The Situation Today

A Software Engineering Problem

An Interactive Proof Environment for
Object-oriented Specifications

@ Software systems

Achim D. Brucker e are becoming more and more complex and
bruckereinf.ethz.ch http://saa.brucker.ch/ o are used in safety and security critical applications.

e Formal methods are one way to increase their reliability.

@ But, formal methods are hardly used by mainstream industry:

o difficult to understand notation
e lack of tool support
e high costs

Information Security, ETH Zurich, Switzerland ° Seml_formal methods, esp ec1ally UML,

o are widely used in industry, but
March gth, 2007 o they lack support for formal methodologies.

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 2

We Address Some of These Criticisms Contributions
e Theory:

e A formal semantics for constrained oo data structures
We formalize umL/0cL and provide tool support e An extensible, type-safe representation of object-structures in HOL,
o A formal semantics for 0o constraint languages
e Proof calculi for a three-valued logic over path expressions

@ Our solution is formal

@ Our solution is based on a standard widely used in industry

0 O lution has tool " @ Practice:
ur solution has tool suppor
pp e A machine checked semantics for ocL 2.0

o A framework for analyzing 0o specifications
o A datatype package for oo data structures,
e HOL-OCL, an interactive theorem prover for umL/oCL

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March 9th, 2007 3 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 4

uML/0ocCL in a Nutshell The Unified Modeling Language (umL)
Outline The Unified Modeling Language (umL)

@ vumr/oct in a Nutshell
@ The Unified Modeling Language (umL)
@ The Object Constraint Language (ocL)

Eat something

still hungry

Visual modeling language

had enough

Object-oriented
development

@ Formalization of uML and ocL (TRead a book) (Listen to music)

@ Formalization of uML

Industrial tool support

@ Formalization of ocL @ OoMG standard %
e Many diagram types, e. g.
@ Conclusions and Outlook e _Account
e activity diagrams R LR L.«
o COIltI‘lbutiOnS g & id:Integer accounts
o class diagrams = getld() :Integer ouner|1
. - getBﬂanc?().Integt.er S EmEr
(] COI’ICIUSIOI’IS = deposit(a:Integer):Boolean =
° ... = withdraw(a:Integer):Boolean 4 id:Integer

(] OuﬂOOk 4L name:String

= getId():Integer
= setName(n:String):Boolean
= getName():String

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 5 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 6

O F[JSRTIEBMIN M The Object Constraint Language (ocr) (VIS BTERHDEIM The Object Constraint Language (ocL)

The Object Constraint Language (ocL) ocL by Example

@ Class invariants:

o Textual extension of the umL context Account [\ context Account inv: 0 <= id
o Allows for annotating umML @ Operation specifications:
. Account
diagrams 2 batance: Integer context Account::deposit(a:Integer):Boolean
. @ id:Integer N
@ In the context of class—diagrams: = getId(): Integer Becoumts pre: 0 < a
= getBalance():Integer b _L b l +
1 1 - d it(a:Int) :Bool . =
e invariants - SR e post: balance alance@pre + a
e preconditions @ A “uniqueness” constraint for the class Account:
] POStCOHditionS context Account::deposit(a:Integer):Boolean .
pre: 0 < a context Account inv:
. post: balance = balance@pre+a
e Can be used for other diagrams and id = ddgpre Account::allInstances()

->forAll(al,a2 | al.id = a2.id implies al = a2)

OCL context ocL keywords UML path expressions

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 7 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 8

Formalization of uML and ocL Formalization of umML

Formalization of uML and ocL

How to Proceed? Outline

Turning uML/ocCL into a formal method

@ A formal semantics of umL class models

o typed path expressions
e inheritance

e dynamic binding

o ...

@ Formalization of umML

@ A formal semantics of ocL and proof support for ocL
reasoning over UML path expressions

large libraries

three-valued logic

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 9 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 10

Formalization of umL and ocL Formalization of umL Formalization of umL and ocL Formalization of umL

A Semantics of Typed Path Expressions Representing Class Types

0
o0 - - ? .
Question: What is the sem'fmtlcs of self. s: o The “extensible records” approach A
Access the value of the attribute s of the object self. e We assume a common superclass (0). .
. . . The uni i teed by a tag type, e. g.: = s:5tri
e Formalizing type safe path expressions requires ° theuniquenessis guaranteed by a fag bype. ¢- & 25tring
e a HOL representation of class types Otag = classO Z%
e HOL functions for accessing attributes B
e support for inheritance and subtyping o Construct class type as tuple along inheritance — 98 IEER P
o After adding new classes to a model hierarchy é
[04

o there is no need for re-proving
e definitions can be re-used
a B:

@ Goal: a type-safe object store, supporting modular proofs (Otag x0id) ((Atag xString) x ((Bug xInteger) x “l)l)l

where _, denotes types supporting undefined values.

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March 9th, 2007 1 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 12

Formalization of umML

Formalization of uML and ocL

Representing Class Types: Summary

o Advantages: 0|
o it allows for extending class types (inheritance), Ay
e subclasses are type instances of superclasses X
= it allows for modular proofs, i. e., = 5:5tring

a statement ¢(x :: (a B)) proven for class B is still Z}
valid after extending class B.

B
= b:Integer

e However, it has a major disadvantage:

e modular proofs are only supported
for one extension per class

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 13

Formalization of uML and ocL [EEIOSHENIEGIS NI RGYIA

An Extensible Object Store

%&u) =0xa?

U,

(10‘,4)[30) =0x(Axal+p°),

A
B W gy = O x (Ax (Bxall4 pA), + 6°),
@/(iB)ac,ﬁu)l;A) =0x (A x (B x “f + (C x “f +/3A))L +ﬁ0)i

U, U, U,

3 2 1
(aB,aC,po,p8) = #(an popay = @ (qa poy <

,

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007 15

(@)]

Formalization of umML

Formalization of uML and ocL

A Universe Type

A universe type represents all classes
@ supports modular proofs with arbitrary extensions
e provides a formalization of a extensible typed object store

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007

Formalization of umL

Formalization of umL and ocL

Operations Accessing the Object Store

@ injections

mko o =Inlo with type a® 0 - %%,

@ projections

getou = u with type % - a° 0

@ type casts
with type a® A - (Ax af + f°) 0
with type (Ax a? + %) 0 > a* A

Ajo] = geto omky
O =getao mko

All definitions are generated automatically

March oth, 2007

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications

Formalization of umML

Does This Really Model Object-orientation?

Formalization of uML and ocL

For each umL model, we have to show several properties:
@ subclasses are of the superclasses kind:
isTypeg self
isKindy self

=—>{[ls]

= s:String

@ “re-casting™:
Z% isTypeg self
B
self a) m * LA isTypes (self 4] - [A])

= b:Integer

@ monotonicity of invariants, ...

All rules are derived automatically

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007

Formalization of ocrL

Formalization of umL and ocL

How to Formalize ocL ?

The semantic foundation of the ocL standard:
Chapter 11 “The ocL Standard Library” (normative):
describes the requirements (pre-/post-style)

Appendix A “Semantics” (informative):
presents a formal semantics (paper and pencil)

Achim D. Brucker (eTH Zurich) A Proof Environment for oo Specifications March gth, 2007

17

Formalization of ocL

Formalization of uML and ocL

Outline

@ Formalization of ocL

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March 9th, 2007

Formalization of ocL

Formalization of umL and ocL

The ocL Semantics: An Example

@ The Interpretation of “X->union(Y)” for sets (“X u Y”):

XuY ifX+#landY #1,

I(u)(X,Y) =
(L)) 1 otherwise

o Thisisa
o lifted (sets can be undefined, denoted by 1) and
e strict (the union of undefined with anything is undefined)

version of the union of “mathematical sets.”

March gth, 2007

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications

20

Formalization of uML and ocL

Formalization of ocL

A Machine-checked Semantics

@ Our formalization of “X->union(Y)” for sets (“X U Y”):
->union= (strictify(,\ X. strictify(AY. "X'u rY’J))) .
@ We model concepts like strict and lifted explicit, i. e., we introduce:

e a datatype for lifting:
o= o, | L

L2

e a combinator for strictification:

strictify f x =if x = L then Lelse f x

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007 21

Formalization of umL and ocL

Formalization of ocrL

Proving Requirements

isEmpty() : Boolean

(11.7.1-g)
Is self the empty collection?

post: result = (self->size() = 0)

Bag
lemma (self ->isEmpty()) = ((self, B :: bot)Bag)->size()=0
apply(rule Bag_sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OcIMtBag_def
OclStrictEq_def

Zero_ocl_int_def ss_lifting’)
done

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007 23

Formalization of uML and ocL

Formalization of ocL

Is This Semantics Compliant?

@ We prove formally (within our embedding):

if Sem[X]y # L,

L_‘rsem[{Xﬂij
Sem[not Xy = {l otherwise

lemma "(Sem[not x]y) = (if Sem[x]y # Lthen —"Sem[x]y’, else L)"
apply(simp add: OcINot_def DEF_def lifto_def lift1_def lift2_def
semfun_def)
done

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007 22

Conclusions and Outlook

Outline

@ Conclusions and Outlook

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007 24

Conclusions and Outlook Contributions Conclusions and Outlook EEOSNERETNY

Contributions Conclusions

e Theory:
o A formal semantics for constrained oo data structures
e An extensible, type-safe representation of object-structures in HOL, o Itis possible to formalize a real-world standard
o A formal semantics for oo constraint languages @ A shallow embedding can be used for defining the semantics of an
e Proof calculi for a three-valued logic over path expressions object-oriented specification language

@ Practice: @ Defining the semantics and building tools conservatively is feasible
o A machine checked semantics for ocr. 2.0 @ A datatype package for object-oriented data structures is feasible

o A framework for analyzing oo specifications
e A datatype package for oo data structures,
e HOL-OCL, an interactive theorem prover for umL/ocCL

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 25 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 26

Conclusions and Outlook [EMONTIIVN Bibliography

Outlook Bibliography

[3] The Isabelle/HOL-OCL website, Mar. 2006.

Our framework provides the foundation for: [d uML 2.0 ocL specification, Oct. 2003.
e Consistency analysis of specifications Available as omG document ptc/03-10-14.
@ Proving refinement [4 omG Unified Modeling Language Specification, Mar. 2003.
@ Proving side-conditions of model-transformations (Version 1.5). Available as oMG document formal/03-03-o1.
@ Program verification [] M. Richters.
o Test data generation A Precise Approach to Validating UML Models and OCL
Constraints.

PhD thesis, Universitdt Bremen, Logos Verlag, Berlin, BISS
Monographs, No. 14, 2002.

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 27 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 28

T
Outline

@ Formalizing umr/ocL
Part I1 @ Motivation
Appendix @ Background
@ Formalizing umL/ocL

@ The nor-ocL System

@ Related Work

@ Future Work

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications

A Proof Environment for oo Specifications March gth, 2007 29

Achim D. Brucker (ETH Zurich)

Motivation

Formalizing umL/0CL

Our Vision:

A Tool-supported Formal Software Development Process

Challenges of Formalizing umL/0CL

Only few formal methods are specialized for analyzing
object oriented specifications.

March gth, 2007

Proof Test Data
Obligations
Validation
. Model-Analysis Test
@ Problems and open questions: and Verification > [Hamess -
. ; o (HOL-OCL)
e object equality and aliasing ArgoUML | oo
e embedding of object structures into logics
o referencing and de-referencing, including “null” references SecureUMLIOCL e
. . . onfig
e dynamic binding M Model 7
1 hi Repository Code
@ polymorphism (sudsml) Generator
e representing object-oriented concepts inside)-calculi
e providing a (suitable, shallow) representation in theorem provers "
o .

A Proof Environment for oo Specifications

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March oth, 2007 31

Achim D. Brucker (eTH Zurich)

March oth, 2007

30

32

Motivation

The Situation Today

A Software Engineering Problem

e Software systems
e are becoming more and more complex and
e are used in safety and security critical applications.
e Formal methods are one way to increase their reliability.
@ But, formal methods are hardly used by mainstream industry:

e difficult to understand notation
e lack of tool support
e high costs

e Semi-formal methods, especially umL,

o are widely used in industry, but
o they lack support for formal methodologies.

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007 33

Motivation

Why Formal Methods are not widely accepted ?

@ Only a few formal methods address industrial needs:
e support for object-oriented modeling and programming.
e formal tool support (model checkers, theorem provers, ...).
e integration in standard cASE tools and processes.

@ Formal methods people and industrial software developer are
often speaking different languages.

To tackle these challenges we provide a a formal foundation for (support-
ing object-orientation) for a industrial accepted specification languages
(umr/ocL) [3, 2].

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March 9th, 2007 35

Why use Formal Methods

There are many reasons for using formal methods:
e safety critical applications, e.g. flight or railway control.
@ security critical applications, e.g. access control.
e financial reasons (e.g. warranty), e.g. embedded devices.
@ legal reasons, e.g. certifications.

Many successful applications of formal methods proof their success!

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007

Motivation

Is ocL an Answer?

@ UML/OCL attracts the practitioners:

e is defined by the 0o community,
e has a “programming language face,
e increasing tool support.

@ UML/OCL is attractive to researchers:

o defines a “core language” for object-oriented modeling,
e provides good target for 0o semantics research,
e offers the chance for bringing formal methods closer to industry.

Turning ocL into a full-fledged formal methods is deserving and
interesting.

34

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007

36

Are diagrams enough to specify OO systems
formally?

@ The short answer:
e UML diagrams are not powerful enough for supporting formal
reasoning over specifications.

@ The long answer:
We want to be able to

e verify (proof) properties
o refine specifications

@ Thus we need:

e aformal extension of UML.

Achim D. Brucker (eTH Zurich) A Proof Environment for oo Specifications March gth, 2007
Shallow vs. Deep Embeddings

Representing the logical operations or and and via a
@ shallow embedding:
Direct definition of the semantics, e.g. each construct is
represented by some function on a semantic domain.
xandy=)e.xeAye xory=)le.xeVvye

@ deep embedding:
The abstract syntax is presented as a datatype and a semantic
function I from syntax to semantics.
expr = var var | expr and expr | expr or expr

and the explicit semantic function I:

I[varx] =)e.e(x)

I[xandy] = Me.I[x]enI[y]e
I[xory] = Me.I[x]evI[y]e
Achim D. Brucker (eTH Zurich) A Proof Environment for oo Specifications March gth, 2007

37

39

Strong Formal Methods

A formal method is a mathematically based technique for the
specification, development and verification of software and hardware
systems.

@ A strong formal method is a formal method supported by formal
tools, e. g., model-checkers or theorem provers.

@ A semi-formal method lacks both, a sound formal definition of its
semantics and support for formal tools.

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 38

RUSHENARERUYIIIIGM Defining Semantics

Defining Semantics

Formal ocL Semantics

Textbook Semantics Machine Checkable Semantics
« good to Language Research || Applications
SOOI o Language o Verification
o el Analysis o Refinement
» Language
Consistency o Specification

Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 40

The ocL Standard

Formalizing umL/0CL

The Semantic Foundation of ocL

The semantics of ocL 2.0 is spread over several places:

Chapter 7 “ocL Language Description” (informative): introduces ocL
informally using examples,

Chapter 10 “Semantics Described using uML” (normative): presents an
“evaluation” environment,

Chapter 11 “The ocL Standard Library” (normative): describes the
requirements (pre-/post-style) of the library,

Appendix A “Semantics” (informative): presents a formal semantics
(textbook style), based on the work of Richters.

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007

The ocr Standard

Formalizing umL/0CL

List of Glitches

@ We found several glitches:

e inconsistencies between the formal semantics and the requirements
e missing pre- and postconditions

e wrong (e.g., to weak) pre- and postconditions

o

e and examined possible extensions (open problems):
operations calls and invocations

smashing of datatypes

equalities

recursion

semantics for invariants (type sets)

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications

March gth, 2007 43

The ocr Standard

Formalizing umL/ocL

The Semantics Foundation of the Standard

We see the formal foundation of ocL critical:
@ no normative formal semantics.
@ no consistency and completeness check.

@ no proof that the formal semantics satisfies the normative
requirements.

Nevertheless, we think the ocL standard (“ptc/03-10-14") is mature

enough to serve as a basis for a machine-checked semantics and formal

tools support.

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007

Textbook Semantics

Formalizing umL/ocL

Textbook Semantics: Example

The Interpretation of the logical connectives:

bl bz bl and bz bl or bz bl Xor bz bl implies bz not bl
false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false 1 false 1 1 true true
true L L true L L false

L false false 1 1 i i

1 true 1 true 1 true 1

1 1 1 1 1 1 1

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007

44

Testbook semantics
Textbook Semantics: Summary

@ Usually “Paper-and-Pencil” work in mathematical notation.

@ Advantages
e Useful to communicate semantics.
o Easy to read.

e Disadvantages
e No rules, no laws.
e Informal or meta-logic definitions
(“The Set is the mathematical set.”).
e It is easy to write inconsistent semantic definitions.

A Proof Environment for oo Specifications March gth, 2007 45

Achim D. Brucker (eTH Zurich)

ISR EIITAERu Yol Ml Machine-checked Semantics

Machine-checked Semantics: Summary

Motivation: Honor the semantical structure of the language.
@ A machine-checked semantics
e conservative embeddings guarantee consistency of the semantics.

e builds the basis for analyzing language features.
o allows incremental changes of semantics.

@ Many theorems, like “A->union B = B->union A” can be
automatically lifted based on their HOL variants.

@ As basis of further tool support for

e reasoning over specifications.
e refinement of specifications.
e automatic test data generation.

A Proof Environment for oo Specifications March gth, 2007 47

Achim D. Brucker (eTH Zurich)

Machine-checked Semantics

Formalizing umL/ocL

Machine-checked Semantics: Example

Defining the core logic (Strong Kleene Logic):

not _ = lifty strictify(Ax. ="x"))
_ and_ = lift, (/\xy. if (def x)
thenif (def y)then "x' A "y’
elseif "x " then 1 else false,
elseif (def y) thenif y ' then L
else false else L)
Ax y. not (not x andnot y)
Axy.(not x) or y

_or

_ implies _

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007

The HOL-OCL System [EBc{e}¥eYeld

HOL-OCL

@ Based on our formalization of uML and ocL, we use Isabelle for
developing a “new” theorem prover: HOL-OCL.

@ HOL-OCL provides:
e a formal, machine-checked semantics for ocL 2.0,
e an interactive proof environment for ocr,
e servers as a basis for examining extensions of oct,
e publicly available:
http://www.brucker.ch/projects/hol-ocl/.

A Proof Environment for oo Specifications March gth, 2007

Achim D. Brucker (ETH Zurich)

46

48

The HOL-OCL System

HOL-OCL

The Technical Design of HOL-OCL

@ Reusability:
e Reuse old proofs for class models constructed via inheritance
introduction of new classes.
e Extensible semantics approach.

® Representing semantics structurally:

o Organize semantic definitions by certain combinators capturing
the semantical essence (e.g. lifting and strictness).
e Automatically construct theorems out of uniform definitions.

Achim D. Brucker (ETH Zurich)

March gth, 2007 49

A Proof Environment for oo Specifications

The HOL-OCL System

System Architecture: A Detailed View

HOL-OCL

HoL-ocL User Interface (based on Proof General)
Datatype Package Theory Morpher

Proof Document
(Theory Files)

‘ Isabelle/HoOL ‘

UML/OCL
Specification

‘ sML (Standard mr) ‘

March gth, 2007 51

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications

The HOL-OCL System

System Architecture:

HOL-OCL

Overview

[UML/OCL specifications]»

HOL-OCL
Isabelle Instance for OCL/UML

1

Isabelle/HOL

Isabelle Instance for HOL

L

Proof General
X)Emacs-based User Interface

1)

Isabelle

Generic Theorem Prover

SML-based User Interface

-

1

Standard ML (SML)

Implementation Language

Achim D. Brucker (ETH Zurich)

The HOL-OCL System

A Proof Environment for oo Specifications

HOL-OCL

Programming Isabelle

March gth, 2007

fun cast_class_id class parent thy = let

val pname = name_of parent
val cname = name_of class

4 val thmname = "cast_"~(cname)”"_id"

val goal_i = mkGoal_cterm

(Const(is_class_of class,dummyT)$Free("obj",dummyT))
(Const("op_=",dummyT)$(Const(parent2class_of class pname,dummyT)
$(Const(class2get_parent class pname,dummyT)$Free("obj",dummyT)))
9 $(Free("obj",dummyT)))
val thm = prove_goalw_cterm thy [] goal_i

(fn p => [cut_facts_tac p 1,

asm_full_simp_tac

(* proof script =)

(HOL_ss addsimps

14 [o_def,

get_def thy (parent2class_of class pname),
get_def thy (class2get_parent
class pname)]) 1,

stac (get_thm thy
19 asm_full_simp_tac
get_def thy
get_thm thy
stac (get_thm thy
ALLGOALS (simp_tac
24 in

(Name mk_get_parent)) 1,

(HOL_ss addsimps [

(is_class_of class),

(Name ("is_"”~pname™"_mk_"~(cname)))]
(Name ("get_mk_"~(cname)~"_id"))) 1,
(HOL_ss))1)

(fst(PureThy.add_thms [((thmname,thm),[])] (thy)))

end

)1,

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications

March gth, 2007

50

52

The HOL-OCL System HOL-OCL The HOL-OCL System Examples

The HOL-O0CL Workflow Example 1: Analyzing Redundancies
ArgoUML Dresden-OCL HOL-OCL
Model-Analysi context Person
° ean(;1aySIS Fersel | inv AllPersonsWithDriversLicenseAdult:
Verification = age:Integer self.driversLicense->notEmpty()
implies self.age > 17

person

Model
Repository
(sudsml)

driversLicense|0..1

DriverslLicense context DriversLicense
@ licenseClass:String [~~~ 7] Y Aéékégﬁngggwge{;mult:

‘ XMI
(UML+OCL)

Model

Repository Code
(SecureUML+OCL) (MDR) Generation
Dresden OCL Figure: A simple model of vehicles and licenses
Design Phase Verification and Code-Generation
Phase
Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 53 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007
Tools 1/2
Invoice eBank Company R&L HOL-OCL KeY OCLVP
classes 3 8 v 13 .ob]ec‘.[model UML Iava UML
ttribut inheritance single single single
attri u ?s 5 15 10 27 extensible yes no no
associations 3 5 6 12 conservative yes no no
operations 7 2 17 embedding shallow pre-compilation shallow
generalizations 0 0 2 constraint languge OCL 2.0 dynamic logic! HOL?
specification (lines) 149 114 210 520 conservative yes no yes
generated theorems 647 1444 1312 2516 invariants semantic/structural structural structural
time (in seconds) 1 42 49 136 embedding shallow pre-compilation shallow
datatype package yes no no
meta-logic HOL dynamic Logic HOL

! frontend for using ocCL 1.x as concrete input syntax available
* frontend for using oCL 2.x as concrete input syntax available

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 55 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007

Related Work Future Work Information Security (Access Control)

Tools 2/2 Future Work: Security (Access Control)
Develop support for analyzing access control in HOL-OCL. J
Boogie Jive LOOP
object model C# Java Java
inheritance single single single «secureuml.permission»
extensible no no no o T D OwnerMeeting
. caller=self.owner.name - - - .
conservative no yes = Meeting:update
. e e e = Meeting:delete

embedding pre-compilation pre-compilation pre-compilation

| Meeting
constraint languge Spec# JML JML «secureuml.role» \ = start:Date
conservative no yes no UserRole o = dufation;Tine
invariants structural structral manual & notify():0clvoid

. o @ cancel():0clVoid
embedding pre-compilation shallow shallow 0 =
datatype package no no no «secureuml.role» owner|1
. . 1 AdministratorRole
meta-logic specialized HOL HOL Person
= name:String
Achim D. Brucker (eTH Zurich) A Proof Environment for oo Specifications March gth, 2007 57 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 58
Verification of Ossc-orented Sofowe Specitction-based Teting

Future Work: Object-oriented Verification Excursus: HOL-TESTGEN

HOL-TESTGENIs an formal test-case (test-data) generation tool for the
specification-based unit and sequence test.

Develop tool-supported, e. g., by extending HOL-0CL, formal methods

for object-oriented systems. e Built on top of Isabelle/HoL.

@ Test specifications are written in HOL.

Future work in this direction includes @ Automatic generation of test Scripts_
e the development of formal methodologies, e. g., object-oriented @ Many case-studies: red-black trees, firewall policies, ...
refinement.

test_spec "is_sorted(PUT (l::(’a list)))"
apply(gen_test_cases PUT)
store_test_thm "test_sorting"

o the development of methods for source-level verifications.

e the integration of behavioral specifications data-oriented
specifications into one consistent formal framework.

gen_test_data "test_sorting"
gen_test_script "list_script.sml" test_sorting PUT "myList.sort"

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 59 Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March gth, 2007 60

Specification-bucd Tsing
Future Work: Specification-based Testing

Develop support for analysing access control in HOL-OCL. J

Future work in this direction includes
e the integration of (external) automatic decision procedures.
o the development of test-strategies for three-valued specifications.

@ The development of domain-specific test-case generation
algorithms.

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March 9th, 2007 61

Personal Motivation and Interests

@ My personal interests are centered around:
e security,
e formal methods, and
e software engineering.

@ In particular, I want to develop techniques, tools and processes for
ensuring
@ correctness,
o safety, and
e security

of software and hardware systems.

Achim D. Brucker (ETH Zurich) A Proof Environment for oo Specifications March oth, 2007 63

Building a Formal (MDE) Toolchain
Future Work: Building a Formal (MDE) Toolchain

Building an integrated tool-chain from specification to formal analysis,
test-case generation and code-generation.

Future work in this direction includes the development of
e formal model transformation with proof obligations.
e techniques for combining verification and testing.

e techniques for runtime enforcement of specifications.

Achim D. Brucker (ETH Zurich)

A Proof Environment for oo Specifications March gth, 2007 62

Curriculum Vit

01/2003-03/2007 Research Assistant at the Information Security
Group, headed by Prof. David Basin, ETH Zurich,
Switzerland.

06/2000-12/2002 Research Assistant at the Chair for Software
Engineering, headed by Prof. David Basin,
Albert-Ludwigs University Freiburg, Germany.

06/2000 Diplom Informatiker (Masters of Computer
Science), Albert-Ludwigs University Freiburg,
Germany. Title of thesis: Verification of Division
Circuits using Word-level Decision-diagrams,
supervised by Prof. Dr. Bernd Becker.

Achim D. Brucker (eTH Zurich)

A Proof Environment for oo Specifications March gth, 2007 64

