An Application of Isabelle/HOL: HOL-OCL

Achim D. Brucker

Information Security, ETH Zurich, Switzerland

Computer supported Modeling and Reasoning, WS2006
Zurich, January 31, 2007

_ Motivation A Short Introduction to usr/oct Tumningumr/oct [
Outline

Motivation
A Short Introduction to uML/0OCL

Turning umr/ocL Into a Strong Formal Method
Formalizing UML
Formalizing OCL

HOL-OCL
Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

The Situation Today:

A Software Engineering Problem

» Software systems

» are becoming more and more complex.
» used in safety and security critical applications.

» Formal methods are one way to ensure the correctness.

v

But, formal methods are hardly used by industry.

» difficult to understand notation
» lack of tool support
> high costs

» Semi-formal methods, especially umt, are

» widely used in industry, but
» not strong enough for a formal methodologies.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Why Formal Methods are not widely accepted ?

» Only a few formal methods address industrial needs:
» support for object-oriented modeling and programming.
» formal tool support (model checkers, theorem provers, ...).
» integration in standard CASE! tools and processes.

» Formal methods people and industrial software developer
are often speaking different languages.

To tackle these challenges we provide a a formal foundation for
(supporting object-orientation) for a industrial accepted
specification languages (umL/ocL) [1, 3].

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

The Unified Modeling Language (UML)

» visual modeling language Customer Aocount
name : String balance : Real
» many diagram types, e.g. + getame(; st |+ getatance): Rea
y g > g + ge:\’\:alue(()) I?ealg er)I: + a;seé)e_pos(\)l(: RLaI)
R ClaSS dlagl’amS (StatiC) + makeWithdrawal(a: Real)

» state charts (dynamic)
» use cases

getBalance()

» object-oriented
development

» industrial tool support

» OMG standard with
semi-formal semantics

m D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

Are UML diagrams enough to specify OO systems
formally?

» The short answer:
» UML diagrams are not powerful enough for supporting
formal reasoning over specifications.
» The long answer:
We want to be able to
» verify (proof) properties
» refine specifications

» Thus we need:

» a formal extension of UML.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

The Object Constraint Language (OCL)

» extension based on first-order
logic with equality and typed set
theory context Account::makeDeposit(amount:Real):Boolean j

pre: amount >= 0
post: balance = balance@pre + amount

» designed for annotating UML

diagrams Lo recomt
1 . accounts| — balance:Real
» in the context of class—diagrams: e
» preconditions makeWindrawalamoun: Rea Sodean

» postconditions
» invariants

» can be used for other diagrams
too (not discussed here)

m D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

OCL — A Simple Examples

» “Uniqueness” constraint for the class Account:

context Account inv:
Account::allInstances()
->forAll(al,a2 | al.id = a2.id implies al = a2)

» Properties of the class diagram can be described,
e.g., multiplicities:
context Account inv: Account.owner->size =1
» Meaning of the method makeDeposit():

context Account::makeDeposit(amount:Real):Boolean
pre: amount >= 0
post: balance = balance@pre + amount

OcCL context ocL keywords UML path expressions

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

Is ocL an Answer?

» UML/OCL attracts the practitioners:
» is defined by the 00 community,
» has a “programming language face,”
» increasing tool support.

» UML/OCL is attractive to researchers:
» defines a “core language” for object-oriented modeling,
» provides good target for oo semantics research,
» offers the chance for bringing formal methods closer to
industry.

Turning ocL into a full-fledged formal methods is deserving
and interesting.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

A Short Introduction to umL/OCL

Our Vision

Test Data

Proof

Obligations
Validation

Test
Harness

/\ +8§L

Model-Analysis
and Verification
(HOL-OCL)

Model
Transformation

ArgoUML
SecureUML/OCL AC
or 9
UML/OCL Config
(XMI) Model
Repository Code
Generator

(sudsml)

7
L

ion of Isabelle/HOL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Turning umr/octL Into a Strong Formal Method
Formalizing UML
Formalizing OCL

m D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Strong Formal Methods

A formal method is a mathematically based technique for the
specification, development and verification of software and
hardware systems.

» A strong formal method is a formal method supported by
formal tools, e. g., model-checkers or theorem provers.

» A semi-formal method lacks both, a sound formal
definition of its semantics and support for formal tools.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL

Formalizing UML Formalizing OCL

Challenges of Formalizing UML/OCL

Only few formal methods are specialized for analyzing object

oriented specifications.

J

» Problems and open questions:

» object equality and aliasing
embedding of object structures into logics

>

>

>

>

referencing and de-referencing, including “null” references

dynamic binding
polymorphism

representing object-oriented concepts inside)-calculi
providing a (suitable, shallow) representation in theorem

provers

Achim D. Brucker

An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

How to proceed

For Turning uML/ocL into a formal method we need
1. a formal semantics of UML class diagrams.

» typed path expressions
» inheritance

> LY

2. a formal semantics of ocL and proof support for ocL.

» reasoning over UML path expressions
» large libraries

> e

Do the umL and oct standards provide the needed semantics?

m D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Motivation

A Short Introduction to umL/0OCL

Turning umr/octL Into a Strong Formal Method
Formalizing UML

HOL-OCL

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

urning uML/0OCI Formalizing UML Formalizi

The Object Store

ﬁObject

OCA

ﬁObject

E

1 _ A Object
%(u/\,ﬂubject) =Ax o+ ﬁ Jee

02/2

al,aC g4 gobject) = Ax (Bx alf +Cx “f + ﬁA)J.

+ ﬁObject

Turning umL/ocCL Formalizing UML Formalizing OCL

Representing Class Types

» We assume a common superclass (OclAny).
Attributes:

» basic types (e. g., Integer) are represented directly.
» class types are represented by an object identifier (oid).

v

» The uniqueness is guaranteed by a special tag type.

v

Lifting (,_,) allows for undefined components.

» Using a type variable allows for extensions (inheritance).

a Manager := ((OclAny,,, 0id),
.((Employee,,, oid Set, String, Integer),
.((Manager,, Integer), a,),),)

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Is This Really Modeling Object-orientation?

» For each uML model, we have to show several properties.

» For example, for each pair of classes A and B where B
inherits from A we derive

self.oclIsType(B)

self.oclIsKind(A)

and

self.oclIsDefined() self.oclIsType(B)

self.oclAsType(A).oclAsType(B).oclIsDefined()
and self.oclAsType(A).oclAsTypeB.oclIsType(B)

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Motivation

A Short Introduction to umL/0OCL

Turning umr/octL Into a Strong Formal Method
Formalizing OCL

HOL-OCL

Conclusions

Bibliography

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Defining Semantics

Formal ocL Semantics

Textbook Semantics Machine Checkable Semantics
« good to Language Research || Applications
communicate . Language « Verification
o o callenl Analysis Refinement
o Language
Consistency « Specification

Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Textbook Semantics: Example 1

» The Interpretation of “X->union(Y)” for sets (“X u Y”):

XuY ifX#landY =1,

I(u)(X,Y) =
(U)() 1 otherwise.

» This is a strict and lifted version of the union of
“mathematical sets”

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Textbook Semantics: Example 2

The Interpretation of the logical connectives:

b b, byandb, byorb, byxorb, b;impliesb, notb;

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false 1 false 1 1 true true
true 1 1 true 1 L false

1 false false 1 1 L 1

1 true 1 true 1 true 1

1 1 1 1 1 1 1

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Textbook Semantics: Summary

» Usually “Paper-and-Pencil” work in mathematical notation.
» Advantages

» Useful to communicate semantics.

» Easy to read.
» Disadvantages

» No rules, no laws.

» Informal or meta-logic definitions (“The Set is the
mathematical set.”).

» It is easy to write inconsistent semantic definitions.

m D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Machine-checked Semantics: Example 1
» The Interpretation of “X->union(Y)” for sets (“X u Y”):
->union= liftz(strictify()L X. strictify(AY. 'X'U'Y",))) :

» We make concept like “strict” and “lifted” explicit, i. e.,
» Strictifying:

strictify f x =if x = L then Lelse f x

» Datatype for Lifting: «, := «a, | down and

R ifx=v,
X = .
e x.true otherwise.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Machine-checked Semantics: Example 2

Defining the core logic (Strong Kleene Logic):

not _ = lify strictify(Ax. ='x"))
and = lift, (/\xy. if (def x)
thenif (def y)then 'x' A "y'
elseif "x ' then 1 else false
elseif (def y) thenif 'y’ then L
else false, else L)
_or _=)\xy.not(not x andnot y)
_ implies _=Axy.(not x) or y

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umML/0CI

Formalizing OCL

Meta-language (e.g., HOL)

Datatype: bool
Operations: oL AL
Rules: XAYy=YyAX

Object-language (e.g., oCL)

Datatype: Boolean,
Operations: not _,_and_
Rules: x andy =y and x

him D. Brucker

int
-+

Datatype Adaption
Functional Adaption

Embedding Adaption

Integer,

-, _+

X+y=y+x

o set
U,_€_
xXUy=yux

o Set,
->union

x->uniony =
y->unionx

Turning umL/ocCL Formalizing UML Formalizing OCL

Machine-Checked Semantics: Summary

Motivation: Honor the semantical structure of the language.
» A machine-checked semantics
» conservative embeddings guarantee consistency of the
semantics.

> builds the basis for analyzing language features.
» allows incremental changes of semantics.

» Many theorems, like “A->union B = B->union A” can be
automatically lifted based on their HOL variants.
» As basis of further tool support for

» reasoning over specifications.
» refinement of specifications.
» automatic test data generation.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

But is This Semantics Compliant?
» Compliance to the textbook semantics:
» We can introduce a semantic mapping
Sem[x] = x

explicitly and prove formally (within our embedding):

Sem[not X]y=

~'Sem[X]y', ifSem[X]y+# 1,
otherwise .

» Compliance to the normative requirements, e. g.:

post: result = (self->size() =0)

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Turning umL/ocCL Formalizing UML Formalizing OCL

Proving Requirements

isEmpty() : Boolean (11.7.1-g)
Is self the empty collection?

post: result = (self->size() =0)

Bag
lemma (self ->isEmpty()) = (self, B :: bot)Bag)->size()=0
apply(rule Bag sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OcIMtBag_def
OclStrictEq_def
Zero_ocl_int_def ss_lifting’)
done

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

HOL-OCL

ion of Isabelle/n

HOL-OCL

» Based on our formalization of uML and ocL, we use
Isabelle for developing a “new” theorem prover: HOL-OCL.

» HOL-OCL provides:
» a formal, machine-checked semantics for OCL 2.0,
» an interactive proof environment for OCL,
» servers as a basis for examining extensions of OCL,
» publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

http://www.brucker.ch/projects/hol-ocl/

__Motivation A Short Introduction to uni/oct_Turning u/oc. EEEEEEEE
System Architecture: Overview

UML/OCL specifications » HOL-OCL
Isabelle Instance for OCL/UML

{ Isabelle/HOL } { Proof General }

Isabelle Instance for HOL (X)Emacs-based User Interface

' ‘ SML-based User Interface ‘

{ Isabelle }

Generic Theorem Prover

1

{ Standard ML (SML) }

Implementation Language

An Application of Isabelle/HoL: HOL-OCL

__ Motivation A Short Introduction to usi/oct._Turning v/ oc:. [
System Architecture: A Detailed View

HoL-ocL User Interface (based on Proof General)
Datatype Package Theory Morpher

Proof Document
(Theory Files)

Isabelle/HoL

UML/OCL
Specification

sMmL (Standard ML) ‘

Achim D. Brucker An Application of Isabelle/HOL: HOL-OCL

__Motivation A Short Introduction to uni/oct_Turning u/oc. EEEEEEEE
Excursus: Programming Isabelle

24

fun cast_class_id class parent thy = let
val pname = name_of parent
val cname = name_of class
val thmname = "cast_"~(cname)~"_id"
val goal_i = mkGoal_cterm
(Const(is_class_of class,dummyT)$Free("obj",dummyT))
(Const("op_=",dummyT)$(Const(parent2class_of class pname,dummyT)
$(Const(class2get_parent class pname,dummyT)$Free("obj",dummyT)))
$(Free("obj",dummyT)))
val thm = prove_goalw_cterm thy [] goal_i
(fn p => [cut_facts_tac p 1, (* proof script *)
asm_full_simp_tac
(HOL_ss addsimps
[o_def,
get_def thy (parent2class_of class pname),
get_def thy (class2get_parent
class pname)]) 1,
stac (get_thm thy (Name mk_get_parent)) 1,
asm_full_simp_tac (HOL_ss addsimps [
get_def thy (is_class_of class),
get_thm thy (Name ("is_"~pname~"_mk_"~(cname)))]) 1,
stac (get_thm thy (Name ("get_mk_"~(cname)”~"_id"))) 1,
ALLGOALS (simp_tac (HOL_ss))1)
in
(fst(PureThy.add_thms [((thmname,thm),[]1)] (thy)))
end

_ Motivation A Short Introduction to usr/oct Tumningumr/oct [
The HOL-OCL Workflow

HOL-OCL

ArgoUML Dresden-OCL

Model-Analysis
and
Verification

Model
Repository
(sudsml)

XMI
(UML+OCL)

Model

Repository Code
SecureUML+OCL i
(SecureUML+OCL) (MDR) Generation

Dresden OCL

Verification and Code-Generation
Phase

Design Phase

im D. Brucker An Application of Isabelle/HoL: HOL-OCL

HOL-OCL Demo

ion of Isabelle/n

Conclusions

ion of Isabelle/n

__ Motivation A Short Introduction to usi/oct._Turning v/ oc:. [
What Do We Gain for the OCL community

A machine-checked formal semantics should be a “first class”
citizen of the next ocv standard.

» uML/ocL could be used for accredited certification process,
e. g., Common Criteria,

» this would open the door for a wide range of semi-formal
and formal tools.

» whereas formalizing to early, can kill the standardization
process, for ocL the time is ripe.

» We provide a formal tool-chain for ocL including

code-generators, transformation tools and a theorem
prover.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

__ Motivation A Short Introduction to usi/oct._Turning v/ oc:. [
What Do We Show for the Formal Methods People

Formal tools for object-oriented systems can be developed using

the conservative, shallow embedding technique.

v

A shallow embedding can be used for defining the
semantics of an object-oriented specification language.

Defining the semantics, and also building tools, in an
conservative way, i. e., without using axioms, is feasible.

A conservative embedding technique is useful to compare
different semantical variants and possible language
extensions.

A formalization of a real-world, i. e., defined by an
industrial committee, standard of a specification language
is possible

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Our Vision: Where are we?

ArgoUML

SecureUML/OCL
or

UML/OCL

(XMI)

Test Data

Proof

Obligations

Model-Analysis
and Verification
(HOL-OCL)

Model
Transformation

Model

Repository Code

(sudsml) Generator

Harness

Test

Validation

C#
+OCL

AC

Config

7
L

An Application of Isabelle/HoL:

: HOL-OCL

[4 oma Unified Modeling Language Specification, Sept. 2001.
Available as omG document formal/o01-09-67. This
document is superseded by [1].

[The Isabelle/HOL-OCL website, Mar. 2006.

[uMmL 2.0 OCL specification, Oct. 2003.
Available as oMG document ptc/03-10-14.

[{ M. Richters.
A Precise Approach to Validating UML Models and OCL
Constraints.
PhD thesis, Universitit Bremen, Logos Verlag, Berlin, BISS
Monographs, No. 14, 2002.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?ptc/03-10-14

Appendix

The ocL Standard

Formal Background

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

L The oot Standard Formal Background
Why use Formal Methods

There are many reasons for using formal methods:
» safety critical applications, e.g. flight or railway control.
» security critical applications, e.g. access control.
» financial reasons (e.g. warranty), e.g. embedded devices.
» legal reasons, e.g. certifications.

Many successful applications of formal methods proof their
success!

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

The ocL Standard

The Semantic Foundation of ocL

The semantics of ocL 2.0 is spread over several places:

Chapter 7 “ocL Language Description” (informative):
introduces ocL informally using examples,

Chapter 10 “Semantics Described using uML” (normative):
presents an “evaluation” environment,

Chapter 11 “The octL Standard Library” (normative): describes
the requirements (pre-/post-style) of the library,
Appendix A “Semantics” (informative): presents a formal

semantics (textbook style), based on the work of
Richters.

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

The ocL Standard

The Semantics Foundation of the Standard

We see the formal foundation of ocL critical:
» no normative formal semantics.
» no consistency and completeness check.

» no proof that the formal semantics satisfies the normative
requirements.

Nevertheless, we think the ocL standard (“ptc/03-10-14") is
mature enough to serve as a basis for a machine-checked
semantics and formal tools support.

Achim D. Brucker An Application of Isabelle/HoL: HOL-0CL

The ocL Standard

List of Glitches

» We found several glitches:

» inconsistencies between the formal semantics and the
requirements

» missing pre- and postconditions

» wrong (e.g., to weak) pre- and postconditions

» and examined possible extensions (open problems):
» operations calls and invocations
» smashing of datatypes
> equalities
» recursion
» semantics for invariants (type sets)

Achim D. Brucker An Application of Isabelle/HoL: HOL-OCL

Formal Background

Shallow vs. Deep Embeddings
Representing the logical operations or and and via a
» shallow embedding:
Direct definition of the semantics, e.g. each construct is
represented by some function on a semantic domain.

xandy=)le.xeAye xory=)e.xevye
» deep embedding:
The abstract syntax is presented as a datatype and a
semantic function I from syntax to semantics.
expr = var var | expr and expr | expr or expr

and the explicit semantic function I:

I[varx] =)e.e(x)
I[xandy] = Me.I[x]enI|y]e
I[xory] = Me.I[x]evI[y]e

Achim D. Brucker An Application of Isabelle/HoL: HOL-0CL

	Motivation
	A Short Introduction to uml/ocl
	Turning UML/OCL Into a Strong Formal Method
	Formalizing UML
	Formalizing OCL

	HOL-OCL
	Conclusions
	Bibliography
	Appendix
	The ocl Standard
	Formal Background

