
Formal Analysis of UML/OCL Models

Achim D. Brucker

Vincenz-Priessnitz-Str. ,  Karlsruhe, Germany
achim.brucker@sap.com

University Bremen
Computer Science Colloqium
Bremen, th October 

http://www.brucker.ch/
mailto:brucker@inf.ethz.ch

Abstract

In this talk, we present the theorem proving environment
-. �e - system is an interactive proof environment
for / specifications that is integrated in an  framework.
- allows to reason over  class models annotated with
 specifications. Moreover, - provides several derived
proof calculi that allow for formal derivations of validity of
/ formulae. �ese formulae arise naturally when checking
the consistency of class models, when formally refining abstract
models to more concrete ones or when discharging side-conditions
from model-transformations.

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

Introduction Motivation

�e Situation Today
A So�ware Engineering Problem

So�ware systems
are becoming more and more complex and
are used in safety and security critical applications.

Formal methods are one way to increase their reliability.
But, formal methods are hardly used by mainstream industry:

difficult to understand notation
lack of tool support
high costs

Semi-formal methods, especially ,
are widely used in industry, but
they lack support for formal methodologies.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Introduction Motivation

Is  an Answer?

/ attracts the practitioners:
is defined by the object-oriented community,
has a “programming language face,”
increasing tool support.

/ is attractive to researchers:
defines a “core language” for object-oriented modeling,
provides good target for object-oriented semantics research,
offers the chance for bringing formal methods closer to industry.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Introduction / in a Nutshell

�e Unified Modeling Language ()

Visual modeling language
Object-oriented
development
Industrial tool support
 standard
Many diagram types, e. g.,

activity diagrams
class diagrams
. . .

Eat something

Read a book Listen to music

still hungry

had enough

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..*

owner 1

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Introduction / in a Nutshell

�e Object Constraint Language ()

Textual extension of the 
Allows for annotating 
diagrams
In the context of class–diagrams:

invariants
preconditions
postconditions

Can be used for other diagrams

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Introduction / in a Nutshell

 by Example

Class invariants:
context Account inv: 0 <= id

Operation specifications:
context Account::deposit(a:Integer):Boolean

pre: 0 < a

post: balance = balance@pre + a

A “uniqueness” constraint for the class Account:
context Account inv:

Account::allInstances()

->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

 context  keywords  path expressions

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

 in an Industrial Context Meta Modeling

Metamodeling and  (Revised)

 can also be used to extend the  meta model
. has a -based metamodel for its abstract syntax
 can be used for expressing queries on model content, e. g.,

model transformation implementation
event filtering

Level  terms 

M meta-meta-model  specification
M meta-model  constrains 
M model  constrains model
M object N/A

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

 in an Industrial Context Meta Modeling

Target Groups and Impact: a Rough Picture

Level  terms 

M  standards developer
M  . . .  tool developer
M   . . .   application developer
M   . . .    end user

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

 in an Industrial Context @

Industrial  Suport: An Example

Modeling Infrastructure () developed by :
platform for ’s next generation of modeling tools
rougly similar to Eclipse (i.e., ), but not based on 
provides an  . type checker
provides an efficient evaluation environment
(impact analysis for model changes)

At ,  is
widely used for anotating meta-models (M)
used by Development Architects

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

- The HOL-OCL Vision

�eHOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) So�ware Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

- HOL-OCL

HOL-OCL

- provides:
a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications,
publicly available:
http://www.brucker.ch/projects/hol-ocl/,
next (major) release planned in November .

- is integrated into a toolchain providing:
extended well-formedness checking,
proof-obligation generation,
methodology support for UML/OCL,
a transformation framework (including PO generation),
code generators,
support for SecureUML.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

http://www.brucker.ch/projects/hol-ocl/

Mechanized Support for Model Analysis Methods

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods

Motivation

Observation:
UML/OCL is a genericmodeling language:

usually, only a sub-set of  is used and
per se there is no standard -based development process.

Successful use of  usually comprises
a well-defined development process and
tools that integrate into the development process.

Conclusion:
Formal methods for -based development should

support the local  development methodologies and
integrate smoothly into the local toolchain.

A toolchain for formal methods should provide
tool-support formethodologies.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Well-formedness Checking: Enforcing Syntactical Requirements

Well-formedness of Models

Well-formedness Checking
Enforce syntactical restriction on (valid) / models.
Ensure a minimal quality of models.
Can be easily supported by fully-automatic tools.

Example
�ere should be at maximum five inheritance levels.
�e Specification of public operations may only refer to public
class members.
. . .

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations for Models

Proof Obligation Generation
Enforce semantical restriction on (valid) / models.
Build the basis for formal development methodologies.
Require formal tools (theorem prover, model checker, etc).

Example
Liskov’s substitution principle.
Model consistency
Refinement.
. . .

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle
Liskov substitution principle
Let q(x) be a property provable about objects x of type T . �en q(y)
should be true for objects y of type S where S is a subtype of T .

For constraint languages, like , this boils down to:
pre-conditions of overridden methods must be weaker.
post-conditions of overridden methods must be stronger.

Which can formally expressed as implication:
Weakening the pre-condition:

oppre → opsubpre
Weakening the pre-condition:

opsubpost → oppost
A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Example
Rectangle

width:Integer
height:Integer

setHeight(h:Integer):OclVoid
setWidth(w:Integer):OclVoid

context Rectangle::setWidth(w:Integer):OclVoid
pre: w >= 0
post: self.width = w

context Square::setWidth(w:Integer):OclVoid
pre: w >= 0
post: self.width = w and self.height=w

Square

setHeight(h:Integer):OclVoid
setWidth(w:Integer):OclVoid

Weakening the pre-condition:

(w >= 0) → (w >= 0)

Strengthening the post-condition:

(self.width = w and self.height = w) → (self.width = w)A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Well-formedness and Proof Obligations

Repository
Model

(su4sml)

UML
OCL

Verification

(e.g., HOL−OCL)

Validation
(e.g., USE, OCLE)

Syntactic Checks
(e.g., su4sml)

Well−formedness

Proof Obligation

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Methodology

A tool-supported methodology should
integrate into existing toolchains and processes,
provide a unified approach, integrating ,

syntactic requirements (well-formedness checks),
generation of proof obligations,
means for verification (proving) or validation, and of course

all phases should be supported by tools.

Example
A package-based object-oriented refinement methodology.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement – Motivation
Support top-down development from an abstract model to

a more concrete one.

We start with an abstract transition system

sysabs = (σabs, initabs, opabs)

We refine each abstract operation opabs
to a more concrete one: opconc.
Resulting in a more concrete transition system

sysconc = (σconc, initconc, opconc)

Such refinements can be chained:

sys ↝ sys ↝ ⋯↝ sysn
E.g., from an abstract model to one that supports code generation.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement: Well-formedness
If package B refines a package A, then

one should be able to
substitute every usage of package Awith package B.

 �e concrete package must provide at a corresponding public class
for each public class of the abstract model.

 For public attributes we require that their type and for public
operations we require that the return type and their argument
types are either basic datatypes or public classes.

 For each public class of the abstract package, we require that the
corresponding concrete class provides at least

 public attributes with the same name and
 public operations with the same name.

 �e types of corresponding abstract and concrete attributes and
operations are compatible.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement: Proof Obligtations – Consistency
A transition system is consistent if:

�e set of initial states is non-empty, i. e.,

∃σ . σ ∈ init

�e state invariant is satisfiable, i. e.,
the conjunction of all invariants is invariant-consistent:

∃σ . σ ⊧ inv ∧ ∃σ . σ ⊧ inv ∧⋯ ∧ ∃σ . σ ⊧ invn

All operations op are implementable, i. e.,
for each satisfying pre-state there exists a satisfying post-state:

∀ σpre ∈ Σ, self , i, . . . , in . σpre ⊧ preop Ð→

∃ σpost ∈ Σ, result. (σpre, σpost) ⊧ postop

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement: Proof Obligtations – Implements

Given an abstraction relation R ∶ P(σabs × σconc)
relating a concrete state S and an abstract states T .
A forward refinement S ⊑RFS T ≡ po(S , R, T) ∧ po(S , R, T)
requires two proof obligations po and po.
Preserve Implementability (po):

opc
R

σa

σc

⇒ R

σa

σc

σ ′aσ ′a

σ ′c

opaopa

po(S , R, T) ≡ ∀σa ∈ pre(S), σc ∈ V . (σa , σc) ∈ R → σc ∈ pre(T)

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement: Proof Obligtations – Refines

Given an abstraction relation R ∶ P(σabs × σconc)
relating a concrete state S and an abstract states T .
A forward refinement S ⊑RFS T ≡ po(S , R, T) ∧ po(S , R, T)
requires two proof obligations po and po.
Refinement (po):

opa

opc σ ′c
opc

RR

σa

σc

⇒

σa

σc

σ ′a

σ ′c

R

po(S , R, T) ≡ ∀σa ∈ pre(S), σc ∈ V . σc′ . (σa , σc) ∈ R
∧ (σc , σ ′c) ⊧M T → ∃σ ′a ∈ V . (σa , σ ′a) ⊧M S ∧ (σa′ , σc′) ∈ R

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement Example: Abstract Model

Role

Hearer

Speaker

CoChair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

Participant

AbstractSimpleChair

Person
name:String

Role

Participant
Hearer CoChair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

person
0..*

role
0..*

0..*
session0..1

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Mechanized Support for Model Analysis Methods Formal Methodologies for /

Refinement Example: Concrete Model

Role

Hearer

Speaker

CoCair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

ConcreteSimpleChair

Person
name:String

Role

Hearer CoCair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

participants
{ordered}

0..*

sessions0..*

sessions
0..*

{ordered}
roles
0..*

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Conclusion and Future Work

Outline

 Introduction

  in an Industrial Context

 -

 Mechanized Support for Model Analysis Methods

 Conclusion and Future Work

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Conclusion and Future Work Future Work

Ongoing and Future Work

Ongoing work includes improving the infrastructures for
well-formedness-checking,
proof-obligation generation (Liskov, Refinement,),
consistency checking,
Hoare-style program verification,
better proof automation in general.

Future works could include the development for
integrating OCL validation tools, e.g., USE,
test-case generation (i.e., integrating HOL-TestGen),
supporting SecureUML.
. . . .

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

�ank you
for your attention!
Any questions or remarks?

Bibliography

Bibliography I

Achim D. Brucker, Jürgen Doser, and Burkhart Wolff.
An  framework supporting .
Electronic Communications of the , , .

Achim D. Brucker.
An Interactive Proof Environment for Object-oriented Specifications.
Ph.d. thesis,  Zurich, March .
 Dissertation No. .

Achim D. Brucker and Burkhart Wolff.
- – A Formal Proof Environment for /.
In José Fiadeiro and Paola Inverardi, editors, Fundamental
Approaches to So�ware Engineering (), number  in

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

Bibliography

Bibliography II

Lecture Notes in Computer Science, pages –. Springer-Verlag,
.
Achim D. Brucker and Burkhart Wolff.
Extensible universes for object-oriented data models.
In Jan Vitek, editor,   – Object-Oriented Programming,
number  in Lecture Notes in Computer Science, pages
–. Springer-Verlag, .

�e - Website.
http://www.brucker.ch/projects/hol-ocl/.

A.D. Brucker ( Research) Formal Analysis of UML/OCL Models Bremen, th October  

http://www.brucker.ch/projects/hol-ocl/

	Introduction
	Motivation
	UML/OCL in a Nutshell
	The Unified Modeling Language (UML)
	The Object Constraint Language (OCL)

	OCL in an Industrial Context
	Meta Modeling
	OCL@SAP

	HOL-OCL
	The HOL-OCL Vision
	HOL-OCL

	Mechanized Support for Model Analysis Methods
	Well-formedness Checking: Enforcing Syntactical Requirements
	Proof Obligations: Enforcing Syntactical Requirements
	Formal Methodologies for UML/OCL

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

