Formal Analysis of UML/OCL Models

Achim D. Brucker

SAP RESEARCH

Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

University Bremen
Computer Science Collogium
Bremen, 29th October 2008

http://www.brucker.ch/
mailto:brucker@inf.ethz.ch

Abstract

In this talk, we present the theorem proving environment
HOL-OCL. The HOL-OCL system is an interactive proof environment
for umL/ocL specifications that is integrated in an MDE framework.
HOL-OCL allows to reason over UML class models annotated with
ocL specifications. Moreover, HOL-OCL provides several derived
proof calculi that allow for formal derivations of validity of
uML/ocL formulae. These formulae arise naturally when checking
the consistency of class models, when formally refining abstract
models to more concrete ones or when discharging side-conditions
from model-transformations.

Outline

@ Introduction

@ ocu in an Industrial Context

@ =oL-ocL

@ Mechanized Support for Model Analysis Methods

@ Conclusion and Future Work

Outline

‘ Introduction

Motivation
The Situation Today

A Software Engineering Problem

@ Software systems
e are becoming more and more complex and
e are used in safety and security critical applications.
e Formal methods are one way to increase their reliability.
e But, formal methods are hardly used by mainstream industry:
o difficult to understand notation
o lack of tool support
o high costs
e Semi-formal methods, especially umL,

o are widely used in industry, but
o they lack support for formal methodologies.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

Motivation
Is ocL an Answer?

UML/OCL attracts the practitioners:
@ is defined by the object-oriented community,
@ has a “programming language face,”
@ increasing tool support.
UML/OCL is attractive to researchers:
@ defines a “core language” for object-oriented modeling,
@ provides good target for object-oriented semantics research,

e offers the chance for bringing formal methods closer to industry.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 6

IETIC ISt UML/OCL in a Nutshell

The Unified Modeling Language (UML)

A.D. Brucker (sap Research)

Visual modeling language

Object-oriented
development

Industrial tool support
oMG standard
Many diagram types, e. g.,

e activity diagrams
o class diagrams
o ...

still hungry

Eat something

had enough

(Read a book) (Listen to music >

6

Account

2 balance:Integer
2 id:Integer

= getId():Integer

= getBalance():Integer

= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean

Formal Analysis of UML/OCL Models

1..%

accounts
owner|1

Customer

4 id:Integer
& name:String

= getId():Integer
= setName(n:String):Boolean
= getName():String

Bremen, 29th October 2008

7

IETIC ISt UML/OCL in a Nutshell

The Object Constraint Language (ocL)

@ Textual extension of the umL

e Allows for annotating uML
diagrams

@ In the context of class—diagrams:

e invariants
e preconditions
e postconditions

@ Can be used for other diagrams

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models

context Account [\
inv: 0 <= id
.

\
\

Account

2 balance:Integer
& id:Integer

1..%

= getId():Integer

= getBalance():Integer

= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean

accounts

\
\
\

pre: 0 < a

post: balance = balance@pre+a

context Account::deposit(a:Integer):Boolean D}

and id = id@pre

Bremen, 29th October 2008 8

Introduction uMmL/ocCL in a Nutshell

ocL by Example

@ Class invariants:
context Account inv: 0 <= id
@ Operation specifications:

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre + a
@ A “uniqueness” constraint for the class Account:
context Account inv:
Account::allInstances()
->forAll(al,a2 | al.id = a2.id implies al = a2)

OCL context ocL keywords UML path expressions

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

9

Outline

@ ocu in an Industrial Context

e Wodlaog
Metamodeling and ocL (Revised)

@ ocL can also be used to extend the MOF meta model
@ 2.0 has a MoF-based metamodel for its abstract syntax
@ ocL can be used for expressing queries on model content, e. g.,

e model transformation implementation
o event filtering

Level MoOF terms OCL

M3 meta-meta-model ocL specification

M2 meta-model OCL constrains DSL
M1 model ocCL constrains model
Mo object N/A

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 1

[OBTENRLEINEINGITON Meta Modeling

Target Groups and Impact: a Rough Picture

Level MOF terms OCL

M3 1 standards developer
M2 10...100 tool developer

M1 1000...10 000 application developer

Mo 100 000...10 000 000 end user

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

Industrial ocr Suport: An Example

Modeling Infrastructure (MoIN) developed by sap:
e platform for saP’s next generation of modeling tools
@ rougly similar to Eclipse (i.e., EME), but not based on EMF
@ provides an ocL 2.0 type checker

@ provides an efficient evaluation environment
(impact analysis for model changes)

At SAP, OCL is
o widely used for anotating meta-models (M2)

@ used by Development Architects

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

Outline

@ =oL-ocL

The HOL-OCL Vision:

Tool Supported Formal Methods for (Model-driven) Software Development

Proof

Test Validation

Obligations Harness

|

N
Model-Analysis

Program
Model s
Transformation and Verification
ArgoUML (HOL-OCL) c#
+OCL
SecureUML/OCL feibat manual
or
UML/OGL Vodel Code
(XM1) ode :
Repository Code Generation \/_\
(sudsml) Generator AC
Config
Design Model Transformation Verification and Testing and
Phase Phase Code—generation Phase Deployment Phase

A.D. Brucker (sap Res

Formal Analysis of UML/OCL Models Bremen, 29th October 2008

HOL-OCL

@ HOL-OCL provides:
e aformal, machine-checked semantics for OO specifications,
e an interactive proof environment for OO specifications,
e publicly available:
http://www.brucker.ch/projects/hol-ocl/,
e next (major) release planned in November 2008.
@ HOL-OCL is integrated into a toolchain providing:
extended well-formedness checking,
proof-obligation generation,
methodology support for UML/OCL,
a transformation framework (including PO generation),
code generators,
support for SecureUML.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

http://www.brucker.ch/projects/hol-ocl/

Mechanized Support for Model Analysis Methods

Outline

@ Mechanized Support for Model Analysis Methods

A.D. Brucker (sap Researc Formal Analysis of UML/OCL Models Bremen, 29th October 2008 17

Mechanized Support for Model Analysis Methods

Motivation

Observation:
e UML/OCL is a generic modeling language:

e usually, only a sub-set of umL is used and
e per se there is no standard umL-based development process.

@ Successful use of uML usually comprises
o a well-defined development process and
e tools that integrate into the development process.
Conclusion:
e Formal methods for umL-based development should

e support the local umL development methodologies and
e integrate smoothly into the local toolchain.

A toolchain for formal methods should provide
tool-support for methodologies.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

IV BN P2 BN (ST Y (IO WG RIS TRVl Well-formedness Checking: Enforcing Syntactical Requirements

Well-formedness of Models

Well-formedness Checking

e Enforce syntactical restriction on (valid) umL/ocL models.
e Ensure a minimal quality of models.

@ Can be easily supported by fully-automatic tools.

Example

@ There should be at maximum five inheritance levels.

@ The Specification of public operations may only refer to public
class members.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 19

Mechanized Support for Model Analysis M Bl Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations for Models

Proof Obligation Generation

@ Enforce semantical restriction on (valid) umL/ocL models.

@ Build the basis for formal development methodologies.

@ Require formal tools (theorem prover, model checker, etc).

@ Liskov’s substitution principle.
@ Model consistency

@ Refinement.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 20

Y BN P2 NI IR T Y (I WG RIS TRV S Il Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Liskov substitution principle

Let q(x) be a property provable about objects x of type T. Then g(y)
should be true for objects y of type S where S is a subtype of T.

For constraint languages, like oct, this boils down to:
@ pre-conditions of overridden methods must be weaker.
@ post-conditions of overridden methods must be stronger.
Which can formally expressed as implication:
@ Weakening the pre-condition:

sub
op pre - op pre

@ Weakening the pre-condition:

sub
Op post - Op post

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 21

Mechanized Support for Model Analy / Sl Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Rectangle

4 width:Integer
& height:Integer

= setHeight(h:Integer):0clVoid
= setWidth(w:Integer):0clVoid

1

context Square::setWidth(w:Integer):0clVoid ﬁ' SRS

pre: w >= 0
post: self.width = w

context Rectangle::setWidth(w:Integer):0clVoid ﬁ'

pre: w >=0) setHeight (h:Integer):0clVoid
post: self.width = w and self.height=w setWidth(w:Integer):0clVoid

@ Weakening the pre-condition:
(w >= 0) > (w >= 0)

e Strengthening the post-condition:

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 22

Y BN P2 NI IR T Y (I WG RIS TRV S Il Proof Obligations: Enforcing Syntactical Requirements

Well-formedness and Proof Obligations

Verification
(e.g., HOL-OCL)
Proof Obligation

Validation
(e.g., USE, OCLE)

UML
OCL

Model
Repository
(sudsml)

Syntactic Checks

(e.g., sudsml)
Well-formedness

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

23

JYESERTPZ NI (O S RS EIVS RSV Ol Formal Methodologies for umr/ocL

Methodology

A tool-supported methodology should
@ integrate into existing toolchains and processes,
e provide a unified approach, integrating ,

e syntactic requirements (well-formedness checks),
e generation of proof obligations,
e means for verification (proving) or validation, and of course

@ all phases should be supported by tools.

A package-based object-oriented refinement methodology.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 24

VS NP2 BT TR T Y WG EIVS TRV S Ol Formal Methodologies for umL/ocL

Refinement — Motivation

Support top-down development from an abstract model to
a more concrete one.

e We start with an abstract transition system

SYSabs = (UabS) initabs; Opabs)

@ We refine each abstract operation op,,
to a more concrete one: op_, . .
@ Resulting in a more concrete transition system

SYScone = (acono Nitcone, OPCOHC)
@ Such refinements can be chained:
SYS| ~7 SYS, ~7 o ~7 SYS

E.g., from an abstract model to one that supports code generation.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 25

VS NP2 BT TR T Y WG EIVS TRV S Ol Formal Methodologies for umL/ocL

Refinement: Well-formedness

If package B refines a package A, then
one should be able to
substitute every usage of package A with package B.

@ The concrete package must provide at a corresponding public class
for each public class of the abstract model.

@ For public attributes we require that their type and for public
operations we require that the return type and their argument
types are either basic datatypes or public classes.

@ For each public class of the abstract package, we require that the
corresponding concrete class provides at least

@ public attributes with the same name and
@ public operations with the same name.

@ The types of corresponding abstract and concrete attributes and

operations are compatible.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 26

Mechanized Support for Model Analysis M O Formal Methodologies for umr/ocL

Refinement: Proof Obligtations — Consistency

A transition system is consistent if:
@ The set of initial states is non-empty;, i. e.,

do. o € init

e The state invariant is satisfiable, i. e.,
the conjunction of all invariants is invariant-consistent:

do.o EinviAdo. o Einv, Ao Ado. 0 E iny,

@ All operations op are implementable, i. e.,
for each satisfying pre-state there exists a satisfying post-state:

V Opre € Z,8€lf s 150 iy Opre F pre,, —

3 Opost € X, result. (Opres Opost) F post,,

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

27

PV NP2 BN TR B Y WG EIVS TRV SOl Formal Methodologies for umr/ocL

Refinement: Proof Obligtations — Implements

@ Given an abstraction relation R : P(0ups X 0conc)
relating a concrete state S and an abstract states T

o A forward refinement S =X, T = po,(S,R, T) A po,(S,R, T)

=Fs
requires two proof obligations po, and po,.

@ Preserve Implementability (po,):

po,(S,R, T) =Vo, epre(S),o. € V. (0, 0.)€R— 0. €pre(T)

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 28

PV NP2 BN TR B Y WG EIVS TRV SOl Formal Methodologies for umr/ocL

Refinement: Proof Obligtations — Refines

@ Given an abstraction relation R : P(0,ps X 0conc)
relating a concrete state S and an abstract states T

o A forward refinement S =X, T = po,(S,R, T) A po,(S,R, T)

=Fs
requires two proof obligations po, and po,.

@ Refinement (po,):

A
R = R 1VR
o e o e
po,(S,R, T) =Vo, epre(S),o. € V. 0p. (0,,0.) €R

A(o,0)) ey T— 30, €V.(0,0.) Ex SA(0u,04) €R

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

29

VS NP2 BT TR T Y WG EIVS TRV S Ol Formal Methodologies for umL/ocL

Refinement Example: Abstract Model

AbstractSimpleChair |
Person person role| Role
= name:String [0, . * hd 0..%
|
| A
Participant
0..x% Hearer <| CoChair
0..1|session
Session A
= name:String
= findRole(p:Person) :Role Speaker Chair

A.D. Brucker (sap Research)

Formal Analysis of UML/OCL Models

Bremen, 29th October 2008

Mechanized Support for Model Analysis Methods

Formal Methodologies for umL/ocL

Refinement Example: Concrete Model

ConcreteSimpleChair|

{ordered}
Person roles| Role
& name:String 0..%
0..*|sessions Z&
{ordered} Hearer :] CoCair
0..*|participants
Session Z&
= name:String 0..%
sessions
= findRole(p:Person) :Role Speaker Chair

A.D. Brucker (sap Re

Formal Analysis of UML/OCL Models

Bremen, 29th October 2008

Conclusion and Future Work

Outline

@ Conclusion and Future Work

A.D. Brucker (sap R Formal Analysis of UML/OCL Models Bremen, 29th October 2008 32

Conclusion and Future Work [EESHIIERIYIYS

Ongoing and Future Work

@ Ongoing work includes improving the infrastructures for

well-formedness-checking,

proof-obligation generation (Liskov, Refinement,),
consistency checking,

Hoare-style program verification,

better proof automation in general.

e Future works could include the development for

integrating OCL validation tools, e.g., USE,
test-case generation (i.e., integrating HOL-TestGen),
supporting SecureUML.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008

33

Thank you
for your attention!

Any questions or remarks?

Bibliography I

@ Achim D. Brucker, Jiirgen Doser, and Burkhart Wolff.
An MDA framework supporting ocL.
Electronic Communications of the EASST, 5, 2006.

[Achim D. Brucker.
An Interactive Proof Environment for Object-oriented Specifications.
Ph.d. thesis, ETH Zurich, March 2007.
ETH Dissertation No. 17097.

@ Achim D. Brucker and Burkhart Wolff.
HOL-OCL — A Formal Proof Environment for uML/OCL.
In José Fiadeiro and Paola Inverardi, editors, Fundamental
Approaches to Software Engineering (FASE08), number 4961 in

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 35

Bibliography I1

Lecture Notes in Computer Science, pages 97-100. Springer-Verlag,
2008.

[Achim D. Brucker and Burkhart Wolff.
Extensible universes for object-oriented data models.
In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming,
number 5142 in Lecture Notes in Computer Science, pages
438-462. Springer-Verlag, 2008.

@ The HOL-OCL Website.
http://www.brucker.ch/projects/hol-ocl/.

A.D. Brucker (sap Research) Formal Analysis of UML/OCL Models Bremen, 29th October 2008 36

http://www.brucker.ch/projects/hol-ocl/

	Introduction
	Motivation
	UML/OCL in a Nutshell
	The Unified Modeling Language (UML)
	The Object Constraint Language (OCL)

	OCL in an Industrial Context
	Meta Modeling
	OCL@SAP

	HOL-OCL
	The HOL-OCL Vision
	HOL-OCL

	Mechanized Support for Model Analysis Methods
	Well-formedness Checking: Enforcing Syntactical Requirements
	Proof Obligations: Enforcing Syntactical Requirements
	Formal Methodologies for UML/OCL

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

