ + ⌜y⌝⌟))) . (.)

Moreover, from these definitions, computational rules on numbers can be

derived, which perform computations like + on binary representations
of numbers.

Adding an explicit element denoting undefinedness to the “mathemati-

cal” integers and real numbers, i. e., li�ing them, changes their algebraic

structure. Whereas mathematical integers are a commutative ring with

unity and real numbers are a field, the li�ed versions do not share such a

rich structure:

• �e li�ed integers (Integerτ) contain neither and additive nor

a multiplicative inverse element for �. Both (Integerτ ;+) and
(Integerτ ; ⋅) form only a half-group with unity (monoid), and
thus (Integerτ ;+; ⋅) does not even form a semiring (a ⋅  = 
does not hold). Nevertheless, (Integerτ ∖ {�};+; ⋅) is a subring
of (Integerτ ;+; ⋅).

• Similarly, (Realτ ;+; ⋅) do not form a semiring either, but contain
the subfield (Realτ ∖ {�};+; ⋅).

For the real numbers (Realτ), this seems to be a dramatic loss of algebraic

structure. But one should keep in mind that still most laws required for

rings (in the case of Integerτ) and fields (Realτ) hold. For example,

Table . summarizes the variants of the ring laws that can be proven for

Realτ , only Equation .d and Equation .h differ from the usual laws

for fields. �e situation for Integerτ is similar. Moreover, the idea of

canceling undefinedness whenever possible, e. g., by defining � ⋅ 0 to be 0,
is not sufficient for establishing a richer algebraic structure.

Another interesting possibility is the definition of “machine arith-

metic,” i. e., a bounded integers based on two’s-complement representa-

tion. Rauch andWolff [] presents such a formal semantics for bounded

integers, based on the specification of the Java virtual machine (), as

a shallow embedding into Isabelle/. �is work would fit nicely into

our framework.

.. Collections

Using our framework, it is easy to define both a theory of non-smashed

collection types and a theory of smashed collection types. �e underlying

datatype definitions are already described in Section ... As an example,

see Table . for the definition of the core operations for non-smashed

sets. Introducing the injection AbsSet and projection RepSet results in the

corresponding definitions for the smashed sets (see Table .).


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(x + x) + (x ∶∶ Realτ) = x + (x + x)

0 + (x ∶∶ Realτ) = x

(x ∶∶ Realτ) + x = x + x

(x ∶∶ Realτ) ≠ �

∃y. x + y = 0

(.a)

(.b)

(.c)

(.d)

(x ⋅ x) ⋅ (x ∶∶ Realτ) = x ⋅ (x ⋅ x)

1 ⋅ (x ∶∶ Realτ) = x

x ⋅ (x ∶∶ Realτ) = x ⋅ x
(x ∶∶ Realτ) ≠ � x ≠ 0

∃y. x ⋅ y = 1

(.e)

(.f)

(.g)

(.h)

(x ∶∶ Realτ) ⋅ (x + x) = x ⋅ x + x ⋅ x

(x + x) ⋅ (x ∶∶ Realτ) = x ⋅ x + x ⋅ x

(.i)

(.j)

Table .:�e li�ed real numbers (Realτ) enjoy not all laws required for fields: there is neither

an inverse element for the addition (Equation .d) nor for the multiplication (Equa-

tion .h).

_ ∈ _ ≡ li�(strictify(λ X . strictify(λ x . ⌞x ∈ ⌜X⌝⌟)))
_
− ≡ li�(strictify(λ X . ⌞−(⌜X⌝ − �)⌟))

_ ∪ _ ≡ li�(strictify(λ X . strictify(λ Y . ⌞⌜X⌝ ∪ ⌜Y⌝⌟)))

_ ∩ _ ≡ li�(strictify(λ X . strictify(λ Y . ⌞⌜X⌝ ∩ ⌜Y⌝⌟)))

(.a)

(.b)

(.c)

(.d)

Table .: Defining the basic operation on non-smashed sets straight forward. Non-strict version

can be obtained by omitting the strictify combinator.
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_ ∈ _ ≡ li�(strictify(λ X . strictify(λ x . ⌞x ∈ ⌜RepSet X⌝⌟)))
_
− ≡ li�(strictify(λ X . AbsSet⌞−(⌜RepSet X⌝ − �)⌟))

_ ∪ _ ≡ li�(strictify(λ X . strictify(λ Y .

AbsSet⌞⌜RepSet X⌝ ∪ ⌜RepSet Y⌝⌟)))

_ ∩ _ ≡ li�(strictify(λ X . strictify(λ Y .

AbsSet⌞⌜RepSet X⌝ ∩ ⌜RepSet Y⌝⌟)))

(.a)

(.b)

(.c)

(.d)

Table .:�e definition for the basic operation on smashed sets can be easily derived from the

definition for non-smashed sets (see Table .) by introducing the injection AbsSet and

projection RepSet.

In a similar way, we also could define datatype adaption combinators

for finite sets, albeit this is not necessary: using a suitable definition for

the size of an unbounded set, i. e., for an infinite set the size is undefined,

we can easily define a test for sets being finite

isFinite self ≡ ∂∥self ∥ of type α Setτ ⇒ Booleanτ . (.)

In assumptions, this test function isFinite _ can be easily used for restrict-

ing theorems to finite sets.

.  -  

Systems for formally analyzing object-oriented systems can be mainly

classified into systems based on a closed-world assumption (the majority)

and systems based on an open-world-assumption:

Closed-world: In a closed-world scenario, a fixed data model is assumed, closed-world

i. e., a fixed set of classes that cannot be extended. In particular, it

is neither possible to introduce new top-level classes nor to inherit

from an existing class.

Open-world: In an open-world scenario, the underlying data-mode is open-world

extensible, i. e., new classes can be introduced into the system

and these new classes can, in particular, override already defined

operations or methods.

Extensibility is both a key feature of object-orientation, and also a corner

stone of modular theorem proving. �erefore, we aim for an embedding
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supporting extensibility. Moreover, the construction we present in this

section allows for open-worlds, closed-worlds and even partially closed-

worlds.

Instead of constructing a “universe of all objects” (which is either un-

typed or “too large” for a (simply) typed set theory, where all type sums

must be finite), one could think of generating an object universe for each

given set of classes. For example, assume a model with the classes A, B,

and C. Moreover, we ignore subtyping and inheritance for a moment.

In this case, we would construct the universeU = A+ B + C. Unfortu-

nately, such a construction is not extensible: If we add a new class, e. g.,

D, then the “obvious” constructionU = A+ B + C + D results in a type

that is different to the type U
. �us, the two types U

and U
(and

all values constructed over them) are incomparable. �erefore, such a

representation rules out a modular, incremental construction of larger

object systems. In particular, properties that have been proven overU

will not hold overU
. Practically, this means that all proof scripts will

have to be rerun over an extended universe.

We solve this problem by using parametric polymorphisms for repre-

senting families for universesU i
, see Figure . on the next page for a first

overview of this idea. Such a family of universes represents the “possible

class diagram extensions”. Further, we extend the scheme sketched above

by assigning to Classes not directly objects, but merely object extensions.

�is “incremental” object view (also used in many implementations) al-

lows for the representation of object inheritance and leads, as we will

see, to a smooth integration of inheritance into the world of parametric

polymorphism.

.. Foundations

Object universes are the core of our notion of state, which is the building

block of our notion of context τ, which is again the building block of the

semantic domain of our expressions: τ ⇒ α ∶∶ bot. In this section, we
focus on families of object universesU i

, each of which corresponds to

a class diagram. EachU i
comprises all primitive types (Real, Integer,

String, Boolean, . . .) and an extensible class type representation induced

by a class hierarchy. To each class in a given class diagram, a class type

is associated which represents the set of object instances or objects. �e

structure of aU i
is to provide a family of injections and projections to

and from each class type. More precisely, if we assume a class A, this

results on level  in:

mk
()
A with typeU i ⇒ A, and (.)

get
()
A with type A⇒U i

. (.)
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A A βObject

αA

U
(αA ,βObject) = A× αA

⊥
+ βObject

U
(αB ,αC ,βA ,βObject) = A× (

=αA

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B × αB

⊥
+ C × αC

⊥
+ βA)⊥

(a) A single class A represented by the type sum A× αA
⊥ + βObject. �e type variable αA

⊥ allows for introducing
subclasses of A and the type variable βObject allows for introducing new top-level classes.

A

B C

A βObject

B

αB

C βA

αC

U
(αB ,αC ,βA ,βObject) = A× (

=αA

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B × αB

⊥ + C × αC
⊥ + βA)⊥

+ βObject

(b) Extending the previous class model simultaneously with two direct subclasses of A is represented by instanti-
ating the type variable αA ofU

(αA ,βObject).

Figure .: Assume we have a model consisting only of one class A which “lives” in the universe

U
(αA ,βObject) that we want to extend simultaneously with two new subclasses, namely B

and C. As both new classes are derived from class A, we construct a local type polynomial

B×αB
⊥+C×αC

⊥ +βA. �is type polynomial is used for instantiating type variable αA. �is

process results in the universeU
(αB ,αC ,βA ,βObject) for the final class hierarchy. In particular,

the universeU
(αB ,αC ,βA ,βObject) is a type instance ofU


(αA ,βObject). �us, properties that

have been proven over the initial universeU
(αA ,βObject) are still valid over the extended

universeU
(αB ,αC ,βA ,βObject).
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�is functions allow us to inject any semantic value of our object-language

into someU i
. Note, as we need also li�ed versions of these definitions,

we will mark the different versions by different superscripts. �is in turn

makes a family of states (containing “object systems”) possible:

state with type oid⇀U (.)

where _⇀ _ denotes the partial mapping. From this state, concrete values
may be accessed via an oid and then be projected via get

()
A . On this basis,

the accessor functions composing path expressions can be built.

�e extensibility of a universe type is reflected by “holes” (polymorphic

variables) that can be filled when “adding” extensions to class objects,

which means adding subclasses to the class hierarchy. Our construction

will ensure thatU i+
(corresponding to a particular class diagram) is just

a type instance ofU i
(whereU(i+) is constructed by adding new classes

toU i
). �us, properties proven over object systems “living” inU i

remain

valid inU i+
.

�ere are essentially two choices for an operational semantics of object

universes and thus object constructors:

Objects are references: every object has a unique identifier, sometimes

also called reference. �is construction is well-known from many

widely used object-oriented programming languages like Java or

Eiffel or specification languages with copy semanticscopy semantics

Objects are values: the identifying representation of an objects is its value,

i. e., two objects representing the same value, are indistinguishable.

�is is o�en called a sharing semantics.sharing semantics

Naturally, the choice if objects identifiers are used to identify objects has

several consequences on themeaning of “being equal.” �is is discussed in

more detail in Section .. Having object-oriented programming language

in mind, a non-referential setting can be unintuitive. For example, a

constructor does not necessarily generate a fresh object.

In our framework, the distinction between the sharing semantics and

copy semantics is reflected in two alternative universe constructions,

namely the non-referential universe and the referential universe.

.. Type Constructions

In the following, we define several type sets which all are subsets of the

types of the  type system. �is set, although denoted in usual set-

notation, is a meta-theoretic construct, i. e., it cannot be formalized in

. We start by defining all possible types for class attributes.

D . (A T) �e set A of attribute types is induc-attribute type

tively defined as follows:


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. {Boolean, Integer, Real, String, oid} ⊂ A, and

. {a Set, a Sequence, a Bag, a OrderedSet} ⊂ A for all a ∈ A. ◻

Attributes with class types are encoded using the type oid. �ese object

identifiers (i. e., references) will be resolved by accessor functions for a

given state; an access failure will be represented by �.
Similar to the description in the  standard we represent a class by a

tuple, which is built by pairing the attribute types of the class. Moreover,

we extend this tuple by an abstract datatype for each class. �is construc-

tion guarantees that each class type is unique. �us we provide a strongly

typed universe (with regard to the object-oriented type system).

D . (T T) For each class C we assign a tag type t ∈ T tag type

which is just an abstract type that makes class types unique. �e set T is
called the set of tag types. ◻

Further, we introduce for each class a base type:

D . (B C T) �e set of base class types B is de- base class type

fined as follows:

. classes without attributes are represented by (t × unit) ∈ B, where
t ∈ T and unit is a special  type denoting the empty product.

. if t ∈ T and a i ∈ A for i ∈ {, . . . , n} then (t × a ×⋯× an) ∈ B.◻

Without loss of generality, we assume in our object model a common

supertype of all objects. In the case of , this is OclAny. In the case

of Java this would be Object. We can assume such a supertype without

loss of generality, because such a common supertype can always be added

to a given class structure without changing the overall semantics of the

original object model.

D . (O) Let Objecttag ∈ T be the tag of the common

supertype Object and oid the type of the object identifiers, Object

. in the non-referential setting, we define

α Object ∶= (Objecttag × α�) (.)

as the common supertype.

. in the referential setting, we define

α Object ∶= ((Objecttag × oid) × α�) (.)

as the common supertype. ◻
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Now we have all the foundations for defining the type of our family of

universes formally:

D . (U T) �e set of all universe types Uref anduniverse type

Unonref (abbreviated Ux) is inductively defined by:

. U
α ∈ Ux is the initial universe type with one type variable (hole)

α.

. U(α , . . . ,αn ,β , . . . ,βm) ∈ Ux, n,m ∈ N, i ∈ {, . . . , n} and c ∈ B then

U(α , . . . ,αn ,β , . . . ,βm)[α i ∶= ((c × (αn+)�) + βm+)] ∈ Ux . (.)

�is definition covers the introduction of “direct object extensions”

by instantiating α-variables.

. U(α , . . . ,αn ,β , . . . ,βm) ∈ Ux, n,m ∈ N, i ∈ {, . . . ,m}, and c ∈ B then

U(α , . . . ,αn ,β , . . . ,βm)[β i ∶= ((c × (αn+)�) + βm+)] ∈ Ux . (.)

�is definition covers the introduction of “alternative object exten-

sions” by instantiating β-variables. ◻

�e initial universeU
α represents the common supertype (i. e., Object)

of all classes, i. e., a simple definition would be

U
α ∶= α Object . (.)

Along the class hierarchy, class types are type instances of the types of the

superclasses.

Alternatively one can also encode values Values ∶= Real + Integer +
Boolean + String within the initial universe type, e. g.,

U
α ∶= α Object +Values . (.)

As we will see later, for our framework we choose to represent also values

within the universe which makes extensions possible that need to store

values within the store. �us we define the universes as follows:

D . (R U T) �e universe type Uref
of the referential universe is constructed using item  from Definition .referential universe

in the definition of the initial universe:

U
α ∶= α Object + Real + Integer + Boolean + String . (.)

◻


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D . (N- U T) �e type Unonref
of the non-referential universe is constructed using item  from Defini- non-referential

universetion . in the definition of the initial universe:

U
α ∶= α Object + Real + Integer + Boolean + String . (.)

◻

We pick up the idea of a universe representation without values for a class

with all its extensions (subtypes). We construct for each class a type that

describes a class and all its subtypes. �ey can be seen as “paths” in the

tree-like structure of universe types, collecting all attributes in Cartesian

products and pruning the type sums and β-alternatives.

D . (C T) �e set of class types C is defined as fol- class type

lows: Let U be the universe covering, among others, class Cn , and let

C , . . . ,Cn− be the supertypes of Cn , i. e., C i is inherited from C i−. �e

class type of Cn is defined as:

. C i ∈ B, i ∈ {, . . . , n} then

Cα = (C × (C × (C ×⋯ × (Cn × α�)�)�)�
)
�
∈ C . (.)

. UC ⊃ C, where UC is the set of universe types withU

α = Cα . ◻

Alternatively, one could omit the li�ing of the base types of the super-

types in the definition of class types. �is would lead to:

Cα = (C × (C × (C ×⋯ × (Cn × α�))))
�
. (.)

We see our definition as the more general one, since it allows for “partial

objects” potentially relevant for other object-oriented semantics for pro-

gramming languages. For example Java, for which partial class objects

may occur during construction. �is paves the way for establishing the

definedness of an object “lazy.” Furthermore, since the injections and

projections are only built to define attribute accessors, partial objects can

be hidden on level , e. g., the representation of  formulae.

In both cases the outermost _� reflects that class objects may also
be undefined, in particular a�er projection from some elements in the

universe or from failing type-casts. �is choice has the consequence that

the arguments of constructors may be undefined.


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.. Instances

We provide for each class injections and projections. In the case of Object

these definitions are quite easy, e. g., using the constructors Inl and Inr for

type sums we can easily insert an Object object into the initial universe

via

mk
()
Object self ≡ Inl self with type α Object→U

α (.)

and the inverse function for constructing an Object object out of a uni-

verse can be defined as follows:

get
()
Object univ ≡

⎧⎪⎪⎨⎪⎪⎩

k if univ = Inl k
ε k. true if univ = Inr k

with typeU
α → α Object.

(.)

In the general case, the definitions of the injections and projections is a

little bit more complex, but follows the same schema: for the injections

we have to find the “right” position in the type sum and insert the given

object into that position. Further, we define in a similar way projectors

for all class attributes.

In a next step, we define type test functions; for universe types we need

to test if an element of the universe belongs to a specific type, i. e., we

need to test which corresponding extensions are defined. For Object we

define:

isUniv
()
Object univ ≡

⎧⎪⎪⎨⎪⎪⎩

true if univ = Inl k
false if univ = Inr k

with typeU
α → bool.

(.)

For class types we define two type tests: an exact one that tests if an object

is exactly of the given dynamic type and a more liberal one that tests if

an object is of the given type or a subtype thereof. Testing the latter one,

which is called kind in the  standard, is quite easy. We only have tokind

test that the base type of the object is defined, e. g., not equal to �:

isKind
()
Object self ≡ def self with type α Object→ bool. (.)

An object is exactly of a specific dynamic type, if it is of the given kind

and the extension is undefined, e. g.:

isType
()
Object self ≡ isKindObject ∧¬((def ○base) self ) (.)

with type α Object → bool. Where base is a kind of strict operator for
accessing the second element of a pair:

base x ≡
⎧⎪⎪⎨⎪⎪⎩

b if x = ⌞(a, b)⌟,
� otherwise,

with type (α × β�) → β�. (.)


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�e type tests for user defined classes are defined in a similar way by

testing the corresponding extensions for definedness.

Finally, we define coercions, i. e., ways to type-cast classes along their type-cast

subtype hierarchy. �us we define for each class a cast to its direct subtype

and to its direct supertype. We need no conversion on the universe types

where the subtype relations are modeled by polymorphism. �erefore

we can define the type-casts as simple compositions of projections and

injections, e. g., consider a direct subclass Node of Object, then we can

define directly:

Node
()
[Object] ≡ getObject ○mkNode (.)

with type (α , β)Node→ (α , β) Object, and

Object
()
[Node] ≡ getNode ○mkObject (.)

with type (α , β)Object→ (α , β)Node. �ese type-casts are changing
the static type of an object, while the dynamic type remains unchanged.

Note, for a universe construction without values, e. g.,U
α ∶= α Object,

the universe type and the class type for the common supertype are the

same. In that case there is a particularly strong relation between class

types and universe types on the one hand and on the other there is a

strong relation between the conversion functions and the injections and

projections function. In more detail, see also Figure . on the following

page, one can understand the projections as a cast from the universe type

to the given class type and the injections as their inverse.

As reusabilty and extensibility are key concepts of object-orientation,

we aim for an open-world within our framework. Recall that our universe

construction ensures that theorems proven a given universeUwill remain

valid for extensions ofU.

Moreover, our construction allows to close a model in a fine-granular

way: We can block further extensions by instantiating the α’s and β’s

related to this class by instantiating them by the unit type. We consider

this fact as a solution to the long-standing problem of extensionality

for object-oriented languages, enabling to represent “open-world” and

“closed-world” assumptions as polymorphism on data universes.

Our solution is more fine-grained than the concept of finalization avail-

able in several object-oriented programming languages: First, we can

finalize a class which inhibits the inheritance from a class completely, i. e., finalize

a class cannot have any subclasses. Technically, this is done by instan-

tiating the α of this class with unit. Second, we can sterilize a class, i. e., sterilize

inhibit further direct subclassing but allowing “sub-subclassing.” �is is

done by instantiating the β of the last direct subclass with unit.


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Universe

Object ValuesObject Values

A

B

C

A[OclAny]

B[A]

C[B]

OclAny[A]

A[B]

B[C]

mkA

mkB

mkC

getA

getB

getC

Figure .:�e type-casts, e. g., B[C] allow the conversion of a type to

its direct successor or predecessor in the type hierarchy. �e

injections, e. g., mkB convert a class type to the universe type

and the projections, e. g., getB, convert a universe type to a

concrete class type. For a universe without values, the class

type and the universe type of the top most class are identical.

Here, the package Universe represents the universe, i. e., the

top level class (Object) and the primitive types (Values).
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.. Adaption to Higher Embedding Layers

�e previous presented definitions are on the lowest layer, i. e., the intro-

duction of new datatypes. Just as the  definition are adopted, over

several layers, to match the object-language definitions, we have to adopt

the new definitions for object-oriented datatypes.

.     

In this section, we bring the specifications of class invariants and the data class invariant

specifications together, i. e., we enrich the structural data model with

class invariants. O�en, in object-oriented modeling, invariants are a local

property of an object, i. e., it can be locally decided if an object fulfills its

invariant or not. In this setting, a class defines a structural type. Invariants structural type

are checked locally in a post-hoc manner, i. e., somehow it is required

that an invariant holds for all instances of a structural type. Overall, this

is similar to programming languages with runtime checking or systems

based on that idea like [] or Spec# [, ].

We aim for a deep integration of invariants, i. e., a strong link between

invariants and objects. In our understanding, there is no object (on the

user level) not satisfying its invariant. We ensure this by a co-recursive

scheme that we present in this section. Our co-recursive encoding scheme

supports the encoding of recursive object structures with class invariants,

introducing the concept of a semantic type. �is is in opposite to the weak semantic type

link provided in systems that do post-hoc checking of invariants.

To illustrate why we break up with the idea of post-hoc invariant check-

ing, consider the model of a linked list given in Figure . on the next page

together with a simple invariant “positive” stating that the value of the

attribute imust be positive and a second one “flip” stating that within a

given linked list, the Boolean attribute of the nodes flips while traversing

the list.

Further, consider the system state depicted in the object diagram in

Figure .: Is the given system state legal, i. e., do the invariants hold for

object n1? For the first invariant, called “positive,” this can be trivially

decided only by interpreting the n1 locally. But interpreting the second

invariant, called “flip,” only locally makes not much sense. �is invariant

has to be interpreted it in a global context, i. e., following the next links.

Moreover, this also requires that n2 is a valid instance of class Node and

thus one has to consider all instances that are reachable from n1 to decide

if n1 fulfills its invariant or not. Moreover, we need a construction that

can also cope with cycles in the object structure, as illustrated in the

two states in Figure . and Figure .. Here, only the state in Figure .

is consistent. �e situation can become much more complex, involving

inheritance and more complicated object structures. Such scenarios are


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Node

b: Boolean
i: Integer
next: Node

context Node
inv positive: self .i ≥ 0
inv flip:

∂ self .nextÐ→ self .b = ¬ self .next.b

Figure .: In this diagram wemodel a simple linked list: every instance of

class node can have a successor (node) and has two attributes

storing an Integer and a Boolean value. Using an invariant, we

require that the Integer attribute is positive and that the value

of the Boolean attribute is different from the Boolean value of

the next node, i. e., the Boolean attributes should flip its value

as we traverse an instance of the linked list.

Node: n1

b = t
i = 42
next = n2

Node: n2

b = f
i = 42
next = n3

Node: n3

b = f
i = 42
next = �

Figure .: In this object diagram we illustrate an instance of our linked

list structure. Consider the first node n1 and decide if the

invariant flip for class Node holds or not.

Node: n1

b = t
i = 42
next = n2

Node: n2

b = f
i = 42
next = n3

Node: n3

b = t
i = 42
next = n1

Figure .: In this object diagram we illustrate a second instance of our

linked list structure. Consider the first node n1 and decide if

the invariant flip for class Node holds or not.

Node: n1

b = t
i = 42
next = n2

Node: n2

b = f
i = 42
next = n3

Node: n3

b = t
i = 42
next = n2

Figure .: In this object diagram we illustrate a third instance of our

linked list structure. Consider the first node n1 and decide if

the invariant flip for class Node holds or not.
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our main motivation for a co-recursive construction of type and kind sets

that are aware of class invariants. Moreover, if done conservatively, this

construction will rule out invariants that are dangerous in the sense that

they could introduce logical inconsistencies, which we will discuss this in

more detail in Section ... In Section .. we will compare the approach

of using structural types with post-hoc invariant checking, which we

will introduce in Section .., with semantic invariants as introduced in

Section ...

.. Structural Types with Post-hoc Invariant Checks

In this section, we will give a brief overview of the idea of post-hoc

invariant checking, as it is for example used in theKeY [] tool or  [].

�ese tools assume structural type and kind sets, e. g., Java classes. In this

scenario there an instance of a class can fulfill an invariant or not, i. e., only

a subset of all possible instances fulfill the class invariant. In the remainder

of this section, we will show how structural type and kind sets can be

defined within our framework and how formulae can be constructed that

allow for testing if an instance fulfills the class invariant or not.

     . Based on the type

and kind tests introduced in Section .., we can easily define structural

type and kind sets for each class. Our constructs on level , i. e., isType()_
and isKind()_ provide a test for structural types and kinds, e. g., for the

class Node we define:

TypeSetNode ≡ {obj ∶∶ (αC , βC) Node ∣ isType()Node obj} (.)

and

KindSetNode ≡ {obj ∶∶ (αC , βC) Node ∣ isKind()Node obj}. (.)

�ese possibly infinite sets describe all structural objects of a specific type

or kind. In particular, the elements of these sets are not required to fulfill

the class invariants for the given type or kind.

-  . Based on the structural projec-

tors and injectors (i. e., the first-level definitions), we can directly give

a semantics for formulae of our constraint language. For example, the

invariant positive of class Node can be directly described as:

invPositiveNode self ≡ self . i() ≥ 0 (.)

where self . i() is the access of attribute i on level .

Nevertheless, this is only a formula defined over our object store, in

particular, it is not an invariant. Informally, the meaning of being an


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invariant is o�en described as follows; an invariant of a class must evaluate

to true for all instances (objects) of that class at any time. Operational

semantic definitions as used in evaluation environments, e. g., [] or

validation environments, e. g., [], require implicitly (on themeta-level)

that all instances are satisfying their invariants.

Consider again our linked-list example, shown in Figure . on page .

For environments based on a post-hoc invariant checking, the instances

n1 of Figure . satisfies its invariants and thus is valid. Nevertheless, if

due to a meta-level requirement that all instances of a concrete system

state have to fulfill their invariant, the state would be rejected because

the instance n3 does not fulfill its local invariant, i. e., n3.b = n3.next.b

contradicts the requirements of the invariant flip. However, in this

concrete example, the the consistency check will not terminate for most

implementations of evaluation environments. �is is caused by the fact

that these environments are usually not designed with recursive data

structures in mind.

In a proof environment, postulating that all instances fulfill their in-

variants can easily falsify the assumption of proofs (which makes them

trivial) or even introduce deep logical inconsistencies. We will discuss

this problem in more detail in Section ...

In the next section, we present a co-recursive construction that provides

a semantic definition of types and kind sets which can guarantee, by

construction, that only objects fulfilling their invariants are of a given

type.

.. Defining Semantic Type and Kind Sets

In this section, we present a co-recursive encoding that ensures, by con-

struction, that each instance of a class fulfills the class invariants. We

extend the type discipline to be aware of invariants, i. e., being of a specific

type also ensures that the invariants of this type are fulfilled. In particular,

we introduce type sets (which can be seen as a kind of first level invariant)

which later on define a second level construct, providing a representation

that looks familiar to people involved in object-oriented modeling.

 -     . In a

setting with subtyping, we need two characteristic type sets, a sloppy

one, the characteristic kind set, and a loose one, the characteristic type

set. We define these sets co-recursively. As basis for our co-recursive

construction, we built for each invariant a  representation, i. e., in each

formula where we replace recursively the logical connectives of our object-

language with their  counterpart by requiring the validness of the

sub-formula. �is is done using the logical judgment τ ⊧ P which means

that the object-logical formula P is valid (i. e., evaluates to t) in context


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τ. As we want to use these invariants for a co-recursive construction we

parametrize them over the current state τ, the object self and the type set

C we are constructing.

Recall our previous example (see Figure .), where the class Node

describes a potentially infinite recursive object structure. �e invariant of

class Node constrains the attribute i to values greater or equal than . For

this constraint, we generate

hol_inv_positive τ C self ≡ τ ⊧ self . i() ≥  . (.)

Further, we generate an invariant expressing the fact that next be either

undefined or of type Node:

hol_inv_type_next τ C self ≡ τ ⊧ /∂ self . next()

∨ τ ⊧ self . next() ∈(λ f . f τ) ‵ C
(.)

where _ ‵ _ denotes the point-wise application.

Now we define a function for construction the kind set for Node which

approximates the set of possible instances of the class Node and its sub-

classes:

NodeKindF ∶∶U
(αC ,βC ,βN) St⇒U

(αC ,βC ,βN) St⇒ (αC , βC) Node set

⇒U
(αC ,βC ,βN) St⇒ (αC , βC) Node set

NodeKindF ≡ λ τ. λ X . {self ∣ hol_inv_type_next τXself
∧ hol_inv_type_next τ X self .

(.)

By adding the conjunct τ ⊧ isType()Node self , we can construct another ap-
proximation function (which has obviously the same type as NodeKindF):

NodeTypeF ∶∶U
(αC ,βC ,βN) St⇒U

(αC ,βC ,βN) St⇒ (αC , βC) Node set

⇒U
(αC ,βC ,βN) St⇒ (αC , βC) Node set

NodeTypeF ≡ λ τ. λ X . {self ∣ (self ∈ (NodeKindF τ X))

∧ τ isType
()
Node self } .

(.)

�us, the characteristic kind set for the class Node can be defined as the

greatest fixed-point over the function NodeKindF:

NodeKindSet ∶∶U
(αC ,βC ,βN) St⇒U

(αC ,βC ,βN) St⇒ (αC , βC) Node set
NodeKindSet ≡ λ τ. (gfp(NodeKindF τ)) .

(.)
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For the characteristic type set we proceed analogously. Further, we prove

automatically, using the monotonicity of the approximation functions,

the point-wise inclusion of the kind and type sets:

NodeTypeSet ⊂ NodeKindSet . (.)

�is property represents semantically the subtype relation. �is kind of

theorem remains valid if we add further classes in a class system.

Now we relate class invariants of subtypes to class invariants of super-

types. �e core of the construction for characteristic sets taking the class

invariants into account is a greatest fixed-point construction (reflecting

their co-algebraic properties). We proceed by defining a new approxima-

tion for a subclass Cnode on the basis of the approximation function of

the superclass:

CnodeF ≡ λ τ. λ X .

{self ∣ self ()[Node] ∈ (NodeKindF τ (λ o. o
()
[Node])

‵ X)

∧ (φ τ X self )}
(.)

where φ stand for the constraints specific to the subclass. Note φ must

appropriately include τ ⊧ self . next() ∈(λ f . f τ) ‵ X to make the implicit

recursion in the Cnode invariant explicit.

Similar to [] we can support mutual-recursive datatype definitions

by encoding them into a type sum. However, we already have a suitable

type sum together with the needed injections and projections, namely

our universe type with the make and get methods for each class. �e only

requirement is that a set of mutual recursive classes must be introduced

“in parallel,” i. e., as one extension of an existing universe.

Now we can easily introduce type and kind tests that are aware of the

invariants, i. e., which test if a given object is structural from the requested

type (or kind) and fulfills its invariant can be reduced to membership

test for the type or kind sets. Moreover, our construction for type sets

and kind sets provides for an object a tight connection between “being

of a type” and “fulfilling its invariant,” i. e., the invariant for Node can be

defined semantically as follows:

Node_sem_inv self ≡ self ∈NodeKindSet (.)

with type (αC , βC) Node→ Booleanτ .

 -  . �e se-

mantic invariant definition introduced in the previous section is not a

representation of invariants somebody used to object-oriented modeling


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would expect. �erefore we define for each class a “user representation.”

�is representation is based on the accessor introduced in the last section,

e. g., for Node we define:

Node_defined self ≡ ∂ self , (.)

Node_inv_positive self ≡ self . i ≥  , and (.)

Node_inv self ≡ Node_defined self
∧Node_inv_positive self .

(.)

�e constraintNode_defined ensures the definedness of self , which allows

us to prove the equivalence of both invariant representations, e. g., for

Node we prove:

Node_inv self = Node_sem_inv self . (.)

�us, we can provide the users of our framework with an invariant rep-

resentation that looks familiar to the user specification, e. g., expressed

using :

context Node

inv positive: self.i >= 0

inv flip: not self.next.isOclUndefined()

implies self.b = not next.b

Moreover, this representations allows proving of many system properties

without the need of using co-recursive induction schemes.

Using co-induction for defining recursive datatypes allows for specifi-

cations of infinite structures. Alternatively, the introduction of a measure

function allows for restricting data-recursion to finite data-structures.

On finite data-structures, the usual inductive proof techniques can be

applied.

It would be desirable to provide support for the concept of co-recursion,

e. g., by generating specialized (co)recursion theorems for user defined

datatypes (object-structures). �is would pave the way for powerful

recursion concepts in the constraint language that are not limited to

well-foundedness. Operationally, such recursion schemes would corre-

spond to lazy evaluations over cyclic data-structures known in functional

programming languages such as Haskell.

In particular, co-recursive operators over the user-defined types can

be defined such as the deep value equality under which to objects are

equal if they are describe (recursively) the isomorphic object structure

and the corresponding attribute with primitive types are equal, i. e., the

object structures are bi-similar. �e issue is discussed in more detail in

Section ..


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.. Combining Embeddings

Combining a constraint language with our store raises another question

that is closely related to the chosen type of invariant encoding. Namely,

what should be the formal semantics of operations returning instances

(e. g., accessors, constructors); in more detail: should the returned in-

stance fulfill the invariant of its type (class). In systems using post-hoc

invariant checking, the underlying semantic construction normally does

not guarantee that a returned instance fulfills its invariant. �is property

has either to be tested post-hoc or is required on the meta-level by an

assumption “all objects of the current state fulfill their invariants.”

Using our semantic invariant definition we can go one step further in

combining our constraint language embedding with our embedding of

the object-oriented store: we test if a structural object (on the first level)

fulfills its invariant and if not, we just return undefined. �is is easily

achieved by defining the second level constructs using a wrapper testing

if a first level constructs fulfills its invariant. For example, we define the

accessor for attribute i of class Node as follows:

self . i() ≡ if Node_inv self then self . i() else� endif . (.)

As a consequence, we can easily derive the rule

τ ⊧ ∂(self . i())

τ ⊧ Node_inv self
, (.)

which does not hold in a setting with structural types and post-hoc in-

variant checking.

All other, previously introduced first level constructs, are also adopted

by wrapping them in an if-statement.

Note, for finite system state and a closed-word scenario such a second

level construction is also possible for a system with post-hoc invariant

checking. Relaxing one of those constraint, i. e., allowing the system to

be extensible, or infinite system states, this construction can lead, if done

naïvely, to logical inconsistencies. In that case, the monotonicity proofs

needed for our semantic type sets will fail and reject the model, and thus

protecting the user of our system against this situation. We will discuss

this problem in more detail in Section ...

.. Varying Invariants

For program verification projects the user defined invariants are o�en too

strong, at least if the invariants are not syntactically restricted to formulae

only constraining visible, i. e., being public, part of the class attributes.

In settings allowing arbitrary invariants, o�en the need for temporary
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disobeying an invariant, i. e., during the construction of object structures

or inner calls, occurs. �is observation by us and also by others []

motivates our decision for providing means for varying invariants. In the

remainder of this section, we will describe two mechanisms for providing

such relaxed invariants within a proof environment.

      . �e discussed

type sets and kind sets are of major importance when resolving overriding

and late-binding: If we can infer from a class invariant that some object

must be of a particular type, then late-binding method invocation can be

reduced to a straight-forward procedure call with simplified semantics.

As a default we generate for each class three different type sets and kind

sets:

. a set based on the user-defined invariant,

. a set allowing undefined references, i. e., all accessors to attributes

of type oid are or-ed with a corresponding /∂-statement, and

. a set allowing undefined references and undefined primitive types,

i. e., all accessor to attributes are or-ed with a corresponding /∂-
statement.

For example, recall our model of a linked list (see Figure . on page ).

For the last variant described above, i. e., item , the  representation

of the invariant constraining the attribute i to positive values we change

Equation . on page  to

hol_inv_positive_relaxed τ C self ≡ τ ⊧ self . i() ≥ 

∨ τ ⊧ /∂ self . i() (.)

and repeat the construction described in Section ...

�e above enumeration is listed in ascending order, i. e., every object

that is in the first set, is also included in the other two. Such an hierarchy

of invariants allows for formally specifying relaxed variants of class in-

variants necessary during program verification. In a program state, for

example, it is not possible to create an object graph at once where all

references are defined. Rather, a program proceeds by steps with unde-

fined references (assuming a relaxed invariant/characteristic set following

item ) ending up by establishing a stronger invariant following item ).

�us, the support of different invariant versions is a corner stone of suc-

cessful verification of object-oriented systems, see also [] where the

authors argue for weakened invariants during inner calls for systems

specified using .
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Moreover, there will be the need for even more fine-grained invariants

in verification practice. �us, in our proof environment we support two

technical means for defining relaxed invariants:

. define a function that converts structurally an invariant into a

relaxed one. �is technique is internally used for construction the

default type and kind sets.

. for specification languages allowing to specify conjuncts of the

invariant separately, as it is the case for , we allow to switch

conjuncts individually on or off.

Overall, we see such an approach as a key feature for successful program

verification, e. g., using a shallow embedding of a small object-oriented

language like ++ [].

.. Advantages of Semantic Invariants

Overall, the concept of semantic type and kind sets, as introduced in

Section .., allows for proving many side-conditions once and for all

during the construction of these sets which otherwise lead to assump-

tions in nearly every proof over a given class. In particular for recursive

data structures the advantage of semantic invariants will become clear.

Here, the identification between “type” and the “set of objects satisfying

a class invariant” makes invariants to recursive predicates whenever the

object structure is recursive. As a consequence, the construction of a

conservative model for a system of class invariants is far from trivial.

One might ask what benefit an end-user will get from conservativity

a�er all. Its need becomes apparent when stating class invariants, thus

stating recursive predicates, as axioms: this results in logical inconsistency.

Consider the following constraint as an invariant of class A:

¬ isKindA self (.)

which requires for all instances of type A not to be of kind A, i. e., neither

of typeA or a subtype of A. �us, it is in fact possible to state a variant

of Russell’s paradox which is known to introduce logical inconsistency

in naive set theory. Inconsistency means that the logic of the constraint

logic can derive any fact; this might be exploited by an automated tac-

tic accidentally. Logical inconsistency is different from an unsatisfiable

class invariant meaning “there is no instance.” In particular, in an incon-

sistent system, each class invariant can be proven both satisfiable and

unsatisfiable.

Moreover, similar problematic situations can occur, for recursive invari-

ants. �erefore, systems using an axiomatic post-hoc invariant checking
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approach, like Spec# [, ], restrict syntactically the allowed invariants

in a very rigid way.

Instead of restricting the set of allowed invariants syntactically, Our

conservative construction requires proofs of side-conditions which will

fail in the above described situation. Technically, it provides a model

for the mutual recursive predicates representing class invariants. �is

model, i. e., the set of legal states satisfying the invariant, is a result of a

greatest fixed-point computation. �e existence this greatest fixed-point

is reduced to a monotonicity argument. If the latter cannot be produced

automatically (or by user-interaction), a given class invariant will be

rejected. �us, paradoxical situations like the one above are ruled out

while admitting the “useful” forms of recursion in class invariants.

Moreover, using semantic type sets allows for defining second level

operations, i. e., from the definedness of result of a operation, we can

directly conclude that it also fulfills its invariant. For example consider a

class A with an attribute b::B. From the definedness of the result of the

access to attribute b we can conclude already:

τ ⊧ ∂ self . b

τ ⊧ ∂ self
, (.a)

τ ⊧ ∂ self . b

τ ⊧ A_inv self
, and (.b)

τ ⊧ ∂ self . b

τ ⊧ B_inv self . b
. (.c)

We are aware that this identification between the notion of a type and its

semantics is theoretically involved and not widely used in proof environ-

ments for object-oriented languages; for example, systems like Boogie or

Key do not have this interpretation of type. In these systems the type of

a class is defined by its structure, i. e., its attributes. �us, there can be

both instances of a given type that fulfill the invariant of this type and

those who not fulfill the invariant of this type. We prefer the concept

of types that ensure the invariant as this eliminates the need for prov-

ing side-conditions like “in a given system state, the return value of an

attribute accessor will return an object that fulfills its invariant.” Our

constructions rules out such situations and guarantees that in any visible

state, all objects fulfill their invariant. Overall, this should lead to a more

natural reasoning over object structures.

.   -

Equality, in its broadest sense, is an important property for both pro-

gramming and formal reasoning. Historically, object-oriented systems
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are equipped with a variety of different “equalities” []. Answering the

question if two objects are equal is not so obvious: e. g., are two objects

equal only if their object identifier is equal (are they the same object?) or

are two objects equal if their values are equal, or are they equal if they

are observably equivalent with respect to the accessor functions? In this

section, we assume that every object has a unique identifier, called object

identifier or reference of an object.

Whereas in traditional specification formalisms the equality is defined

over values, the most basic equality over objects is the reference quality or

identity equality which is also the kind of equality that is usually provided

as a default, i. e., “built-in,” equality in object-oriented languages. �us,

there is usually a fundamental difference between values and objects.

D . (P T) �e set of primitive types P is de-primitive type

fined inductively as follows:

. {Boolean, Integer, Real, String, } ⊂ P, and

. {v Set, v Sequence, v Bag, v OrderedSet} ⊂ P for all v ∈ P. ◻

D . (V) An instance of a primitive type, e. g., x ∶∶ v
with v ∈ P is called value. ◻value

Normally one expects that an equality is an equivalence relation.

D . (E R) An equivalence relation is aequivalence relation

binary relation _ ∼ _ over a set S for which the following properties hold:

• Reflexivity: a ∼ a, for all a ∈ S.

• Symmetry: a ∼ b if and only if b ∼ a, for all a, b ∈ S.

• Transitivity: if a ∼ b and b ∼ c then a ∼ c, for all a, b ∈ S. ◻

Now we introduce in an abstract way the basic qualities of object-

oriented systems, we ignore undefinedness in these definitions. In a sec-

ond step, we will show that the treatment of undefinedness is orthogonal

and can be combined with any of the following equalities.

Most object-oriented languages have the concepts of references or

object identifiers where a reference uniquely identifies an object. �us

it seems a natural choice to use these references for defining an equality,

namely the reference quality.

D . (R E) �e referential equality or ref-reference equality

erence equality is defined as follows:

. Two values are reference equal, if they are of the same type and

represent the same value.
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. Two objects are reference equal, if their object identifiers (refer-

ences) are equal. ◻

�us, the reference equality tests if two objects represent in fact the same

object in a store. O�en, the reference equality is also called identity equal-

ity; informally, it identifies an object uniquely, i. e., even objects represent-

ing the same value can be distinguished with this type of equality.

If we want to test, if two objects represent the same value we have two

options; a shallow and a deep one:

D . (V E) �e shallow value equality or just shallow value

equalityvalue equality is defined as follows:

. Two values are shallow value equal, if they are of the same type

and represent the same value.

. Two objects are shallow value equal, if they are of the same type

and all attributes with primitive types are pairwise shallow value

equal. ◻

�is definition is not recursive, hence the name shallow equality. �e

main idea behind the shallow equality is to compare two singular objects

as values. In contrast to this, we can define the deep value equality for

comparing the values of two object structures.

D . (D V E) �e deep value equality is de- deep value equality

fined as follows:

. Two values are deep value equal, if they are of the same type and

represent the same value.

. Two objects are deep value equal, if they are of the same type and

a) all attributes with primitive types are pairwise deep value

equal.

b) all attributes with type oid (object type) are pairwise deep

value equal if the objects they refer to are deep value equal.◻

Summarizing, we have already three different equalities:

. the reference equality which checks if two objects are in fact the

same object,

. the shallow value equality which compares the values of the at-

tributes on the first level, and

. the deep value equality which compares recursively the object

structure comparing the equality of the corresponding parts.
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Assuming a setting, where all values and oid are defined, i. e., the classical

two-valued view, each of them is an equivalence relation on objects. It

seems to be obvious that in a universe without undefinedness Defini-

tion . refines Definition . and Definition . refines Definition ..

�us, two objects that are reference equal are also shallow equal and deep

equal. But if we have undefined values and object it is not clear how these

equalities relate to each other. First, in a world with undefinedness we

can apply the concept of strictness to equivalence relations:

Taking undefinedness into account, e. g., values and references can be

undefined, the setting gets more complicated. First we generalize the

concept of equality relations by introducing equivalence operators.

D . (E O) An equality operator _ ∽ _ is aequality operator

binary operator that satisfies the following properties for a state τ and a

context-passing P:

• Quasi-reflexivity:

τ ⊧ ∂ x

τ ⊧ x ∽ x
(.)

• Quasi-symmetry:

τ ⊧ ∂ x τ ⊧ ∂ y τ ⊧ x ∽ y

τ ⊧ y ∽ x
(.)

• Quasi-transitivity:

τ ⊧ ∂ x τ ⊧ ∂ y τ ⊧ ∂ z τ ⊧ x ∽ y τ ⊧ y ∽ z

τ ⊧ x ∽ z
(.)

• Quasi-substitutivity or quasi-congruence:

τ ⊧ ∂ x τ ⊧ ∂ y τ ⊧ x ∽ y τ ⊧ P(x)

τ ⊧ P(y)
(.)

◻

�is definition uses the logical judgment τ ⊧ P, which means that the

object-logical formula P is valid (i. e., evaluates to t) in context τ; this

judgment is defined and discussed in Chapter .

In the following, we characterize certain classes of three-valued equality

operators.

D . (S E) An equality operator _ ≜ _ is a
strong equality if it satisfies the property: (� ≜ �) = t. ◻strong equality
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strict strong (non-strict)

referential equality o ≐ o o ≜ o

shallow value equality o ≃̇ o o
▵≃ o

deep value equality o ≊̇ o o
▵
≊ o

Table .: In an object-oriented setting one has to deal with several dif-

ferent equalities and all of them can be strict or non-strict. We

mark the strict variants with a dot and the non-strict one with

a triangle.

�is strong equality is reflexive, symmetric, transitive and substitutive

(even for undefined values) which explains its importance in deduction.

Applying the concept of strictness to an equality operator results in the

following definition:

D . (S E) An equality operator _ ≐ _ is a
strict equality if it evaluates to undefined whenever one of its arguments strict equality

is undefined, i. e., if the following properties hold:

(o ≐ �) = � , (� ≐ o) = � , and (� ≐ �) = � . (.)

◻

Strictly speaking, these last definitions are merely algebraic characteri-

zations and not definitions. �ese operation symbols were characterized

by some properties, but they are obviously not defined up to isomorphism.

In our context, two interpretations of the equalities into the semantic

domain of universes are of particular importance: when comparing ob-

jects, we can define the equality operation via -equality in the object

representation in the referential or the non-referential universe (when

comparing values, we compare them via -equality anyway).

�us, the concept of strictness is orthogonal to the semantics of equal-

ity if the arguments are defined. �us we can combine this with all of

our previous equality variants. In principle this results in six different

equalities for the object-logic (see also Table .). Albeit, with respect to

the interpretation of the equality operators (assuming only objects in the

range of the state whose reference field just contains the reference to the

object in the store), strong and strict equality operators both coincide with

referential equality since we have a bijective mapping between the values

of an object and the object identifier. �is is only true when comparing

objects within one state and not in constructs such as: x.a@pre = x.a.

In case of a referential universe construction, our framework allows

for the definition of the strict and strong referential equality directly, e. g.,

the strong equality

_ ≜ _ ≡ li�(λ x y. ⌞x = y⌟) (.)
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and the strict equality

_ ≐ _ ≡ li�(strictify(λ x . strictify(λ y. ⌞x = y⌟))) . (.)

Both equalities have the type [(τ, α ∶∶ bot), (τ, α ∶∶ bot)] ⇒ Booleanτ . In

the non-referential setting, these definitions result in the strict and strong

value equality, here the distinction between the shallow and deep equality

does not make sense. In the referential setting. both the shallow value

and the value equality have to be defined for each class separately. While

this can be done by a constant definition for the shallow value equality,

the deep value equality requires a recursive definition.

.      

In this section, we define several operations that are parametrized over the

current system state, i. e., they provide a limited form of reflection. �ese

properties allow for restricting a specific system state and also allows

for describing the behavior of constructors within our object-oriented

constraint language. Namely we define an operation for obtaining all

object instances of a type in a given state and an operation for testing if

an instance is new.

.. Accessing all Instances of a State

We define an operation allInstances _ that returns all instances (objects)

of a class in a specific type. In principle, for a given type (represented

by its kind-set), the operation allInstances _ just returns the intersection

of this set with the range in the state σ = (τ, τ′). We define it using an
overloaded constant definition for each type, for example the definitions

for Integerτ (a primitive type) and α Objectτ looks as follows:

allInstances (self ∶∶ Integerτ) ≡ self (.)

allInstances (self ∶∶ α Objectτ) ≡ λ(τ, τ′). AbsSet(⌞getObject ‵ τ⌟)
(.)

of type Vτ(α) → α Setτ . Similarly, we define an operation for accessing

all instances of the previous state, e. g.:

allInstances@pre (self ∶∶ Integerτ) ≡ self and (.)

allInstances@pre (self ∶∶ α Objectτ) ≡ λ(τ, τ′).
AbsSet(⌞getObject ‵ τ′⌟) , (.)

also of type Vτ(α) → α Setτ . For user-defined classes the returned set is

finite, i. e., in every system state there are only finitely many instances of

a class. For for primitive types, the returned set is infinite; for example,
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for Integerτ the result represents the set of all integers. One can avoid

infinite sets by defining

allInstancesFin T ≡
λ(τ, τ′). if(T = Integer) ∨ r(T = Real) ∨ (T = String)

then� else allInstances T (τ, τ′) . (.)

�is definition avoids infinite results by explicitly returning undefined

for the primitive datatypes. Additionally, we can directly define variants

of these operations for accessing all instances of the previous state. Never-

theless, we prefer the first definitions as it allows for specifying algebraic

laws like

∀ x , y ∈ Integer. x + y ≜ y + x (.)

within the object-oriented constraint language.

.. Testing for New Instances

Our constraint language does not provide the concept of constructors

in the sense of an object-oriented programming language. Nevertheless,

we define a test which can be used in postconditions to test if a concrete

instance is new:

isNew self ≡ λ(τ, τ′). ⌞get()Object(self [Object](τ, τ′)) ∉ ran τ

∧mk()Object(self [Object] (τ, τ′)) ∈ ran τ′⌟
(.)

of typeVτ(α) → Booleanτ . In this context “new”means that the instances

does not exist in the previous (direct predecessor) state.

.   

Using preconditions and postconditions for specifying operations, espe-

cially in a three-valued constraint language, raises the questions what the

precise meaning of this “contract” should be. In particular what should

happen if a precondition of an operation is not fulfilled, e. g., it is invalid

or undefined? In a programming language one could think of several

different behaviors: �e implementation of the operation might

• raise an exception,

• diverge,

• terminate without changing the system state, or
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• terminate leaving the system in an arbitrary state, even one fulfill-

ing the postcondition.

For specification languages that are based on preconditions and post-

conditions for defining an operation specification, two different interpre-

tations are found in the literature: either we require that the precondition

implies the postcondition, or stronger, that both must hold. Formally, we

define:

D . (O S) Let preop self a⋯ an be

the precondition and postop self a ⋯ an result the postcondition of the

operation op. �e operation specification with implication semantics isoperation

specification defined as

S
imp
op self a ⋯ an result

≡ τ ⊧ (preop self a ⋯ an) Ð→ (postop self a ⋯ an result) (.)

and the operation specification with conjunct semantics is defined as

S
conj
op self a ⋯ an result

≡ τ ⊧ (preop self a ⋯ an) ∧ (postop self a ⋯ an result) (.)

where in both definitions we replace all accessor occurring in the precon-

dition preop by their @pre-variant. ◻

�e precondition preop is a predicate function depending on the input

parameters including the implicit input parameter self . �e postcondition

postop is a predicate function depending on the input parameter and the

implicit result parameter. �e implicit parameter self represents the objectself

(class instance) for which the operation is called. �erefore, self is also

called context object. �e return value of the operation is described bycontext object

the parameter result.result

In case of S
conj
op the preconditions and postconditions are conjoint. �us,

a false precondition simply says that there is “no transition” from a state to

its successor; this corresponds to the operational behavior of an exception,

a divergence or a deadlock. Moreover, an undefined precondition may

either result in an undefined or false operation specification; in the former

case, no statement on the implementation is made, i. e., it may behave

arbitrarily. �us, when writing a specification, there is the possibility

to explicitly distinguish these possibilities: a precondition a > 5makes

no statement for the case that a is an undefined object in a particular

state (provided the postcondition is valid), in ∂ a ∧ a > 5; however, it is

explicitly specified that there is no successor state, if a is not defined in

the previous state.
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.  

In case of S
imp
op the precondition implies the postcondition. �us, a false

precondition allows any transition. Moreover, an undefined precondition

results in an undefined operation specification.

Furthermore, we define a totalized operation specification, enforcing

the result of the operation call or invocation to be undefined, if the pre-

condition is undefined:

D . (T O S) Let op be an

operation specified by the precondition preop self a ⋯ an and the post-

condition postop self a ⋯ an result. �e totalized operation specification totalized operation

specificationsemantics is defined as

S
tot
op self a ⋯ an result ≡ τ ⊧ if ∂(preop self a ⋯ an)

∧ (preop self a ⋯ an)
then (postop self a ⋯ an result)
else /∂ result
endif

(.)

where in both definitions we replace all accessor occurring in the precon-

dition preop by their @pre-variant. ◻

�e totalized operation specification can be used alternatively. It is prefer-

able for methodological issues, namely for proofs of specification consis-

tency.

.  

We distinguish built-in operations (i. e., all library operations such as the

logical operation ¬ x, the arithmetical operation x + y or the operation

X ∪ Y on the collection types) and user-defined operations declared in

class diagrams. From a perspective of a user, our framework forbids the

overriding of the built-in operations. �us it is obvious that the decision

which operation has to be “executed” can always be resolved statically.

We call this an operation call. operation call

In contrast, user-defined operations can be overridden. Moreover, this

is considered to be a main feature of object-oriented programming. Over-

riding results in situations where it is not possible to decide statically

which implementation should be executed. We speak in such situations

of an operation invocation, which we will discuss in more detail in Sec- operation

invocationtion .. But also for user-defined operations there are situations where

we can resolve the implementation statically, and thus only have to ad-

dress an operation call. In this section, we will discuss which support our

framework offers for operation calls to user-defined operations.
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For operation calls we define

Call f ≡ λ τ. ε x . f (λ τ. x) τ = t τ (.)

with type Valτ(α) ⇒ Booleanτ ⇒ Valτ(β). Here, Hilbert’s ε-operator

selects an eligible “implementation” fulfilling the operation specification.

For supporting recursive operation calls we extend the theory of well-

founded orders and the well-founded recursor wfrec from . �is

recursor allows for the conservative definition of a particular class of re-

cursive functions, i. e., functions that fulfill the principles of well-founded

recursion. Informally, a function is well-founded recursive, if the argu-

ments of the recursive call are smaller and the ordering is well-founded.

For example, Winskel [] explains the formal details of well-founded

recursion.

For introducing recursive calls in a conservative way, we extend the

standard  methodology of well-founded recursion to object-oriented

specifications. In particular, we define:

Wfrec ≡ li�Wf (λ f x . wfrec {(x , y)∣⌜r x y⌝} f x) (.)

where li�Wf is a specialized operator, similar to the already introduced

li�, li�, . . .operators, li�ing the type of wfrec. As its first argument,

Wfrec expects a measurement, given as binary operation with a Boolean

result and as second it expects a functional representing the recursive

operation. Overall, the type of Wfrec is

(Vτ(α) ⇒ Vτ(α) ⇒ Booleanτ)
⇒ ((Vτ(α) ⇒ Vτ(β)) ⇒ Vτ(α) ⇒ Vτ(β))

⇒ Vτ(α) ⇒ Vτ(β) . (.)

�eoverall idea of bothwfrec andWfrec is to abstract away the occurrence

of the recursive call.

As an example, let us assume the following postcondition for an opera-

tion m of class A, e. g., given as  specification:

context A::m(x:Integer):Integer

post: result = if x > 0

then x * (self.asType(A)).m(x-1)

else 1

endif

By specifying self.asType(A) we always cast the context object to an

instance of class A and thus we have a statically resolvable call here. We

follow now the idea of abstracting the occurrence of the recursive call





.  

away by defining a recursor-variant of this postcondition. �e idea is to

abstract away the occurrence of the recursive call:

post
rec
m f self x result ≡
result ≜ if x > 1 then x ⋅ ( f self (x − )) else 1 endif (.)

and to build the operation specification notions on top of it, based on the

operation specifications defined inDefinition . andDefinition .. For

example, based on the operation specification with conjunct semantics

(Equation .), we define:

S
conj-rec
m f self x result τ ≡

τ ⊧ (prem self x ∧ postrecm f self x result) . (.)

In this case, for direct recursive calls, the corresponding operation speci-

fication is defined as S
conj
m ≡Wfrec M S

conj-rec
m where M is an ordering,

such as

M ≡ λ x y. if(x < ) ∨ (y < )
then f

else x > y

endif .

(.)

If this ordering is well-founded, from this definition, the original user-

specified postcondition follows from this definition. Since the critical call

is now incorporated into the well-founded recursion construction, the

definition is conservative; and provided the user gives a suitable ordering,

it can be shown that the desired specification follows from the constructed

definitions.

.  

It is possible in our framework to describe any static resolution strategy

explicitly using the previously defined type and kind test predicates on the

arguments. While this would be probably sufficient for many verification

tasks, we are also interested in the limits of a conservative strategy for late-

binding. In this section, we show how the semantics of strict operation

invocations is encoded using the semantic combinator for strict invoke

defined in Section ...

.. �e Invocation Encoding Scheme

  . In the following, we show the

semantic representation scheme of invocation for, potentially overrid-

den, user-defined operations by an example. Figure . on the next page
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A

m(a∶ t , . . . , an ∶ tn)∶ t

B

C

m(a∶ t , . . . , an ∶ tn)∶ t

context A ∶ ∶m(a∶ t , . . . , an ∶ tn)∶ t
pre: ϕ self a ⋯ an
post: ψ self a ⋯ an result

context C ∶ ∶m(a∶ t , . . . , an ∶ tn)∶ t
pre: ϕ′ self a ⋯ an
post: ψ′ self a ⋯ an result

Figure .:�e specification of the method m of class C overrides the

variant of that method already defined in class A.

illustrates our example: We assume the three classes A, B and C, where

C inherits from B and B inherits from A. Further, we assume that an op-

eration m, in the topmost class A, with arguments a∶ t , . . . , an ∶ tn , and
return type t is specified using the precondition Φ, and postcondition Ψ.

While encoding the class model, we generate for each operation a oper-operation table

ation table. �e operation table is a look-up table collecting the overridden

operation specifications. In our example, we define:

OpTabm ∶∶A set⇀ [Vτ(A),Vτ(t), . . . ,Vτ(tn),Vτ(t)] ⇒ Booleanτ .

(.)

Here, _⇀ _ stands for the type of partial maps from the  library. �e

main difference of partial maps compared to total functions _⇒ _ is that
partial functions have a domain operator dom with type α ⇀ β ⇒ α set.

Additionally, the axiom

OpTabm A ≡ Some(Sm) (.)

is generated, where Sm is one of the operation specifications defined in

Section . and where A is the characteristic type set of the class A. In

the concluding subsection, we will discuss the conservativity issue for

this type of axioms which is similar, but technically unequal to a constant

definition since the table is not defined once and for all, but point-wise

for a finite set of arguments.

  . Now we consider the case that the

class B is declared, but the operation m is not overridden, i. e., inherited

from class A. �is leads to the axioms:

OpTabm B ≡ Some(Sm) . (.)
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.  

Recall that due to our object universe construction, the type of B is an

instance of the type of A even if the class B has been inserted into the

system in a later stage than the compilation of A, i. e., A and B live in

different universes. Moreover, in the later universe, the property B ⊂ A

holds and has been proven automatically.

 . Now we consider the case of an operation

overriding. Here, a new declaration introduces a new specification (for

an already specified operation) for the operation m for class C (and its

subclasses) with precondition P′ and postcondition Q′. Again, see Fig-

ure . on the facing page for details. Analogously to the overriding case,

the axiom

OpTabm C ≡ Some(S′m) (.)

is constructed where S′m is the operation specifications describing the

new, overridden behavior.

.. Considering Conservativity

�e axioms generated in the previous sections are conservative; however,

they do not fit into one of the standard schemes such as constant defini-

tion (the argument of OpTabm and OpTabm-tot are a changing constant

not allowed in this scheme). Rather, it is a finite family of constant defini-

tions, where the overall type is refined from universe to universe. In the

following, we characterize the syntax of this axiom scheme and sketch a

proof of conservativity for it.

D . (F C D F) A finite fam- finite family of

constant definitionily of constant definitions is a theory extension (Σ,A)where Σ is a constant
declaration c ∶∶ τ → τ and A is a finite sequence of axioms of the form

c D ≡ E . . .cDn ≡ En where D i and E i are closed expressions. One fur-

ther optional rule, the catch-all rule, has the form: X ∉ {D , . . . ,Dn} Ô⇒
c X ≡ En+. Furthermore, the following conditions must be satisfied:

. c does not occur in E.

. c can only occur in E j (in fact: in no defining expression E in a

definition except that the catch-all rule is known) in the form c D i
with i < j.

. �e type of c in axiom j must be an instance of the type of c in

axiom i with i < j.

. All type variables occurring in any type of a sub-term of E j must

occur in the type of c D j

. D j = Dk Ô⇒ j = k, i. e., the D j must be pairwise disjoint.
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◻

�e catch-all rule is used when all classes that provide, either directly, by

inheritance, or by overriding, an implementation of the operation, are

finalized. �us, none of these classes can be used as starting point for

further extensions.

T . (C) A finite family of constant definitions is

conservative, i. e., provided the original theory (Σ,A) is consistent (“hasconservative

models”), the theory (Σ∪Σ′ ,A∪A′) extended by the extension (Σ′ ,A′) is
also consistent. ◻

P In case that there is a catch-all rule, translate the constant defini-

tion family into a family of constant definitions with constants cD j .

In case that there is no catch-all, the constant definition family can be

replaced equivalently by the constant definition

c X ≡ if X = D then E else if . . . else En+ . (.)

�e axiom given in Equation . represents a constant definition family

since partial maps α ⇀ β are just a synonym for α ⇒ β option. �e

pairwise disjointness follows from the full inclusion of the characteristic

sets assured by construction.

�us, for non-recursive operation invocations the object-oriented con-

cepts of overriding can be supported conservatively. In the next section,

we will discuss the limitations of supporting of recursive operation calls

and operation invocations conservatively.

.      

In this section, we will discuss how the use of recursive calls, and invo-

cations in particular, must be restricted to ensure conservativity of our

framework.

But first, let us briefly reconsider why conservativity is fundamental for

a formal framework for object-orientation. Overall, an object-oriented

model can be inconsistent in the sense that there is no state satisfying all

invariants. However, no axiom generated during encoding of amodel into

our framework should introduce a logical inconsistency into the meta-

logic . A logical inconsistency of the meta-logic results in an unsound

reasoning, i. e., one can prove falsity. A proof over the consistency of

an object-oriented model in the above sense should be valid in any case,

independent of any generated axioms. �us, we require that method

definitions in class diagrams satisfy the requirements of a family of finite

constant definition.


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Aswe do not introduce any axioms for operation calls, these are unprob-

lematic, as long as recursion is well-founded (as discussed in Section .).

Nevertheless, the requirement enforced by Definition . on page  for

operation invocations has several consequences, especially on the form

of admissible recursive operation invocations in our framework: item 

and item  rule out a general recursive invocation of the operation to

be specified. Consider again the operation m specified in class C, which

overrides the operation m already defined in class A. Assume that the

postcondition ψ′ of m defined in class C is given by

ψ′ self a ⋯ an result ≡
(result ≜ (m self a ⋯ an ) + 1) ∧ (∂(m self a ⋯ an )) . (.)

On the right-hand side in the definition of ψ′ the (overridden) operation

m itself occurs. Due to late-binding, it is not possible to decide statically

which concrete operation specification (in our case either the one specified

in class A or the one specified in class C) must be use to “unfold” this

reference.

Following Section .., the operation invocation is represented by:

Call(invokeS C[A] OpTabm self a . . . an) (.)

where the occurrence of OpTabm is an instance of item  of Definition .

on page .

�e example also shows why this kind of syntactic restriction is neces-

sary: from the recursive equation

(m self a ⋯ an ) = (m self a ⋯ an ) + 1 . (.)

and the definedness of the result one can infer 1 = 0 in the object-logic,

and then one can prove false in , and then simply everything from

there.

In a proof-environment, recursive definitions are potentially dangerous.

Furthermore, our framework is designed to live with the open-world

assumption, i. e., with the potential extensibility of object universes, as

a default; further restrictions such as finalizations of class diagrams or

a self-restriction to Liskov’s Principle [] may be added on top, but the

system in itself does not require them. �is has the consequence that even

in the following variant

ψ′ self a ⋯ an result ≡ result ≜ if p a
then(m self a ⋯ an ) + 1

else 0

endif

(.)


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the termination for the invocation

m self (q a) a ⋯ an (.)

is undecidable (even if the operations p and q are known and terminat-

ing): a potential overriding may destroy the termination of this recursive

scheme.

In form of a pre-translation process, operation specifications with a

limited form of recursive invocations can be converted into the format

that satisfies the constraints of a finite constant definition family. In fact,

these invocations are calls to a specific, statically resolvable, operation.

�ese limited forms are assumed to occur in the postcondition ψ′ and

can be listed as follows:

. calls to superclass operations, i. e.,

m (self [A]) x ⋯ xn . (.)

�is invocation can be translated into the non-recursive call

Call Sm self x ⋯ xn . (.)

. direct recursive well-founded invocations, i. e.,

m (self [C]) x ⋯ xn . (.)

�is invocation can be translated into a directly recursive call which

can be handled as described in Section ..

In case of a finalized class hierarchy, the number of possible operation

specifications an operation invocation can refer to is fixed, i. e., the opera-

tion table is not extensible. In that case, in our example, the invocation

invokeS C OpTabm self a . . . an (.)

can by replaced by the case-switch:

if isTypeA self then Sm

else if isTypeB self then Sm

else if isTypeC self then S
′
m

else�

(.)

which selects the suitable operation specification by the type of the context

object represented by self .

Summing up, conservativity implies that only limited forms of recursive

invocations are admissible in our framework. In an open-world (no class
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finalization so far), only operation calls can be treated. In a (partially)

closed-world (the class hierarchy has been finalized), an invocation can

be expanded to a case-switch considering the dynamic type of self over

calls. For supporting invocations, we do not require that the complete

model is finalized. It is sufficient that the parts of the models containing

invocations are finalized. For example, our framework allows models

where

• parts that do not contain recursive operation specification are

extensible,

• parts that only contain recursive invocations that can be statically

resolved into calls are extensible, and

• parts that contain invocations are finalized. As invocations are

only conservative, if the operation table is fixed, all classes that are

related by inheritance must be finalized or sterilized.

Here the flexibility allowing partially closed-worlds allows for deciding

on a case by case basis which strategy to follow.

.   

When using contracts, or pairs of preconditions and postconditions for

state transition there arises the need to specify exactly which parts of the

system are allowed to be modified and which have to stay unchanged,

i. e., we have to specify the frame property of the system. Otherwise, frame property

arbitrary relations from pre-states to post-states are allowed. For most

applications this is too general: theremust be a way to express that parts of

the state do not change during a system transition, i. e., to specify the frame

properties of system transition. As an example, consider Figure . with

an particular focus on the specification of the operation deposit of the

class Account. �is specification only describes which part of the system

should change, i. e., the balance of the context object (which is an Account

object) should be increased. But this is not specified, which parts of the

system should remain unchanged, e. g., the id of the context object.

One solution to solve this frame problem would be an implicit invari-

ability assumption on the meta-level which would somehow express “all

things that are not changed explicitly remain unchanged.” But this is

neither formal nor precise and thus not usable within a formal framework

for object-oriented specifications.

Another possibility is to enumerate, in the postcondition of the oper-

ation, all path expressions that should remain unchanged, e. g., in our

example a first attempt to do so would be:


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Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..* owner

Figure .: Consider a state transition constrained by the operation specification for the opera-

tion deposit. Obviously, only the attribute balance of one specific object should be

changed, but how can this be specified?

context Account::deposit(a:Integer):Boolean

post: balance = balance@pre+a

post: id = id@pre

post: owner = owner@pre

post: owner.id = owner@pre.id@pre

post: owner.name = owner@pre.name@pre

But this is also not sufficient, as it would still not describe if objects

not related to our context object (of type Account) must remain un-

changed or not. Enumerating all classes (and attributes) using static

path expressions (e. g., Customer::name = Customer::name@pre) is te-

dious and moreover leads to contradictions if the name attribute of the

owner of the context object should be changed.

�us, we prefer a different approach for describing the frame property

of a system transition. We propose an operation modifiedOnly _ that

allows for explicitly enumerating all objects of a given state that are al-

lowed to be modified. As a prerequisite, we define a predicate OidOf for

accessing the object identifier of an object:

OidOf τ X ≡ {x . (τ x) = Some(mkObject X)} (.)

which allows a uniform definition of modifiedOnly _ for the referential

universe and the non-referential universe:

modifiedOnly X ≡ λ(τ, τ′).
⌞∀ i ∉ (⋃(oidOf τ) ‵ ⌜RepSet(X(τ, τ′))⌝). τ i = τ′ i⌟ . (.)

�us requiring modifiedOnly∅ in a postcondition of an operation allows
for stating explicitly that an operation is a query. Further, the following
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equivalence holds:

(modifiedOnly X) ∧ (modifiedOnlyY)
= modifiedOnly(Y ∩ X) . (.)

�e two main advantages of defining the set of modifiable objects using

their semantic representations are:

. �ere may be aliases, i. e., two path expressions that point to the alias

same object. �erefore, forbidding the assignment to one expres-

sion denoting an object does not imply that it is unchanged; it

could be changed via another path expression (reference). Our

approach solves the alias problem by referring to values and not to

(not necessarily unique) names. �is paves the way to a smooth

integration of Hoare Calculi [].

. We allow recursive functions traversing object structures (such

as associations), such that sets of modified objects may be col-

lected and specified recursively. For example, we could specify,

that an operation of the class Customer is only allowed to change

those objects (accounts) reachable via self.accounts which have

a balance less than a specified value.

Since frame properties are an important part of the system specification,

and thus it is not astonishing, that most precondition/postcondition spec-

ification languages provide a means to specify frame properties, e. g.,

 [, ] allows for explicitly enumerating a list of references [] to

be assignable or not. We extend this schema by allowing arbitrary predi-

cates that construct the set of all objects (or references) that are allowed

to be modified. Our construction, which is in principle an extension

∆-operator in Object-Z, is strictly more powerful than just enumerating

references explicitly.

. 

In this section, we will summarize the features and limitations of our

framework for object-oriented specifications. But first, we explain the

two main components of our framework more detailed: the object store

and the object-oriented constraint language:

An object store provides the core notion of object-oriented data struc- object store

tures, e. g., a formalization of classes and instances including for example

concepts like inheritance and subtyping. In particular, the object store

provides the formal semantics of path expressions, i. e., expressions nav-

igating through a concrete object structure. By combining an object

store with an object-oriented constraint language, one can restrict the set


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of valid object-structures semantically, i. e., specific states are ruled out

based on their semantics. Without an object-oriented constraint language,

object-structures can only be ruled out by their structure, i. e., if they not

well-typed.

Bertino et al. [] introduce the concept of an object-oriented query

language which is closely related to the concept of an object-orientedobject-oriented

constraint language constraint language we used in this chapter. In our understanding, the

main characteristics of an object-oriented constraint language are:

• an underlying logic supporting undefinedness; four different types

of equality, based on identity and values, each in a strict and non-

strict variant;

• a typed set theory and basic datatypes; path expressions for navi-

gating in the graph representing the object-structures;

• different predicates for restricting instances in a specific system

state or class hierarchy; and

• support for calling or invoking user defined operations.

Allowing the user for calling purely functional operation specifications,

i. e., query operations, within the constraint language itself allows for

a certain degree of logical extensibility. Overall, in contrast to a query

language, a constraint language constrains the set of valid system states,

i. e., the set of possible object structures.

In the following we summarize the key features of our framework.

�e most important feature of our formalization of an object store is its

extensibility, i. e., its support for direct proof reuse a�er extending the

class model. �e limitations of this constructions are in particular:

• �e reuse of proof objects is limited to the extension of class hier-

archies. Merging different class hierarchies requires re-proving all

properties, e. g., by re-playing the proof scripts.

�is limitation is a consequence of the fact that type sums are not

commutative; thus, the order in which β-instances were created is

relevant and leads to the generation of type-incompatible construc-

tors and accessors in different class universes for the same class.

On the other hand, since the process of merging class hierarchies,

which also includes the detection of shared subclasses, is a highly

nontrivial one, one cannot expect that this phenomenon can be

coped smoothly in a type system not built for this purpose.

�e two most common cases of merging different class models are

probably the parallel extension of class models and the reuse of

libraries. For these two scenarios, the proof scripts can be replayed


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automatically, i. e., without user interaction. Moreover, these two

scenarios can also be resolved in advance by introducing abstract

classes (or only an additional type variables) that can act as exten-

sion points.

• �e typing of equality expressions in our formalization is more

liberal than usual, e. g., in . In particular, depending on the def-

inition of the root of the class hierarchy (e. g., OclAny or Object),

referential or (shallow) value equality result for the constraint lan-

guage (see Section .).

• Conservative support for late-binding is restricted to parts of the

class hierarchy that are finalized or sterilized. It seems to be im-

possible to encode conservatively an extensible object structure

supporting late-binding. Nevertheless, our framework supports

partial closed-worlds and thus a high degree of flexibility (see

Section .).

• As most object-oriented programming languages, our framework

does not support multiple inheritance. Extending our universe

construction for supporting multiple inheritance is a highly non-

trivial task.

Nevertheless, multiple subtyping based on interfaces, as found in

Java or the  is supported by our framework. As an interface

only specifies operation that must be implemented by classes real-

izing the interface support for subtyping is reduced to showing the

usual proof obligations for subtyping: the precondition of the class

must imply the precondition of all interfaces it realizes and the

postcondition of the interface must imply the postcondition of the

class. Of course, this does not need a special support within the

object encoding and therefore, we can support multiple subtyping

easily.

Since we aim for a framework that is object-oriented, it is reasonable

to demand that our frameworks should support the concepts introduced

in Section .. From these concepts, only a few were not yet discussed in

this chapter, in particular:

• Violating the encapsulation of a class, i. e., accessing path which is

protected by access specifiers like private, protected or public,

can be checked purely statically. �us, on the one hand an import

mechanism for specifications can already reject specifications that

violate disobey the access specifiers. On the other hand, it is debat-

able, if one should pay attention to these concepts during formal

analysis. One could even think about interpreting the forbidden


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accesses (i. e., the access to a private attribute from the outside)

as an undefined expression and as such encoding access speci-

fiers into our framework. We decided against this for two reasons:

first, it would result in a quite complex reasoning, and second, the

static check is easy and efficient. �us, we see the access specifiers

as a kind of syntactic well-formedness rule the model has to be

compliant with.

• At the moment, our framework has no direct support for associa-

tions. �ey can be represented by their association ends together

with additional class invariants. A pre-compilation step can imple-

ment this conversion. We will discuss this problem in more detail

in Section ...

• Packages in general and namespaces in particular are a purely syn-

tactic concept for avoiding name clashes. �us it is not necessary

to provide semantical support for them, albeit our implementation

maps them to the namespace concept of Isabelle/ and thus

generates names for the logical constants that are divided into

hierarchic namespaces similar to the one used in the user model.

In the next chapter, we will show, how this framework can be used both

for giving a formal, machine-checked semantics for / and also

for developing an interactive theorem prover for /.





A FORMAL SEMANTICS FOR UML/OCL

In this chapter, we show how our framework presented in Chapter  can

be used to provide both a standard-compliant, machine-checked, formal

semantics and an interactive proof environment for theObject Constraint

Language (), called -.

. 

Formalizing, in a machine-checkable way, a real-world standard for a

specification language is always a technically challenging task. �is is

especially true if, as in the case of  such a standard was not originally

developed with formalization in mind. �e formalization of such a stan-

dard requires an in-depth analysis of the already existing description of

the language, resulting in:

• A description of missing parts of the current standard together

with proposals to fill the gaps.

• A description of inconsistencies of the current standard together

with proposals to resolve them.

• Proposals for alternative definitions or extensions of the language.

Moreover, all decisions made, e. g., for resolving inconsistencies or fixing

gaps, should capture somehow the informal intention of the authors of

the original standards. �is requires, if possible intensive discussion

with them, or an intensive analysis of examples and actual usages of the

language being formalized.

Our formalization of the  standard [, Appendix A] we present in

this chapter is based on the framework presented in Chapter . It provides

the following benefits over a paper-and-pencil formalization:

A Consistency Guarantee. Since all definitions in our formal semantics

are conservative and all rules are derived, the consistency of the

complete framework is reduced to the consistency of  for the


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entire language. In particularly, this holds also for -, the

interactive theorem prover we developed for /.

A Technical Basis for a Proof-Environment. Based on the derived rules,

control programs (i. e., tactics) implement semi-automated reason-

ing over  formulae; together with a compiler for class diagrams,

this results in a general proof environment called -. Its

correctness is reduced to the correctness of a (well-known) 

theorem proving system.

Proofs for Requirement Compliance. �e  standard contains a collec-

tion of formal requirements in its mandatory part with no estab-

lished link to the informative part [, Appendix A]. We provide

formal proofs for the compliance of our  semantics with these

requirements.

Formalization Experience. Since the semantics of the whole language is

formalized and machine-checked, we extend or modify the seman-

tics while preserving consistency. �is conservative formalization

allows for extending the language or examining semantic without

the risk of introducing inconsistencies in the language.

In this chapter, we will present a machine-checked semantics for 

in the context of  class models which is based on the framework

presented in Chapter . We will start, in Section ., with a brief overview

of the  standard. In Section . we present our formalization of the

 semantics and show in Section . why our semantics complies to

the standard. Moreover, we propose several extensions of the  in

Section ..

.     

In this section, we give a brief overview of the official  standard []

In particular, report on the historic development and the current state of

a formal semantics for  as described in the different versions of the

 standard.

.. A Historic Overview

�e  and  standards are developed in an open process by the

Object Management Group (). Such an open process leads to variety

of (intermediate) standardization documents []; especially for  and

, which have a long history. For example,  was already introduced

in  as a supplement to the  standard. �e different versions

of  .x are very close to each other, containing mainly an informal
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motivation of the intended use and semantics of  together with a

formal grammar of its concrete syntax. Reading these versions of the

standard leaves more questions open than it answers. �ese shortcomings

and open questions, like the handling of undefinedness, or recursion, were

discussed [, , ] in academia and this discussions clearly fertilized

the development towards  .. Especially the work of Richters []

served as formal underpinning of the  . development. It was a

major break-through in the process of defining a formal semantics for

. Many problems, like the handling of undefinedness, were clarified

during the  . standardization process, some questions however, like

the handling of recursion, are still unsolved.

In the following, we present a formalization based on the following

two documents:

.  Unified Modeling Language Specification (excluding Chap-

ter  which describes  .) Version . [].

.  .  Specification [], denoted as “ Final Adopted

Specification.”

More recent versions, especially [], are an ad-hoc attempt to align the

 . with the  .. Among many other annoyances, new datatypes

are introduced without giving them a consistent semantics. For exam-

ple, besides OclUndefined (called invalid), also an exception element,

called null, is introduced. On the one hand, the intention of the authors

of the standard [] is to give OclInvalid a strict and null a non-strict

semantics with respect to collection type constructors: “Note that in con-

trast with OclInvalid null is a valid value and as such can be owned by

collections.” [, pp. ]. Nevertheless, null is still strict with respect to

other operations: “Any property call applied on null results in OclInvalid,

except for the operation oclIsUndefined()” [, pp. ]. On the other

hand, both invalid and null conform to all classifiers, in particular null

conforms to invalid and vice versa. Moreover, the conforms relationship

is antisymmetric and therefore invalid and null are actually indistin-

guishable. Considering that many of these changes were made without

giving much thought to their impact on the existing specification, the

version [] of the  standard represents a considerable step back with

respect to consistency and potential for formal semantics. Moreover, the

problems we report in this chapter, are still valid for current versions of

.

.. �e Role of Semantics in the Standard

We claim to provide a semantic representation that is compliant with the

semantics presented in the  standard. In this section, we make our
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claim more precise, in particular we have to discuss to which parts of

the standard we claim to be compliant. Standards issued by the  are

usually divided into normative parts and informative parts. �enormative

parts define the standard. In contrast, the informative parts of the standardnormative

informative are not normative, i. e., they are thought of containing motivating and

background material. �us, any  compliant work must honor the

normative parts of the  standard whereas it can ignore the informative

ones.

�e semantics of  appears in the following chapters of the 

standard []:

Chapter  “ Language Description”: �is is a informative chapter mo-

tivating the use of  and introduces it in an informal way, mostly

by showing examples. We used this chapter mainly for catching

the intentions of the standard in cases where the other parts of the

standard are unclear or contradictory.

Chapter  “Semantics Described using ”: �is normative chapter de-

scribes the “semantics” of  using the  itself. Merely an

underspecified “evaluation” environment is presented. Neverthe-

less, some of the information presented in this chapter is helpful

for formalizing the standard. Moreover, the chapter title reveals

that meaning of “semantics” is not always that obvious, Harel and

Rumpe [] discusses this issue in more detail.

Chapter  “�e  Standard Library”: �is normative chapter is, in our

opinion, the best source of the normative part of the standard de-

scribing the intended semantics of . It describes the semantics

of the  expressions as requirements (in form of pairs of precon-

ditions and postconditions) they must fulfill. Overall, we prove

these requirements for our embedding and thus show that our

embedding satisfies these requirements.

Appendix A “Semantics”: �is informative appendix defines the syntax

and semantics of  formally in a textbook-style mathematical

notion. It is mostly based on the work of Richters [].

Overall, we criticize the semantic foundations of the standard for several

reasons:

. �e normative part of the standard does not contain a formal

semantics of the language.

. �e consistency and completeness of the formal semantics given

in “Appendix A” is not checked formally.
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. �ere is no proof, neither formal nor informal that the formal

semantics of informative “Appendix A” satisfies the requirements

of the normative chapter .

Nevertheless, we think the  standard [] is mature enough to serve

as a basis for a machine-checked semantics and formal tools support.

.  -  

In this section, we present a formal, machine-checked semantics for 

based on our framework. As we already presented our framework in

Chapter , we only have to choose building blocks that match the 

semantics as described in the standard. In Section . we will discuss the

standard compliance of our semantics in detail.

For presentational reasons, we introduce an explicit semantic function

into our shallow embedding. Of course, with respect to , this is just

the identity, i. e.,

Sem⟦x⟧ ≡ x with type α ⇒ α . (.)

.. Encoding the Underlying Data Model

 heavily relies on an underlying, user-defined class model, thus we

start our formalization by fixing a semantics for class models. As 

describes itself as a constraint language for the , the underlying data

model should be compatible with the  standard [].

  . Using our framework, we have to decide if

 is based on a sharing semantics for object-structures (i. e., the non-

referential universe) or a creation semantics (i. e., the referential universe).

An interpretation of such a universe construction is given in the standard:

Each object is uniquely determined by its identifier and vice versa.

�erefore, the actual representation of an object is not important for

our purposes. ( Specification [], page A-)

On the one hand, this formulation suggests that there is no difference

between an object and its value, which would lead to a sharing semantics.

On the other hand, the normative part always identifies objects by a

reference to it, e. g.:

If self is a reference to an object, then self.property is the value of the

property property on self. ( Specification [], page )
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As the referential universe is close to the usual programming language

semantics of object constructors we use it as the basis for our formalization

of . Furthermore, in this setting, the reference to an object in the

store can always be reconstructed which paves the way for reference types

as for example in Java.

�erefore, we define the supertype of all types of the user-defined 

models, which is called OclAny in , based on the referential variant

(item ) in Definition ., i. e.,

α OclAny ∶= ((OclAnytag × oid) × α�) . (.)

Overall, we suggest to resolve this ambiguity of the standard in favor of

the referential setting, which we also see as the default - configu-

ration.

 : . �e path expressions of , i. e.,

attribute accessor can be directly defined by the constructors and acces-

sors of our framework, see Section ... In more detail, we define path

expressions on the basis of the level , as introduced in Section ... Using

a level  interpretation of path expressions guarantees that a path expres-

sion is either undefined or represents an instance fulling the invariants

of its type. For example, assume the access to a class attribute id; we

interpret the path expression self.id as follows:

Sem⟦self.id⟧ ≡ self . id
()
. (.)

In Section .. we discuss in more detail, why we propose the level 

constructs as basis of the  semantics.

,    . �e type-casts and type tests

from of  can be directly defined by the corresponding operations of

our framework, i. e.,

Sem⟦self .oclIsTypeOf (T)⟧ ≡ isType()T self , (.a)

Sem⟦self .oclIsKindOf (T)⟧ ≡ isKind()T self , and (.b)

Sem⟦self .oclAsType (T)⟧ ≡ self()[T] . (.c)

Where the operations isType()_ _, isKind()_ _, and _
()
[_] are constructed

by applying the schema presented in Equation . on page  (Sec-

tion ..), based on their the corresponding level  operations: isType()_ _,

isKind()_ _, and _
()
[_] . Recall, the level  operations are based on semantic

type and kind sets and thus include invariant checking. In Section ..

we discuss in more detail, why we propose the level  constructs as basis

of the  semantics.
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We model the type OclVoid implicitly using the li�ing combinators

and the type class bot, see Section .. for details. Moreover, the types

OclModelElementType and OclType are modeled implicitly, respectively

replaced by the characteristic type set (of a type).

    . �e main limitations, com-

pared to the  standard, of our framework are:

• We limit inheritance to single inheritance and do not support

multiple inheritance. �is decision is a price we have to pay for

supporting extensibility. Since multiple inheritance is known to

introduce many new problems into object-oriented methods and

moreover most object-oriented programming languages also for-

bid multiple inheritance. Moreover, we support classes implement-

ing multiple interfaces and thus, we support a specific form of

multiple subtyping. As this setting is similar to the situation for

typed object-oriented languages like Java, we think this is a reason-

able choice. Nevertheless, supporting multiple inheritance is not

possible with the presented encoding scheme, thus this is a real

limitation of our framework.

• We represent associations by their association ends together with

some  constraints. Gogolla and Richters [] present such

conversions from graphical  notations to  in more detail.

Moreover, we assume that association ends belong to classes par-

ticipating in an association. �is is compliant to  . [], but

not to compliant to  .. As there is at the moment neither

a formal semantics for  . (Broy et al. [] report on first

work in that direction) and moreover  . and  . are not

yet finally aligned. Overall, direct support for associations, e. g.,

representing them as relations, is not only desirable to be standard

compliant, but also from a formal reasoning point of view. �us,

we see the direct support for associations, including the support for

association classes, as future work which extends our framework

naturally.

Furthermore, the  standard ignores visibilities on the specification

level:

�e  specifications puts no restriction on visibility. In  all

model elements are considered visible.

( Specification [], page )

�is decision conforms to our advice (see Chapter ) for ignoring visibili-

ties on the specification level.
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.. Primitive Datatypes

Undefinedness is omnipresent in , this gets especially clear if we look

how the standard [, Appendix A] introduces the primitive types, or

basic types as they are called in the  standard:

Let A⋆ be the set of finite sequences of characters from a finite
alphabet A. �e semantics of a basic type t ∈ TB is a function I

mapping each type to a set:

• I(Integer) = Z ∪ {�}

• I(Real) = R ∪ {�}

• I(Boolean) = {true, false} ∪ {�}

• I(String) = A⋆ ∪ {�}

( Specification [], page A-, definition A.)

�is definition corresponds directly to the li�ed datatypes introduced in

Section .., i. e., we identify the primitive types as follows:

Sem⟦Integer⟧ ≡ Integerτ , (.a)

Sem⟦Real⟧ ≡ Realτ , (.b)

Sem⟦Boolean⟧ ≡ Booleanτ , and (.c)

Sem⟦String⟧ ≡ Stringτ . (.d)

.. Encoding Built-in  Operations

�e standard contains “principles” for the semantics of the operations,

consider for example:

In general, an expression where one of the parts is undefined will

itself be undefined. ( Specification [], page )

In other words, one could rephrase this semantic principle as “all oper-

ations are strict,” be it for standard or for user-defined operations. �e

 standard requires as default for all operations to be strict, both for

the case of built-in like the _ + _ on Integerτ or user defined operations

declared in class diagrams. Other “principles” are hidden in the semantic

definitions; for example the passing of the context. Nevertheless, these

“principles” motivated our decision for a combinator-style semantics ap-

proach in our framework. Overall, for Integerτ , Realτ , and Stringτ we

can directly use the semantics introduced in Section ...
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b b b and b b or b b xor b b implies b not b

false false false false false true true

false true false true true true true

true false false true true false false

true true true true false true false

false � false � � true true

true � � true � � false

� false false � � � �
� true � true � true �
� � � � � � �

Table .:�e formal semantics of the Boolean Operations as given in the

 standard [, p. A-].

Also, the defining the operations on collections is straight-forward

with one notable exception: higher-order constructs like quantifiers and

the iterators need a slightly more complicated li�ing process, [] presents

the details of this construction.

�e core logic, i. e., the operations over the type Boolean are non-strict.

�e standard defines the semantics of these operations by giving truth

tables (see Table .). �ese truth tables describe the semantics of a Strong

Kleene Logic (Definition . on page ) as defined in Section ... �us

we can directly reuse the definitions for a Strong Kleene Logic of our

framework:

Sem⟦x and x⟧ ≡ x ∧ x (.a)

Sem⟦x or x⟧ ≡ x ∨ x (.b)

Sem⟦x xor x⟧ ≡ (x ∨ x) ∧ ¬(x ∧ x) (.c)

Sem⟦x implies x⟧ ≡ x Ð→ x (.d)

Sem⟦not x⟧ ≡ ¬ x (.e)

Moreover, other non-strict constructs such as

Sem⟦self .oclIsUndefined()⟧ ≡ /∂ self (.)

are defined as an exception of the “all operations are strict” rule and

are defined as li�ing from the definedness predicate def introduced in

Section ., without using the strictness combinator.

.. Collection Types

Besides the logical connectives, the constructors for collections are the

exceptions to the “all operations are strict” rule of :
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Note that constructors having element values as arguments are de-

liberately defined not to be strict. A collection value therefore may

contain undefined values while still being well-defined.

( Specification [], page A-)

�is behavior results in a non-strict (see Equation . on page ) se-

mantics for the collection types. Noteworthy, the normative part of the

standard omits any description of constructors of collections and thus

both smashed and non-smashed collection variants would be compliant

to the normative part of the  standard.

We strongly opt for a smashed collection semantics, mainly for three

reasons:

. Smashed collection semantics coincides with the “all operation

are strict” principle. Furthermore, a non-smashed collection se-

mantics would lead to unexpected behavior, e. g., expression like

Set{}->union(Set{OclUndefined})would be undefined, i. e., re-

sult in OclUndefined and not in Set{OclUndefined}. �us, for

a non-smashed collection semantics with strict operations even

simple laws like ∅ ∪ X = X do not hold.

.  tends to define its constructs towards executability and prox-

imity to object-oriented programming languages such as Java.

. And most important for our purpose,  with non-smashed

collection semantics leads to very complicated logical calculi. Just

consider the rule

∂ self

∀ e ∈ self . ∂ e

which only holds for a smashed semantics. Without such rules,

reasoning over navigations, i. e., collections, always requires a proof

of the definedness of all elements of a navigation.

�erefore we use smashing semantics as the default for -. Nev-

ertheless, to study the effects of a non-smashed collection semantics on

formal reasoning, we provide a separate configuration of - featur-

ing a non-smashed collection semantics.

Moreover, all collection types of the standard are defined to be finite.

Whereas the framework presented in Section .. easily allows for the

required definitions, we suggest that the future  standard deviates

from this definition in two points:
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. �e constructors for collection should be defined to be strict, i. e.,

we opt for a smashed collection semantics (see Equation . on

page ).

. �e type Set should support infinite sets.

Our preference for infinite sets is mainly motivated by the fact that this

construction allows for treatment of type sets within , including the

set of all Integers.

Summarizing, we define the semantics of the core operations for col-

lections as follows:

Sem⟦X->includes(x)⟧ ≡ x ∈ X , (.a)

Sem⟦X->complement()⟧ ≡ X −
, (.b)

Sem⟦X->union(Y)⟧ ≡ X ∪ Y , and (.c)

Sem⟦X->intersection(Y)⟧ ≡ X ∩ Y . (.d)

.. Equality

�e  standard defines equality as the strict equality over values [, p.

A-] and since objects are values in the standard (see also Section ..)

we choose the strict reference quality _ ≐ _ as the default  equality,
i. e.,

Sem⟦a = b⟧ ≡ a ≐ b (.)

Nevertheless, we strongly suggest to include the strong (reference) equal-

ity, i. e., _ ≜ _, in future version of the standard. We suggest to use “==” as
concrete syntax for the strong equality, thus we define

Sem⟦a == b⟧ ≡ a ≜ b (.)

AlreadyCook et al. [] proposed the inclusion of a strong equality into the

 standard. In particular in postconditions using the result keyword

the use of the strong equality, i. e., result ≜ ϕ (where ϕ is an arbitrary 
expression with the same type as the operation the postcondition belongs

to), is useful to describe explicitly that the return value of an operation can

be undefined. For example, consider the following operation specification:

context C::m(a:Integer):Integer

post: result = 5 div a

What is the semantics of this operation given that the precondition does

not rule out a=0? If the standard strict equality is used this results in an

inconsistent specification. If the strong equality is used this operation

simple returns undefined when called with an argument of 0. Depending

on the circumstances, both may be reasonable. �us we suggest to extend

 with a strong equality operation.
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.. Encoding User-defined Operations

�e  standard, in its present form, forbids overriding of operations.

�us,  does only support operation calls, the invocation of operations

would be an extension of the standard. We will discuss the operation

invocations in more detail in Section ...

For defining the semantics of calls to user-defined operation specifica-

tion, as introduced in Section ., we have first to define the semantics of

operation specifications (see Section . on page ). �e  standard

defines the semantics of operation specifications as

�e semantics of an operation specification is a set R ⊆ Env × Env
defined as

⟦context ∶C ∶∶ op(p ∶ T , . . . , pn ∶ Tn)pre ∶Ppost ∶Q⟧ = R

where R is the set of all pre- and post-environment pairs such that

the pre-environment τpre satisfies the precondition P and the pair

of both environments satisfies the postcondition Q:

R = {(τpre , τpost)∣τpre ⊧ P ∧ (τpre , τpost) ⊧ Q}

( Specification [], page A-, Definition A.)

�erefore, we choose in our framework the operation semantics with con-

junct semantics (Equation . on page ).

Finally, we have to explore, if recursive operations calls should be

supported or not. �e  standard states:

We therefore allow recursive invocations as long as the recursion is

finite. Unfortunately, this property is generally undecidable.

( Specification [], page A-)

which is sneaking around the underlying problem. Obviously, in a formal

proof environment which should be consistent one cannot follow this

strategy. �us we suggest to either limit  only to non-recursive calls,

or introduce recursion in a way that guarantees termination. We will

discuss the latter in more detail in Section ...

.. Encoding Invariants

�e  standard describes the concepts of class invariants informally as:
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When the invariant is associatedwith aClassifier, the latter is referred

to as a “type” in this chapter. An  expression is an invariant of

the type and must be true for all instances of that type at any time.

( Specification [], page )

In our reading, this leads to an identification of the (syntactic) concept of

type with the (semantic) concept of a class invariant. �erefore, we define

the semantics of  invariants using the concepts of semantic types as

introduced in Section ...

.. Context Declarations

�e  standard [, pp. ] introduces several classifications of 

formulae based on the context the formulae is stated. Up to now we have

already seen:

• Invariant for classes, denoted by inv:, which we encode as de-

scribed in Section . and Section ...

• Preconditions (pre:) and postconditions (post:) for operations

onwhichwe base our operation specifications upon, see Section .

for details.

Moreover, the standard defines the context declarations, which can be

easily converted into invariants, preconditions, and postconditions:

• Initialization (init) of attributes, e. g.,

context A::x:Integer

init: 5

which can be directly converted into an invariant for class A:

context A:

inv: self.oclIsNew() implies self.x = 5

�is formula can be considered as non-standard with regard to

the  standard, as oclIsNew() is syntactically only allowed in

postconditions, but it is valid in -.

• �e “body:” keyword is a shorthand for defining post-conditions

that return the result of an evaluation of an  expression, e. g.,

context A::f():Integer

body: 5

can be directly converted into
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context A::f():Integer

post: result = 5

• For invariants restricting the value of an attribute to the result of an

evaluation of an  expression, the shorthand “derive,” similar

to “body” for operations, is provided, e. g.,

context A::x:Integer

derive: 5

can be directly converted into

context A

inv: self.x = 5

• For the textual definition of new attributes and operations the

context declaration “def:” is provided. From our point of view,

there is no difference between statements defined graphically in

the case tool and those defined using this context declaration.

.     

When we claim to be compliant to the standard, we do not mean that

we converted “literally” the “Semantics” chapter of the  standard [,

appendix A] into an Isabelle theory. �e deviations from the standard

can be grouped into the following six classes:

Making the standard more precise: �emost important point here is that

the standard uses naïve set theory as basis for the notions type,

state, and model. For example, types were explained by some type

interpretation function that maps types to a (never described)

universe of values and objects. As we use a typed semantic domain,

these problems do not occur, e. g., within our formalization only

well-typed  formula are possible. �is is because an ill-typed

 formulae is also an ill-typed  formula in our framework

and thus rejected already by the type-checking for . Another

example for making the standard more precise is the decision for

a smashed collection semantics (see Section ..).

Presentational issues: �is covers our decision to turn  into a shal-

low embedding, as well as our decision to use a combinator-style

presentation for the bulk of semantic definitions both for concep-

tual and technical reasons. In Section .., we show why these

formulations are equivalent to the ones used in the standard.
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Generalizations and Extensions: �is covers for example our decision to

use an infinite collection type Setτ , since logical connections

between, e. g., .oclIsTypeOf and class invariants can therefore be

satisfactorily treated inside .

Repairing glitches: �e standard contains, as can be expected for a large

semi-formal document, several errors in local definitions which

were revealed during our formalization (see Section .. and [,

]).

Proofs for Compliance Requirements: �e  standard contains a collec-

tion of formal requirements in its mandatory part with no estab-

lished link to the informative “Appendix A” of the standard [].

We provide formal proofs for the compliance of our  semantics

with these requirements (see Section ..).

Providing alternative mathematical syntax: Being the first who did sub-

stantial proof work in , we early noticed the need for a compact,

mathematical notation for  specifications as alternative to the

programming-language like notation used in the  . standard.

Especially while interactive proving properties, we are favoring

the mathematical notion, as it allows for a much more concise

presentation. However, we support both syntactical variants as

input and output of your system. A table comparing the concrete

syntax of the standard and our proposal for a mathematical syntax

is given in Appendix A.

In Section .., we formally show that our combinator style semantics

is equivalent to (a formalized version of) the textbook-style semantics

of [, Appendix A]. Moreover, in Section .. we show, that our seman-

tics fulfills the requirements of [, Chapter ]. �us, our formalization

also provides in some sense the link between [, Chapter ] and [, Ap-

pendix A] missing in the standard: using the detour of our formalization

we show (or refute) that the (informal) textbook-style semantics of the

standard fulfills the normative requirements of the standard.

.. Comparing Textbook-style and Combinator-style Semantics

In Chapter , we use a combinator-style presentation rather than a text-

book-style presentation as it is used, for example, in the  standard. We

use a combinator-style presentation for reasons of conciseness as well as

better tool-support. In this section, we show that we can prove formally

the equivalence between our semantics and (a formalized version of) the

textbook-style semantics of the standard.

Let us consider the definition of strict operations over primitive types.

For these operations, the standard defines the semantics for them by just
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one example. Namely, the semantics of the addition over Integer (_+ _).
It is defined in the standard [, page A-] as follows:

I(+)(i , i) =
⎧⎪⎪⎨⎪⎪⎩

i + i if i ≠ � and i ≠ � ,
� otherwise.

(.)

�is definition uses once again the semantic function I. �is semantic

function I for primitive types and basic operations is integrated in the

more general semantic interpretation function for  expressions:

Let Env be the set of environments τ = (σ , β). �e semantics of an
expression e ∈ Exprt is a function I⟦e⟧ ∶ Env → I(t) that is defined
as follows.

(i) I⟦v⟧(τ) = β(v).

(ii) I⟦let v = e in e⟧(τ) = I⟦e⟧(σ , β{v/I⟦e⟧(τ)}).

(iii) I⟦undefined⟧(τ) = � and I⟦ω⟧(τ) = I⟦ω⟧.

(iv) I⟦w(e , . . . en⟧τ = I(w)(τ)(I⟦e⟧(τ), . . . , I⟦en⟧(τ)).

( Specification [], page A-, definition A.)

Here, τ refers to the environment (in the sense of the standard), i. e., a

pair consisting of a map assigning variable symbols to values and a pair

of system states.

�ere are two more semantic interpretation functions; one concerned

with path expressions (i. e., attribute and navigation expressions [, Def-

initions A.], and one concerning the interpretation of preconditions

and postconditions τ ⊧ P which is used in two different variants.

To show the equivalence of the two formalization styles, we use our

already introduced semantic function. Recall its definition as identity in

our shallow embedding:

Sem⟦x⟧ ≡ x with type α ⇒ α . (.)

Sem⟦E⟧τ can be thought of as the fusion of the two semantic functions

I(o) and I⟦E⟧ used in the  standard.
Now we show for our first strict operation in , the not operator,

that it is in fact an instance of the standards definition scheme:

Sem⟦¬ X⟧γ =
⎧⎪⎪⎨⎪⎪⎩

⌞¬⌜Sem⟦X⟧γ⌝⌟ if Sem⟦X⟧γ /= � ,
� otherwise .

(.)

�is is formally proven within -. Table . shows the trivial and

canonical proof: it consists of the unfolding of all combinator definitions
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lemma "(Sem⟦¬ x⟧γ) = (if Sem⟦x⟧γ ≠⊥ then ⌞¬⌜Sem⟦x⟧γ⌝⌟ else ⊥)"

apply(simp add: OclNot_def DEF_def li�_def li�_def li�_def

semfun_def )

done

Table .: Proving that ¬_ is faithful with respect to the standard is triv-
ial and canonical: Unfolding the definitions of all combinator

definitions and the semantic function reduces the proof to an

application of the simplifier of Isabelle.

lemma "(Sem⟦x + y⟧γ) = (if (Sem⟦x⟧γ ≠ �) ∧ (Sem⟦y⟧γ ≠ �)

then ⌞⌜Sem⟦x⟧γ⌝ + ⌜Sem⟦x⟧γ⌝⌟

else �)"

apply(simp add: OclNot_def DEF_def li�_def li�_def li�_def

semfun_def )

done

Table .: Proving that _ + _ is faithful with respect to the standard is triv-
ial and canonical: Unfolding the definitions of all combinator

definitions and the semantic function reduces the proof to an

application of the simplifier of Isabelle.

(they are just abbreviations of re-occurring patterns in the textbook-style

definitions!) and the semantic function Sem which is merely a syntactic

marker in our context.

For the binary example of the integer addition, one proceeds analo-

gously and receives as result:

Sem⟦X + Y⟧γ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⌞⌜Sem⟦X⟧γ⌝ + ⌜Sem⟦Y⟧γ⌝⌟ if Sem⟦X⟧γ /= � and
Sem⟦Y⟧γ /= �,

� otherwise .

(.)

Table . shows the quite simple, formal proof of this. Brucker and Wolff

[] present the details for the remaining operations.

In the following, we summarize the differences between the textbook

definitions of the  standard and our combinator-style approach:

. �e standard [, chapter A] assumes an “untyped set of values

and objects” as semantic universe of discourse. Since we reuse the

types from the -library to give Boolean, Integers and Reals a

semantics, meta-expressions like {true, false} ∪ {�} used in the
standard are simply illegal in our interpretation. �is makes the

injections ⌞_⌟ and projections ⌜_⌝ necessary.
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. �e semantic functions in the standard are split into I(x), I⟦e⟧τ,

IA⟦e⟧τ and τ ⊧ P. Since we aim at a shallow embedding (which

ultimately suppresses the semantic interpretation function), we

prefer to fuse all these semantic functions into one.

. �e environment τ in the sense of the standard is a pair of a vari-

able map and a state pair. �e variable map is superfluous in a

shallow embedding (binding is treated by  itself), our con-

texts τ just comprises the pair of pre-state and post-state, thus an

implementation of our notion of context.

Overall, we can show, by simple proofs that our semantics is equivalent

to the textbook-style semantics of the standard. Nonetheless, we deviate

in some points from the standard semantics for our system, -.

Most remarkably, we allow infinite sets and require the constructors of the

collection types to be strict. In both cases, we could adhere the standard,

but this would result in much more complicated proof calculi and would

make reasoning over  specification much more difficult as it already

is.

.. Compliance to the Requirements of the OCL Standard

As already described, the semantics of  is spread over several chap-

ters in the  standard and in particular, there is no normative formal

semantics. Many core concepts of  are more or less stated implic-

itly, e. g., while explaining some example. For example, in the following

explanation of the role of undefinedness

In general, an expression where one of the parts is undefined will

itself be undefined. �ere are some important exceptions to this rule,

however. First, there are the logical operators:

• True -ed with anything is True

• False -ed with anything is False

• False  anything is True

• anything  True is True

�e rules for  and  are valid irrespective of the order of ar-

guments and they are valid whether the value of the other sub-

expression is known or not. ( Specification [], page )

we learn two important details of :  is based on a Strong Kleene

Logic. �us, most operators of the logical type like _ and_ (written _∧_)
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are explicitly stated exceptions from the “all operations are strict” principle

also stated in this explanation.

Moreover, in the normative part [, chapter ], requirements (given

as  specifications) were formally stated on the standard operations of

, e. g., for the implication it is stated:

context Boolean::implies(b:Boolean)

post: (not self) or (self and b)

�e question, if these requirements are met by the informative semantics

description[appendix A] [], where the semantics of the implication

is given by a truth table, is neither investigated nor even mentioned in

the standard. Table . on page  shows the semantics of the Boolean

operations as given in the formal semantics part of the  standard. Sum-

marizing, there are three descriptions of the semantics for the Boolean

operations. If we look closer on the implication, we find:

• �e statement “anything implies true is true” in the informal de-

scription [, p. ].

• �e postcondition (not self) or (self and b) in the norma-

tive part [, p. ].

• �e truth table given in the formal semantics of the standard [,

p. A-].

If we analyzing this situation, we get:

• �e postcondition (not self) or (self and b) does not fulfill

the informal stated requirement “anything implies true is true”

as the postcondition would evaluate to undefined in case self is

undefined.

• �e formal semantics given as truth table obviously fulfills the in-

formal requirement, and thus does not comply to the requirement

given as postcondition.

One can easily deduce that one way of fixing this inconsistency would be

to change the requirement to

context Boolean::implies(b:Boolean)

post: (not self) or b

which would be semantically equivalent to the truth table given in the

formal semantics. One could argue that this is not really an inconsistency

in the standard, as the semantics of a postcondition is not clear, if the con-

text object (self ) is undefined. Following this argumentation, one could

argue that the formal semantics is only a refinement of the requirement.
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It is a contribution of our work that we can in fact formally prove

the requirements are met by our semantics. In the case of the logical

connectives, compliance to the standard is proven by deriving lemmas

representing the complete truth table as required in the standard. Fur-

ther, we also prove the normative requirements, and thus connect the

informative formal semantics with the normative requirements of the

standard.

For example, the requirements of the standard [, chapter ] for

isEmpty over collections is given as follows:

context Collection::isEmpty():Boolean

post: result = (self->size() = 0)

which resembles the informal meaning that a collection is empty, if and

only if its size is equal to zero. As this requirement is formulated for an

abstract class, i. e., a class without implementation, we have to prove this

requirement of each subclass. Namely, we have to prove it for the classes

Set, Sequence, Bag, and OrderedSet. In particular, we will now consider

this requirement for the classes Bag and Set. For bags we formalize this

requirements as follows

.
self ->isEmpty() = (self ∶∶ (α Bagτ))->size() ≐ 

(.)

Instead of using operation specifications, we prefer their reformulation

as algebraic properties that are directly usable in proofs.

Using our formalization based on a smashing semantics for bags, we

can easily show that this property holds for our semantics. Table .

shows the corresponding formalization in -, together with its

proof. �e proof uses a case split (either self is defined or not) followed

by a simplification where the  definitions are unfolded.

For sets, the formalization of the requirement has to take into account

that we prefer the use of infinite sets. Sadly, the requirement only holds

for finite sets, as for infinite sets the size is undefined. �us we formalize

the requirement for sets as follows:

⊧ ∂(self ->size() )
.

self ->isEmpty() = (self ∶∶ (α Setτ))->size() ≐ 
(.)

�e constraint ⊧ ∂(self ->size() ) (the size of the set must be defined)
is a tribute to our extension of the standard to infinite sets; it has the

effect to constrain this specification to finite sets, i. e., to the domain the

requirement is intended to hold. Once again, we can easily show that

this property holds for our semantics. Table . shows the corresponding

formalization in -, together with its proof.
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lemma "(self ->isEmpty()) = ((self ∶∶ (α Bagτ))->size() ≐ )"

apply(rule Bag_sem_cases_ext, simp_all)

apply(simp_all add: OCL_Bag.OclSize_def OclMtBag_def OclStrictEq_def

Zero_ocl_int_def ss_li�ing)

done

Table .: Proving that the operation _->isEmpty() over bags fulfills

the requirements of the  standard, i. e., the postcondition

result=(self->size()=0) holds. We start the proof by apply-

ing the rule Bag_sem_cases_ext, followed by a simplification

step. Overall, this results in two subgoals (either self is defined

or not). We can prove both goals by applying the simplifier

and unfolding all  definitions. �e name ss_li�ing refers to

a simplifier set that unfolds all li�ing related definitions, e. g.,

li�.

lemma "∂(self ->isEmpty())

Ô⇒

(self ->isEmpty()) = ((self ∶∶ (α Setτ))->size() ≐ 0)"

apply(rule ext)

apply (drule_tac τ = x in valid_elim)

apply (frule defSize_implies_finite_Sets)

apply (auto simp: OclIsEmpty_def OclSize_def OclStrictEq_def

Zero_ocl_int_def ss_li�ing)

done

done

Table .: Proving that the operation _->isEmpty() over sets fulfills the

requirements of the  standard, i. e., the postcondition

result=(self->size()=0) holds. We start the proof by ex-

ploiting extensionality and the rule valid_elim for converting

the global validity in a local one. As the size of the set is defined

we also know that the set is defined. �erefore, no case split is

needed and we can prove the property directly by applying the

automatic tactic autowith a simplifier configuration for unfold-

ing the  and li�ing definitions. �e name ss_li�ing refers

to a simplifier set that unfolds all li�ing related definitions, e. g.,

li�.
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[] presents these proofs in more detail, we use them to show that our

formalization captures the intention of the  standard.

.. Faithful Representing UML Object Structures

For backing our claim that the presented encoding of object structures

models faithfully encodes object-oriented data structures, e. g., in the

sense of programming languages like Java or C# or the  standard []),

we prove a variety of properties. As the  standard [] does not

present a formal semantics for , we cannot give a formal proof that

we formalized class models as described in the standard. Nevertheless,

we prove for each class properties, like specific type-cast relations that are

usually considered as object-oriented. �ese properties cannot be proven

once and for all and thus have to be proven for each user-defined model,

e. g., during the encoding of a specific  model. �is is similar to other

datatype packages in interactive theorem provers like Isabelle/.

Among many other properties, our datatype package proves that for

each pair of classes A and B, related by a generalization (inheritance),

where B is a subclass of A it holds that every class is of the kind of its

superclass:

τ ⊧ self .oclIsTypeOf (B)
.

τ ⊧ self .oclIsKindOf (A)
(.)

Moreover, in that case one can cast the class as well as the more compli-

cated property:

τ ⊧ ∂ self τ ⊧ self .oclIsKindOf (B)
.

τ ⊧ self = self .oclAsType (A) .oclAsType (B) .oclAsType (A)
(.)

As all type-casts are strict operations, one can from Equation . directly

infer the following rule:

τ ⊧ ∂ self τ ⊧ self .oclIsKindOf (B)
,

τ ⊧ self .oclAsType (A) .oclAsType (B) .oclIsTypeOf (B)
(.)

and also

τ ⊧ ∂ self τ ⊧ self .oclIsKindOf (B)
.

τ ⊧ ∂(self .oclAsType (A) .oclAsType (B) .oclIsTypeOf (B))
(.)

Proving these properties is not only needed for showing that our encod-

ing captures the spirit of object-orientation, they are also a prerequisite

for a successful reasoning over object structures, i. e., as simplification

rules. Moreover, if these properties can be proven the user-defined model

already ensures some basic notion of consistency, for example consider a
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model where the user defined for class B (which is a subclass of A) the

following invariant:

context B:

inv: not self.oclIsKindOf(A)

which is syntactically correct, but make no sense as the invariant con-

tradicts the generalization (inheritance) between class A and B. In this

example, our datatype package will not be able to prove the required

properties and will reject the model as being inconsistent.

.  

In this section, we will propose several extensions to the  which

increase, in our opinion, the overall usability of . Some of these

extensions will introduce new, expressive, constructs into the language.

Examples for such extensions are a well-defined semantics for recursive

operation calls or the support for specifying frame properties. Others will

not change the language itself but allow for more concise specification.

An example for such an extension is the introduction of strict Boolean

operations.

.. Operation Invocation

�e, from object-oriented programming languages, well-known concept

of overriding is not yet fully supported by . We believe, this is more

or less due to some accidental circumstances:

. �e  standard [, chapter ..] requires that operation names

are unique within the same namespace. Albeit, the  standard

allows one to (explicitly) override methods, i. e., implementation

of operations.

. �e  standard [, chapter ..] restricts the use of the pre-

condition and postcondition declarations to operations or other

behavioral features. Sadly, all  tools we know of do not support

the specification of preconditions and postconditions for methods.

. Whereas the  standard speaks on several places of operation

calls, it does not give hints how operation overriding should be

solved, neither does it explain in detail concepts like operation

(method) calls or operation (method) invocations.

Bringing these together, one has to conclude that operation overriding is

underspecified, or even not supported in . Nevertheless, we think that

overriding inherited operations or methods is a very important feature
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of object-orientation and thus should be supported by the . �us we

already provide the theoretical foundations for supporting late-binding

(and thus overriding of operations) within - (see Section . on

page  and Section . on page  for details), nevertheless a concrete

syntax for specifying this has to be worked out. For example, as simple

workarounds, one can ignore for operations the well-formedness con-

straint of  that requires operation names to be unique within one

namespace, or one could introduce new context declarations allowing

one to specify preconditions and postconditions for methods.

.. Recursive Operations

�e  standard requires that recursions should always be terminating

to rule out the problems already discussed in Section . on page :

�e right-hand-side of this definition may refer to operations being

defined (i. e., the definitionmay be recursive) as long as the recursion

is not infinite. ( Specification [], page )

and also in the formal semantics chapter the same statement is made:

For a well-defined semantics, we need to make sure that there is

no infinite recursion resulting from an expansion of the operation

call. A strict solution that can be statically checked is to forbid

any occurrences [. . .]. However, allowing recursive operation calls

considerably adds to the expressiveness of . We therefore allow

recursive invocations as long as the recursion is finite. Unfortunately,

this property is generally undecidable.

( Specification [], page A-)

Wepropose to restrict recursive operation calls to well-founded-recursion,

based on the semantics presented in Section . on page . Moreover,

we propose to extend the concrete syntax of  for allowing the direct

specification of a measure, which is needed for well-founded recursion.

For example, this would allow the following definition of the well-known

factorial function (in the context of a class A):

context A::fac(x:Integer):Integer

pre: true

post: if x < 0 then 1 else x * f(x-1) endif

measure: m(x, y) = if x < 0 or y < 0

then false else x < y endif

Overall, this would resolve the obscurities in the standard with respect

to recursive calls and moreover this paves the way for supporting formal
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reasoning over recursive specifications.

.. Explicit Representation of Type Sets and Kind Sets

As already described in Section .. on page  we represent types in

our framework, and thus also in -, via their characteristic set. As

types sets allow for specifying global properties of types in an easy way,

we propose to extend the  standard in two ways:

• �e characteristic set, i. e., the set of all instances, can be infinite

(e. g., for the type Integer). �erefore we use an infinite set theory

for -. In Section .., we discuss the advantages of this

setup in more detail.

• For supporting characteristic sets in concrete syntax of  we

suggest two new operations, which can be described in the style

of [, Chapter ] as follows:

-- Returns all possible instances of self, this may be

-- an infinite set. The Type T is equal to self.

OclType::typeSetOf()::Set(T)

and

-- Returns all possible instances of self and its

-- subtypes, this may be an infinite set. The Type T is

-- equal to self.

OclType::kindSetOf()::Set(T)

In contrast to the operation allInstances(), the result of both

typeSetOf() and kindSetOf() does not depend on the system

state. Moreover, the kind sets and type sets may be infinite, even

for object types.

As we identify types by their type set, in an implementation, such as

- the expressions type::typeSetOf() and type::kindSetOf()

can be directly mapped to the corresponding type or kind set during

loading of a specification.

For example, these operations allow one for specifying that the addition

on Integers is commutative

Integer.typeSetOf()->forall(x, y | x + y = y + x)

which are, for example, useful for making the requirements of the sum()

operation more precise. �is operation computes the sum of all elements

by applying successively the applying an _ + _ operation, which must
be (syntactically) defined over the element type of the collection. �e
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 standard [, page ] requires informally for this _ + _ operation
that is must be associative and commutative. Using our above proposed

operations one could express these two properties formally (within )

as precondition of the sum() operation.

.. Strict Boolean Operators

In addition to the non-strict Boolean connectives which provide a Strong

Kleene Logic (), we suggest to provide additionally a strict variant

(i. e., following Definition . on page ). We believe that both for formal

reasoning and also for runtime checking, strict Boolean connectives are

very useful in certain situations as they can lead to a concise specifica-

tion. �us we suggest to make both variants, i. e., strict and non-strict

Boolean connective, available within the same specification, e. g., using

the concrete syntax proposed in Table A. on page :

Sem⟦x sand x⟧ ≡ x ∧̇ x (.a)

Sem⟦x sor x⟧ ≡ x ∨̇ x (.b)

Sem⟦x sxor x⟧ ≡ (x ∨̇ x) ∧̇ ¬(x ∧̇ x) (.c)

Sem⟦x simplies x⟧ ≡ x Ð̇→ x (.d)

As the negation is already a strict operation, we do not need to define it

again. Moreover, as any strict operation, they simplify the undefinedness

reasoning, see Chapter  for details.

.. Accessing All Instances of the Previous State

We believe that this is only a minor point, but nevertheless we mention

it here: �e  standard [, subsection .] restricts the use of @pre

to properties (attribute, operations, . . .) of instances of classes. Read-

ing this part of the standard literally, the standard rules out expressions

like allInstances@pre(), as allInstances() is defined as a feature of

classes (and not of an instances of a class). Overall, we suggest to explic-

itly allow allInstances@pre(). �e semantics for this expression is as

obvious as for allInstances() itself, i. e.,

Sem⟦t ::allInstances()⟧ ≡ allInstances t (.a)

and

Sem⟦t ::allInstances@pre()⟧ ≡ allInstances@pre t . (.b)

For details, see also Section . on page .
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.. Frame Properties

We already motivated in Section . on page  that a possibility for

specifying the frame property, i. e., all “things” that do not change during

a system transition is very important. �us we propose to extend  with

means for specifying the frame property of an operation, in particular we

propose to introduce an operation ->modifiedOnly() whose semantic

is defined by the operator modifiedOnly (see Equation . on page ):

Sem⟦self ->modifiedOnly()⟧ ≡ modifiedOnly self . (.)

. 

In this chapter, we presented a formal, machine-checked semantics for

 in the context of  class models. �e semantics we presented is

based on the formal framework we presented in Chapter . Further, we

can guarantee that our semantics is consistent, under the assumption that

Isabelle/ itself is consistent.

In contrast to the formal semantics of the standard, i. e., [, Appendix

A], we formally define the semantics for all operations and not only define

the semantics “by example.” [] contains the Isabelle theory files of our

complete formalization.

Additionally, we showed that our semantics is equivalent to a formaliza-

tion of [, Appendix A] and also that our semantics fulfills the require-

ment of [, Chapter ]. �us, we indirectly showed that [, Appendix

A] also fulfills most of the requirements of [, Chapter ].

Our semantics deviates from the semantics  standard in two points:

First we propose a smashed semantics for collections and second, we

prefer infinite sets over finite ones. �e decision for a smashed semantics

is only a deviation from the informal semantics given in [, Appendix

A]; as the normative part of the  standard omits a specification of the

constructors for collections, a smashed semantics is still compliant to the

normative part of the  standard []. Moreover, this decision is also

backed up by more recent version of the standard []. Extending the

 standard with support for infinite sets requires minor modifications

on several places in the standard, especially [, Chapter ]; for example,

the precondition of operations converting sets into sequences need to be

extended by a constraint requiring the finiteness of the set, see [] for

details.

Moreover, our semantics is the basis for a formal tool we develop, called

-. As - is built on top of Isabelle/HOL in general and in

particular on top of the semantics we presented in this chapter, we can en-

sure that - implements exactly our formalized semantics. Overall,

this is, together with the consistency guarantee, one great advantage of
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building formal tools on top of well-known and reliable generic theorem

provers, e. g., Isabelle/.

In the next chapter, we will present several proof calculi for our for-

malization of . �ese calculi built the basis for the (automatic) proof

support - provides.
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CALCULI FOR OBJECT-ORIENTED SPECIFICATIONS

In this chapter, we develop several deduction systems for object-oriented

constraint languages in general and , as defined in Chapter , in partic-

ular. We define two equational calculi ( and ) usable for interactive

proofs or proofs by hand, and a tableaux calculus () geared towards

automatic reasoning. All rules we present are derived within Isabelle/

from the semantic definitions presented in Chapter . �erefore we can

guarantee the logical soundness, with respect to the core logic , of all

these rules.

. 

Having a conservative embedding for an object-oriented constraint lan-

guage L, e. g., , as a shallow embedding into , one might ask

why the development of specific calculi is necessary. Of course, one can

always unfold the definitions and thus converting, anL formula into a

 expression and try to prove the latter. However, we dismiss this idea,

mainly, due to the following two reasons:

• �e semantics of  and the concepts of object-orientation are

not closely related, thus the encoding is quite complex. Further-

more, object-oriented constraint languages are usually very rich

languages, i. e., also providing a theory of its own datatypes. �ere-

fore, unfolding of all definitions to the  level leads to a tremen-

dous blow-up in the size of the formulae. �e resulting  formu-

lae are not efficient to analyze, neither for automatic proof tactics

nor interactively: they are just too big.

• Unfolding all definitions of our framework and thus doing the

reasoning over a pure  specification broadens the gap between

the original specification (e. g., given as  models annotated

with  constraints) and the representation (pure  formulae)

over which the verification is done. Our experience with larger

case-studies [], carried out in using a similar proof-environment





  - 

for Z [], shows that around half of the flaws found during formal

verification are fixed by correcting the specification and half of

them are caused by misstating the verification goals. �us, for

every flaw found one has to decide if it is caused by a failure in

the specification or not. �is decision is much easier if the formal

analysis is carried out in the same language the specification is

written in.

�erefore, we are strongly in favor for supporting proofs on the level

of the object-oriented specification. �is strategy does not only avoid

the blow-up in the representation of the specification, it also provides

effective means to communicate with the designers and domain experts

of the original specifications.

Developing proof calculi that allow for a good integration into the

generic proof tactics of Isabelle is a challenge in itself. Moreover develop-

ing them for a object-oriented constraint languageL over object structures

such as  (over  object models), Spec# (over C# models), or 

(over Java models) provides several additional difficulties:

• �e logic itself is three-valued as it has to support means of ex-

ception handling. Moreover a strict evaluation model (similar to

programming languages) is usually the default. In contrast, the

meta-logic and the proof support provided by Isabelle are opti-

mized for two-valued reasoning.

• We do not only have the logic but also a rich datatype theory with

collection types which influence the overall flavor of the language.

As consequence, a good combination of specialized subcalculi for

all these types is a prerequisite for supporting automated reasoning

in practically relevant reasoning work.

Proof calculi for formal languages with this flavor are rarely explored;

especially for  no proof calculi supporting a Strong Kleene Logic are

published. Moreover, the  standard does not provide any calculi and

furthermore also neither a proof method nor a formal methodology. We

therefore develop a formal methodology by ourselves, based on previous

work [, ] for three valued logic and based on own experiences with

the development of an interactive proof environment []. We extend this

work by providing support object-oriented data models and developing

a tool-supported methodology. �e focus of our discussion of calculi

in this section is mostly on the subset of our framework described in

Chapter ; this will result in an interactive theorem prover environment

for / called -. An overview of the architecture of this

system is given in Section .., the technical aspects of this system are

described elsewhere [].
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In Section ., we discuss the validity of formulae and derive basic prop-

erties of validity statements. Based on this discussion, wewill in Section .

introduce several equality and congruence relations over formulae which

will serve as the basis for the calculi we develop. In Section . we present

two subcalculi optimized for reasoning over two distinct properties of

L formulae: undefinedness and context passingness (see Section ..).

Moreover, we will present a setup for arithmetic computations and cal-

culi for converting a fragment of object-oriented specifications into .

On this basis, we will describe the logic of our framework in Section .

and develop proof calculi in Section .. We conclude this chapter with

some remarks on the development of automated proof support for the

presented calculi and a general discussion how the presented calculi are

related to  (Section .).

.   

In this section, we will introduce a notion of validity of L formulae. On

this basis, we will also discuss a first characterization of valid formulae.

.. Validity of Formulae

Recall that formulae of our constraint languageL depend on a context (see

Section .. for details), thus we can define the validity of a formula with

respect to a concrete context τ, or with respect to all contexts. �erefore,

we introduce the notion of local validity and, moreover, we generalize local validity

validity to judgments of the form:

(τ ⊧t P) ≡ (P(τ) = ⌞true⌟) , (.a)

(τ ⊧f P) ≡ (P(τ) = ⌞false⌟) , and (.b)

(τ ⊧� P) ≡ (P(τ) = ⌞�⌟) . (.c)

As a shorthand for all three variants, we will write τ ⊧x P for x ∈ {�, f, t}.
We will write τ ⊧ P for τ ⊧t P and use this as our default notion of validity.
Further, we generalize local validity judgments to a notion of global global validity

validity judgments, sometimes also called universal validity judgments:

(⊧t P) ≡ (∀ τ. τ ⊧t P) , (.a)

(⊧f P) ≡ (∀ τ. τ ⊧f P) , and (.b)

(⊧� P) ≡ (∀ τ. τ ⊧� P) . (.c)

In analogy to local validity, we will write ⊧x P for x ∈ {�, f, t} as a
shorthand for all three variants and we will write ⊧ P for ⊧t P. Overall,
global validity captures the fact, that a formula is valid for all contexts.
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Naturally, we can build both a local congruence, and a global con-

gruence based on our validity notion. Moreover, the global and local

congruences are related via the following three theorems:

⋀ τ. (τ ⊧ X) = (τ ⊧ Y) ⋀ τ. (τ ⊧f X) = (τ ⊧f Y)
,

X = Y
(.a)

⋀ τ. (τ ⊧ X) = (τ ⊧ Y) ⋀ τ. (τ ⊧� X) = (τ ⊧� Y)
, and

X = Y
(.b)

⋀ τ. (τ ⊧f X) = (τ ⊧f Y) ⋀ τ. (τ ⊧� X) = (τ ⊧� Y)
.

X = Y
(.c)

Since a validity statement like τ ⊧ X has the type bool in , all equalities

in the premises of these rules can be seen as logical equivalences

τ ⊧ X⇔ τ ⊧ Y . (.)

As such, they can be decomposed into implications from le� to right and

vice versa.

In principle, reasoning over formulae of our constraint language can

either be based on a decomposition strategy of judgments or on exploiting

equivalences between formulae or judgments over them. In the latter

case, the transport of knowledge of contexts is a major technical issue in

reasoning over such formulae which turns out to be even more important

(i. e., more fundamental) than reasoning over definedness of subterms.

We will treat both reasoning over contexts and definedness in separate

subcalculi (see Section .. and Section ..). Overall, there is a notable

similarity to labeled deduction systems [, ].

.. A�eory of Basic Judgment

Following the definitions introduced in the previous section, we can easily

check the following link between judgments and equalities:

(τ ⊧ A) = (A τ = ⌞true⌟) = (A τ = t τ) . (.)

Moreover, the following analogous equations reveal that only one kind

of judgments is needed. As canonical form we take the validity judgment,

i. e., for the global validity:

(X = �) = (⊧ /∂ X) , (.a)

(X = f) = (⊧ ¬X) , and (.b)

(X = t) = (⊧ X) ; (.c)
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and for the local validity:

(X τ = � τ) = (τ ⊧ /∂ X) , (.d)

(X τ = f τ) = (τ ⊧ ¬X) , and (.e)

(X τ = t τ) = (τ ⊧ X) . (.f)

Applied from right to le�, these theorems reveal also the character

of judgments as rewrite-rules that can be used by automatic rewriting

procedures. From these equalities, the base cases for judgments follow

directly, i. e., for the global validity:

¬(⊧ �) , (.a)

¬(⊧ f) , (.b)

⊧ t ; (.c)

and for the local validity:

¬(τ ⊧ �) , (.d)

¬(τ ⊧ f) , (.e)

τ ⊧ t . (.f)

An important property of judgments is related to the three-valuedness

of L, i. e., quadrium non datur: quadrium non

datur
.

(τ ⊧ A) ∨ (τ ⊧ ¬A) ∨ (τ ⊧ /∂ A) (.)

With this rule, a defined formula can be converted into formulae which

are true or which are false; this gives rise for six corresponding case-split

lemmas.

.   

In this section, we refine the notion of congruence and equivalence; in

particular we will introduce several different equivalence relations for

formulae of our constraint language. �ese equivalences will be one

building block of the calculi we will present in Section ..

.. Basic Equivalences and Congruences

We distinguish four equivalences over formulae of our constraint lan-

guage:

: Universal (Formula) Congruence (). �is equivalence is a congru- Universal

(Formula)

Congruence ()

ence. It requires that two formulae A and B, both of type Booleanτ ,

agree in all contexts τ and in all three truth values of type Booleanτ ,
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i. e., they are equal with respect to the meta () equality. �ey

have the form

A = B
or

A = B ⋯ An = Bn
.

An+ = Bn+
(.)

: Local (Formula) Equivalence (). �is equivalence requires thatLocal (Formula)

Equivalence () two formulae agree on all three truth values of Booleanτ in a specific

context τ. �ey have the form

A τ = B τ
or

H ⋯ Hn
.

An+ τ = Bn+ τ
(.)

�e premises H i can have the form A τ = B τ or instances of this

scheme such as τ ⊧x A.

: Universal Judgement Equivalence (). �is equivalence requiresUniversal

Judgement

Equivalence ()

that two formulae for all contexts τ agree on one value x from

Booleanτ . �ey have the form ⊧x A = ⊧x B or Horn-clauses over

them.

: Local Judgement Equivalence (). �is equivalence requires thatLocal Judgement

Equivalence () two formulae agree on a specific truth value x of type Booleanτ in a

specific context τ, i. e., τ ⊧x A = τ ⊧x B or horn-clauses over them.

All three possible kinds of judgments, namely ⊧ A (universal validity),

⊧f A (universal invalidity), and ⊧� A (universal undefinedness), can be
converted into each other. �us, we can choose just one of them as

representative; the same holds for the local counterparts (e. g., the local

validity τ ⊧ A)). In both cases, we choose the validity as representative

judgment.

Moreover, the -format is only of notational interest: it is not possible

to build a complete calculus using only -rules. For example, consider

the valid rule

⊧ ∂ A ⊧ ∂ B
.

(⊧ A∧ B) = ((⊧ A) ∧ (⊧ B))
(.)

�is rule holds due to distribution of universal quantification over _ ∧ _.
An analogue version for the disjunction of our object-oriented constraint

language L does not hold, i. e., only the following variant holds:

⊧ ∂ A ⊧ ∂ B
.

(⊧ A∨ B) = (∀τ. (τ ⊧ A) ∨ (τ ⊧ B))
(.)
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�e -format, however, is flexible enough to build complete calculi.

For example, consider

τ ⊧ ∂ A τ ⊧ ∂ B

(τ ⊧ A∧ B) = ((τ ⊧ A) ∧ (τ ⊧ B))
(.)

as a propositional equivalence or

(τ ⊧ ∀ x ∈ S . A∧ B) = (∀ x . (τ ⊧ x ∈ S) Ð→ (τ ⊧ A))
∧ (∀ x . (τ ⊧ x ∈ S) Ð→ (τ ⊧ B)) (.)

as an equivalence on predicates.

Judgments are propositional and formulae in the form of  can be

decomposed into implications from le�-to-right and from right-to-le�.

�us, there is another line to automated reasoning over L-formulae: they

can be turned into a tableau calculus (, see Section ..).

Unfortunately, there is a trade-off between completeness of the various

calculi based on these equivalences and deductive efficiency.  is the

only congruence that can be directly processed by Isabelle’s simplifier;

normalizations in  can be computed relatively efficiently. While 

comprises several thousands of rules (among them, the strictness and

computational rules of operators) it does not form a complete calculus for

several reasons: Some properties in L are inherently context dependent,

in particular when referring to paths. Others are difficult to formalize

as a universal congruence. On the other end of the spectrum, since

local judgments, e. g., τ ⊧ A, are simply propositions, they are extremely

flexible. When extending  rules to equivalences over propositional

(predicative) formulae, it is not difficult at all to convert them into a fairly

abstract but still provably complete calculus with safe rules. Safe rules are

rules whose application yield an equivalent transformation of the proof

state. �eir use is “safe” in the sense that no logical content is lost.

With respect to , it is well-known that the complexity for tableaux-

based reasoning in Strong Kleene Logic is higher than tableaux-based

reasoning for two-valued logics []. However, the logic is only one little

fragment of the overall problem of building decision procedures for frag-

ments of our constraint language: Most operations are strict, and from

the data-invariants, definedness of many literals can be inferred, such that

large fragments of the language are in fact two-valued. Furthermore, we

do not only obtain the logic but also a rich datatype theory with collection

types which give the overall language a flavor in its own. As consequence,

a good combination of all these types of calculi is a prerequisite for devel-

oping procedures for automated reasoning that are applicable in realistic

case-studies.
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.. On the Relationship Between the Different Forms of Equivalence

In this section, we will explore briefly how the different forms of equiv-

alence (i. e., , , , and ) relate to each other. In particular, the

following characterizations between statements in these forms of equiva-

lence hold:

• Universal (Formula) Congruence can be converted into Local

(Formula) Equivalence as follows:

(A = B) = (∀ τ. A τ = B τ) . (.)

• Universal (Formula) Congruence can be expressed in Local Judge-

ment Equivalence by the following two equations:

(A = B) = ((∀ τ. (τ ⊧ A) = (τ ⊧ B))

∧ (∀ τ. (τ ⊧ /∂ A) = (τ ⊧ /∂ B)))
(.a)

and

(A = B) = ((∀ τ. (τ ⊧ A) = (τ ⊧ B))

∧ (∀ τ. (τ ⊧ ¬A) = (τ ⊧ ¬B))) .
(.b)

�ese two equations implicitly exploit the “quadrium non datur”

(Equation .): If two formulae agree in two truth-values, they

have also to agree on the third.

• Local (Formula) Equivalence can be expressed in Local Judgement

Equivalence by the following two equations:

(A τ = B τ) = (((τ ⊧ A) = (τ ⊧ B))

∧ ((τ ⊧ /∂ A) = (τ ⊧ /∂ B)))
(.a)

and

(A τ = B τ) = (((τ ⊧ A) = (τ ⊧ B))

∧ ((τ ⊧ ¬A) = (τ ⊧ ¬B))) .
(.b)

�ey also also implicitly exploit the “quadrium non datur” (Equa-

tion .).

• �e relation of Local Judgement Equivalence to equivalence is

described by:

((τ ⊧ A) = (τ ⊧ B)) = ((τ ⊧ AÐ→ τ ⊧ B)
∧ (τ ⊧ B Ð→ τ ⊧ A)) .

(.)
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�is characterization justifies an own tableaux calculus on the basis

of local judgments. �is rule is the starting point for the develop-

ment of the Local Tableaux Calculus () (see Section ..).

• �e connection of strong equality to Local (Formula) Equivalence

is described by:

(τ ⊧ (a ≜ b)) = (a τ = b τ) . (.)

. 

In this section, we introduce our first calculi for our framework. �ese

calculi are specialized to particular tasks, for example handling undefined-

ness or reasoning over context-passingness.

.. Reasoning about Context-Passingness

In the following, we discuss the first subcalculus, the reasoning over

context-passingness. Revising the definition (see Equation . on page ) context-passingness

cp(P) ≡ (∃ f . ∀Xτ. P X τ = f (X τ)τ) (.)

that appears in Section .., one might wonder why this definition is so

important for reasoning inL. An answer can be drawn from the following

rule:
A τ = B τ cp P

.
P A τ = P B τ

(.)

In other words, any Local (Formula) Equivalence A τ = B τ is in fact a

congruence for all terms P X that are context passing. As a consequence,

being context passing (cp _) is a pre-requisite for replacing a term by an-

other in some (context-passing) term P X. �us P can also be interpreted

as the “surrounding term” marked by the “position” X. Since global equiv-

alence is semantically closely connected to strong equality, this means that

all sorts of term-rewriting in our constraint language, e. g., , will be

constrained to “adequate surrounding terms,” i. e., terms that are context

passing. Context-passingness is a tribute to the fact that the typing of our

logic depends on the context; it can be seen as an invariant of semantic

functions representing the operations.

�e inference rules for establishing context-passingness are contained

in Table . and follow an inductive scheme over the structure of the

expressions of the constraint language: �e base-cases (Equation .a

and Equation .b) are straight-forward, i. e., constant expressions or

identities are context passing. �e lemmas presented in Equation .c,

Equation .d, and Equation .e contain the step-cases and work for

all operators that had been defined via the context li�ing combinators.
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cp(λ X . c)

cp(λ X . X)

cp(li� c)

cp P

cp(λ X . li� f (PX))

cp P cp P′

cp(λ X . li� f (P X)(P′ X))

(.a)

(.b)

(.c)

(.d)

(.e)

Table .:�e core rules of the subcalculus for context passingness.

We presented all operations of our framework in combinator-style,

therefore, with these combinators, these generic step-cases pave the way

for the automatic generation of one cp-rule with a uniquely defined pat-

tern for each operator. �us, for all expressions built entirely from op-

erators (which is for example the case for all formulae of the original

system specification) of L, the derivation of cp P formulae are done fully

automatic by backward chaining (using both the Isabelle simplifier as

well as the Isabelle classical reasoner).

.. Reasoning about Undefinedness and Definedness

Definedness and undefinedness are indeed opposite concepts, i. e., they

satisfy the rule of the excluded middle for all X in all types:

τ ⊧ /∂ X ∨ τ ⊧ ∂ X . (.)

�is gives, of course, rise to case-split techniques that can be applied

automatically in calculi based on Universal Judgement Equivalence or

Local Judgement Equivalence.

However, we focus on strict operations as, for example, it is the case

for . For strict operations, the use of undefinedness in deduction is

easier than its counterpart.

Undefinedness can be propagated throughout a proof state via forward

reasoning and exploited via rewriting. �e forward reasoning part is





. 

∂ f = t ∂ t = t ∂ � = f

∂ ∂ X = t ∂(¬X) = ∂ X

∂(X ∧ ∂ X) = t ∂(¬X ∧ ∂ X) = t

∂(∂ X ∧ X) = t ∂(∂ X ∧ ¬X) = t

∂(X ≜ Y) = t ∂(X ≐ Y) = ∂ X ∧ ∂ Y

∂ f X = ∂ X ∂ f X Y = ∂ X ∧ ∂ Y

(.)

(.)

(.)

(.)

(.)

(.)

(a) �e core definedness rules hold for all strict operations f .

∂(ifX thenY else Z endif) = ∂ X ∧ (X ∧ ∂ Y ∨ ¬X ∧ ∂ Z)

∂(X ∧ Y) = (∂ X ∧ ∂ Y) ∨ ¬X ∨ ¬Y

∂(X ∨ Y) = (∂ X ∧ ∂ Y) ∨ X ∨ Y

∂(X Ð→ Y) = (∂ X ∧ ∂ Y) ∨ ¬X ∨ Y

(.)

(.)

(.)

(.)

(b) Strong definedness rules.

τ ⊧ ∂ X τ ⊧ ∂ Y τ ⊧ ∂ Z

τ ⊧ ∂(ifX thenY else Z endif)

τ ⊧ ∂ X τ ⊧ ∂ Y

τ ⊧ ∂(X Ð→ Y)

τ ⊧ ∂ X τ ⊧ ∂ Y

τ ⊧ ∂(X ∨ Y)

τ ⊧ ∂ X τ ⊧ ∂ Y

τ ⊧ ∂(X ∧ Y)

cp P

(τ ⊧ ∂(∀ x ∈ S . Px)) = (τ ⊧ ∂ S ∧ ((∃ x . τ ⊧ x ∈ S ∧ ¬τ ⊧ Px)
∨ (∀ x . τ ⊧ ∂ x ∧ τ ⊧ x ∈ S Ð→ τ ⊧ ∂ Px)))

(.)

(.)

(.)

(.)

(.)

(c) Weak definedness rules.

Table .:�e definedness calculi.
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covered by rules like

τ ⊧ /∂ X cp P

P X τ = P � τ
(.)

and several variants used for technical purposes. A�er replacing a term

X by �, strictness rules like f �Y or f Y � can reduce the size of subgoals
drastically.

We now focus on the far more involved treatment of definedness. �e

core of reasoning over definedness is in fact representable in a Universal

(Formula) Congruence calculus. It is summarized in Table .a. �is rule

set contains also a class of rules for “strict standard operations f .” With

this set of operations, we refer to operations that had been defined by

constant definitions of the form:

f ≡ li�(strictify(λ x . strictify(λ y. ⌞g ⌜x⌝⌜y⌝⌟))) . (.)

As in the case of the generation of cp-inference rules, we exploit the

combinator-style definitions of the standard operators here and generate

this type of rules in pre-computation steps once and for all.

�is strong definedness calculus can be extended to quantifiers as

follows:

cp P

∂(∀ x ∈ S . Px) = ∂ S ∧ ((∃ x ∈ S . (¬ Px)) ∨ (∀ x ∈ S . ∂ Px))
(.a)

and

cp P
.

∂(∃ x ∈ S . Px) = ∂ S ∧ ((∀ x ∈ S . (¬ Px)) ∨ (∃ x ∈ S . ∂ Px))
(.b)

�e power, but also a major drawback of this type of calculus based on

Universal (Formula) Congruence stems from the rules listed in Table .b.

�ey result in the generation of numerous case splits, which are o�en

unnecessary: if we know that all variables in a subgoal are defined (and

this is an important special case that we can achieve by initial case-splits

done once and for all), simple conditional rules leading to direct backward-

chaining are sufficient.

To overcome this drawback, we derived the following alternative rule-

set listed inTable .c. It reduces the burden of applicability to the question,

if the definedness of a term can be derived. By the way, the (τ ⊧ ∂ x)-part
in the last rule is strictly speaking redundant (as we will see when we

discuss the Set-theory in more detail), but facilitates the establishment of

τ ⊧ ∂ Px since this additional assumption will be used if x occurs in (the
instance of) P x.
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.. Arithmetic Computational Rules

An important source of deduction is computation. Computation is needed

when τ ⊧ 3 + 5 ≐ 4 is refuted. So far, we have only used declarative

concepts to introduce numbers; the question arises how this can be used

for computation and deduction.

�is problem is by no means new and deeply intertwined with the

existing solution in Isabelle/. In the  library, a type bin for bi-

nary two’s complement representation has been introduced by classical,

conservative means. �e Isabelle parser is configured to parse a literal

like  to bitstring representation using two’s complement, i. e., ().
Further, an axiomatic class num is defined providing a function decla-

ration numberOf ∶∶ bin ⇒ α ∶∶ num that can be overloaded for each
type declared to be an instance of class num. �us, for new datatypes,

just a new function is defined that converts a bitstring representation

to this new type. In the library, such a conversion has been provided,

for example, for int. Based on these definitions, suitable rules have been

derived that perform the integer operations like addition on the two’s

complement representation directly; these rules can be directly processed

by the simplifier.

With respect to the types Integerτ , Realτ and Stringτ we can proceed

analogously. For example, a�er declaring Integerτ to be an instance of

num, we provide the following definition numberOf for the representa-

tion conversion:

(numberOf ∶ ∶ bin⇒ Integerτ) b
≡ li�(⌞(numberOf ∶ ∶bin⇒ int)b⌟) . (.)

�us, the “new” numberOf with type bin⇒ Integerτ is the context-

li�ed, �-li�ed version of the “old” numberOf on integers (). From
this definition, among others, the following rules can be derived::

∂(numberOfa) = t , (.a)

(numberOfa) + (numberOfb) = numberOf(a + b) , (.b)

(numberOfa) ⋅ (numberOfb) = numberOf(a ⋅ b) , and (.c)

¬ iszero(numberOf(a − b))
.

((numberOfa) ≜ (numberOfb)) = f
(.d)

�us, besides definedness-related computations (“all values are defined”),

computations in L were mapped directly to computations in the underly-

ing meta-logic . �is setup enables the standard simplifier of Isabelle

to handle arithmetic on the level of L automatically. For example, the

simplifier refutes judgments like

τ ⊧ 3 + 2 ≐ 7 (.)
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fully automatically, i. e., without user interaction. In the following, we

give a short sample proof:

lemma "⟦τ ⊧ 3 ≐ C; τ ⊧ C + 2 ≐ (7 ∶∶ Integerτ)⟧

Ô⇒

τ ⊧ A∧ B"

apply(ocl_hypsubst, simp)

done

�e first proof method ocl_hypsubst canonizes the proof state, i. e., re-

places the variables with their values. �e intermediate proof state looks

as follows:

⟦τ ⊧ 3 + 2 ≐ (7 ∶∶ Integerτ); ⟧ Ô⇒ τ ⊧ A∧ B (.)

�e standard simplifier (configured to use the derived rules above auto-

matically) computes the addition, refutes the judgment and thus proves

the goal. Moreover, we can prove

τ ⊧ /∂ C; τ ⊧ C + 2 ≐ (7 ∶∶ Integerτ) ∨ (D ≐ 2 + 3)

τ ⊧ D ≐ 5
(.)

by using a similar proof script:

lemma "⟦τ ⊧ /∂ C; τ ⊧ C + 2 ≐ (7 ∶∶ Integerτ) ∨ (D ≐ 2 + 3)⟧

Ô⇒

τ ⊧ D ≐ 5"

apply(ocl_hypsubst, simp)

done

�is script proves the goal by combining reasoning over undefinedness

and arithmetic, i. e., from the undefinedness of C, we can directly infer

D ≐ 2 + 3must hold in the assumption; thus D is defined and by using

the presented arithmetic rules, i. e., computing 2 + 3, we can solve the

proof goal.

.. Conversion to 

For a fragment of our constraint language, that is built for expressions

that are always defined, a “conversion” into standard  formulae over

Local Judgement Equivalences are possible. �e propositional part of the

translation is described in Table .a, the predicative part in Table .b.

�e rules for the other collection types are accordingly.

.  

In this section, we introduce the core rules of the underlying logic, namely

rules for reasoning over equalities, the logical connectives and also the

integration of a typed set theory.





.  

τ ⊧ ∂ A

(τ ⊧ ¬A) = (¬τ ⊧ A)

τ ⊧ ∂ A τ ⊧ ∂ B

(τ ⊧ A∧ B) = (τ ⊧ A∧ τ ⊧ B)

τ ⊧ ∂ A τ ⊧ ∂ B

(τ ⊧ A∨ B) = (τ ⊧ A∨ τ ⊧ B)

τ ⊧ ∂ A τ ⊧ ∂ B

(τ ⊧ AÐ→ B) = (τ ⊧ AÐ→ τ ⊧ B)

(.)

(.)

(.)

(.)

(a) Propositional Conversion

τ ⊧ ∂(S ∶ ∶ (β ∶ ∶ bot) Setτ) cp P

(τ ⊧ ∀ x ∈ S . P(x ∶ ∶ τ ⇒ β)) = (∀x . τ ⊧ x ∈ S Ð→ τ ⊧ P x)

τ ⊧ ∂(S ∶ ∶ (β ∶ ∶ bot) Setτ) cp P

(τ ⊧ (∃ x ∈ S . P(x ∶ ∶ τ ⇒ β))) = (∃ x . τ ⊧ x ∈ S ∧ τ ⊧ (P x))

(.)

(.)

(b) Predicative Conversion

Table .: Conversion to 
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.. Reasoning over Equality

�e strong equality satisfies the usual properties except the Leibniz rule

(substitutivity):

,
τ ⊧ a ≜ a

(.a)

τ ⊧ a ≜ b
, and

τ ⊧ b ≜ a
(.b)

τ ⊧ a ≜ b τ ⊧ b ≜ c
.

τ ⊧ a ≜ c
(.c)

Instead of substitutivity, the following, slightly weaker, form of substitu-

tivity (for context passing P) holds:

τ ⊧ a ≜ b τ ⊧ P a cp P
.

τ ⊧ P b
(.d)

�is side-constraint is not surprising, since by Equation . shown in

Section .. we know that strong equality and global equivalence are

semantically equivalent.

�e following two lemmas

τ ⊧ ∂ a τ ⊧ ∂ b

(a ≐ b)τ = (a ≜ b)τ
(.a)

and

τ ⊧ a ≐ b

τ ⊧ a ≜ b
(.b)

show that strict equality is indeed convertible into strong equality.

.. Core-Logic (Boolean)

With core-logic we refer to the sub-language consisting of the logicalcore-logic

connectives¬_, _∧_, _∨_, _Ð→_, etc., whichwe also call the propositionalpropositional

fragment fragment of our logic (in the sense of a propositional multi-valued logics).

For each operator, we derive computational rules representing the truth

tables of the logical connectives (see Definition . on page ), e. g., for

_ ∧ _ the following rules hold:

f ∧ f = f , f ∧ t = f , f ∧ � = f , (.a)

t ∧ f = f , t ∧ t = t , t ∧ � = � , (.b)

� ∧ f = f , � ∧ t = � , and � ∧ � = � . (.c)
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Beside such computational rules, the core-logic enjoys a lattice-like struc-

ture with the rules shown in Table .a.

Table .b shows the rules that deal with logical reasoning related to

implication. However, the rules for Universal (Formula) Congruence

do not form a complete calculus. �e problem is hidden in the only

conditional rule, which has to be rephrased as rule for Local (Formula)

Equivalence to achieve completeness. Unfortunately, this conditional rule

corresponds to applying the “assumption” and is therefore particularly

vital in deduction. �e Boolean case-split rule in Table .c is interest-

ing for automated reasoning. Applying case-splits consequently over all

Boolean variables yields proof procedures of sufficient power, i. e., many

facts over the library are proven using such a proof procedure.

.. Set �eory and Logic

Set theory is the theory ofmembership, i. e., x ∈ S, on the one hand and membership

set constructions like comprehensions, i. e., (∣x ∈ S∣P x∣), on the other. comprehensions

In our framework, we have a typed form of a set theory which rules out,

for example, Russel’s Paradox. With respect to typedness, the set theory

of our framework is more related to set theory of , but more distant

to the one of . Undefinedness, on the other hand, is a distinguishing

feature. As we already explained in Section .., the inclusion of elements

in a set may result in an undefined set (smashed semantics) or in a set,

that just contains undefined elements (non smashed semantics). In this

section, we will limit ourselves to the case of a smashed semantics for

the selection types, which is also our proposal for the  semantics (see

Section ... On the deduction level, smashed semantics boils down to

the following rule:

τ ⊧ x ∈ S
.

(τ ⊧ /∂ x) ∧ (τ ⊧ /∂ S)
(.)

�is has the consequence, that whenever we eliminate a universal or exis-

tential quantification, we know that the variable over which a quantifier

ranges is defined. In itself, this is also useful to deduce that the body of a

quantifier is defined.

In the following, we discuss the core of the collection theories at the

example of the set theory. For brevity, we omit the type constraints from

this presentation. Quantifiers and set constructors in our object-oriented

framework have an operational character with respect to undefinedness;

in the standard, quantifiers were defined via iterators, hence fold-like

constructs which also reflect the behavior in case of undefinedness. �is

represents a particular challenge for deduction; on the other hand, many

constraint languages over data-structures that support undefinedness,

like , Spec#, or  have the same characterizations.
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f ∧ X = f t ∨ X = t

t ∧ X = X f ∨ X = X

X ∧ X = X X ∨ X = X

X ∧ Y = Y ∧ X X ∨ Y = Y ∨ X

X ∧ (Y ∧ Z) = (X ∧ Y) ∧ Z X ∨ (Y ∨ Z) = (X ∨ Y) ∨ Z

¬(¬X) = X (X ∧ Y) = ¬(¬X ∨ ¬Y)

(X ∨ Y) ∧ Z = (X ∧ Z) ∨ (Y ∧ Z) (X ∧ Y) ∨ Z = (X ∨ Z) ∧ (Y ∨ Z)

Z ∧ (X ∨ Y) = (Z ∧ X) ∨ (Z ∧ Y) Z ∨ (X ∧ Y) = (Z ∨ X) ∧ (Z ∨ Y)

¬(X ∧ Y) = ¬X ∨ ¬Y ¬(X ∨ Y) = ¬X ∧ ¬Y

(.a)

(.b)

(.c)

(.d)

(.e)

(.f)

(.g)

(.h)

(.i)

(a) Lattice

X Ð→ f = ¬X X Ð→ t = t

fÐ→ X = t tÐ→ X = X

∂ X = t

(X Ð→ X) = t

X Ð→ Y = ¬X ∨ Y

X Ð→ (Y ∧ Z) = (X Ð→ Y) ∧ (X Ð→ Z)

X Ð→ (Y ∨ Z) = (X Ð→ Y) ∨ (X Ð→ Z)

(X ∧ Y) Ð→ Z = X Ð→ (Y Ð→ Z)

(X ∨ Y) Ð→ Z = (X Ð→ Z) ∧ (Y Ð→ Z)

X Ð→ (Y Ð→ Z) = Y Ð→ (X Ð→ Z)

(.a)

(.b)

(.c)

(.d)

(.e)

(.f)

(.g)

(.h)

(.i)

(b) Logic

P � = P′ � P t = P′ t P f = P′ f cp(P) cp(P′)

P X = P′ X
(.)

(c) Boolean Case-Split: Trichotomy

Table .:�e Core of the  Calculus (“Propositional Calculus”)
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For the quantifiers of our framework the following general Universal

(Formula) Congruence-rules hold:

,
∀ x ∈ �. P x = � (.)

,
∃ x ∈ �. P x = � (.)

, and
∀ x ∈ ∅. P x = t

(.)

.
∃ x ∈ ∅. P x = f

(.)

�e following two rules

τ ⊧ ∂ X τ ⊧ ∂ a cp P

(∀ x ∈ X insertX a. P x) τ = ((P a) ∧ (∀ x ∈ X . P x)) τ
(.)

and

τ ⊧ ∂ X τ ⊧ ∂ Y

(∀ x ∈ (X ∪ Y). P x) τ = ((∀ x ∈ X . P x) ∧ (∀ x ∈ Y . P x)) τ
(.)

allow for the elimination of quantifications over known finite sets via com-

putation. Besides, there is a tableaux calculus for quantifier elimination

that can be directly derived from the rules, extending the calculus shown

in Table .b.

�e core of the set theory of our framework is the relation between

the element-hood, i. e., membership (x ∈ S), and the set comprehension
((∣x ∈ S∣P x∣)) and the relation to equality. In particular, they provide a
form of set extensionality:

τ ⊧ a ∈ S τ ⊧ /∂(P a) cp P
,

((∣x ∈ S∣P x∣)) τ = �τ
(.)

τ ⊧ ∂ S τ ⊧ ∂ a ⋀ x .

τ ⊧ x ∈ S⋅⋅⋅
τ ⊧ ∂(P x) cp P

,
(τ ⊧ a ∈ ((∣x ∈ S∣P x∣))) = (τ ⊧ P a ∧ τ ⊧ a ∈ S)

(.)

τ ⊧ ∂ S τ ⊧ ∂ a τ ⊧ a ∈ S ⋀ x .

τ ⊧ x ∈ S⋅⋅⋅
τ ⊧ ∂(P x) cp P

, and
(τ ⊧ a ∈ ((∣x ∈ S∣P x∣))) = (τ ⊧ P a)

(.)

⋀ x .

τ ⊧ ∂ x⋅⋅⋅
(x ∈ S) τ = (x ∈ T) τ

.
Sτ = Tτ

(.)
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. 

In this section, we present several calculi for our framework. In particular,

we develop a tableaux calculus that is especially well-suited for automated

deduction.

.. A Universal Equational Calculus

�e basis of a Universal Equational Calculus () for our frameworkUniversal

Equational

Calculus ()

are Horn-clauses over universal congruences; due to the rich algebraic

structure of Strong Kleene Logic,  allows for logical reasoning in

formulae and local validity judgments. A proof of a formula in  is a

derivation of a formula to t.

Based on the elementary reduction rules (R-rules) for the logical oper-reduction rules

(R-rules) ators, it is not difficult to derive the laws of the surprisingly rich algebraic

structure of Strong Kleene Logic: both_ ∧ _ and _ ∨ _ enjoy associativity,
commutativity and idempotency. �e logical operators also satisfy both

distributivity and the de Morgan laws. It is essentially this richness and

algebraic simplicity that we will exploit in the applications.

�e logical implication is also representable in this equational reasoning

style, which is quite intuitive and therefore greatly facilitates “by-hand-

proofs,” see Table .b. �ese rules form the core of the logical calculus.

However, the crucial assumption rule

∂(X) = t

(X Ð→ X) = t
(.)

that allows one to deduce that a fact follows from a list of assumptions

leads to a complication:

A ∧⋯ ∧ Ak ∧ B ∧ Ak+ ∧⋯ ∧ An Ð→ B

= A ∧⋯ ∧ An ∧ BÐ→ B

= A ∧⋯ ∧ An Ð→ (BÐ→ B)
only under the additional assumption ∂(B) = t, we can conclude

= A ∧⋯ ∧ An Ð→ t

and thus, resolve our proof goal to:

= t

�is means that a subcalculus for the definedness predicate is needed.

Moreover, this means that each application of the assumption rule leads

to a sub-proof over the definedness of the assumption. �erefore, we

consider two alternative definitions of the implication, namely _
Ð→_ (de-

fined in Equation .b) [] and _
Ð→ _ (defined in Equation .c) [].





. 

Recall, that a comparison of all three implication variants is given in

Table . on page .

For the first variant, i. e., _
Ð→ _, the counterparts to rules appearing

in Table .b on page  hold, except for two details:

. We have (X Ð→ X) = t such that the subproof for ∂ B = t is not

necessary. �e handling of this implication in proofs is therefore

more intuitive. In principle, this could be amotivation to prefer this

variant of implication over the default one (_
Ð→ _). In particular,

if a difference in proof complexity could be shown.

. However, the problem is only shi�ed to the “reductio ad absurdum”-

rule (XÐ→f) = ¬X, whose counterpart requires now the proviso

for definedness.

For the second variant, i. e., _
Ð→_, the situation is even worse: besides

the obvious fact, that the crucial rule � Ð→ t does not hold, also the

following rules from Table .b do not hold:

((X ∨ Y) Ð→ Z) = (X Ð→ Z) ∧ (Y Ð→ Z) , (.)

((X ∧ Y) Ð→ Z) = (X Ð→ (Y Ð→ Z)) , and (.)

X
Ð→ (Y Ð→ Z) = Y

Ð→ (X Ð→ Z) . (.)

As both non-standard variants introduce, from the deduction point of

view, unnecessary complications (especially the second variant with its

dramatic algebraic deficiencies), we will in the following only consider

the standard implication, i. e., _Ð→ _.

     : . An inter-

esting technique for proving P X = P′ X is based on a case split over �, t
or f. �e enabling rule Table .c is called trichotomy; it requires a partic- trichotomy

ular constraint over the treatment of the implicit context τ inside P and

P′. In principle, it would suffice to require that τ is changed “on its way

through P and P′” in the same way. However, since all constructs of our

framework, including the logical connectives are li�ed over the contexts,

we apply a slightly stronger restriction, namely that τ is unchanged, i. e.,

P or P′ are context passing with respect to τ. It turns out that this concept

is necessary for other calculi, too. As already discussed in Section ..,

the property of being context passing can easily inferred in a backward

proof whose size is equal to the size of the term. �ese inferences use

inherently higher-order concepts.
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A τ = A′ τ

(¬A) τ = (¬A′) τ

A τ = A′ τ B τ = B′ τ

(A∨ B) τ = (A′ ∨ B′) τ

A τ = A′ τ B τ = B′ τ

(A⊕ B) τ = (A′ ⊕ B′) τ
(.)

(a) Congruence Rules for the Operations ¬ _, _ ∨ _, and _⊕ _.

τ ⊧ ∂(A)

[τ ⊧ A]⋅⋅⋅
B τ = B′ τ

(A∧ B) τ = (A∧ B′) τ

τ ⊧ ∂(A)

[τ ⊧ A]⋅⋅⋅
B τ = B′ τ

(AÐ→ B) τ = (AÐ→ B′) τ

[τ ⊧ A]⋅⋅⋅
B τ = B′ τ

[τ ⊧f A]⋅⋅⋅
C τ = C′ τ

(ifAthenB elseC endif) τ = (ifAthenB′ elseC′ endif) τ

(.)

(.)

(b) Context Rules for the operations _ ∧ _, _Ð→ _, and if _ then _ else _ endif.

τ ⊧ A P t τ = P′ t τ cp(P) cp(P′)

P A τ = P′ A τ

τ ⊧f A P f τ = P′ f τ cp(P) cp(P′)

P A τ = P′ A τ

τ ⊧� A P � τ = P′ � τ cp(P) cp(P′)

P A τ = P′ A τ

(.)

(.)

(.)

(c) Propagation of the Local Validity.

Table .:�e Local Equational Calculus ().

.. A Local Equational Calculus

Analogously to universal equality, a local validity calculus can be de-

veloped: Local Equational Calculus (). Table .a shows the general

scheme of Local Equational Calculus () congruence rules. For example,

this general schema is applicable for the negation (¬_), disjunction (_∨_)
or the exclusive or (_⊕ _). For several operators, stronger logical rules
can be derived, that accumulate semantic knowledge for sub-derivations

from the context in which they are applied in; these rules are presented

in Table .b. �is information can be used by the third group of rules

in Table .c, which allows for generalizing sub-terms in larger contexts

(which must be context-passing) according to assumptions.





. 

�e calculus  is particularly suited for backward-proofs; when

applied bottom-up, formulae were decomposed deterministically via the

congruence and the context rules. During this process, semantic context

knowledge is accumulated in the assumption list, which can be exploited

via the propagation rules who replace sub-terms by t, f, or � which
leads in combination with  in practice to drastic simplifications of the

current proof goal. A proof in  is a derivation that leads to Aτ = tτ,

which is notationally equivalent to τ ⊧ A.

.. �e Judgment Tableaux Calculus LTC

�e conversion technique discussed in Section .. requires reasoning

on side-conditions such as cp P or definedness ∂ X. �e question arises,

if this can be avoided when performing a logical decomposition of the L

formulae directly.

�e tableaux methodology is one of the most popular approaches to

design and implement proof-procedures. While originally developed for

first-order theorem proving, renewed research activity is being devoted

to investigating tableaux systems for intuitionistic, modal, temporal and

many-valued logics, as well as for new families of logics, such as non-

monotonic and sub-structural logics. Many of these recent approaches

are based on a special labeling technique on the level of judgments, called

labeled deduction [, , ]. Of course, labeling can also be embedded

into a higher-order, classical meta-logic. Being a special case of a many-

valued logic, tableaux calculi for Strong Kleene Logic based on labeled

deduction have been extensively studied [, , ]. In this section, we

present a tableaux calculus for the predicative fragment of L, i. e., for

Strong Kleene Logic roughly following []. It is designed to be processed

by the generic proof procedures of Isabelle and thus leads directly to an

implementation in -.

Tableau proofs may be viewed as trees where the nodes are sets of

formulae. Tableau rules extend the leaves of a tree by a new subtree,

i. e., by adding leaves below, where the latter case is called “branching”

and is used for case splits. Classical tableau rules capture the full logical

content of the expanded connective. Backtracking from a rule application

is never necessary. �e goal of the process is to construct trees in a

deterministic manner, where the leaves can eventually all be detected as

“closed,” i. e., a logical contradiction is detected. �is last step, however,

may be combined with the non-deterministic search for a substitution

making this contradiction possible. Table . presents the core of ,

which we will discuss in the sequel in more detail.

      . �e

particular format of a rule as a Horn-clause is the reason for the well-
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τ ⊧ ∂(A)

[τ ⊧ A]⋅⋅⋅
R

[τ ⊧ ¬A]⋅⋅⋅
R

R

[¬(τ ⊧ ¬A)]⋅⋅⋅
τ ⊧ A

τ ⊧ ∂(A)

[¬(τ ⊧ ¬A)]⋅⋅⋅
τ ⊧ A τ ⊧ /∂ A

τ ⊧ ¬ ∂(A)

[¬(τ ⊧ ¬A)]⋅⋅⋅
τ ⊧ A τ ⊧ ¬ ∂(A)

τ ⊧ /∂ A

(.)

(.)

(a) Definedness Introduction and Elimination

τ ⊧ ¬(¬A)

τ ⊧ A

τ ⊧ A

τ ⊧ ¬(¬A)
τ ⊧ /∂(¬A)

τ ⊧ /∂ A

τ ⊧ /∂ A

τ ⊧ /∂(¬A)
(.)

(b) Negation

τ ⊧ A∧ B

[τ ⊧ A, τ ⊧ B]⋅⋅⋅
R

R

τ ⊧ ¬(A∧ B)

[τ ⊧ ¬A]⋅⋅⋅
R

[τ ⊧ ¬B]⋅⋅⋅
R

R

[τ ⊧ A, τ ⊧ B]⋅⋅⋅
R τ ⊧ A τ ⊧ B

τ ⊧ (A∧ B)

[¬(τ ⊧ ¬B)]⋅⋅⋅
τ ⊧ ¬A

τ ⊧ ¬(A∧ B)

[τ ⊧ ∂(B))]⋅⋅⋅
τ ⊧ ¬ ∂(A)

[τ ⊧ ∂(A)]⋅⋅⋅
τ ⊧ A

[τ ⊧ ∂(B)]⋅⋅⋅
τ ⊧ B

τ ⊧ /∂(A∧ B)

τ ⊧ /∂(A∧ B)

[τ ⊧ /∂ A, τ ⊧ /∂ B]⋅⋅⋅
R

[τ ⊧ /∂ A, τ ⊧ B]⋅⋅⋅
R

[τ ⊧ A, τ ⊧ /∂ B]⋅⋅⋅
R

R

(.)

(.)

(.)

(.)

(c) Conjunction Introduction and Elimination

τ ⊧ A τ ⊧ ¬A

R

τ ⊧ A τ ⊧ /∂ A

R

τ ⊧ ¬A τ ⊧ /∂ A

R

τ ⊧ /∂ ∂(A)

R

τ ⊧ A

τ ⊧ ∂(A)

τ ⊧ ¬A

τ ⊧ ∂(A)

(.)

(.)

(d) Contradictions

Table .:�e core of .
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known symmetry of rule-sets (similar to sequent calculi): for each logical

connective, two corresponding rules, called introduction and elimination

rules, have to be introduced; the former act on conclusions of a goal, the

latter on one of the assumptions.

As already mentioned, the Tableaux Method requires decomposition

rules that capture the full logical content of the expanded connective,

i. e., no information is lost. It is instructive to consider the example of

the disjunction introduction rule (Equation .) and the disjunction

elimination rule (Equation .) for , which are usually presented in

the textbooks as:

[¬B]⋅⋅⋅
A

(Disjunction Introduction)
A∨ B

(.)

A∨ B

[A]⋅⋅⋅
R

[B]⋅⋅⋅
R
(Disjunction Elimination)

R

(.)

Using the introduction rule (Equation .), a proof state (which has

again the format of a Horn-clause)

X

Y ∨ Z
(.)

can be transformed into

X ¬Z
.

Y
(.)

�is proof state transformation does not lose the information that the goal

is satisfiable if Z holds (this leads to a contradiction in the assumption

list). Moreover, a proof state of the form

X ∨ Y A

Z
(.)

can be transformed via the elimination rule (Equation .) into the two

subgoals

X A

Z
and

Y A
.

Z
(.)

Overall, this proof state transformation performs a case distinction.

Keeping these remarks in mind, the presentation of  in Table . is

pretty much straight-forward: first, we present groups of tableaux rules
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for definedness (∂ _), negation (¬_) and conjunction (_ ∧ _), and we
conclude with a group of rules for closing clauses. Moreover, negative

judgments can be replaced by -disjunctions as a consequence of the

following fundamental property for judgments, namely that judgment is

either valid or invalid or undefined (see Section ..).

Four (see Table .a) of the six cases for definedness rules are straight-

forward, while the latter two constitute contradictions and are presented

as closure rules later (see Table .d).

Now, we consider the case for the negation (¬_) in Table .b. �ese
rules are a consequence of ¬(¬(X)) = X and eliminate these situations at

the root of a formula. �ese elimination rules have a particularly simple

form and can therefore be used directly as destruction rules, i. e., a ruledestruction rules

that destroy a premise, that are used to weaken assumptions in a Horn-

clause directly. �e last two rules of the group are notational equivalences

resulting from our notational conventions for validity (⊧ _); they are thus
not explicitly inserted into the rule set.

Finally, we describe the rules for closing a goal. �e underlying 

system already includes three rules that resolve satisfiable Horn-clauses,

namely the () not-elimination, classical contradiction, not-introduc-

tion rule and the assumption rule (from le� to right):

¬P P

R

[¬P]⋅⋅⋅
false

P

[P]⋅⋅⋅
false

¬P

P

P

(.)

Besides these -logical rules for closing a goal, there are also L-logical

rules motivated by the satisfiability of a Horn-clause (Table .d).

�is gives rise to a useful format of a proof state in ; it is a Horn-

clause of one of the two forms:

H . . .H i ,¬(H i+) . . .¬(Hm)

Hm+

H . . .H i ,¬(H i+) . . .¬(Hm)

¬(Hm+)
(.)

where H i has the form τ ⊧C i A i . Standard proof states in  can be

converted automatically in proof states of this form via one of the bridge-

theorems (Equation .a, Equation .b, and Equation .c on page ).

�e elimination and introduction rules shown above reduce or split proof

steps of this form in logically equivalent steps to new ones. Eventually,

the process results in a sequence of Horn-clauses with labeled literals.

 . In the following, we discuss an extension

of the propositional L fragment to a language with bounded quantifiers

introduced for collections. For brevity, we will concentrate on the quanti-

fiers on Setτ .





. 

⋀ x .

[τ ⊧ P(?x)]⋅⋅⋅
τ ⊧ P(x)

τ ⊧ ∀ x ∈ S . P(x)

[τ ⊧ ∂ S]⋅⋅⋅
τ ⊧ /∂ P(?x)

τ ⊧ /∂∀ x ∈ S . P(x)

τ ⊧ ∀ x ∈ S . P(x)

[τ ⊧?x ∈ S]⋅⋅⋅
R

[τ ⊧ ¬?x ∈ S]⋅⋅⋅
R

R

τ ⊧ /∂∀ x ∈ S . P(x)

[τ ⊧ /∂ S]⋅⋅⋅
R

[τ ⊧?x ∈ S , τ ⊧ /∂ P(?x)]⋅⋅⋅
R

R

τ ⊧?x ∈ S τ ⊧ ¬ P(?x)

τ ⊧ ¬∀ x ∈ S . P(x)

τ ⊧ ¬∀ x ∈ S . P(x) ⋀ x .

[τ ⊧ x ∈ S , τ ⊧ P(x)]⋅⋅⋅
R

R

(.)

(.)

(.)

(.)

(.)

(a) Skolem

∂(X) = t⇒ ∀ x ∈ X . t = t

∂(X) = t⇒ ∀ x ∈ X . f = f

∀ x ∈ X . P(x) ∧ Q(x) = ∀ x ∈ X . P(x)
∧ ∀ x ∈ X . Q(x)

(.)

(.)

(.)

(b) Distributivity

cp(P) ⋀ x . cp(P′x)

cp(λ X . ∀ (P X) (λ x . (P′ x X)))
(.)

(c) Context Passing for Quantifiers

Table .: Extensions of : quantifiers.
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First, we present some universal equalities of the universal quantifiers,

which also satisfy the usual context passing rules (Table .c). With respect

to strictness rules, the universal quantifier (and its dual the existential

quantifier) follows the usual scheme:

∀ x ∈ �. P x = � , (.)

∃ x ∈ �. P x = � , (.)

∀� ∈ X . P = � , and (.)

∃� ∈ X . P = � . (.)

�e distributivities of Strong Kleene Logic can be extended to the quan-

tifiers, see Table .b. If x ∈ S is valid, we know that x must be defined.
�is is a characteristic property of smashed sets that yields the following

property:

τ ⊧ x ∈ S

τ ⊧ ∂ x
(.)

We present the rules for the bounded universal quantifier. �ese rules

are simply variations of standard quantifier rules in , but subsume

also definedness-reasoning. We start with the usual introduction and

elimination rules for valid judgments. We use meta-quantifier and meta-

variables to represent Skolem terms and terms for witnesses; respectively

(constructed during the proof at need via unification and resolution), see

Table .a.

�e following introduction and elimination rules capture the essence

for undefined quantifiers: if the set S is defined (implying that each ele-

ment in it is defined), then theremust be an instance of the quantifier body

P that is undefined. On the other hand, from an undefined quantifier we

have a case split for undefined S or for witnesses of undefined P(?x): �e
rules for the existential quantifiers follow easily from the definition and

rules above and are omitted here.

. 

In this chapter, we presented derived calculi, i. e., all presented rules are

proven, for the object-oriented constraint languageL. Deriving the calculi

guarantees the logical soundness, with respect to the core logic , of

all presented calculi. As we focused on the specific configuration of our

framework described in Chapter  we will discuss briefly, howL and 

relate to each other. A second point we discuss briefly in this section is

the aspect of automated reasoning, based on the presented calculi, within

-.
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.. Calculi for 

�e  standard does in general not provide any information how rea-

soning over  specifications should be carried out, and in particular, it

does not present any calculi. But already the semantics presented in the

standard [, Appendix A] makes heavy use of the notion of validity. In

particular, it already introduces the notion of local validity. For example,

the validity for postconditions is explained as follows:

(σpre , σpost) ⊧ Q iff I⟦Q⟧(σpre , σpost) = true

( Specification [], page A.)

To avoid confusionwith our notion of context τ, we changed the definition

of the standard to use σ for referring to the pre-state and post-state, which

the standard denotes in this section by τpre and τpost. Moreover, in this

definition, the variable assignment β, as occurring in the  standard

is hidden syntactically. Denoting β explicitly, results in the following

definition of local validity:

(σpre , σpost) ⊧ Q if and only if I⟦Q⟧((σpre , β), (σpost , β)) = true
(.)

for all variable assignments β. As we use a shallow embedding technique

into a typed domain, the variable assignment is superfluous. Moreover,

we abbreviate the state pair (σpre , σpost)with the context τ. �erefore, our
notion of local validity, introduced in Section .. is a generalization of

the notion of the standard. �us, the calculi we presented in this chapter

are directly applicable to / specifications.

.. Towards Automated Deduction

At the moment, - provides only proof procedures for substitution

that are specific to L, respectively . In fact, these proof procedures

are the counterpart of substitution tactics Isabelle [] provides for .

�ese substitution tactics forL serve as an abstract interface to the various

rules that express local congruences, strict and strong equalities and

congruences hidden in local judgments as pointed out in Section ...

For the moment, this tactic setup allows for a step-by-step reasoning

using the rules of the logic and -rules (including computational rules)

in the Isabelle simplifier. Provided that sufficient information on the

definedness of free variables is available in a proof state, this enables a

conversion to  formulae with the rules discussed in Section .. pos-

sible. A converted formula can be treated by the standard Isabelle proof

procedures. �is covers a certain extent of logical reasoning automatically.
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However, the situation is clearly not yet satisfactory for larger, appli-

cation oriented projects involving formal proofs. Here is a list of the

most painful shortcomings when comparing it with proofs in “pure” Is-

abelle/:

• �e library on datatypes and on datatype-oriented rules is far from

being sufficiently developed.

• An arithmetic decision procedure is missing.

• All rules of the -format are not usable by the simplifier. Since the

complete core calculus and many datatype-oriented rules are in

this format, the proof engineer is limited to elementary proof tech-

niques excluding the simplifier whenever these rules are involved

in a proof.

• Rules of the -format are also excluded from the classical reasoner.

• Our systems lacks a combined automatic tactic integrating all

these procedures. Such an integrated tactic would be applicable as

automatic procedures in many situations.

Partly, the situation is comparable to  ten years ago—and a fair

comparison to similar logical languages has to take into account that the

development of  libraries and proof procedures needed this time.

For , the development of proof procedures and, more critically, the

technical support of formal methods based on  is still at the beginning.

�e latter will have to cope with path-expressions, modifies-only-clauses,

and refinement-like situations.

In the following, we will summarize our ideas about potential future

tactics to reason over  automatically.

With respect to arithmetic, besides a step-by-step reasoning, only the

following paths to use automated procedures seem to be viable: defined

arithmetic terms have to be converted (by unfolding semantic combi-

nators and blowing away the cascades of definedness-conditions) into

pure  arithmetic formulae and reuse the existing procedure (the adap-

tion approach). Alternatively, the arithmetic tactic of Isabelle must be

rewritten to cope with definedness issues (the re-engineering approach).

With respect to rewriting, we see (besides the not very attractive re-

engineering approach) the following techniques to adapt to existing Is-

abelle technology:

Proof object transformation. Since one can instantiate the simplifier with

new equalities obeying the Leibniz rule, one can run it in an unsafe-

modewithout checking the side conditions for context passingness.

Proof objects generated in an unsafe mode could be extended to
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full proof objects where the missing parts are reconstructed. It

remains to be explored how costly this approach would be (in

development time as well as runtime; previous experience []

suggests that at least the runtime costs are insignificant).

Making context-passing explicit. One can transform the proof states and

rules in a format where context-passingness is encoded directly

at all positions in a term. As a consequence, the simplifier can

process the transformed rules directly. Additionally to the conver-

sion tactics that perform this term-transformation in forward and

backward proof, the major changes for this technique boil down

to the management of transformed and re-transformed rule-sets

used by the simplifier.

In the next chapter, we will present a brief overview of the -,

an instance of our framework providing an interactive theorem prover

for /, system architecture. Further, we report on case studies we

carried out using -.
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APPLICATIONS

In this chapter, we show the application of the framework and its calculi

we presented in the previous chapters. In Section . we give an overview

of the system architecture of the - system and in Section . we

report on case studies that we carried out using -.

.  - 

In this section, we present the - system. - is an interactive -

theorem prover for / specifications that we developed on the

basis of our framework, i. e., it is developed as a conservative, shallow

embedding into Isabelle/. �is construction ensures the consistency

of our logical framework and also the correctness with respect to the

semantics presented in the previous chapters.

.. An Architectural Overview

- is integrated into a framework [] supporting a formal, model-

driven so�ware development process. Technically, - is based on a

repository for / models, called susml, and on Isabelle/; both

are written in Standard Meta Language (). In particular, -

is based on the  interface of Isabelle/ and the / model

repository. As front-end, - provides a special instance of Proof

General [] and a documentation generation. Figure . on the next page

gives an overview over the main system components of -. In this

section, we briefly describe the main components of the - system,

namely:

• �e underlying data repository, called susml, which provides the susml

 import facilities.

• �e datatype package, or encoder, which encodes /models datatype package

into -, i. e., from a user’s perspective it provides the 

import facilities.
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 (Standard )

susml Isabelle/

Datatype Package - Library �eory Morpher

- User Interface (based on Proof General)

HOL-OCL

/
Specification

import

Proof Document
(�eory Files)

import

Figure .: Overview of the - architecture. Specifications written in / are imported

into the model repository susml, written in . �e theory morpher for li�ing proven

lemmas from the  to the  level is developed on top of Isabelle/ and is in

itself the base tool for developing the - library. �e datatype package encodes

the / models and proves already several properties over the specification. �e

formal analysis of the specification is carried out using a user interface based on Proof

General.
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• �e theory morpher which derives many of the core  theorems theory morpher

by “li�ing” them based on the corresponding theorems already

proven for .

• �e - library which provides the core theorems needed for - library

verification and also a formal semantics for .

.. �eModel Repository: susml

�e model repository susml [] provides an interface to models ex-

pressed using the  core (mainly class diagrams and statemachines)

and  expressions. For thesemodels, susml provides an importmecha-

nismbased on the Metadata Interchange () [].  is a standard-

ized, ExtensibleMarkup Language ()-based file format for exchanging

 models. Most Computer Aided So�ware Engineering () tools

for  can export models in , which then can be imported into

-.

For class models, susml resembles the tree structure given by the con-

tainment hierarchy. For example, a class contains attributes, operations,

or statemachines.  expressions naturally translate into an abstract 

datatype in . �is abstract datatype is modeled closely following the

standard  .metamodel. In addition to these datatype definitions, the

repository structure defines a couple of normalization functions, for ex-

ample for converting association ends into attributes with corresponding

type, together with an invariant expressing the cardinality constraint.

.. �e Encoder: An Object-oriented Datatype Package

Encoding object-oriented data structures in , as described in Sec-

tion ., is a tedious and error-prone activity if done manually. �us it

should be supported by an automated datatype package. In the theorem

prover community, a datatype package [] is a module that allows one

to introduce new datatypes and automatically derive certain properties

over them.

During the encoding, our datatype packages extends the given theory

by a --representation of the given / model. �is is done

in an extensible way, i. e., classes can be added later on to an existing

theory preserving all proven properties. In fact, any import represents

such an extension, even the very first one which extends the -

library. �e obvious tasks of the datatype package are:

. declare  types for the classifiers of the model,

. encode the core data model and the operations defined on it into

, and


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. encode the  specification (including invariants and operation

specifications) and combine it with the core data model.

Overall, the datatype package encodes conservatively the user supplied

model following the schema presented in Section .. Among others,

this includes the definition of type and kind sets or the operation speci-

fications. Moreover, the datatype package automatically proves several

properties over the encoded model. In fact, the most important task is

probably not that obvious: the package has to generate formal proofs that

the generated encoding of object-structures is a faithful representation of

object-orientation. �is strategy, i. e., stating entirely conservative defini-

tions and formally proving the datatype properties for them, ensures two

very important properties:

. our encoding fulfills the required properties (see Section ..),

otherwise the proofs would fail, and

. doing all definitions conservatively together with proving all prop-

erties ensures the consistency of our model (provided that  is

consistent and Isabelle/ is a correct implementation).

.. �e�eory Morpher

�e theory morpher provides automatic support for li�ing theorems from

the  level to the - level. �is is based on our organization

of the library, i. e., as a layered theory morphism. �e theory morpher,

or li�er, is a tactic-based program that li�s meta-level theorems to their

object-level counterparts and meta-level prover configurations to object-

level ones.

Such an automatic theory morpher is possible because we define our

shallow embedding along a global semantic transformation from one lan-

guage level to another. We generalized the underlying conceptual notions

into a generic framework that shows that the overall technique is applica-

ble in a wide range of embeddings in type systems; embedding-specific

dependencies arise only from the specifications of semantic combinator

(the layers), and technology specific dependencies from the used tactic

language.

.. �e Library

An important part of - is a collection of Isabelle theory files de-

scribing the formalization of the framework presented in Chapter  and

Chapter . �ese theories, providing over   / specific defini-

tions and theorems, cover the core of /; the properties of basic

types such as Integer, Real, and String as well as collection types such


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as Bag, Sequence and Set, and also the common superclass OclAny. Be-

sides the model-specific part covered by the datatype package described

in Section .., the library with its body of derived rules represents the

generic part of data-structure related reasoning in . Moreover, these

theories also contain new proof tactics written in .

.  

In this section, we report briefly on case studies we carried out using

-. In particular, we report on our experiences in using a conserva-

tive import mechanism based on a datatype package and show how basic

properties of a user supplied specification can be proven.

.. Encoding User Specifications

Among others, we used the following specifications as case studies for

-:

Invoice: �is is a model of a simple warehouse. It is a well-known case

study for comparing specification formalisms, e. g., Frappier and

Habrias [] give an overview of several formalizations of this case

study using different formalisms. �e complete specification of

this model is presented in Appendix B.

eBank: �ismodel is an extension of the model presented in Section ..,

e. g., customers can also trade currencies and own a checkbook.

Company: �is is a simple company model which is used in the 

standard [, Chapter ] for introducing  informally.

Royals and Loyals: �is is a model of a bonus card system for customers.

�is model is used by Warmer and Kleppe [] for introducing

.

All these models are imported into - using our conservative

datatype-package (see Section ..). �is requires proofs of several prop-

erties which can fail for inconsistent models. Already for the smallest

model, Invoice, over  theorems are proven fully automatically by

our datatype package during import of that model. Among others, the

following properties are proven during import:

• For each class invariant, the co-recursive construction described

in Section .. is performed. �is also includes proofs that the

invariant representation used in this construction is monotone. If

an invariant is supplied by the user that is not monotone, the proof

will fail and the model will therefore be rejected during import.
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Invoice eBank Company Royals and Loyals

number of classes    

number of attributes    

number of associations    

number of operations    

number of generalizations    

size of  specification (lines)    

generated theorems    

time needed for import (in seconds)    

Table .: Importing different / specifications into -. �e number of generated

theorems depends on the size of the input model, i. e., of the number of classes, attributes,

associations, operations, generalizations, and  constraints; the time for encoding the

models depends on the number of theorems generated and also on their complexity.

• For each class, it is proven that the objects can be cast along the

generalization (subtyping) hierarchy, see Section .. for details.

• For each nd level constant (see Section .) defined during import,

the package tries to prove that the constant is strict and context-

passing. �e model can still be imported if these proofs fail.

All these proofs use the calculi presented in Section . in combination

with both specialized tactics we developed ourselves and standard Isabelle

tactics. Moreover, the conservative definitions for overloaded operations

are generated. �is includes user-defined operations as well as  opera-

tions like type-casts such as self->asType(OclAny), which also require

several proofs done automatically by the  datatype package of Isabelle.

Table . describes the size of each of the above mentioned models

together with the number of generated theorems and the time needed

for importing them into -. �e number of generated theorems

depends linearly on the number of classes, attributes, associations, op-

erations and  constraints. For generalizations, a quadratic number

(with respect to the number of classes in the model) of casting definitions

have to be generated and also a quadratic number of theorems have to

be proven. �e time for encoding the models depends on the number of

theorems generated and also on the complexity on their complexity.

Notably, even the Royals and Loyals model can be imported in ca. 

minutes, even thoughmore than  theorems are proven during import.

We owe these quite reasonable times for model import mainly to our

extensible universe construction, as described in Section .. Recall that

importing a user-supplied model already represents such an extension

of the initial model, i. e., the - library. Without an extensible

universe construction we would have to replay the proof scripts for large
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Warehouse

getFirstInvoicable():Order

Order

id:Integer
quantity:Integer
state:String

Order(prd:Product, qty:Integer):Order
cancel():Boolean
invoice():Boolean

Product

id:Integer
stock:Integer

Product():Product
supply(qty:Integer):Boolean
release(qty:Integer):Boolean

products0..*

warehouse1

orders0..*

product1

Figure .:�e Invoice case study models a simple system for invoicing orders; thus we need to

model at least products, orders, and a warehouse managing the orders and products.

parts of the library. �is is in our opinion of extra-ordinary value for

practical work.

.. Proving Properties of / Models

In the following, we use the Invoice model for showing some examples of

how - can be used for formally proving properties of a /

model. �ese examples show that - can be used for analyzing

models in general and in particular that it is a good starting point for the

development for further machine-supported methodologies, like object-

oriented refinement notions.

�e main purpose of the Invoice system is to invoice orders, i. e., for

a minimal system we need to model products, orders, and a warehouse.

Figure . presents the  datamodel of the Invoice system and Table .

presents an excerpt of the  specification. For the complete informal

and formal specification, see Appendix B.

As an example, we require that our specification fulfills at least the

following requirements:

. �e postcondition of a constructor should imply the class invariant,

i. e., the constructor creates a valid class fulfilling its invariant. �us







context Product

inv isNat: self.stock >= 0

context Product::Product():Product

pre : true

post: self.stock = 0 and self.oclIsNew()

context Product::supply(qty:Integer):Boolean

pre: qty > 0

post: self.stock = self@pre.stock + qty

context Product::release(qty:Integer):Boolean

pre: self.stock >= qty and qty > 0

post: self.stock = self@pre.stock - qty

Table .:  specification of the class Product. We mainly require, that

the stock is non-negative and describe the basic behavior of

operations for supplying and releasing products.

we prove for each constructor c (with postcondition postc) of class

C (with invariant invC) the following rule:

τ ⊧ postC self
.

τ ⊧ invC self
(.)

. �e class invariant and the precondition of an operation should

be satisfiable in the same state, i. e., there exists at least one system

state in which the operation can be called. �is can be formal-

ized for a class C (with invariant invC) and an operation m (with

precondition prem) as follows:

.
∃ a ⋯ an self τ. (τ ⊧ invC self ) ∧ (τ ⊧ prem self a ⋯ an)

(.)

A�er loading the model into -, the first requirement for the

class Product can be formulated as follows:

lemma "τ ⊧ Product_Boolean. post self result

Ô⇒

Product. inv self "

Where Product_Boolean. post is a logical constant describing the postcon-

dition of the constructor Product() and Product. inv is a logical constant

representing the invariant of the class Product. As a first step of our proof,

we unfold these constants using the Isabelle simplifier:


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apply(simp add: Product_post Product_inv)

resulting in a proof state representing the following proof obligation

(using the  notation):

τ ⊧ self . stock ≐ 0 and self .oclIsNew()

Ô⇒

τ ⊧ 0<= self . stock

Applying the safe tactic,

apply(safe)

which is configured to use  (see Section ..) resolves the goal nearly.

Note, except _ and_, all operations are strict. Moreover, _ and_ is only

valid, if and only if, both arguments are true. �erefore, the assumption of

this proof state already ensures the definedness of both self and self . stock.

�e remaining proof state looks as follows:

⟦τ ⊧ self . stock ≐ 0; τ ⊧ self .oclIsNew()⟧

Ô⇒

τ ⊧ 0<= 0

�is obligation is easily proven by our  simplifier:

apply(ocl_simp)

done

Summarizing, we have formally proven that the postcondition of the

constructor Product::Product():Product guarantees the invariant of

the class Product.

As a second example, we prove that the conjunction of the precondi-

tion of the operation Product::release(qty:Integer):Boolean and

the invariant of class Product is satisfiable, i. e., there is a system state in

which the operation release(qty:Integer):Boolean can be called. We

formalize this requirement as follows:

lemma

"∃ qty self τ. (τ ⊧ Product. inv self )

∧(τ ⊧ release_Integer_Boolean. pre self qty)"

A�er unfolding the definitions using the Isabelle simplifier

apply(simp add: supply_pre Product_inv)

we get the following proof state:

∃qty self τ τ′ . (τ, τ′) ⊧ 0<= self . stock

∧(τ, τ′) ⊧ qty ≤ self . stock and 0< qty
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Using the existential introduction rule (exI) we construct witnesses for a

satisfying state. In particular, we set the quantity qty to 1 and construct

an instance of the class Product with no extension and the attributes id

and stock store the value 1.

apply(rule_tac x="1" in exI)

apply(rule_tac x="λ(a, b). (⌞((OclAny_key. OclAny,

oid ∶∶ oid), ⌞noext(Product_key. Product, ⌞⌟, ⌞⌟)⌟)⌟)"

in exI)

apply(rule exI)+

We can prove the resulting proof obligation using the following script:

apply(rule safe)

apply(simp_all add: Product.stock_def Product.stock_def

ss_li�ing localValidsem

Zero_ocl_int_def One_ocl_int_def OclStrongEq_def

OclLess_def OclLe_def )

done

Summarizing, we have formally proven that there exists at least one state

that allows for the execution of the operation release(qty:Integer) of

class Product.

. 

In this chapter, we presented the system architecture of - and re-

ported on some case studies. On the technical side, the most distinguish-

ing feature of - is its use of Isabelle/ as a generic framework

for tool development, instead of using it as a back-end tool only. On the

theoretical side, our tool is based on a conservative shallow embedding.

Using a generic interactive theorem prover as a framework for building

new tools has several advantages: if done conservatively, the consistency

of the underlying semantics can be guaranteed and the correctness with

respect to this semantics is guaranteed by construction. Moreover, be-

sides the obvious benefits like the reuse of rewriting and simplification

algorithms we also get additional benefits like the reuse of user interfaces

or the generation of proof documents. Overall, this shows the usability of

our approach for building tools based on a machine-checked semantics.

Moreover, our experience shows that an extensible object store guar-

antees reasonable times for importing models. Already the first import

of a model extends the existing base library which in our approach can

be stored as a library of pre-compiled proof objects. �ere is no need for

the time consuming task of replaying proof scripts for the base library

while importing a user-defined model. Of course, this also allows for
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the incremental loading of large models, which helps in analyzing large

specifications.

However, the formal analysis - requires a fair amount of ex-

pertise in interactive theorem proving in general and Isabelle/ in

particular. �us, future extensions of the system should not only improve

the degree of automation of the system but also provide support spe-

cialized support for analysis methodologies. For example, the presented

consistency analysis could be supported by the fully automated generation

of proof obligations and specialized tactics. Moreover, instead of describ-

ing a witnesses, i. e., a satisfying system state or scenario in a textual form,

the corresponding object-diagram could also be part of the  model.

Extending our datatype-package with support for object diagrams would

then allow for proving simple consistency proof obligations without user

intervention. We will discuss this and other possible extension in more

detail in Section ..







RELATED WORK

In the previous chapters, we introduced a formal semantics for object-

oriented data models and object-oriented constraint languages over these

data models. We developed calculi for this for our framework and showed

how this framework can be used to give a formal, machine-checked se-

mantics for . In this chapter, we will discuss related work which is

as manifold as the list of topics discussed in this thesis: in Section . we

discuss formal semantics for object-oriented systems in general. Further,

we discuss the formal tool support for  (Section .), formal seman-

tics for  (Section .), proof support for three-valued logics, and the

embedding of object-oriented languages into theorem provers.

.   - 

Embedding languages into theorem provers has a long history [, ].

�e technique was originally developed in the context of embedding

hardware description languages (e. g., Boulton et al. [] compare the

embedding of three different hardware description languages). Nowadays,

logical embeddings into theorem provers are a widely used technique for

both reasoning about the embedded language itself and reasoning about

specifications written in the object-language.

.. Deep Embeddings of Object-oriented Languages

�ere is various work based on a deep embedding of a Java-like language.

Among these works are paper-and-pencil formalizations like [, ], but

also many machine-checked semantics like [, , , , ]. In a deep

embedding of a language semantics, syntax and types are represented by

free datatypes. As a consequence, derived calculi inherit a heavy syntactic

bias in form of side-conditions over binding and typing issues. �is is

unavoidable if one is interested in meta-theoretic properties such as type-

safety, which all of the above mentioned works are aiming at. However,

when reasoning about applications and not about language properties,

this advantage turns into a major obstacle for efficient deduction. �us,
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while various proofs for type-safety [, , , ], soundness of Hoare

calculi [], and even soundness of verification condition generators [,

] have been provided, none of the mentioned deep embeddings has

been used for substantial proof work in applications.

.. Shallow Embeddings of Object-oriented Languages

Using a shallow embedding for encoding an object-oriented language

is still challenging. �ere are several encodings of classes as records,

e. g., Aredo [] presents such an encoding for  []. But this simple

interpretation of classes as records does not provide support of object-

oriented concepts like subtyping or inheritance.

Although there are several works on object-oriented semantics based

on deep embeddings, there are only a few for shallow embeddings: Smith

et al. [] (a direct follow-up of Santen []) and Yatake et al. [].

Moreover, there are shallow embeddings of a Java-like memory model by

Jacobs and Poll [] and Meyer and Poetzsch-He er [].

�e approach of Smith et al. [], however, puts emphasis on a univer-

sal type for the method table of a class. �is results in local universes for

input and output types of methods and the need for reasoning about class

isomorphisms; as the authors admit, this “creates considerable formal

overhead.” For example, subtyping on objectsmust be expressed implicitly

via refinement.

Yatake et al. [] developed a conservative, shallow embedding of class

models into the  system []. �ey also provide a tool that generates

applications specific, i. e., depending on the class model, theories using a

non-extensible encoding schema. Similar to our construction, the store

model presented by Yatake et al. [] provides cast operations directly

on the object store. Also similar properties about the encoding of class

models are proven during the import of a class model.

�e underlying encoding used by the  tool [] and Jive []

shares same basic ideas with respect to the object model. However, the

overall construction is based on a closed-world assumption and thus not

extensible. Although several papers, e. g., [], model class invariants as

co-inductive definitions, none of these ideas has been implemented in a

tool.

With respect to extensibility of data-structures, the idea of using para-

metric polymorphism is well-known in  research communities; for

example, extensible records and their application for some form of subtyp-

ing has been described in  []. Since only one extension possibility

is provided by the presented encoding, this results in a restricted form of

inheritance; namely, type conversions are only possible if a class has at

most one direct subclass. In our notion, the work of Naraschewski and

Wenzel [] provides only α-extensions whereas our encoding generalizes
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this by providing α-extensions and β-extensions.

�us, while the basic concepts in our approach of representing subtyp-

ing by the subsumption relation on polymorphic types are not new [,

], we extended these works by including concepts such as undefined-

ness, mutual recursion between object instances, dynamic types, recursive

method invocation and extensible class hierarchies. In particular, the ex-

tensionality of our constructions allows for an efficient implementation

of an object-oriented datatype package.

.  

All approaches presented in Section .. have two details in common:

they are not extensible and only supported by tools generating theory

files (using the concrete syntax of the underlying theorem prover) which

are imported into the theorem prover.

In contrast, our extensible encoding of object-oriented data structures

allows for implementing a datatype package. Datatype packages have

been considered mostly in the context of  or functional programming

languages. Going back to ideas of Milner, systems like [, ] build over a

S-expression like termuniverse (co)-inductive sets which are abstracted to

(freely generated) datatypes. �e inductive package presented by Paulson

[] also uses subsets of the  set universe i. Overall, we extend this

work into a generic datatype package for object-oriented data-structures.

�e underlying extensible encoding allows even the incremental import

of object-oriented models.

Huffman et al. [] suggested a universe construction based on Scott’s

reflexive domains. �is work does not present a datatype package. It is

merely a library construction geared towards functional programming

languages like Haskell and not towards object-oriented programming

languages.

.    - 

�e construction of specialized decision and semi-decision procedures

for many-valued logics such as Strong Kleene Logic has been investigated

before. Most of this work is based on semantic tableaux methods. Ex-

amples for such works are Kerber and Kohlhase [] and Beckert et al.

[]. �e development of the tableaux-based proof-procedure (for two-

valued logics) in Isabelle has been deeply influenced by the leanTAP []
algorithm. Interestingly, leanTAP itself is just the “bare bones” version of
its ancestor TAP [] which was developed especially for Strong Kleene

Logic. �us, in some sense our work re-introduces three-valued reason-

ing into an implementation of leanTAP. However, one of our design goals


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is to provide suitably abstract calculi for Strong Kleene Logic that can

be processed in a generic prover engine, even one that is optimized for

two-valued reasoning.

.   

�e widely and successful use of  in industry attracted many re-

searchers to look at  in general and  in particular. �e quite infor-

mal nature of earlier versions of the  standard [] stimulated a large

variety of research on . For example, there are various works [, –

, , , , , , , ] that either propose a formal semantics of

, or discuss semantic problems thereof. Most of them are based on

the informal description given in the  .x standard. Most notable of

these earlier works is the work of Richters [] which also builds the

basis for the formal semantics given in recent version of the  standard,

i. e., [, Appendix A].

Several of these works simplify the semantics of  drastically: even

though the very first version  standard [] already introduces a Strong

Kleene Logic, several approaches, e. g., [, ] base their semantics on

a classical two-valued one. �ere are mainly two motivations of using a

two-valued logic: first, there are a variety of tools available for classical

logics that can be reused and second, Hähnle [] argues that at least for

specifying structured so�ware systems approaches based on a two-valued

logic based on the underspecification of total functions are superior. �e

latter argumentation motivated the use of a two-valued logic for the

KeY tool. �e underlying translation of the  syntax into a first-order

dynamic logic is described by Beckert et al. []. Motivated by the available

tools for two-valued logics, Kyas [] provides a direct translation of the

 syntax into  as defined by  system. Of course, a directmapping

can neither be sound nor complete with respect to a semantics based on

a Strong Kleene Logic.

Previous semantic definitions of  version ., i. e., [, Appendix A],

are based on mathematical notation in the style of naïve set theory, which

is in our view inadequate to cover subtle subjects of object-orientation.

In particular, we criticize the use of naïve set theory for introducing the

notions of type, state, and model. For example, types were explained by a

type interpretation function I(t) [, introduced in Definition A.] map-
ping to a (never described) universe of values and objects. �e expression

interpretation function I⟦E⟧ assumes that variables and key operator sym-
bols have been annotated with type expressions like in _ =t _. �erefore

typing is a prerequisite of the semantic construction of . I⟦E⟧ uses
these type annotations to project and inject into subsets of the universe de-

scribed by I(t) without proof or argument that these definitions actually
respect the typing. Also, the standard does not specify what correct typ-
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ings are (the semantic function is defined for arbitrary typings), whether

they are unique, and how to derive them. Using for our embedding a

typed semantic domain resolves this problems automatically.

Recently, there seems to be a trend to define the semantics of 

using  itself; either directly by using  and  by Marković and

Baar [] or indirectly by using sequence diagrams by Chiaradía and

Pons []. Whereas the authors of [] are aware of the circularity they

are introducing and argue that the use a specific semantics given by a

proprietary tool solves this problem, the authors of [] are not aware of

the problem. From our point of view, both approaches are not adequate

for defining a semantics.

.  

Since  was introduced, many tools supporting  in one way or

the other were developed. Toval et al. [] present a comparison of tools

supporting . �e tools they present in this comparison can be classified

into three categories: type-checker, runtime constraint checkers, and

execution environments that allow for the simulation and validation of

models. Examples for the latter category, which is most closely related to

the work presented in this thesis, are the  tool [] and  []:

• �e  Specification Environment () [] allows the anima-

tion of / specifications. A  specification contains a

textual description of a model using features found in  class

diagrams (classes, associations, etc.). Expressions written in 

are used to specify additional integrity constraints on the model.

A model can be animated to validate the specification against

non-formal requirements. System states (snapshots of a running

system) can be created and manipulated during an animation.

• �e Object Constraint Language Environment () [] is a

 tool with first-class support for . In particular, 

allows for the interactive evaluation of  expressions and thus

checking well-formedness rules of a  specification.

Another, in our view important, category of  tools are proof en-

vironments for ; besides the work presented in this thesis, there are

only two other proof environments supporting , namely the KeY []

tool and  []. Moreover, there are several proof environments for

 (e. g., Jive and ) and Spec# (e. g., Boogie), which we include in

the following discussion:

• �e KeY tool [, ] is an integrated formal specification and verifi-

cation environment for specifications consisting of Hoare-style an-

notations of Java programs. In contrast to -, the semantics
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used in the KeY tool is not compliant to  standard (nevertheless,

it supports  .x as concrete input syntax). In particular, the KeY

tool is based on a direct mapping of  syntax to a first-order

dynamic logic []. �e dynamic-logic used is two-valued, i. e.,

it does not support undefinedness within the logic. Moreover, it

does not attempt to build up the theory of its constraint language

by definitional axioms and thus has not formally investigated the

issue of consistency.

• �eObject Constraint LanguageVerification Platform () [,

] provides a formalization of  class diagrams, state charts

and  using  as provided by  []. �e tool directly

translates  formulae into  formulae using a direct mapping,

i. e., deliberately ignoring the Strong Kleene Logic of . Neither

is the underlying embedding of class diagrams extensible, nor

does the tool provide support for invariants, preconditions and

postconditions.  formulae are directlymapped to formulae

and operations to  functions.

• Boogie [, ] is a compile-time assertion checker for Spec#. We

classify Boogie as a pre-compilation tool, i. e., a Spec# program

is compiled into a standard imperative program which is used as

input of a verification condition generator. �e generated veri-

fication conditions are handled in an automatic theorem prover.

While this architecture provides powerful tools that can handle

large inputs, the theoretical foundation is problematic. For exam-

ple, the compilation itself is not verified, and it is not clear if the

generated conditions are sound. Moreover, the overall approach

depends on the degree of automation that can be achieved by the

underlying (automatic) theorem prover.

• �e Jive [] tool provides an environment for doing Hoare-style

verification of Java programs. �e underlying encoding of object

structures is based on a shallow embedding of the Java memory

model into Isabelle. �e overall construction is based on a

closed-world assumption and several properties, e. g., some aspects

of subtyping, are handled on the level of the Hoare-logic instead

of the object store. Moreover, due to the closed-world model, Jive

cannot provide an extensible data package, thus, for every analysis,

large portion of the core systems must be re-proven. �e same

criticism is also valid for the  tool [].

Table . shows a summary of this comparison. Notably, Boogie and

- are the only tools that are based on an extensible construction

of the underlying data-store. In our experience a key feature needed for
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providing an efficient and scalable implementation. - is the only

environment providing semantical invariants, including their support in

an object-oriented datatype package. Also, it is the only proof environ-

ment based on an  semantics conforming to the standard [], e. g.,

supporting a three-valued logic.

Most of these tools provide a wealth of additional features that are not

covered here. We deliberately restricted the comparison to themain topics

of this thesis: the theorem prover component and the underlying embed-

dings of class models and constraint languages. For example, we exclude

code-generation, code-verification, or proof-animation techniques that

are also provided by several of these environments from this comparison.
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CONCLUSION AND FUTURE WORK

In this chapter, we draw conclusions, summarize the contributions of this

thesis and give an outlook on future work.

. 

�is thesis shows that a shallow embedding of an object-oriented specifi-

cation language into  is possible and can serve several purposes: First,

it provides a consistent framework for examining language features. Sec-

ond, it can provide amachine-checked semantics for an industrial defined

specification language. �ird, it provides the basis for formal tools that, if

implemented conservatively on top of a theorem prover environment, are

guaranteed to be correct with respect to their formalization. And fourth,

it enables the formal analysis of object-oriented specifications.

A flexible formal framework for object-orientation can be used to

examine language features and discuss extensions of an existing language.

�is is not only useful during the development and standardization of

a specification language but also for tool implementers providing tools

for a subset or a semantic variation of a language. If a formal framework

for a specification language is based on a conservative embedding, the

consistency of all these variants can be guaranteed without the need of

additional proofs. Inconsistencies introduced by extending the language

are recognized immediately. In our view, this is an important prerequisite

for providing different semantical extensions in a consistent way. For

example, this also provides a formal understanding of the concept of

“semantic deviation points” as introduced in the  standard [].

A standard containing a machine-checked semantics cannot only guar-

antee interoperability between different tools on the syntactical level but

also on the semantical level. Especially the latter allows for the exchange of

specifications between different tools without changing the interpretation

of a specification. �ereby it does not matter if these tools are formal, like

theorem provers or model-checkers or semi-formal like code-generators;

there will always be a strong semantical link between the results of ap-
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plying different tools on the same input. Overall, this brings  to a

semantical level.

Embedding a specification language in a shallow and conservative way

into a theorem prover results directly in a proof environment for that

language. �us, such an embedding is both a machine-checked semantics

and the source code of an implementation. Overall, this method for

defining semantics and building tools guarantees the consistency of the

semantics and the correctness of the implementation.

Today formal methods are mainly used together with a so�ware de-

velopment process using a procedural programming language like C or

functional programming languages like Haskell. An interactive theo-

rem prover for object-oriented specifications enables the use of a formal

analysis together with an object-oriented development process and object-

oriented programming languages. For example, this also allows for the

use of object-oriented specification for certifying systems with respect to

 (“Formally Verified Design and Tested”) of the Common Criteria

international standard [].

.   

In this section, we summarize the most important contributions of this

thesis.

In Chapter , we introduced a framework for object-oriented specifica-

tions. �is framework is presented as a conservative, shallow embedding

into Isabelle/. It comprises an object store, i. e., a formalization of

an object-oriented data structures and an object-oriented constraint lan-

guage.

As a novel feature, our encoding of object-oriented data structures is

extensible. �is extensibility is a basis for the implementation of efficient

tools based on this encoding. Moreover, it allows for the incremental

formal analysis of specifications, i. e., the underlying data model can be

extended without the time-consuming task of replaying proof scripts. As

already the import of a user-supplied specification represents an extension

of the base library containing several thousands of theorems, the exten-

sionality is a cornerstone for building formal tools for object-oriented

systems.

Our object-oriented constraint language can cope with undefinedness,

e. g., introduced by path expressions that are not valid within a concrete

system state. Moreover, we discuss several “semantic deviation points”

for object-oriented constraint languages. �us we provide a framework

and a tool for a large variety of object-oriented constraint languages. �e

semantics of a concrete constraint language can be defined by selecting a

specific subset of these semantical building blocks.


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Both embeddings are structured using conservative theory morphisms

using semantic combinators. �is technique allows for the automatic

derivation of theorems based on already proven theorems over the meta-

logic possible. �us, structuring an embedding using semantic combina-

tors makes a conservative embedding technique for a real-world language

feasible.

�e modular way our semantics is organized allows for extending our

framework in various ways. For example, by introducing temporal aspects

or general recursion. �e former may be used to give a formal semantics

also to the other  diagrams such as state diagrams or sequence dia-

grams, while the latter may provide the basis for to the development of

powerful and executable libraries within our framework.

In Chapter , we presented a formal, machine-checked semantics of

 based on the framework we presented in Chapter . Our formal 

semantics is compliant to the  . standard []. In particular, we

provide, for the first time, formal proofs showing that a formal semantics

conforms to the normative requirements of the standard. Moreover, we

also show, that our semantics is a machine-checked formalization of

the informative semantics given in the  standard [, Appendix A].

�us, we provide the missing link between the formal semantics in the

informative part [, Appendix A] (based on the work of Richters [])

of the standard and the normative part of the standard.

In Chapter , we derived several calculi and proof techniques for our

framework, i. e., for an object-oriented constraint language. Since deriving

means that we proved all rules with an interactive theorem prover, we can

guarantee both the consistency of the semantics as well as the soundness

of the calculi. Moreover, we developed automatic proof support for the

derived calculi , , and . In particular, the calculi led to rewriting

and tableau-based decision procedures for certain fragments of our object-

oriented constraint language. �e development of - itself and also

the case studies we carried out indicates that for predominantly strict

language, there is sufficiently high potential for a efficient deduction

in general and in particular that tools for effective reasoning over such

language can be built on top of generic theorem prover environments

such as Isabelle. �us, we provided the basis for deduction-based 

tools.

In Chapter , we presented an architecture for building formal tools that

are based on a theorem prover like Isabelle/. Based on our framework,

we used this architecture for building -, an interactive theorem

prover for /. Moreover, we show the potential of using such

tools by carrying out some case studies. �us, we have provided a solid

basis for turning object-oriented modeling in / into a formal

method. Moreover, our case studies showed that an extensible universe

construction provides a reasonable fast import of user-defined models.
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.  

In this section, we discuss some directions of further work. In particu-

lar, we discuss theoretical and technical extension of our framework to

improve usability and to open new areas of research and application.

.. Extending our Formal Framework

  . While our existing proof procedures

for  are quite satisfactory, more work has to be done to increase effi-

ciency and to cover larger fragments of the language (e. g., automated pro-

cedures for arithmetic). Moreover, the integration of special techniques

for multi-valued logics, e. g., based on Hähnle [] and the integration of

external tools, i. e., model checkers, should improve the efficiency of our

semi-automated techniques for three-valued logics.

   . �e  offers sev-

eral diagram types for specifying the behavior of a system, e. g., by using

state diagrams (a variant of state machines). An embedding of state di-

agrams into our framework, e. g., supporting  formulae as guards,

would allow for the combination of behavioral and data-oriented speci-

fications within one consistent formal framework. As the semantics of

state diagrams in the  standard is not precise, a formal semantics for

state diagramsmatching the intention of the standard has to be developed

and integrated into our framework.

   . �e development of various

techniques known from formal methods, like refinement or retrench-

ment [] need to be adopted to the three-valued setting of /. In

particular, such methodologies should be supported by - itself,

e. g., by generating, and if possible, resolving, the corresponding proof

obligations automatically.

  -  . Develop-

ing domain-specific extensions for our framework, i. e., extending the

embedding and developing proof support thereof, is another interesting

area for future research. For example, SecureUML [] is a  dialect

that allows for specifying role-based access control within / spec-

ifications. Extending our framework to support directly reasoning over

SecureUML specifications is a rewarding task. �is would include the

development of a formal, machine checked semantics for SecureUML and

the development of specialized proof support for access control specifica-

tions. Alternatively, one could use model-transformations [] for con-

verting a SecureUML model into a pure / model. Whereas such
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a transformation approach does not need an embedding of SecureUML

into -, the resulting representation is less abstract which results

in more complicated proofs.

.. Developing a Formal Tool Chain

Aiming for the broader acceptance of formal methods a deep integration

into a tool-supported so�ware development process, e. g., based on the

 or  approach, is desirable. Besides a deeper integration into

common  tools (e. g., in a similar way as the integration of the KeY

tool []), we especially focus on bringing verification, model-based

testing and code-generation closer together. In particular, such a tool

chain [] could include the integration of specification-based testing

techniques, e. g., based on -TG []. �is would allow for

generating test cases from the same specification the formal analysis is

done. �erefore, testing can be used to validate that the implementation,

which contains user-implemented parts, is in fact a refinement of the

formal specification.

.. Applications.

Besides larger case studies, e. g., consistency analysis of specifications or

formal analysis in the area of secure and safe system development, we see a

great potential for a formal refinement calculus for . Such a refinement

calculus would allow for using - in a consistent way over several

stages of a formally supported so�ware development cycle and is in our

opinion a cornerstone for applying formal methods successfully.

Moreover, combining - with embeddings of programming lan-

guages like ++ [] or µJava [] allows for integrated formal reasoning

over specifications and code.
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ATHE SYNTAX OF OCL

, being advertised with the slogan “Mathematical Foundation, But No

Mathematical Symbols” [], is normally written using a concrete syntax

that is inspired by object-oriented programming languages. Whereas

this textual notation pleases the people coming from object-oriented

programming languages, it looks awkward for people coming from the

mathematics and formal methods field. Especially for proof work, there

seems a need for a compact, mathematical notation. �us we developed a

mathematics-oriented  syntax, as an alternative to the programming-

language like notation used in the  . standard. For example, compare

the textual presentation of the proof rule:

τ ⊧ S->includes(x) τ ⊧ not (P x) cp P

τ ⊧ S->forall(x ∣ P(x)).IsDefined()
(A.)

to its presentation in mathematical notation:

τ ⊧ x ∈ S τ ⊧ ¬(P x) cp P
.

τ ⊧ ∂(∀ x ∈ S . P(x))
(A.)

Clearly, both the concrete syntax of the standard and our mathematical

syntax, have their advantages and disadvantages and therefore we support

both of them in -. A user of - can mix both syntaxis

arbitrarily, i. e., the user is free to choose the syntax he or she likes best.

Moreover, the system can also be configured to check that only one of the

syntaxis is used in a consistent manner or convert terms from one syntax

to the other, e. g., for presentation purposes.

In Table A. we provide a brief comparison between the different con-

crete syntaxis for , namely the syntax as proposed in the  standard,

our textual notation that tries to follow the standard syntax as close as

possible, and finally our new mathematical syntax. �e table follows the

 library presentation from the standard [, Chapter ], constructs

that are not supported by - are written in a gray typeface, e. g.,

o.oclIsInState(s). Extension to the  standard are written in a green

typeface, e. g., x sand y.
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Table A.: Comparison of different concrete syntax variants for 

 (standard) mathematical -

O
c
l
A
n
y

x = y x ≐ y

x <> y x /≐ y

x := y x ≜ y

x ~ y x ≃̇ y

x :~ y x
▵

≃ y

x ≊̇ y

x
▵

≊ y

o.oclIsNew() o.oclIsNew()

o.oclIsUndefined() /∂ o

o.oclAsType(t) o .oclAsType (t)

o.oclIsType(t) o .oclIsTypeOf (t)

o.oclIsKindOf(t) o .oclIsKindOf (t)

o.oclIsInState(s)

t::allInstances() t::allInstances()

t::typeSetOf() t::typeSetOf()

t::kindSetOf() t::kindSetOf()

O
c
l
M
e
s
s
a
g
e o.hasReturned()

o.result()

o.isSignalSent()

o.isOperationCall()

O
c
l
V
o
i
d OclUndefined �

o.oclIsUndefined() /∂ o

o.oclIsDefined() ∂ o

R
e
a
l

x + y x + y

x - y x − y

x * y x ⋅ y

-x − x

x / y x / y

x.abs() ∣x∣

x.floor() ⌊x⌋

x.round() ⌈x⌉

x.max(y) max(x , y)

x.min(y) min(x , y)

x < y x < y

x > y x > y

x <= y x ≤ y

x >= y x ≥ y

I
n
t
e
g
e
r x - y x − y

x + y x + y

x * y x ⋅ y

x / y x / y

Continued on next page
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 mathematical -
I
n
t
e
g
e
r

-x − x

x.abs() ∣x∣

x.div(y) x div y

x.mod(y) xmod y

x.max(y) max(x , y)

x.min(y) min(x , y)

S
t
r
i
n
g

s.size() ∥s∥

s.concat(z) s ⌢ z

s.substring(i,j) s .substring(i , j)

s.toInteger() s .toInteger()

s.toReal() s .toReal()

s.toUpper() s .toUpper()

s.toLower() s .toLowert()

B
o
o
l
e
a
n

|= p ⊧ p

t |= p τ ⊧ p

true t

false f

x or y x ∨ y

x xor y x ⊕ y

x and y x ∧ y

not x ¬ x

x implies y x Ð→ y

x

Ð→ y

x

Ð→ y

x sor y x ∨̇ y

x sxor y x ⊕̇ y

x sand y x ∧̇ y

x simplies y x Ð̇→ y

if c then x else y endif if c then x else y endif

C
o
l
l
e
c
t
i
o
n

X->size() ∥X∥

X->includes(y) y ∈ X

X->excludes(y) y /∈ X

X->count(y) X->count(y)

X->includesAll(Y) X ⊆Y

X->excludesAll(Y) X ⊃⊂Y

X->isEmpty() ∅ ≐ X

X->notEmpty() ∅ /≐ X

X->sum() X->sum()

X->product(Y) X ×Y

X->exists(e:T|P(e)) ∃ e ∈ X . P(e)

X->forAll(e:T|P(e)) ∀ e ∈ X . P(e)

X->isUnique(e:T|P(e)) X->isUnique (e ∶ T ∣ P(e))

X->any(e:T|P(e)) X->any(e ∶ T ∣ P(e))

Continued on next page
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 mathematical -

X->one(e:T|P(e)) X->one(e ∶ T ∣ P(e))

X->collect(e:T|P(e)) {∣e ∈ X ∣ P(e)∣}

S
e
t

Set{} ∅

X->union(Y) X ∪ Y

X = Y X ≐ Y

X->intersection(Y) X ∩ Y

X->complement(Y) X −

X - Y X − Y

X->including(y) insert y X

X->excluding(y) y->excluding(X)

X->symmetricDifference(Y) X ⊖ Y

X->count(y) X->count(y)

X->flatten() ⌈⌈X⌉⌉

X->asSet() X->asSet()

X->asOrderedSet() X->asOrderedSet()

X->asSequence() X->asSequence()

X->asBag() X->asBag()

X->select(e:T|P(e)) (∣e ∈ X ∣ P(e)∣)

X->reject(e:T|P(e)) ∣)e ∈ X ∣ P(e)(∣

X->collectNested(e:T|P(e)) {{∣e ∈ X ∣ P(e)∣}}

X->sortedBy(e:T|P(e)) X->sortedBy (e ∶ T ∣ P(e))

X->iterate(x; r=c| P(x, r)) X->iterate(x; r=c ∣ P(x , r))

O
r
d
e
r
e
d
S
e
t

OrderedSet{} ⟨⟩

X = Y X ≐ Y

X->append(y) X@ y

X->prepend(y) y # X

X->insertAt(i,y) X->insertAt(i , y)

X->subOrderedSet(i,j) X->subOrderedSet(i , j)

X->at(i) ♮ i X

X->indexOf(y) X ♮? y

X->first() ♮  X

X->last() ♮  X

B
a
g

Bag{} HI
X = Y X ≐ Y

X->union(Y) X ∪ Y

X->intersection(Y) X −

X->including(y) insert y X

X->excluding(y) y->excluding(X)

X->count(y) X->count(y)

X->flatten() ⌈⌈X⌉⌉

X->asBag() X->asBag()

X->asSequence() X->asSequence()

X->asSet() X->asSet()

Continued on next page
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X->asOrderedSet() X->asOrderedSet()

X->select(e:T|P(e)) (∣e ∈ X ∣ P(e)∣)

X->reject(e:T|P(e)) ∣)e ∈ X ∣ P(e)(∣

X->collectNested(e:T|P(e)) {{∣e ∈ X ∣ P(e)∣}}

X->sortedBy(e:T|P(e)) X->sortedBy (e ∶ T ∣ P(e))

X->iterate(x; r=c| P(x, r)) X->iterate(x; r=c ∣ P(x , r))

S
e
q
u
e
n
c
e

Sequence{} []

X->count() X->count(y)

X = Y X ≐ Y

X->union(Y) X ∪ Y

X->flatten() ⌈⌈X⌉⌉

X->append(y) X@ y

X->prepend(y) y # X

X->insertAt(i,y) X->insertAt(i , y)

X->subSequence(i,j) X->subSequence(i , j)

X->at(i) ♮ i X

X->indexOf(y) X ♮? y

X->first() ♮  X

X->last() ♮  X

X->including(y) insert y X

X->excluding(y) y->excluding(X)

X->asBag() X->asBag()

X->asSequence() X->asSequence()

X->asSet() X->asSet()

X->asOrderedSet() X->asOrderedSet()

X->select(e:T|P(e)) (∣e ∈ X ∣ P(e)∣)

X->reject(e:T|P(e)) ∣)e ∈ X ∣ P(e)(∣

X->collectNested(e:T|P(e)) {{∣e ∈ X ∣ P(e)∣}}

X->sortedBy(e:T|P(e)) X->sortedBy (e ∶ T ∣ P(e))

X->iterate(x; r=c| P(x, r)) X->iterate(x; r=c ∣ P(x , r))

let e=x in P(s) end let e = x in P(s) end
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BTHE INVOICE SYSTEM

In this section, we present a well-known case study for comparing specifi-

cation formalisms, e. g., Frappier and Habrias [] give an overview of

several formalization of this case study using different formalisms.

B.  

Frappier and Habrias [] describe the invoice system informally as fol-

lows:

. �e subject is to invoice orders.

. To invoice is to change the state of an order (to change it from the

state “pending” to “invoiced”).

. On an order, we have one and one only reference to an ordered

product of a certain quantity. �e quantity can be different to other

orders.

. �e same reference can be ordered on several different orders.

. �e state of the order will be changed into “invoiced” if the ordered

quantity is either less or equal to the quantity which is in stock

according to the reference of the ordered product.

. You have to consider the following two cases:

a) Case :

All the ordered references are references in the stock. �e

stock or the set of orders may vary:

• due to the entry of new orders or canceled orders;

• due to having a new entry of quantities of products in

stock at the warehouse.
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But, we do not have to take these entries into account. �is

means that you will not receive two entry flows (orders, en-

tries in stock). �e stock and the set of orders are always

given to you in an up-to-date state.

b) Case :

You do have to take into account the entries of

• new orders;

• cancellations of orders;

• entries of quantities in the stock.

B.  

In this section, we present a formalization of the Invoice case-study using

/. Dupuy et al. [] already present a  specification for the

invoice system. But this specifications lacks any usage of . Moreover,

the use of  is quite informal, e. g., their specification is untyped. Our

work is inspired by the formalization of Dupuy et al. [], in fact, we

restrict ourselves to making their specification more rigid. For example,

we provide full type annotation and complete the diagrammatic part of

 with a detailed  specification.

Figure B. shows the data model of our case study is quite simple. For

realizing item a we only need the classes Product and Order. For realiz-

ing the item b, we also model a class Warehouse. Figure . presents the

 data model of the Invoice system. Table B. presents the  specifi-

cation for constraining the state part of the system, i. e., constraining the

datatypes. For example, / does not provide a datatype for natural

numbers, therefore we use the datatype Integer and constrain the corre-

sponding attributes to positive values. Table B. describes the behavior of

the Invoice case-study, i. e., the precondition and postconditions of the

operations. Overall, this completes the  specification.

Finally, Table B. presents the complete theory file containing the proofs

explained in Chapter .
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Warehouse

getFirstInvoicable():Order

Order

id:Integer
quantity:Integer
state:String

Order(prd:Product, qty:Integer):Order
cancel():Boolean
invoice():Boolean

Product

id:Integer
stock:Integer

Product():Product
supply(qty:Integer):Boolean
release(qty:Integer):Boolean

products0..*

warehouse1

orders0..*

product1

Figure B.:�e Invoice Case-study models a simple system for invoicing orders; thus we need to

model at least products, orders, and a warehouse managing the orders and products.
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-- The stock of a Product is always a natural number, i.e., it is a

-- positive Integer. This also ensures the definedness of the stock.

context Product

inv isNat: self.stock >= 0

-- The Product id is unique.

context Product

inv idUnique: self.allInstances()

->forAll(p1:Product, p2:Product | p1.id <> p2.id)

-- The quantity of an Order is always a natural number, i.e., it is

-- a positive Integer. This also ensures the definedness of the

-- quantity.

context Order

inv isNat: self.quantity >= 0

-- The state of an Order should either be ‘pending’ or ‘invoiced’.

-- As a direct support for enumeration is not well developed in most

-- CASE tools, we use a String and constrain it to the two

-- alternatives using an invariant.

context Order

inv stateRange: (self.state = ’pending’)

or (self.state = ’invoiced’)

-- The Order id is unique.

context Order

inv idUnique: self.allInstances()

->forAll(o1:Order, o2:Order | o1.id <> o2.id)

-- There is one and only one Warehouse.

context Warehouse

inv isStatic: self.allInstances()->size() = 1

Table B.: Constraining the data specification of the Invoice case-study.
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-- Initialize the state of an Order

context Order::state : String

init: ’pending’

-- Create a new Order

context Order::Order(prd:Product,qty:Integer):void

pre: qty > 0

pre: self.warehouse.products->exists(x:Product | x = prd)

pre: not prd.oclIsUndefined()

post: self.oclIsNew() and self.quantity = qty and self.orderedProduct = prd

-- The state of the order will be changed into "invoiced" if the ordered quantity

-- is either less or equal to the quantity which is in stock according to the

-- reference of the ordered product.

context Order::invoice() : void

pre: self.state = ’pending’

and self.quantity <= self.orderedProduct.stock

post: self.state = ’invoiced’ and self.quantity = self.quantity@pre

and self.orderedProduct = self.orderedProduct@pre

and self.orderedProduct.stock = self.orderedProduct@pre.stock - self.quantity

-- Cancel order as an opposite operation to invoice order

context Order::cancel() : void

pre: self.state = ’invoiced’

post: self.state = ’pending’

and self.quantity = self.quantity@pre and self.product = self.product@pre

and self.product.stock = self.product@pre.stock + self@pre.quantity

-- Create a new Order

context Product::Product():void

pre : true

post: self.stock = 0 and self.oclIsNew()

-- Add quantity of the product to the stock

context Product::supply(qty:Integer):void

pre: qty > 0

post: self.stock = self.stock@pre + qty

-- Remove quantity of the product from the stock

context Product::release(qty:Integer):void

pre: self.stock >= qty

post: self.stock = self.stock@pre - qty

-- Warehouse management

context Warehouse::getFirstInvoicable():Order

pre: self.orders->exists(x:Order |

x.state = ’pending’ and x.quantity <= x.orderedProduct.stock)

body: self.orders->any(x:Order |

x.state = ’pending’ and x.quantity <= x.orderedProduct.stock)

Table B.: Specifying the behavior of the Invoice case-study.
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theory invoices

imports

OCL

begin

import_model "invoices.xmi" "invoices.ocl"

lemma "τ ⊧ Product_Boolean. post self result

Ô⇒

Product. inv self "

apply(simp add: Product_post Product_inv)

apply(safe)

apply(ocl_simp)

done

lemma "∃ qty self τ. (τ ⊧ Product. inv self )

∧(τ ⊧ release_Integer_Boolean. pre self qty)"

apply(simp add: supply_pre Product_inv)

apply(rule_tac x="1" in exI)

apply(rule_tac x="λ(a, b). (⌞((OclAny_key. OclAny, oid ∶∶ oid),

⌞noext(Product_key. Product, ⌞⌟, ⌞⌟)⌟)⌟)"

in exI)

apply(rule exI)+

apply(rule safe)

apply(simp_all add: Product.stock_def Product.stock_def

ss_li�ing localValidsem

Zero_ocl_int_def One_ocl_int_def OclStrongEq_def

OclLess_def OclLe_def )

done

end

Table B.: An theory file for - showing a formal analysis of the

Invoice case-study.
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theory, , 

closure, 

morpher, , 

morphism, , , 

layered, , 

transitivity, 

trichotomy, 

type, 

arity, 

basic, 

class, 

constructor, 

dynamic, 

primitive, , , , , 

semantic, 

static, 

structural, 

value, , 

variable, 

type set, 

type-cast, , , 

type-checking, 

U
, 

, 

, 

, , , , , , , , 

undefined, 

undefinedness, , 

universal, 

unification

higher-order, 

universal quantifier

meta, 

universe

non-referential, , 

referential, , 

universe type, 

, , , 

V
validation, , , 

validity, , 

global, 

local, , 

universal, , 

value, , 

variable, 

, 

verification, , 

visibility, , 

private, 

protected, 

public, 

X
, 

Z
Z, , 
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