
An Interactive Proof Environment for
Object-oriented Specifications

Achim D. Brucker
brucker@inf.ethz.ch http://www.brucker.ch/

Information Security,  Zurich, Switzerland

March th, 

Motivation

¿e Situation Today
A So ware Engineering Problem

So ware systems
are becoming more and more complex and
are used in safety and security critical applications.

Formal methods are one way to increase their reliability.
But, formal methods are hardly used by mainstream industry:

difficult to understand notation
lack of tool support
high costs

Semi-formal methods, especially ,
are widely used in industry, but
they lack support for formal methodologies.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

We Address Some of ¿ese Criticisms

We formalize / and provide tool support
Our solution is formal
Our solution is based on a standard widely used in industry
Our solution has tool support

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Contributions

Contributions

¿eory:
A formal semantics for constrained  data structures
An extensible, type-safe representation of object-structures in ,
A formal semantics for  constraint languages
Proof calculi for a three-valued logic over path expressions

Practice:
A machine checked semantics for  .
A framework for analyzing  specifications
A datatype package for  data structures,
-, an interactive theorem prover for /

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

/ in a Nutshell

Outline

 / in a Nutshell
¿e Unified Modeling Language ()
¿e Object Constraint Language ()

 Formalization of  and 
Formalization of 
Formalization of 

 Conclusions and Outlook
Contributions
Conclusions
Outlook

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

/ in a Nutshell The Unified Modeling Language ()

¿e Unified Modeling Language ()

Visual modeling language
Object-oriented
development
Industrial tool support
 standard
Many diagram types, e. g.

activity diagrams
class diagrams
. . .

Eat something

Read a book Listen to music

still hungry

had enough

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..*

owner 1

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

/ in a Nutshell The Object Constraint Language ()

¿e Object Constraint Language ()

Textual extension of the 
Allows for annotating 
diagrams
In the context of class–diagrams:

invariants
preconditions
postconditions

Can be used for other diagrams

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

/ in a Nutshell The Object Constraint Language ()

 by Example

Class invariants:
context Account inv: 0 <= id

Operation specifications:
context Account::deposit(a:Integer):Boolean

pre: 0 < a

post: balance = balance@pre + a

A “uniqueness” constraint for the class Account:
context Account inv:

Account::allInstances()

->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

 context  keywords  path expressions

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and 

How to Proceed?
Turning / into a formal method

 A formal semantics of  class models
typed path expressions
inheritance
dynamic binding
. . .

 A formal semantics of  and proof support for 
reasoning over  path expressions
large libraries
three-valued logic
. . .

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Outline

 / in a Nutshell

 Formalization of  and 
Formalization of 
Formalization of 

 Conclusions and Outlook

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

A Semantics of Typed Path Expressions

Question: What is the semantics of self.s?
Access the value of the attribute s of the object self.

Formalizing type safe path expressions requires
a  representation of class types
 functions for accessing attributes
support for inheritance and subtyping

A er adding new classes to a model
there is no need for re-proving
definitions can be re-used

Goal: a type-safe object store, supporting modular proofs

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Representing Class Types

¿e “extensible records” approach
We assume a common superclass (O).
¿e uniqueness is guaranteed by a tag type, e. g.:

Otag ∶= classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α B ∶= (Otag ×oid) × ((Atag ×String) × ((Btag ×Integer) × α⊥)⊥)⊥

where _⊥ denotes types supporting undefined values.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Representing Class Types: Summary

Advantages:
it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i. e.,
a statement ϕ(x ∶ ∶ (α B)) proven for class B is still
valid a er extending class B.

However, it has a major disadvantage:
modular proofs are only supported
for one extension per class

O

A

s:String

B

b:Integer

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

A Universe Type

A universe type represents all classes
supports modular proofs with arbitrary extensions
provides a formalization of a extensible typed object store

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

An Extensible Object Store

O O

αO

U 
(αO) = O × α

O
⊥

A A βO

αA

U 
(αO) = O × α

O
⊥

U 
(αA,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U 
(αO) = O × α

O
⊥

U 
(αA,βO) = O × (A× αA

⊥ + βO)⊥

U 
(αB,βO ,βA) = O × (A× (B× αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U 
(αO) = O × α

O
⊥

U 
(αA,βO) = O × (A× αA

⊥ + βO)⊥

U 
(αB,βO ,βA) = O × (A× (B× αB

⊥ + βA)⊥ + βO)⊥

U 
(αB,αC,βO ,βA) = O × (A× (B× αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 
(αB,αC,βO ,βA) ≺ U 

(αB,βO ,βA) ≺ U 
(αA,βO) ≺ U 

(αO)

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Operations Accessing the Object Store

injections
mkO o = Inl o with type αO O→ U 

αO

projections
getO u = u with typeU 

αO → αO O

type casts
A[O] = getO ○mkA with type αAA→ (A× αA

⊥ + βO) O
O[A] = getA ○mkO with type (A× αA

⊥ + βO) O→ αAA

. . .

All definitions are generated automatically

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Does¿is Really Model Object-orientation?

For each  model, we have to show several properties:

O

A

s:String

B

b:Integer

subclasses are of the superclasses kind:
isTypeB self

isKindA self
“re-casting”:

isTypeB self

self [A][B] ≠ � ∧ isTypeB (self [A][B][A])
monotonicity of invariants, . . .

All rules are derived automatically

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Outline

 / in a Nutshell

 Formalization of  and 
Formalization of 
Formalization of 

 Conclusions and Outlook

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

How to Formalize  ?

¿e semantic foundation of the  standard:
Chapter  “¿e  Standard Library” (normative):

describes the requirements (pre-/post-style)
Appendix A “Semantics” (informative):

presents a formal semantics (paper and pencil)

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

¿e  Semantics: An Example

¿e Interpretation of “X->union(Y)” for sets (“X ∪ Y”):

I(∪)(X,Y) ≡
⎧⎪⎪⎨⎪⎪⎩
X ∪ Y if X ≠⊥ and Y ≠⊥,
⊥ otherwise

¿is is a
li ed (sets can be undefined, denoted by ⊥) and
strict (the union of undefined with anything is undefined)

version of the union of “mathematical sets.”

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

AMachine-checked Semantics

Our formalization of “X->union(Y)” for sets (“X ∪ Y”):

->union ≡ (strictify(λX. strictify(λY. ⌞⌜X⌝ ∪ ⌜Y⌝⌟))) .

We model concepts like strict and li ed explicit, i. e., we introduce:

a datatype for li ing:
α� ∶= ⌞α⌟ ∣ �

a combinator for strictification:

strictify f x ≡ if x = � then� else f x

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Is ¿is Semantics Compliant?

We prove formally (within our embedding):

Sem⟦not X⟧γ =
⎧⎪⎪⎨⎪⎪⎩
⌞¬⌜Sem⟦X⟧γ⌝⌟ if Sem⟦X⟧γ /= � ,
� otherwise .

lemma "(Sem⟦not x⟧γ) = (if Sem⟦x⟧γ ≠ � then ⌞¬⌜Sem⟦x⟧γ⌝⌟ else �)"
apply(simp add: OclNot_def DEF_def li _def li _def li _def

semfun_def)
done

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalization of  and  Formalization of 

Proving Requirements

isEmpty() : Boolean (..-g)
Is self the empty collection?

post: result = (self->size() = 0)

Bag
lemma (self ->isEmpty()) = ((self, β ∶∶ bot)Bag)->size()≐ 
apply(rule Bag_sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OclMtBag_def

OclStrictEq_def
Zero_ocl_int_def ss_li ing’)

done

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Conclusions and Outlook

Outline

 / in a Nutshell

 Formalization of  and 

 Conclusions and Outlook

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Conclusions and Outlook Contributions

Contributions

¿eory:
A formal semantics for constrained  data structures
An extensible, type-safe representation of object-structures in ,
A formal semantics for  constraint languages
Proof calculi for a three-valued logic over path expressions

Practice:
A machine checked semantics for  .
A framework for analyzing  specifications
A datatype package for  data structures,
-, an interactive theorem prover for /

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Conclusions and Outlook Conclusions

Conclusions

It is possible to formalize a real-world standard
A shallow embedding can be used for defining the semantics of an
object-oriented specification language
Defining the semantics and building tools conservatively is feasible
A datatype package for object-oriented data structures is feasible

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Conclusions and Outlook Outlook

Outlook

Our framework provides the foundation for:
Consistency analysis of specifications
Proving refinement
Proving side-conditions of model-transformations
Program verification
Test data generation

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Bibliography

Bibliography

¿e Isabelle/HOL-OCL website, Mar. .

 .  specification, Oct. .
Available as  document ptc/--.

 Unified Modeling Language Specification, Mar. .
(Version .). Available as  document formal/--.

M. Richters.
A Precise Approach to Validating UML Models and OCL
Constraints.
PhD thesis, Universität Bremen, Logos Verlag, Berlin, BISS
Monographs, No. , .

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Part II

Appendix

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Outline

 Formalizing /

 Motivation

 Background

 Formalizing /

 ¿e - System

 Related Work

 Future Work

 About Me

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing /

Challenges of Formalizing /

Only few formal methods are specialized for analyzing
object oriented specifications.

Problems and open questions:
object equality and aliasing
embedding of object structures into logics
referencing and de-referencing, including “null” references
dynamic binding
polymorphism
representing object-oriented concepts inside λ-calculi
providing a (suitable, shallow) representation in theorem provers
. . .

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

Our Vision:
A Tool-supported Formal So ware Development Process

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model
Test

Harness

Validation

Proof

Obligations

Test Data

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

¿e Situation Today
A So ware Engineering Problem

So ware systems
are becoming more and more complex and
are used in safety and security critical applications.

Formal methods are one way to increase their reliability.
But, formal methods are hardly used by mainstream industry:

difficult to understand notation
lack of tool support
high costs

Semi-formal methods, especially ,
are widely used in industry, but
they lack support for formal methodologies.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

Why use Formal Methods

¿ere are many reasons for using formal methods:
safety critical applications, e.g. flight or railway control.
security critical applications, e.g. access control.
financial reasons (e.g. warranty), e.g. embedded devices.
legal reasons, e.g. certifications.

Many successful applications of formal methods proof their success!

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

Why Formal Methods are not widely accepted ?

Only a few formal methods address industrial needs:
support for object-oriented modeling and programming.
formal tool support (model checkers, theorem provers, . . .).
integration in standard  tools and processes.

Formal methods people and industrial so ware developer are
o en speaking different languages.

To tackle these challengeswe provide a a formal foundation for (support-
ing object-orientation) for a industrial accepted specification languages
(/) [, ].

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

Is  an Answer?

/ attracts the practitioners:
is defined by the  community,
has a “programming language face,”
increasing tool support.

/ is attractive to researchers:
defines a “core language” for object-oriented modeling,
provides good target for  semantics research,
offers the chance for bringing formal methods closer to industry.

Turning  into a full-fledged formal methods is deserving and
interesting.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Motivation

Are diagrams enough to specify OO systems
formally?

¿e short answer:
UML diagrams are not powerful enough for supporting formal
reasoning over specifications.

¿e long answer:
We want to be able to

verify (proof) properties
refine specifications

¿us we need:
a formal extension of UML.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Background

Strong Formal Methods

A formal method is a mathematically based technique for the
specification, development and verification of so ware and hardware

systems.

A strong formal method is a formal method supported by formal
tools, e. g., model-checkers or theorem provers.
A semi-formal method lacks both, a sound formal definition of its
semantics and support for formal tools.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Background

Shallow vs. Deep Embeddings
Representing the logical operations or and and via a

shallow embedding:
Direct definition of the semantics, e.g. each construct is
represented by some function on a semantic domain.
x and y ≡ λ e. x e ∧ y e x or y ≡ λ e. x e ∨ y e

deep embedding:
¿e abstract syntax is presented as a datatype and a semantic

function I from syntax to semantics.
expr = var var ∣ expr and expr ∣ expr or expr

and the explicit semantic function I:

I⟦var x⟧ = λ e . e(x)
I⟦xandy⟧ = λ e . I⟦x⟧ e ∧ I⟦y⟧ e
I⟦xory⟧ = λ e . I⟦x⟧ e ∨ I⟦y⟧ e

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / Defining Semantics

Defining Semantics

Formal  Semantics

Textbook Semantics

• good to
communicate

• no calculi

Machine Checkable Semantics

Language Research

• Language
Analysis

• Language
Consistency

Applications

• Verification

• Refinement

• Specification
Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / The  Standard

¿e Semantic Foundation of 

¿e semantics of  . is spread over several places:
Chapter  “ Language Description” (informative): introduces 

informally using examples,
Chapter  “Semantics Described using ” (normative): presents an

“evaluation” environment,
Chapter  “¿e  Standard Library” (normative): describes the

requirements (pre-/post-style) of the library,
Appendix A “Semantics” (informative): presents a formal semantics

(textbook style), based on the work of Richters.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / The  Standard

¿e Semantics Foundation of the Standard

We see the formal foundation of  critical:
no normative formal semantics.
no consistency and completeness check.
no proof that the formal semantics satisfies the normative
requirements.

Nevertheless, we think the  standard (“ptc/03-10-14”) is mature
enough to serve as a basis for a machine-checked semantics and formal
tools support.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / The  Standard

List of Glitches

We found several glitches:
inconsistencies between the formal semantics and the requirements
missing pre- and postconditions
wrong (e.g., to weak) pre- and postconditions
. . .

and examined possible extensions (open problems):
operations calls and invocations
smashing of datatypes
equalities
recursion
semantics for invariants (type sets)
. . .

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / Textbook Semantics

Textbook Semantics: Example

¿e Interpretation of the logical connectives:

b b b and b b or b b xor b b implies b not b

false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false � false � � true true
true � � true � � false
� false false � � � �

� true � true � true �

� � � � � � �

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / Textbook Semantics

Textbook Semantics: Summary

Usually “Paper-and-Pencil” work in mathematical notation.
Advantages

Useful to communicate semantics.
Easy to read.

Disadvantages
No rules, no laws.
Informal or meta-logic definitions
(“¿e Set is the mathematical set.”).
It is easy to write inconsistent semantic definitions.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / Machine-checked Semantics

Machine-checked Semantics: Example

Defining the core logic (Strong Kleene Logic):

not _ ≡ li  strictify(λx. ⌞¬⌜x⌝⌟)
_ and_ ≡ li  (λx y. if (def x)

then if (def y) then⌞⌜x⌝ ∧ ⌜y⌝⌟
else if⌜x⌝ then� else⌞false⌟

else if (def y) then if⌜y⌝ then�
else⌞false⌟ else�)

_ or _ ≡ λx y. not (not x and not y)
_ implies _ ≡ λx y. (not x) or y

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Formalizing / Machine-checked Semantics

Machine-checked Semantics: Summary

Motivation: Honor the semantical structure of the language.
A machine-checked semantics

conservative embeddings guarantee consistency of the semantics.
builds the basis for analyzing language features.
allows incremental changes of semantics.

Many theorems, like “A->unionB = B->unionA” can be
automatically li ed based on their  variants.
As basis of further tool support for

reasoning over specifications.
refinement of specifications.
automatic test data generation.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

-

Based on our formalization of  and , we use Isabelle for
developing a “new” theorem prover: -.
- provides:

a formal, machine-checked semantics for  .,
an interactive proof environment for ,
servers as a basis for examining extensions of ,
publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

¿e Technical Design of HOL-OCL

Reusability:
Reuse old proofs for class models constructed via inheritance
introduction of new classes.
Extensible semantics approach.

Representing semantics structurally:
Organize semantic definitions by certain combinators capturing
the semantical essence (e.g. li ing and strictness).
Automatically construct theorems out of uniform definitions.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

System Architecture: Overview

Isabelle/HOL
Isabelle Instance for HOL

UML/OCL specifications

Proof General
(X)Emacs−based User Interface

SML−based User Interface

Standard ML (SML)

Isabelle

Implementation Language

Generic Theorem Prover

HOL−OCL
Isabelle Instance for OCL/UML

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

System Architecture: A Detailed View

 (Standard )

susml Isabelle/

Datatype Package - Library ¿eory Morpher

- User Interface (based on Proof General)

HOL-OCL

/
Specification

import

Proof Document
(¿eory Files)

import

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

Programming Isabelle

fun cast_class_id class parent thy = let

val pname = name_of parent

val cname = name_of class

 val thmname = "cast_"^(cname)^"_id"

val goal_i = mkGoal_cterm

(Const(is_class_of class,dummyT)$Free("obj",dummyT))

(Const("op =",dummyT)$(Const(parent2class_of class pname,dummyT)

$(Const(class2get_parent class pname,dummyT)$Free("obj",dummyT)))

 $(Free("obj",dummyT)))

val thm = prove_goalw_cterm thy [] goal_i

(fn p => [cut_facts_tac p 1, (* proof script *)

asm_full_simp_tac

(HOL_ss addsimps

 [o_def,

get_def thy (parent2class_of class pname),

get_def thy (class2get_parent

class pname)]) 1,

stac (get_thm thy (Name mk_get_parent)) 1,

 asm_full_simp_tac (HOL_ss addsimps [

get_def thy (is_class_of class),

get_thm thy (Name ("is_"^pname^"_mk_"^(cname)))]) 1,

stac (get_thm thy (Name ("get_mk_"^(cname)^"_id"))) 1,

ALLGOALS(simp_tac (HOL_ss))])

 in

(fst(PureThy.add_thms [((thmname,thm),[])] (thy)))

end

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System -

¿e - Workflow

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Repository
Model

(su4sml)

Model−Analysis
and

Verification

HOL−OCLArgoUML Dresden−OCL

Java

Code

Generation
C#

Model
Repository

(MDR)
(SecureUML+OCL)

XMI

XMI

(UML+OCL)

Dresden OCL

Verification and Code−Generation

Phase

Design Phase

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System Examples

Example : Analyzing Redundancies

DriversLicense

licenseClass:String

Person

age:Integer

context Person
inv AllPersonsWithDriversLicenseAdult:

self.driversLicense->notEmpty()
implies self.age > 17

context DriversLicense
inv AllLicenseOwnersAdult:

person.age > 17

person

driversLicense 0..1

Figure: A simple model of vehicles and licenses

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

The - System Examples

Invoice eBank Company R&L

classes    
attributes    
associations    
operations    
generalizations    
specification (lines)    
generated theorems    
time (in seconds)    

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Related Work

Tools /

- KeY 

object model  Java 
inheritance single single single
extensible yes no no
conservative yes no no
embedding shallow pre-compilation shallow

constraint languge  . dynamic logic 
conservative yes no yes
invariants semantic/structural structural structural
embedding shallow pre-compilation shallow

datatype package yes no no
meta-logic  dynamic Logic 
 frontend for using  .x as concrete input syntax available
 frontend for using  .x as concrete input syntax available

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Related Work

Tools /

Boogie Jive 

object model C# Java Java
inheritance single single single
extensible no no no
conservative no yes
embedding pre-compilation pre-compilation pre-compilation

constraint languge Spec#  
conservative no yes no
invariants structural structral manual
embedding pre-compilation shallow shallow

datatype package no no no
meta-logic specialized  

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Future Work Information Security (Access Control)

Future Work: Security (Access Control)

Develop support for analyzing access control in -.

Meeting

start:Date
duration:Time

notify():OclVoid
cancel():OclVoid

Person

name:String

0..*

owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMeeting

Meeting:update
Meeting:delete

caller=self.owner.name

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Future Work Verification of Object-oriented Software

Future Work: Object-oriented Verification

Develop tool-supported, e. g., by extending -, formal methods
for object-oriented systems.

Future work in this direction includes
the development of formal methodologies, e. g., object-oriented
refinement.
the development of methods for source-level verifications.
the integration of behavioral specifications data-oriented
specifications into one consistent formal framework.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Future Work Specification-based Testing

Excursus: -TG
-TGis an formal test-case (test-data) generation tool for the

specification-based unit and sequence test.

Built on top of Isabelle/.
Test specifications are written in .
Automatic generation of test scripts.
Many case-studies: red-black trees, firewall policies, . . .

test_spec "is_sorted(PUT (l::(’a list)))"
apply(gen_test_cases PUT)

store_test_thm "test_sorting"

gen_test_data "test_sorting"
gen_test_script "list_script.sml" test_sorting PUT "myList.sort"

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Future Work Specification-based Testing

Future Work: Specification-based Testing

Develop support for analysing access control in -.

Future work in this direction includes
the integration of (external) automatic decision procedures.
the development of test-strategies for three-valued specifications.
¿e development of domain-specific test-case generation
algorithms.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

Future Work Building a Formal () Toolchain

Future Work: Building a Formal (MDE) Toolchain

Building an integrated tool-chain from specification to formal analysis,
test-case generation and code-generation.

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

ArgoUML

...

UML/OCL

(XMI)

or
SecureUML/OCL AC

Config

C#
+OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model
Test

Harness

Validation

Proof

Obligations

Test Data

Future work in this direction includes the development of
formal model transformation with proof obligations.
techniques for combining verification and testing.
techniques for runtime enforcement of specifications.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

About Me Personal Motivation

Personal Motivation and Interests

My personal interests are centered around:
security,
formal methods, and
so ware engineering.

In particular, I want to develop techniques, tools and processes for
ensuring

correctness,
safety, and
security

of so ware and hardware systems.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

About Me Curriculum Vitæ

Curriculum Vitæ

/–/ Research Assistant at the Information Security
Group, headed by Prof. David Basin,  Zurich,
Switzerland.

/–/ Research Assistant at the Chair for So ware
Engineering, headed by Prof. David Basin,
Albert-Ludwigs University Freiburg, Germany.

/ Diplom Informatiker (Masters of Computer
Science), Albert-Ludwigs University Freiburg,
Germany. Title of thesis: Verification of Division
Circuits using Word-level Decision-diagrams,
supervised by Prof. Dr. Bernd Becker.

Achim D. Brucker ( Zurich) A Proof Environment for  Specifications March th,  

