
An Application of Isabelle/: -

Achim D. Brucker

Information Security,  Zurich, Switzerland

Computer supported Modeling and Reasoning, WS
Zurich, January , 

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Outline

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

¿e Situation Today:
A So ware Engineering Problem

▸ So ware systems
▸ are becoming more and more complex.
▸ used in safety and security critical applications.

▸ Formal methods are one way to ensure the correctness.
▸ But, formal methods are hardly used by industry.

▸ difficult to understand notation
▸ lack of tool support
▸ high costs

▸ Semi-formal methods, especially , are
▸ widely used in industry, but
▸ not strong enough for a formal methodologies.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Why Formal Methods are not widely accepted ?

▸ Only a few formal methods address industrial needs:
▸ support for object-oriented modeling and programming.
▸ formal tool support (model checkers, theorem provers, . . .).
▸ integration in standard  tools and processes.

▸ Formal methods people and industrial so ware developer
are o en speaking different languages.

To tackle these challenges we provide a a formal foundation for
(supporting object-orientation) for a industrial accepted

specification languages (/) [, ].

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

¿e Unified Modeling Language (UML)

▸ visual modeling language
▸ many diagram types, e.g.

▸ class diagrams (static)
▸ state charts (dynamic)
▸ use cases

▸ object-oriented
development

▸ industrial tool support
▸  standard with
semi-formal semantics

Customer

name : String

+ getName(): String
+ netValue(): Real

1..∗
Role

Account

balance : Real

+ getBalance(): Real
+ makeDeposit(a: Real)
+ makeWithdrawal(a: Real)

: Account

: Customer

getBalance()

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Are UML diagrams enough to specify OO systems
formally?

▸ ¿e short answer:
▸ UML diagrams are not powerful enough for supporting
formal reasoning over specifications.

▸ ¿e long answer:
We want to be able to

▸ verify (proof) properties
▸ refine specifications

▸ ¿us we need:
▸ a formal extension of UML.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

¿e Object Constraint Language (OCL)

▸ extension based on first-order
logic with equality and typed set
theory

▸ designed for annotating UML
diagrams

▸ in the context of class–diagrams:
▸ preconditions
▸ postconditions
▸ invariants

▸ can be used for other diagrams
too (not discussed here)

+ makeWithdrawal(amount:Real):Boolean

− balance:Real

+ makeDeposit(amount:Real):Boolean
+ getBalance():Real

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

accounts

1..99 Account

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

OCL— A Simple Examples

▸ “Uniqueness” constraint for the class Account:
context Account inv:

Account::allInstances()

->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

▸ Properties of the class diagram can be described,
e.g., multiplicities:
context Account inv: Account.owner->size = 1

▸ Meaning of the method makeDeposit():
context Account::makeDeposit(amount:Real):Boolean

pre: amount >= 0

post: balance = balance@pre + amount

 context  keywords  path expressions

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Is  an Answer?

▸ / attracts the practitioners:
▸ is defined by the  community,
▸ has a “programming language face,”
▸ increasing tool support.

▸ / is attractive to researchers:
▸ defines a “core language” for object-oriented modeling,
▸ provides good target for  semantics research,
▸ offers the chance for bringing formal methods closer to
industry.

Turning  into a full-fledged formal methods is deserving
and interesting.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Our Vision

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model
Test

Harness

Validation

Proof

Obligations

Test Data

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Strong Formal Methods

A formal method is a mathematically based technique for the
specification, development and verification of so ware and

hardware systems.

▸ A strong formal method is a formal method supported by
formal tools, e. g., model-checkers or theorem provers.

▸ A semi-formal method lacks both, a sound formal
definition of its semantics and support for formal tools.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Challenges of Formalizing UML/OCL
Only few formal methods are specialized for analyzing object

oriented specifications.

▸ Problems and open questions:
▸ object equality and aliasing
▸ embedding of object structures into logics
▸ referencing and de-referencing, including “null” references
▸ dynamic binding
▸ polymorphism
▸ representing object-oriented concepts inside λ-calculi
▸ providing a (suitable, shallow) representation in theorem
provers

▸ . . .

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

How to proceed

For Turning / into a formal method we need
. a formal semantics of  class diagrams.

▸ typed path expressions
▸ inheritance
▸ . . .

. a formal semantics of  and proof support for .
▸ reasoning over  path expressions
▸ large libraries
▸ . . .

Do the  and  standards provide the needed semantics?

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

¿e Object Store

A

A

B C

A βObject

αA

A βObject

B

αB

C βA

αC

U 
(αA,βObject) = A× α

A
⊥ + βObject

U 
(αB,αC,βA,βObject) = A× (B× αB

⊥ + C × αC
⊥ + βA)⊥

+ βObject

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Representing Class Types
▸ We assume a common superclass (OclAny).
▸ Attributes:

▸ basic types (e. g., Integer) are represented directly.
▸ class types are represented by an object identifier (oid).

▸ ¿e uniqueness is guaranteed by a special tag type.
▸ Li ing (⌞_⌟) allows for undefined components.
▸ Using a type variable allows for extensions (inheritance).

α Manager ∶= ((OclAnytag,oid),
⌞((Employeetag,oid Set,String,Integer),

⌞((Managertag,Integer), ⌞α⌟)⌟)⌟)

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Is ¿is Really Modeling Object-orientation?

▸ For each model, we have to show several properties.
▸ For example, for each pair of classes A and B where B
inherits from A we derive

self.oclIsType(B)

self.oclIsKind(A)

and

self.oclIsDefined() self.oclIsType(B)

self.oclAsType(A).oclAsType(B).oclIsDefined()

and self.oclAsType(A).oclAsTypeB.oclIsType(B)

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Defining Semantics

Formal  Semantics

Textbook Semantics

• good to
communicate

• no calculi

Machine Checkable Semantics

Language Research

• Language
Analysis

• Language
Consistency

Applications

• Verification

• Refinement

• Specification
Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Textbook Semantics: Example 

▸ ¿e Interpretation of “X->union(Y)” for sets (“X ∪ Y”):

I(∪)(X,Y) ≡
⎧⎪⎪⎨⎪⎪⎩
X ∪ Y if X ≠⊥ and Y ≠⊥,
⊥ otherwise.

▸ ¿is is a strict and li ed version of the union of
“mathematical sets”.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Textbook Semantics: Example 

¿e Interpretation of the logical connectives:

b b b and b b or b b xor b b implies b not b

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false � false � � true true
true � � true � � false
� false false � � � �

� true � true � true �

� � � � � � �

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Textbook Semantics: Summary

▸ Usually “Paper-and-Pencil” work in mathematical notation.
▸ Advantages

▸ Useful to communicate semantics.
▸ Easy to read.

▸ Disadvantages
▸ No rules, no laws.
▸ Informal or meta-logic definitions (“¿e Set is the
mathematical set.”).

▸ It is easy to write inconsistent semantic definitions.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Machine-checked Semantics: Example 
▸ ¿e Interpretation of “X->union(Y)” for sets (“X ∪ Y”):

->union ≡ li (strictify(λX. strictify(λY. ⌞⌜X⌝∪⌜Y⌝⌟))) .

▸ Wemake concept like “strict” and “li ed” explicit, i. e.,
▸ Strictifying:

strictify f x ≡ if x = � then� else f x

▸ Datatype for Li ing: α� ∶= ⌞α⌟ ∣ down and

⌜x⌝ ≡
⎧⎪⎪⎨⎪⎪⎩
v if x = ⌞v⌟,
ε x. true otherwise.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Machine-checked Semantics: Example 

Defining the core logic (Strong Kleene Logic):

not _ ≡ li  strictify(λx. ⌞¬⌜x⌝⌟)
_ and_ ≡ li  (λx y. if (def x)

then if (def y) then⌞⌜x⌝ ∧ ⌜y⌝⌟
else if⌜x⌝ then� else⌞false⌟

else if (def y) then if⌜y⌝ then�
else⌞false⌟ else�)

_ or _ ≡ λx y. not (not x and not y)
_ implies _ ≡ λx y. (not x) or y

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Meta-language (e.g., )

Datatype:
Operations:
Rules:

bool
¬_, _ ∧ _

x ∧ y = y∧ x

int
−_, _ + _

x + y = y+ x

α′ set
_ ∪ _, _ ∈ _
x ∪ y = y∪ x

Datatype Adaption

Functional Adaption

Embedding Adaption

Object-language (e.g., )

Datatype:
Operations:
Rules:

Booleanτ
not _, _ and_

x and y = y and x

Integerτ
−_, _ + _

x + y = y+ x

α′ Setτ
->union
x->union y =
y->union x

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Machine-Checked Semantics: Summary

Motivation: Honor the semantical structure of the language.
▸ A machine-checked semantics

▸ conservative embeddings guarantee consistency of the
semantics.

▸ builds the basis for analyzing language features.
▸ allows incremental changes of semantics.

▸ Many theorems, like “A->unionB = B->unionA” can be
automatically li ed based on their  variants.

▸ As basis of further tool support for
▸ reasoning over specifications.
▸ refinement of specifications.
▸ automatic test data generation.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

But is ¿is Semantics Compliant?

▸ Compliance to the textbook semantics:
▸ We can introduce a semantic mapping

Sem⟦x⟧ ≡ x

explicitly and prove formally (within our embedding):

Sem⟦not X⟧γ =
⎧⎪⎪⎨⎪⎪⎩
⌞¬⌜Sem⟦X⟧γ⌝⌟ if Sem⟦X⟧γ /= � ,
� otherwise .

▸ Compliance to the normative requirements, e. g.:

post: result = (self->size() = 0)

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions BibliographyFormalizing UML Formalizing OCL

Proving Requirements

isEmpty() : Boolean (..-g)
Is self the empty collection?

post: result = (self->size() = 0)

Bag
lemma (self ->isEmpty()) = (self, β ∶∶ bot)Bag)->size()≐ 
apply(rule Bag_sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OclMtBag_def

OclStrictEq_def
Zero_ocl_int_def ss_li ing’)

done

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

-

▸ Based on our formalization of  and , we use
Isabelle for developing a “new” theorem prover: -.

▸ - provides:
▸ a formal, machine-checked semantics for OCL .,
▸ an interactive proof environment for OCL,
▸ servers as a basis for examining extensions of OCL,
▸ publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

System Architecture: Overview

Isabelle/HOL
Isabelle Instance for HOL

UML/OCL specifications

Proof General
(X)Emacs−based User Interface

SML−based User Interface

Standard ML (SML)

Isabelle

Implementation Language

Generic Theorem Prover

HOL−OCL
Isabelle Instance for OCL/UML

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

System Architecture: A Detailed View

 (Standard )

susml Isabelle/

Datatype Package - Library ¿eory Morpher

- User Interface (based on Proof General)

HOL-OCL

/
Specification

import

Proof Document
(¿eory Files)

import

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Excursus: Programming Isabelle
fun cast_class_id class parent thy = let

val pname = name_of parent

val cname = name_of class

 val thmname = "cast_"^(cname)^"_id"

val goal_i = mkGoal_cterm

(Const(is_class_of class,dummyT)$Free("obj",dummyT))

(Const("op =",dummyT)$(Const(parent2class_of class pname,dummyT)

$(Const(class2get_parent class pname,dummyT)$Free("obj",dummyT)))

 $(Free("obj",dummyT)))

val thm = prove_goalw_cterm thy [] goal_i

(fn p => [cut_facts_tac p 1, (* proof script *)

asm_full_simp_tac

(HOL_ss addsimps

 [o_def,

get_def thy (parent2class_of class pname),

get_def thy (class2get_parent

class pname)]) 1,

stac (get_thm thy (Name mk_get_parent)) 1,

 asm_full_simp_tac (HOL_ss addsimps [

get_def thy (is_class_of class),

get_thm thy (Name ("is_"^pname^"_mk_"^(cname)))]) 1,

stac (get_thm thy (Name ("get_mk_"^(cname)^"_id"))) 1,

ALLGOALS(simp_tac (HOL_ss))])

 in

(fst(PureThy.add_thms [((thmname,thm),[])] (thy)))

end

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

¿eHOL-OCLWorkflow

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model−Analysis
and

Verification

HOL−OCLArgoUML Dresden−OCL

Java

Code

Generation
C#

Model
Repository

(MDR)
(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Verification and Code−Generation

Phase

Design Phase

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

HOL-OCL Demo

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Motivation

A Short Introduction to /

Turning / Into a Strong Formal Method
Formalizing UML
Formalizing OCL

-

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

What DoWe Gain for the OCL community
A machine-checked formal semantics should be a “first class”

citizen of the next  standard.

▸ / could be used for accredited certification process,
e. g., Common Criteria,

▸ this would open the door for a wide range of semi-formal
and formal tools.

▸ whereas formalizing to early, can kill the standardization
process, for  the time is ripe.

▸ We provide a formal tool-chain for  including
code-generators, transformation tools and a theorem
prover.

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

What DoWe Show for the Formal Methods People
Formal tools for object-oriented systems can be developed using

the conservative, shallow embedding technique.

▸ A shallow embedding can be used for defining the
semantics of an object-oriented specification language.

▸ Defining the semantics, and also building tools, in an
conservative way, i. e., without using axioms, is feasible.

▸ A conservative embedding technique is useful to compare
different semantical variants and possible language
extensions.

▸ A formalization of a real-world, i. e., defined by an
industrial committee, standard of a specification language
is possible

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

Our Vision: Where are we?

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model
Test

Harness

Validation

Proof

Obligations

Test Data

Achim D. Brucker An Application of Isabelle/: -

Motivation A Short Introduction to / Turning / Into a Strong Formal Method - Conclusions Bibliography

 Unified Modeling Language Specification, Sept. .
Available as  document formal/--. ¿is
document is superseded by [].

¿e Isabelle/HOL-OCL website, Mar. .

 .  specification, Oct. .
Available as  document ptc/--.

M. Richters.
A Precise Approach to Validating UML Models and OCL
Constraints.
PhD thesis, Universität Bremen, Logos Verlag, Berlin, BISS
Monographs, No. , .

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

Appendix

¿e  Standard

Formal Background

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

Why use Formal Methods

¿ere are many reasons for using formal methods:
▸ safety critical applications, e.g. flight or railway control.
▸ security critical applications, e.g. access control.
▸ financial reasons (e.g. warranty), e.g. embedded devices.
▸ legal reasons, e.g. certifications.

Many successful applications of formal methods proof their
success!

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

¿e Semantic Foundation of 

¿e semantics of  . is spread over several places:
Chapter  “ Language Description” (informative):

introduces  informally using examples,
Chapter  “Semantics Described using ” (normative):

presents an “evaluation” environment,
Chapter  “¿e  Standard Library” (normative): describes

the requirements (pre-/post-style) of the library,
Appendix A “Semantics” (informative): presents a formal

semantics (textbook style), based on the work of
Richters.

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

¿e Semantics Foundation of the Standard

We see the formal foundation of  critical:
▸ no normative formal semantics.
▸ no consistency and completeness check.
▸ no proof that the formal semantics satisfies the normative
requirements.

Nevertheless, we think the  standard (“ptc/03-10-14”) is
mature enough to serve as a basis for a machine-checked
semantics and formal tools support.

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

List of Glitches

▸ We found several glitches:
▸ inconsistencies between the formal semantics and the
requirements

▸ missing pre- and postconditions
▸ wrong (e.g., to weak) pre- and postconditions
▸ . . .

▸ and examined possible extensions (open problems):
▸ operations calls and invocations
▸ smashing of datatypes
▸ equalities
▸ recursion
▸ semantics for invariants (type sets)
▸ . . .

Achim D. Brucker An Application of Isabelle/: -

The  Standard Formal Background

Shallow vs. Deep Embeddings
Representing the logical operations or and and via a
▸ shallow embedding:

Direct definition of the semantics, e.g. each construct is
represented by some function on a semantic domain.
x and y ≡ λ e. x e ∧ y e x or y ≡ λ e. x e ∨ y e

▸ deep embedding:
¿e abstract syntax is presented as a datatype and a
semantic function I from syntax to semantics.
expr = var var ∣ expr and expr ∣ expr or expr

and the explicit semantic function I:

I⟦var x⟧ = λ e . e(x)
I⟦xandy⟧ = λ e . I⟦x⟧ e ∧ I⟦y⟧ e
I⟦xory⟧ = λ e . I⟦x⟧ e ∨ I⟦y⟧ e

Achim D. Brucker An Application of Isabelle/: -

