
HOL-OCL
Tool Demonstration

Achim D. Brucker

SAP Research, Vincenz-Priessnitz-Str. ,  Karlsruhe, Germany
achim.brucker@sap.com

OCLWorkshop at the UML/MoDELS Conferences 
Toulouse, th September 

http://www.brucker.ch/
mailto:brucker@inf.ethz.ch

�eHOL-OCL Vision:
A Tool Supported Formal Model-driven Engineering Process with Tool-support

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

UML/OCL

(XMI)

or
SecureUML/OCL

AC
Config

C#
+OCL

manual
Code

ArgoUML

Test
Harness

Repository
Model

(su4sml)

Transformation
Model

Code
Generation

(su4sml)

Model−Analysis

(HOL−OCL)
and Verification

Code−Validation
(Testing)

(HOL−TestGen)

(su4sml)

Well−formedness
proof obligations

Program

Validation

Test Data

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

�eHOL-OCL Vision:
A Tool Supported Formal Model-driven Engineering Process with Tool-support

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

UML/OCL

(XMI)

or
SecureUML/OCL

AC
Config

C#
+OCL

manual
Code

ArgoUML

Test
Harness

Repository
Model

(su4sml)

Transformation
Model

Code
Generation

(su4sml)

Model−Analysis

(HOL−OCL)
and Verification

Code−Validation
(Testing)

(HOL−TestGen)

(su4sml)

Well−formedness
proof obligations

Program

Validation

Test Data

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

Tool Demo

Tool-Demo

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

Tool Demo

Proof Obligations: Liskov’s Substitution Principle
Liskov substitution principle
Let q(x) be a property provable about objects x of type T . �en q(y)

should be true for objects y of type S where S is a subtype of T .

For constraint languages, like oo, this boils down to:
pre-conditions of overridden methods must be weaker.
post-conditions of overridden methods must be stronger.

Which can formally expressed as implication:
Weakening the pre-condition:

oppre → opsubpre

Weakening the pre-condition:

opsubpost → oppost
A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

Tool Demo

Methodology

A tool-supported methodology should
integrate into existing toolchains and processes,
provide a unified approach, integrating ,

syntactic requirements (well-formedness checks),
generation of semantics requirements (proof obligations),
means for verification (proving) or validation, and of course

all phases should be supported by tools.

Example
A package-based object-oriented refinement methodology.

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

Tool Demo

Conclusion

We presented HOL-OCL providing:
a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications,
publicly available:
http://www.brucker.ch/projects/hol-ocl/,
next (major) release planned in November .

HOL-OCL is integrated into a toolchain providing:
code generators,
a transformation framework (including PO generation),
support for SecureUML via model transformations.

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

http://www.brucker.ch/projects/hol-ocl/

Tool Demo

Ongoing and Future Work

Ongoing work includes the development of support for:
well-formedness-checking,
proof-obligation generation (Liskov, Refinement,),
consistency checking,
Hoare-style program verification,
better proof automation.

Future works could include the development for
integrating OCL validation tools, e.g., USE,
test-case generation (i.e., integrating HOL-TestGen),
supporting SecureUML natively.
. . . .

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

Tool Demo

�e next Challenge for OCL Tools

State of the art:
�ere are a lot of good OCL tools, which work in isolation.
�ere is no “one sizes fits all” OCL tool.
�ere is no (integrated) development process supporting.

Observation: Successful specification languages comprise:
tools that work together.
one or more development processes that are well supported by
tools.

Conclusion: We, as the OCL Community, should
combining the strenghs of different OCL tools.
provide methodologies (development processes) on top of OCL.

A.D. Brucker (SAP Research) HOL-OCL OCL Workshop  

	Tool Demo

