_ . _ _ Outline
Verification of umL/0cL Specifications
with HOL-OCL Motivation
Achim D. Brucker Turning umr/ocL Into a Strong Formal Method

Developing Formal Tools Using Embeddings

HOL-OCL

Conclusions
Information Security, ETH Zurich, Switzerland
Bibliography
Formal Specification and Verification, WS2006
Innsbruck, January 8th, 2007

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

The Situation Today: Is ocL an Answer?

A Software Engineering Problem

» UML/OCL attracts the practitioners:
» is defined by the 0o community;,
» has a “programming language face,”
» increasing tool support.

» Software systems

» are becoming more and more complex.
» used in safety and security critical applications.
» Formal methods are one way to ensure the correctness. » UML/OCL is attractive to researchers:

> But, formal methods are hardly used by industry. » defines a “core language” for object-oriented modeling,

» difficult to understand notation » provides good target for 0o semantics research,
» lack of tool support » offers the chance for bringing formal methods closer to
» high costs industry.

» Semi-formal methods, especially uML, are

» widely used in industry, but

Turning ocL into a full-fledged formal methods is deserving J
» not strong enough for a formal methodologies.

and interesting.

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL Achim D. Brucker Verification of umL/ocCL Specifications with HoL-ocL

Motivation

Turning umL/ocL Into a Strong Formal Method

Our Vision

Turning umr/ocL Into a Strong Formal Method

Test Data

Proof

Obligations
Validation
Model Model-Analysis Test
. and Verification Harness
ArcoUML Transformation (HOL-OCL) /\ c#
rgo +OCL

SecureUML/OCL AC
or 3
UML/OCL Config
(XMI) Model
Repository

(sudsml)

\/\
Generator
T

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

Turning umr/ocL Into a Strong Formal Method Turning umr/ocL Into a Strong Formal Method

Strong Formal Methods Challenges of Formalizing UML/OCL

Only few formal methods are specialized for analyzing object
oriented specifications.

A formal method is a mathematically based technique for the
specification, development and verification of software and
hardware systems. » Problems and open questions:
» object equality and aliasing
» embedding of object structures into logics

> A strong formal method is a formal method supported by » referencing and de-referencing, including “null” references
formal tools, e. g., model-checkers or theorem provers. » dynamic binding
» A semi-formal method lacks both, a sound formal > polymorphism
definition of its semantics and support for formal tools. » representing object-oriented concepts inside 1-calculi
» providing a (suitable, shallow) representation in theorem
provers

Achim D. Brucker Verification of uML/ocL Specifications with HOL-ocCL Achim D. Brucker Verification of umL/ocCL Specifications with HoL-ocL

Turning uML/ocL Into a Strong Formal Method

How to proceed

For Turning uML/0cCL into a formal method we need
1. a formal semantics of UML class diagrams.

» typed path expressions
» inheritance

2. aformal semantics of ocL and proof support for ocL.

» reasoning over UML path expressions
» large libraries

> e

Do the umL and oct standards provide the needed semantics?

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

Turning umr/ocL Into a Strong Formal Method

The Semantics Foundation of the Standard

We see the formal foundation of ocL critical:
» no normative formal semantics.
» no consistency and completeness check.

» no proof that the formal semantics satisfies the normative
requirements.

Nevertheless, we think the ocL standard (“ptc/03-10-14") is
mature enough to serve as a basis for a machine-checked
semantics and formal tools support.

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL

Turning umL/ocL Into a Strong Formal Method

The Semantic Foundation of ocL

The semantics of ocL 2.0 is spread over several places:

Chapter 7 “ocL Language Description” (informative):
introduces ocL informally using examples,

Chapter 10 “Semantics Described using uML” (normative):
presents an “evaluation” environment,

Chapter 11 “The ocL Standard Library” (normative): describes
the requirements (pre-/post-style) of the library,

Appendix A “Semantics” (informative): presents a formal
semantics (textbook style), based on the work of

Richters.

Achim D. Brucker

Verification of umL/ocL Specifications with HoL-0ocL

Developing Formal Tools Using Embeddings

Achim D. Brucker

Verification of umL/ocCL Specifications with HoL-ocL

Defining Semantics Textbook Semantics: Example 1

Formal ocL Semantics

Textbook Semantics Machine Checkable Semantics + The Interpretation of “X->union (Y)” for sets (X U Y”):
. good to Language Research || Applications
communicate - Ligoa . Verification I(O)(X, Y) = XuY ifX+#landY =1,

Analysis L otherwise.

e no calculi o Refinement

o Language
Consistency

» This is a strict and lifted version of the union of

o Specification «) »
mathematical sets”.

Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker

Verification of umL/ocCL Specifications with HoL-ocL

Dew: Dev:

Textbook Semantics: Example 2 Textbook Semantics: Summary

The Interpretation of the logical connectives:

b by biandb, biorbs bixorby b impliesby noth » Usually “Paper-and-Pencil” work in mathematical notation.

» Advantages

false false false false false true true . .
» Useful to communicate semantics.

false true false true true true true . Basy to read.

true false false true true false false

true true true true false true false > Disadvantages

false 1 false L L true true » No rules, no laws.

true L 1 true 1 1 false » Informal or meta-logic definitions (“The Set is the
1 false false L L L L mathematical set”).
1 true L true L true L » It is easy to write inconsistent semantic definitions.
1 1 1 1 1 1 1

Achim D. Brucker Verification of uML/ocL Specifications with HOL-ocCL Achim D. Brucker Verification of umL/ocCL Specifications with HoL-ocL

Machine-checked Semantics: Example 1

» The Interpretation of “X->union(Y)” for sets (“X u Y”):
->union = liftz(strictify()t X. strictify(1 Y. | rX1UFY1J))) .

» We make concept like “strict” and “lifted” explicit, i. e.,
» Strictifying:

strictify f x = if x = L then Lelse f x
» Datatype for Lifting: «, := «, | down and

% ifx= v,

e x.true otherwise.

Machine-checked Semantics: Example 2

Defining the core logic (Strong Kleene Logic):

not _ = lifty strictify(A x. ='x"))
= lift, (1 x y. if (def x)
thenif (def y)then 'x' A"y’
elseif "x ' then 1 else false,
elseif (def y) thenif y' then L

and _

else false else L)
or=)xy. not(notxandnot y)
implies=)xy.(notx) ory

Achim D. Brucker

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

Meta-language (e.g., HOL)

Datatype: bool int o set
Operations: AL —_t_ _U_,_€_
Rules: XAYy=yAX X+y=y+x XUy=yux
Datatype Adaption

Functional Adaption

Embedding Adaption
Object-language (e.g., ocL)

!
Datatype: Boolean, Integer, @ Se_tT
Operations: not_, _and_ -t x—;ﬂzi” -
Rules: xandy = yandx X+y=y+x . V=
y->unionx

Achim D. Brucker

Verification of umL/ocCL Specifications with HoL-ocL

Dev:

Machine-Checked Semantics: Summary

Motivation: Honor the semantical structure of the language.
» A machine-checked semantics

» conservative embeddings guarantee consistency of the
semantics.

» builds the basis for analyzing language features.

» allows incremental changes of semantics.

» Many theorems, like “A->union B = B->union A” can be
automatically lifted based on their HOL variants.
» As basis of further tool support for

» reasoning over specifications.
» refinement of specifications.
» automatic test data generation.

Achim D. Brucker

Verification of uML/ocL Specifications with HoL-ocL

Verification of umL/ocCL Specifications with HoL-ocL

But is This Semantics Compliant ? Proving Requirements

» Compliance to the textbook semantics: isEmpty() : Boolean (11.71-g)

» We can introduce a semantic mapping Is self the empty collection?

Sem[x] = x post: result = (self->size() = 0)
explicitely and prove formally (within our embedding): Bag
~Sem[X]y', ifSem[X]y# L, lemma (self ->isEmpty()) = (self, B :: bot)Bag)->size()=0
Sem[not X[y = . apply(rule Bag_sem_cases_ext, simp_all)
otherwise.

apply(simp_all add: OCL_Bag.OclSize_def OcIMtBag_def
OclStrictEq_def

» Compliance to the normative requirements, e. g.: ” int_def ss_liftine)
ero_ocl_int_def ss_lifting

post: result = (self->size() = 0) done

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

HOL-OCL

» a formal, machine-checked semantics for OCL 2.0,
» an interactive proof environment for OCL,
» servers as a basis for examining extensions of OCL,

» publicly available:
http://www.brucker.ch/projects/hol-ocl/.

HOL-OCL

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL Achim D. Brucker Verification of umL/ocCL Specifications with HoL-ocL

[Motivation Turning uni/oct Into a Strong Formal Method_DevIESS
The Technical Design of HOL-OCL

> Reusability:
» Reuse old proofs for class diagrams constructed via
inheritance introduction of new classes.
» Extensible semantics approach.

» Representing semantics structurally:
» Organize semantic definitions by certain combinators
capturing the semantical essence (e.g. lifting and strictness).
» Automatically construct theorems out of uniform
definitions.

Achim D. Brucker

[Motivation Turning uni/oc Into a Strong Formal Method DI
System Architecture: Overview

UML/OCL specifications »{

HOL-OCL }

Isabelle Instance for OCL/UML

1

{ Isabelle/HOL J { Proof General J
(X)

Isabelle Instance for HOL Emacs-based User Interface

1

{ Isabelle }

Generic Theorem Prover

1

Standard ML (SML) }

Implementation Language

‘ SML-based User Interface ‘

Achim D. Brucker

Verification of umL/ocL Specifications with HoL-ocL

The HOL-OCL Workflow

HOL-OCL

ArgoUML Dresden-OCL

Model-Analysis
and
Verification

Model
Repository
(sudsml)

‘ XMI
(UML+OCL)

Model

Repository
(MDR)

Dresden OCL

(SecureUML+OCL)

Verification and Code-Generation
Phase

Design Phase

Achim D. Brucker

Verification of umL/ocCL Specifications with HoL-0oCL

[Motivation Turning uni/oct Into a Strong Formal Method DB
HOL-OCL Example

context Person
inv AllPersonsWithDriversLicenseAdult:
self.driversLicense->notEmpty()
implies self.age > 17

Person
= age:Integer

person

driversLicense|0..1
DriverslLicense

@ licenseClass:String

inv AllLicenseOwnersAdult:
person.age > 17

context DriversLicense DT

Figure: A simple model of vehicles and licenses

Achim D. Brucker

Verification of uML/ocL Specifications with HoL-ocCL

Verification of umL/ocCL Specifications with HoL-ocL

HOL-OCL Demo

Conclusions

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

| Motivation _Turning um/ocL Into a Strong Formal Method D [| Motivation Turning uni/oct lnta a Strong Formal Method Do
What Do We Gain for the OCL community What Do We Show for the Formal Methods People

Formal tools for object-oriented systems can be developed using

.. the conservative, shallow embedding technique.
citizen of the next ocL standard. vatv W 8 qu

A machine-checked formal semantics should be a “first class” J

v

A shallow embedding can be used for defining the
semantics of an object-oriented specification language.

» uML/ocL could be used for accredited certification
processen, e. g., Common Criteria,
» Defining the semantics, and also building tools, in an

» this would open the door for a wide range of semi-formal
conservative way,i. e., without using axioms, is feasible.

and formal tools.

» A conservative embedding technique is useful to compare
different semantical variants and possible language
extensions.

» whereas formalizing to early, can kill the standardization
process, for ocL the time is ripe.

» We provide a formal tool-chain for ocL including

code-generators, transformation tools and a theorem
prover.

» A formalization of a real-world, i. e., defined by an
industrial committee, standard of a specification language
is possible

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL Achim D. Brucker Verification of umL/ocCL Specifications with HoL-ocL

Our Vision: Where are we? [3 The Isabelle/HOL-OCL website, Mar. 2006.

[A.D.Brucker and B. Wolff.
HOL-OCL: Experiences, consequences and design choices.
In J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, UML

Proof fesnee 2002: Model Engineering, Concepts and Tools, number 2460,
Obligations -
Model_Analysis Test | pages 196-211. Dresden, 2002.
and Verification Harness
ArgoUML (HOL-OcL) yanmw4 [d A.D. Brucker and B. Wolff.
A proposal for a formal OCL semantics in Isabelle/HOL.
SecureUMLIOGL AG Number 2410, pages 99-114. Hampton, VA, USA, 2002.
or [| Config
UML/OCL
Model
vy R Code 7 [A.D.Brucker and B. Wolff.
(sudsmi Generator Using theory morphisms for implementing formal methods
e tools.

In H. Geuvers and FE. Wiedijk, editors, Types for Proof and
Programs, number 2646, pages 59—77. Nijmegen, 2003.

Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL Achim D. Brucker Verification of umL/0cL Specifications with HoL-ocL

[uML 2.0 oCL specification, Oct. 2003.
Available as omG document ptc/03-10-14.

[{ M. Richters.

A Precise Approach to Validating UML Models and OCL App endlx
Constraints.

PhD thesis, Universitdt Bremen, Logos Verlag, Berlin, BISS

Monographs, No. 14, 2002. A Short Introduction to umML/0OCL

The ocL Standard

Formal Background

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocL

The Unified Modeling Language (UML) Are UML diagrams enough to specify OO systems

» visual modeling form auy?
language)
» many diagram types,
e.g. » The short answer:
» class diagrams » UML diagrams are not powerful enough for supporting
(static) formal reasoning over specifications.
] ‘Z’:latrel:i?gs » The long answer:
i usz cases We want to be able to
» verify (proof) properties
> object-oriented » refine specifications
development

_ ' » Thus we need:
» industrial tool support

» OMG standard with
semi-formal semantics

» a formal extension of UML.

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL Achim D. Brucker Verification of uMmL/ocL Specifications with HoL-ocL

A Short Introduction to umL/OCL The oct Standard

The Object Constraint Language (OCL) List of Glitches

» based on first-order logic with

» We found several glitches:
equality and typed set theory

» inconsistencies between the formal semantics and the

» designed for annotating UML requirements
diagrams » missing pre- and postconditions
» in the context of » wrong (e.g., to weak) pre- and postconditions
class—diagrams: gaY
» preconditions » and examined possible extensions (open problems):
> postconditions » operations calls and invocations
> invariants » smashing of datatypes
» can be used for other » equalities
diagrams too (not discussed > recursion
here) » semantics for invariants (type sets)

Achim D. Brucker Verification of uML/ocL Specifications with HOL-ocCL Achim D. Brucker Verification of umL/ocL Specifications with HoL-ocCL

Shallow vs. Deep Embeddings

Representing the logical operations or and and via a
» shallow embedding:

Direct definition of the semantics, e.g. each construct is
represented by some function on a semantic domain.

xandy=)le.xeAye xXory=)le.xeVvVye
» deep embedding:
The abstract syntax is presented as a datatype and a
semantic function I from syntax to semantics.
expr = var var | expr and expr | expr or expr

and the explicit semantic function I:

I[varx] =)e.e(x)
I[xandy] = Me.I[x]enI[y]e
I[xory] = Me.I[x]evI[y]e

Achim D. Brucker Verification of uML/ocL Specifications with HoL-ocCL

