Analyzing UML/OCL Models with HOL-OCL

Achim D. Brucker! Burkhart Wolff2

1SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2PCRI/co INRIA-Futurs, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@lri.fr

A Tutorial at MoDELS 2008
Toulouse, 28th September 2008

Outline

@ Introduction

‘ Background

‘ Formalization of UML and OCL

‘ Mechanized Support for Model Analysis Methods
@ The HOL-OCL Architecture

' Applications

‘ Conclusion and Future Work

Abstract

In this tutorial, we present the theorem proving environment HOL-OCL. The
HOL-OCL system is an interactive proof environment for UML/OCL
specifications that is integrated in a Model Driven Engineering (MDE)
framework. HOL-OCL allows to reason over UML class models annotated
with OCL specifications. Thus, HOL-OCL strengthens a crucial part of the
UML to an object-oriented formal method. HOL-OCL provides several
derived proof calculi that allow for formal derivations of validity of UML/OCL
formulae. These formulae arise naturally when checking the consistency of
class models, when formally refining abstract models to more concrete
ones or when discharging side-conditions from model-transformations.

The latest version of these slides and all additional material is available at:
http://projects/hol-ocl/2008-models-hol-ocl-tutorial/

Outline

@ ntroduction

The Situation Today Is OCL an Answer?

A Software Engineering Problem

@ Software systems @ UML/OCL attracts the practitioners:
e are becoming more and more complex and e is defined by the object-oriented community,
e are used in safety and security critical applications. e has a “programming language face,”
@ Formal methods are one way to increase their reliability. e increasing tool support.
@ But, formal methods are hardly used by mainstream industry: @ UML/OCL is attractive to researchers:
o difficult to understand notation e defines a “core language” for object-oriented modeling,
e lack of tool support e provides good target for object-oriented semantics research,
@ high costs e offers the chance for bringing formal methods closer to industry.

@ Semi-formal methods, especially UML,

e are widely used in industry, but
e they lack support for formal methodologies.

Turning OCL into a full-fledged formal methods is deserving and interesting.J

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 5 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 6
)
The HOL-OCL Vision: Outline

Tool Supported Formal Methods for (Model-driven) Software Development

Proof -
Test Validation .
Obligations Harness] Background
N
Model Model-Analysis Program
Transformation and Verification
ArgoUML (HOL-OCL) c#
+OCL

5

Test Data

SecureUML/OCL

or manual
UML/OGL Vode! Code
(XMI) ode)
Repository Code Generation _/\
(sudsml) Generator AG
Config
Design Model Transformation Verification and Testing and
Phase Phase Code-generation Phase Deployment Phase

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 8

The Unified Modeling Language (UML)

Eat something

Visual modeling language had enough

Object-oriented
development

< Read a book) (Listen to music >

Industrial tool support

OMG standard %

Many diagram types, e.qg.,
e activity diagrams

e class diagrams
o ...

Account
a balance:Integer 1..%

a id:Integer accounts
owner|1

= getId():Integer
= getBalance():Integer
= deposit(a:Integer):Boolean = CUSIEoNElS
= withdraw(a:Integer):Boolean 4 id:Integer

A name:String

= getId():Integer

= setName(n:String) :Boolean
= getName():String

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 9

OCL by Example

@ Class invariants:
context Account inv: 0 <= id
@ Operation specifications:

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre + a

@ A “uniqueness” constraint for the class Account:
context Account inv:

Account::allInstances()
->forAll(al,a2 | al.id = a2.id implies al = a2)

OCL context OCL keywords UML path expressions

A.D. Brucker and B. Wolff (SAP /PCRI)

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 11

The Object Constraint Language (OCL)

context Account I\
inv: @ <= id

@ Textual extension of the UML \

\

Account
& balance:Integer

@ Allows for annotating UML diagrams
@ In the context of class-diagrams: 2 id: Integer 1.x

= getId():Integer accounts

= getBalance():Integer

= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean

@ invariants
e preconditions

\

@ postconditions N
. context Account::deposit(a:Integer):Boolean
@ Can be used for other diagrams pre: 0 < a ﬁ
post: balance = balance@pre+a
and id = id@pre

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 10

Background Formal Methods and Embeddings

Formal Methods

A formal method is a mathematically based technique
for the specification, development and verification
of software and hardware systems.

@ A strong formal method is a formal method supported by formal
tools, e. g., model-checkers or theorem provers.

@ A semi-formal method lacks both, a sound formal definition of its
semantics and support for formal tools.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 12

A.D. Brucker and B. Wolff (SAP /PCRI)

Shallow vs. Deep Embeddings

Representing the logical operations or and and via a
@ shallow embedding:

Direct definition of the semantics, e.g. each construct is represented by
some function on a semantic domain.
xandy =)\e.xeAye xXory=)e.xeVye
@ deep embedding:

The abstract syntax is presented as a datatype and a semantic function
| from syntax to semantics.

expr = var var | expr and expr | expr or expr

and the explicit semantic function I:

Ifvarx] = Xe.e(x)
I[xandy] = Me.l[x]eAnl]y]e
I[xory] = MXe.l[x]eVlI[y] e

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 13

Background Formal Methods and Embeddings

Textbook Semantics: Example

The Interpretation of the logical connectives:

b1 b> biand b, biorby bixorby b;impliesb, notb;
false false false false false true true
false true false true true true true
true false false true true false false
true true true true false true false
false 1 false L 1 true true
true 1 1 true 1 1 false
1 false false 1 1 1 1
1 true 1 true 1 true 1
1 1 L L 1 1 1

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 15

Defining Semantics

Formal ocL Semantics

Textbook Semantics Machine Checkable Semantics

+ good to Language Research || Applications
communicate . Language « Verification
« no calculi Analysis S S—
« Language -
Consistency » Specification
Consistency

Analyze Structure of the Semantics,
Basis for Tools, Reuseability

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Textbook Semantics: Summary

@ Usually “Paper-and-Pencil” work in mathematical notation.
@ Advantages

@ Useful to communicate semantics.

e Easy toread.
@ Disadvantages

e No rules, no laws.

e Informal or meta-logic definitions

(“The Set is the mathematical set.”).
e Itis easy to write inconsistent semantic definitions.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Machine-checked Semantics: Example

Defining the core logic (Strong Kleene Logic):

not _ = lifty strictify(Ax. —'x"))
and=lift, (A\xy. if (defx)
thenif (defy) then "'x' A"y ",
elseif'x'then L else false,
elseif (defy)thenif'y'then L
else false else L)
_or _=Axy.not(not x andnot y)

_implies _= \xy.(not x) or y

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Outline

. Formalization of UML and OCL

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

A.D. Brucker and B. Wolff (SAP /PCRI)

17

19

Machine-checked Semantics: Summary

Motivation: Honor the semantical structure of the language.

@ A machine-checked semantics
e conservative embeddings guarantee consistency of the semantics.
e builds the basis for analyzing language features.
e allows incremental changes of semantics.

@ Many theorems, like “A->union(B) = B->union(A)” can be

automatically lifted based on their HOL variants.
@ As basis of further tool support for

@ reasoning over specifications.
e refinement of specifications.
e automatic test data generation.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Developing Formals Tools for UML/OCL?

Turning UML/OCL into a formal method

@ A formal semantics of UML class models
typed path expressions

e inheritance

@ dynamic binding

o

@ A formal semantics of OCL and proof support for OCL
e reasoning over UML path expressions
e large libraries
o three-valued logic
]

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

20

. i ?
Outline How to Formalize OCL ~

The semantic foundation of the OCL standard:

@ Formalization of OCL Chapter 11 “The OCL Standard Library” (normative):
describes the requirements (pre-/post-style)

Appendix A “Semantics” (informative):
presents a formal semantics (paper and pencil)

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 21 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 22
The OCL Semantics: An Example A Machine-checked Semantics

@ The Interpretation of “X->union(Y)" for sets (“X U Y"): ® Our formalization of "X->union(Y)" for sets ("X U ¥"):

i = icti Fp My 1) My
XUY X#LandY 4L, _->union_= (Stl’lCtIfy()\X. strictify(AY. 'X'U YJ))> :
HU)(X,Y) = _
= otherwise @ We model concepts like strict and lifted explicit, i. e., we introduce:
@ Thisis a e a datatype for lifting:

. . ap = a | L
o lifted (sets can be undefined, denoted by) and

e strict (the union of undefined with anything is undefined) @ a combinator for strictification:

version of the union of “mathematical sets.” strictify f x = ifx = L then L else f x

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 23 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 24

Formalization of UML and OCL Formalization of OCL

Is This Semantics Compliant?

@ We prove formally (within our embedding):

—-"Sem|X]~v' if Sem[X i
seminot]y — |/ SemIXIY", if Semix]y # L.
1 otherwise.

lemma "(Sem[not x]v) = (if Sem[x]y # Lthen —"Sem[x]v' else L)"
apply(simp add: OclNot def DEF deflift0 def liftl deflift2 def
semfun def)
done

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 25

Formalization of UML and OCL Formalization of UML

Outline

@ Formalization of UML

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 27

Formalization of UML and OCL Formalization of OCL

Proving Requirements

isEmpty() : Boolean

(11.7.1-9)
Is self the empty collection?

post: result = (self->size() =0)

Bag
lemma (self ->isEmpty()) = ((self, 3 :: bot)Bag)->size()=0
apply(rule Bag_sem _cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OcIMtBag_def
OclStrictEq_def
Zero_ocl_int_def ss_lifting’)
done

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 26

Formalization of UML and OCL Formalization of UML

A Semantics of Typed Path Expressions

Question: What is the semantics of self.s?

Access the value of the attribute s of the object self.

@ Formalizing type safe path expressions requires
@ a HOL representation of class types
e HOL functions for accessing attributes
@ support for inheritance and subtyping

@ After adding new classes to a model

e there is no need for re-proving
e definitions can be re-used

@ Goal: a type-safe object store, supporting modular proofs

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 28

Formalization of UML and OCL Formalization of UML

Representing Class Types: Summary

Representing Class Types

I
- . 0]
@ The “extensible records” approach —
A @ Advantages: T
e We assume a common superclass (0). ot i])]
e The uniqueness is guaranteed by a tag type, e.g.: = s:5tring o it allows for extendln.g class types (inheritance),
@ subclasses are type instances of superclasses A .
Otag := classO = it allows for modular proofs, i.e., = s:String
B a statement ¢(x : : (a B)) proven for class B is still valid Z%
e Construct class type as tuple along inheritance = b:Integer after extending class B
. : B
hierarch . . .
y 4 @ However, it has a major disadvantage: = b:Integer
o @ modular proofs are only supported

for one extension per class
@ B := (Orag x0id) x ((Atag xString) x ((Brag xInteger) x O‘J_)J_)J_

where _ | denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29 A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Formalization of UML and OCL Formalization of UML Formalization of UML and OCL Formalization of UML

A Universe Type An Extensible Object Store

Ulpoy = O x af

A universe type represents all classes Uiga oy = O x (Ax aft+ B°),
@ supports modular proofs with arbitrary extensions
@ provides a formalization of a extensible typed object store A U%aﬂ,ﬁum =O0x(Ax (BxaP+ph)+),
U:ZDtB,DtC,ﬁD,ﬁA) =0x(Ax(Bxaf+(Cxal+p4)), +p%),

0
Y oo)

3 2 1
Uas e po,50) = U o gr) = Uor oy =

A Tutorial at MoDELS 2008 31 A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL.

Operations Accessing the Object Store

@ injections
mko 0 = Inlo with type a® 0 — %%
@ projections
getou =u with type % — a0
@ type casts
Ajo] = geto o mka with type o* A — (A x o/} +3°)0

Ora) = geta o mko with type (A x o/} +3°)0 — * A

All definitions are generated automatically

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 5S

First Results of Formalizing the OCL Standard

@ We found several glitches:

e inconsistencies between the formal semantics and the requirements
@ missing pre- and postconditions

@ wrong (e.g., to weak) pre- and postconditions

o ...

@ and examined possible extensions (open problems):
operations calls and invocations

smashing of datatypes

equalities

recursion

semantics for invariants (type sets)

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 35

A.D. Brucker and B. Wolff (SAP /PCRI)

Does This Really Model Object-orientation?

For each UML model, we have to show several properties:

0] @ subclasses are of the superclasses kind:

T isTypeg self
A isKindp self
= siString | ¢ “re_casting”:
Z} isTypeg self
B

selfiayg # L AisTypes (self[A][B][A])

= b:Integer

@ monotonicity of invariants, ...

All rules are derived automatically

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Outline

‘ Mechanized Support for Model Analysis Methods

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

34

36

.
Motivation Well-formedness of Models

Observation:

@ UML/OCL is a generic modeling language: IS et s (Clned g

o usually, only a sub-set of UML is used and @ Enforce syntactical restriction on (valid) UML/OCL models.

e per se there is no standard UML-based development process. @ Ensure a minimal quality of models.

@ Successful use of UML usually comprises @ Can be easily supported by fully-automatic tools.
e a well-defined development process and
e tools that integrate into the development process.

Conclusion: Example

@ Formal methods for UML-based development should @ There should be at maximum five inheritance levels.
e support the local UML development methodologies and @ The Specification of public operations may only refer to public class
@ integrate smoothly into the local toolchain. members.
A toolchain for formal methods should provide ° ...

tool-support for methodologies.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 37 A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 38
Proof Obligations: Enforcing Syntactical Requirements Proof Obligations: Enforcing Syntactical Requirements
. ’
Proof Obligations for Models Proof Obligations: Liskov’'s Substitution Principle

Liskov substitution principle

BroBHOBIGaHenIGEnaration Let g(x) be a property provable about objects x of type T. Then g(y) should

- — . be true for objects y of type S where S is a subtype of T.
@ Enforce semantical restriction on (valid) UML/OCL models.

@ Build the basis for formal development methodologies.
) For constraint languages, like OCL, this boils down to:
@ Require formal tools (theorem prover, model checker, etc). . .
@ pre-conditions of overridden methods must be weaker.

@ post-conditions of overridden methods must be stronger.

Which can formally expressed as implication:

@ Liskov’'s substitution principle. @ Weakening the pre-condition:

@ Model consistency

@ Refinement. OPpre = opf)‘,fg
e ... @ Weakening the pre-condition:

sub
Oppost - Oppost

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL. A Tutorial at MoDELS 2008 39 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 40

Proof Obligations: Enforcing Syntactical Requirements Proof Obligations: Enforcing Syntactical Requirements
Proof Obligations: Liskov’s Substitution Principle Well-formedness and Proof Obligations

Example

Rectangle
context Rectangle::setWidth(w:Integer):0clVoid ﬁ» & width:Integer

Verification
pre: w >= 0 - - 1@ height:Integer (e.g., HOL-OCL)
post: self.width = w = setHeight (h:Integer):0clVoid
= setWidth(w:Integer):0clVoid

1

Proof Obligation

Validation

context Square::setWidth(w:Integer):0clVoid ﬁ' SR (e.g., USE, OCLE)
pre: w >= 0) """ |= setHeight (h:Integer):0clVoid
post: self.width = w and self.height=w = setWidth(w:Integer):0clVoid UML
Model
OCL .
Repository
. - sudsml
@ Weakening the pre-condition: ()
(w>=0)— (w>= 0) Syntactic Checks
(e.g., sudsml)
@ Strengthening the post-condition: Well-formedness
(self.width = w and self.height = w) — (self.width = w)
A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 41 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008
Formal Methodologies for UMLIOCL Formal Methodologies for UMLIOCL
Methodology Refinement — Motivation

Support top-down development from an abstract model to
a more concrete one.

A tool-supported methodology should

@ integrate into existing toolchains and processes, @ We start with an abstract transition system

@ provide a unified approach, integrating ,
@ syntactic requirements (well-formedness checks),

Sysabs = (Jab57 initabSa opabs)

e generation of proof obligations, @ We refine each abstract operation op,,
e means for verification (proving) or validation, and of course to a more concrete one: 0p .-
@ all phases should be supported by tools. @ Resulting in a more concrete transition system

SYSconc = (Uconm iNitconc, Opconc)

Example
A package-based object-oriented refinement methodology. @ Such refinements can be chained:

SYSy ~ SYSp v s v SYS),

E.g., from an abstract model to one that supports code generation.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL. A Tutorial at MoDELS 2008 43 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement: Well-formedness Refinement: Proof Obligtations — Consistency
e e B TEES B PR e s, ThiEh A transition sys.te.nf\ is conS|s.,tent if: |
one should be able to substitute every usage of package A with package B. @ The set of initial states is non-empty, i.e.,
@ The concrete package must provide at a corresponding public class for Jo. o € init

each public class of the abstract model.))) s]
@ The state invariant is satisfiable, i. e.,

@ For public attributes we require that their type and for public operations the conjunction of all invariants is invariant-consistent:

we require that the return type and their argument types are either
basic datatypes or public classes.

@ For each public class of the abstract package, we require that the
corresponding concrete class provides at least @ All operations op are implementable, i.e.,

@ public attributes with the same name and for each satisfying pre-state there exists a satisfying post-state:
@ public operations with the same name.

Jo.o Einvi Ado.o Einvy A--- AJo. o = invy

@ The types of corresponding abstract and concrete attributes and V opre € X, 5€lf i, . s in. Opre = Prégp —

operations are compatible. 3 post € L, result. (opre, Tpost) = POSt,,

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL ATutorial at MoDELS 2008 45 Analyzing UML/OCL models with HOL-OCL ATutorial at MoDELS 2008 46
Refinement: Proof Obligtations — Implements Refinement: Proof Obligtations — Refines

@ Given an abstraction relation R : P(0aps X Gconc)

@ Given an abstraction relation R : P(0abs * 0conc) relating a concrete state S and an abstract states T.

relating a concrete state S and an abstract states T. .
) I e A forward refinement S CR T = po,(S,R,T) A po,(S,R,T)
@ Aforward refinement S C3; T = po,(S,R, T) A po,(S,R,T) requires two proof obligations po; and po,.
requires two proof obligations po; and po,.

- @ Refinement (po,):
@ Preserve Implementability (po;):

e Pl Opa)\’; B
———————— R = R 'R
R = R ;
OPC{:'”’U;‘";;, Coe >l ol D o >Pe ol O

po,(S,R,T) = Vo, € pre(S), oc € V. (02,0c) € R — oc € pre(T) POy (S,R,T) = Vo, € pre(S),oc € V. 0c. (9a,0¢) €R
A(oe,0l) Em T — 3o, € V. (0a,0L) Em S A (0ar,00) €R

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 47 A.D. Brucker and B. Wolff (SAP /PCRI)

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 48

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement Example: Abstract Model Refinement Example: Concrete Model
AbstractSimpleChair | ConcreteSimpleChair |
Person Person {ordered}

person role| Role roles| Role
& name:String [0. . x ‘:’ 0..% & name:String 0..%
I
I

Z& 0..*|sessions ZX
Participant
= - -
. 0.. Hearer < CoChair {ordered} Hearer < CoCair
0..1|session 0..*|participants
Session Z& Session Zx
X N *
& name:String & name:String 0.. -
sessions
= findRole(p:Person) :Role Speaker Chair = findRole(p:Person) :Role Speaker Chair
A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL ATutorial at MoDELS 2008 49 Analyzing UML/OCL models with HOL-OCL ATutorial at MoDELS 2008 50

Outline The HOL-OCL Architecture

HoL-ocL User Interface (based on Proof General)
Datatype Package Theory Morpher

Proof Document
(Theory Files)

. The HOL-OCL Architecture ‘ Isabelle/HOL ‘

UML/OCL
Specification

‘ sML (Standard ML) ‘

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 51 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 52

su4sml — Overview

sudsml is a UML/OCL (and SecureUML) model repository providing

@ a database for syntactic elements of UML core, namely class models
and state machines as well as OCL expressions.

@ support for SecureUML.

@ import of UML/OCL models in different formats:

e XMl and ArgoUML (class models and state machines)
@ OCL (plain text files)
@ USE (plain text files describing class models with OCL annotations)

a template-based code generator (export) mechanism.
an integrated framework for model transformations.

a framework for checking well-formedness conditions.
a framework for generating proof obligations.

an interface to HOL-OCL (encoder, po manager).

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

su4sml — Model Transformations

sudsml provides a framework for model transformation that
@ supports the generation of proof obligations
@ can be programmed in SML.

Currently, the following transformations are provided:

@ a family of semantic preserving transformations for converting
associations (e.g., n-ary into binary ones)

@ a transformation from SecureUML/ComponentUML to UML/OCL.

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

A.D. Brucker and B. Wolff (SAP /PCRI)

53

55

sud4sml — Code Generators

sudsml provides a template-based code generator for
@ Java, supporting
e class models and state machines

@ OCL runtime enforcement
e SecureUML

@ C#, supporting

e class models and state machines
e SecureUML

@ USE
o ...

A Tutorial at MoDELS 2008

A.D. Brucker and B. Wolff (SAP / PCRI)

Analyzing UML/OCL models with HOL-OCL

sudsml — Well-formedness Checks

su4sml provides an framework for extended well-formedness checking:
@ Checks if a given model satisfies certain syntactic constraints,
@ Allows for defining dependencies between different checks

@ Examples for well-formedness checks are:

restricting the inheritance depth

e restringing the use of private class members

@ checking class visibilities with respect to member visibilities
o

@ Can be easily extended (at runtime).
@ Is integrated with the generation of proof obligations.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

54

56

su4sml — Proof Obligation Generator

sudsml provides an framework for proof obligation generation:
@ Generates proof obligation in OCL plus minimal meta-language.
@ Only minimal meta-language necessary:

e Validity: = _, _ = _
o Meta level quantifiers: 3_. _, 3 . _
o Meta level logical connectives: _V _, _A_, =

@ Examples for proof obligations are:

@ (semantical) model consistency
e Liskov’s substitution principle

e refinement conditions
o

@ Can be easily extended (at runtime).

@ Builds, together with well-formedness checking, the basis for
tool-supported methodologies.

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 57

The Library

The HOL-OCL library
@ formalizes the built-in operations of UML/OCL,
@ comprises over 10 000 definitions and theorems,
@ build the basis for new, OCL specific, proof procedures,
@ provides proof support for (formal) development methodologies.

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 59

A.D. Brucker and B. Wolff (SAP /PCRI)

The Encoder

The model encoder is the main interface between su4sml and the Isabelle
based part of HOL-OCL. The encoder
@ declarers HOL types for the classifiers of the model,
@ encodes
e type-casts,
e attribute accessors, and
e dynamic type and kind tests implicitly declared in the imported data
model,
@ encodes the OCL specification, i. e.,
@ class invariants
e operation specifications
and combines it with the core data model, and
@ proves (automatically) methodology and analysis independent
properties of the model.

A.D. Brucker and B. Wolff (SAP / PCRI)

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 58

Tactics (Proof Procedures)

@ OCL, as logic, is quite different from HOL (e. g., three-valuedness)

@ Major Isabelle proof procedures, like simp and auto,
cannot handle OCL efficiently.

@ HOL-OCL provides several UML/OCL specific proof procedures:

e embedding specific tactics (e. g., unfolding a certain level)
@ a OCL specific context-rewriter

@ a OCL specific tableaux-prover

e ...

These language specific variants increase the degree of proof for OCL.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 60

The HOL-OCL User Interface The HOL-OCL High-level Language

a,inf,ethz,ch

The HOL-OCL proof language is an extension of Isabelle’s Isar language:

FHe Edit Options Buffers Tools Preview LaTeX Command X-Symbol Help

DEFEEEE R E 5 & E e importing UML/OCL:

= \begcl‘:_{::al\}) 3 import model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
endioamy iy o ostleoet lcomanyoct) include_only "AbstractSimpleChair"

Whegin{figure}
scentering
\ §ég{§g$gg%§;gg$g;ggcg}gssﬁgsggﬁa;;\iaml{f,g T @ check well-formedness and generate proof obligations for refinement:
£n Igure;
)

)) analyze consistency [data refinement] "AbstractSimpleChair"
load_xmi "company_ocl xmi" = o

|:| thm Company . Parson. iny. inv_19_def

lemma " Company .Person. inv self — Conpany.Person. inv. inv-19 self" o Starting a prOOf for a generated prOOf Obligation:
apply (simp add: Company .Person. inv_def

Company . Person. iny. inv_19_def) . g
(~) amiviauta " "
Towe conpetty.thy BUZ (45,14) SYN-DTITE (Isar script [PDFLaTeN/F] MM ¥S:holocl/s Scripting)=—=-6:35 2.39 po "AbstractSimpleChair.findRole_enabled

Ferson.iny.inv_13 =
Azelf. % p2 e OclallInstances . .
self « (¥ pl e OclallInstances @ generating code:
self e ((p1 "<x® p2) —

j samsyncethm Company . Person. iny. inv_T19_def: %< syncei

(Company . Person. lastMame pl <> Company.Person. lastMame p23))[generateicode "java“

é—— *FESpONSe AT 46,1003 {responsel——-—-6:35 2.539 Mail

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 61 A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008
Applications Applications Consistency Analysis

context Person
7777777777 inv AllPersonsWithDriversLicenseAdult:
= age:Integer self.driversLicense->notEmpty ()

Person

implies self.age > 17
person

driversLicense|0..1

DriversLicense context DriverslLicense
: . A i inv AllLicenseOwnersAdult:
@ licenseClass:String person.age > 17

‘ Applications Figure: A simple model of vehicles and licenses

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 63 A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Simple Consistency Analysis Il

lemma
assumes "7 F (Vehicles.Person.driversLicense(
Vehicles.DriversLicense.person self)).IsDefined ()"
and "7 F (Vehicles.Person.age
(Vehicles.DriversLicense.person self)).IsDefined () "
shows "7 E Person.inv.AllPersonsWithDriversLicenseAdult (
Vehicles.DriversLicense.person self)
—— 7 F DriversLicense.inv.AllLicenseOwnersAdult self"
apply(auto elim!: OcllmpliesE)
apply(cut_tac prems)
apply(auto simp: inv.AllPersonsWithDriversLicenseAdult def
inv.AllLicenseOwnersAdult def
elim!: OcllmpliesE SingletonSetDefined)
done

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Liskov’s Substitution Principle
Liskov’s Substitution Principle I

65

import model "overriding.zargo" "overriding.ocl"

generate po liskov "pre"
generate po liskov "post"

po "overriding.OCL liskov—po Isk pre—1"
apply(simp add: A.m Integer Integer.prel def
A.m Integer Integer.prel.pre 0 def
C.m Integer Integer.prel def
C.m _Integer Integer.prel.pre 0 def
A.m Integer Integer.prel.pre 1 def)
apply(ocl auto)
discharged

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

67

Liskov’s Substitution Principle
Liskov’s Substitution Principle |

context A::m(p:Integer):Integer
pre: p >0
post: result > 0

context A::m(p:Integer):Integer
pre: p >= 0
post: result = pxp + 5

-- The following constraints overrides the specification for
-- m(p:Integer):Integer that was originally defined in
-- class A, i.e., C is a subclass of A.
-- (Stricly, this is not valid with respect to the
-- UML/OCL standards...)
context C::m(p:Integer):Integer
pre: p >= 0
post: result > 1 and result = px*p+5

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 66

Outline

. Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 68

.
Conclusion

@ HOL-OCL provides:

e a formal, machine-checked semantics for OO specifications,

e an interactive proof environment for OO specifications,
@ publicly available:
http://www.brucker.ch/projects/hol-ocl/,

e next (major) release planned in October/November 2008.

@ HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,

proof-obligation generation,

methodology support for UML/OCL,

a transformation framework (including PO generation),
code generators,

support for SecureUML.

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL

Thank you
for your attention!

Any questions or remarks?

A Tutorial at MoDELS 2008

69

Conclusion and Future Work Future Work

Ongoing and Future Work

@ Ongoing work includes improving the infrastructures for
e well-formedness-checking,
e proof-obligation generation (Liskov, Refinement,),
e consistency checking,
@ Hoare-style program verification,
@ better proof automation in general.

@ Future works could include the development for

e integrating OCL validation tools, e.g., USE,

o test-case generation (i.e., integrating HOL-TestGen),
@ supporting SecureUML.

o

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 70

Bibliography

Bibliography |

@ Achim D. Brucker, Jurgen Doser, and Burkhart Wolff.
An MDA framework supporting OCL.
Electronic Communications of the EASST, 5, 2006.

@ Achim D. Brucker.
An Interactive Proof Environment for Object-oriented Specifications.
Ph.d. thesis, ETH Zurich, March 2007.
ETH Dissertation No. 17097.

@ Achim D. Brucker and Burkhart Wolff.
HOL-OCL - A Formal Proof Environment for UML/OCL.
In José Fiadeiro and Paola Inverardi, editors, Fundamental Approaches to
Software Engineering (FASE08), number 4961 in Lecture Notes in
Computer Science, pages 97-100. Springer-Verlag, 2008.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 72

N
Bibliography Il

[Achim D. Brucker and Burkhart Wolff. Part Il
Extensible universes for object-oriented data models.
In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, Appendix

number 5142 in Lecture Notes in Computer Science, pages 438-462.
Springer-Verlag, 2008.

[8 The HOL-OCL Website.
http://www.brucker.ch/projects/hol-ocl/.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 73 A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008
SecureUML - Model-driven Security

Outline

. SecureUML - Model-driven Security

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

74

76

Model-driven Security

Goals:

@ A method to model secure designs and automatically transform these
into secure systems.

@ Supports well-established standards/technology for modelling
components and security.

@ Models are expressive, comprehensible, and maintainable.

@ Reduces complexity of application development and improves the
quality of the resulting applications.

@ The entire process is semantically well-founded.
@ Allows integrated formal reasoning over security design models.

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Modeling Access Control with SecureUML

«secureuml.permission»
OwnerMeeting
= Meeting:update
= Meeting:delete

caller=self.owner.name |¥ ---

77

| Meeting
I
«secureuml.role» ! = start:Date
UserRole e = duration:Time
@ notify():0clVoid
@ cancel():0clVoid
0..%
«sgcyreuml. role» ownerl|1
AdministratorRole Person

= name:String

Figure: Access Control Policy for Class Meeting Using SecureUML

A Tutorial at MoDELS 2008

A.D. Brucker and B. Wolff (SAP /PCRI)

Analyzing UML/OCL models with HOL-OCL

79

SecureUML

..x[Subject]0.. 0..%[Role |1..x 0..*[Permission |0..x 1..*[Action |0..* ‘ Resource |
1 1 F F 1
L 1

1 { 1 L }
0..% f>0..* 0..% 0..%
0..1 0..%
[AuthorizationConstraint] [AtomicAction] [CompositeAction]
[1 [1 [1
L 1 L 1 L 1

Figure: The SecureUML Metamodel

SecureUML
@ provides abstract Syntax given by MOF compliant metamodel
@ is a UML-based notation supporting role-based access control
@ is pluggable into arbitrary design modeling languages
@ is supported by an ArgoUML plugin

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Supporting SecureUML in ArgoUML

o

By Prioity ~ 79 tems ¢
Dron
> Snedium

> Blow

ACTION
create

|| rean
doleto

prvvn p s pree I | e

080 e
o
=

fuccess

[@nowrote

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

78

80

A Formal Model Transformation
From SecureUML to UML/OCL

Substitute the SecureUML model by an explicit enforcement model using
UML/OCL. J

The transformation basically
@ initializes a concrete authorization environment,

@ transforms the design model, and
@ transforms the security model.

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 81

SecureUML - Model-driven Security A Formal Model Transformation

Design Model Transformation

Generate secured operations for each class, attribute and operation in the
design model. J

@ For each class C we add constructors and destructors,
@ for each attribute of class C we add getter and setter operations, and
@ for each operation op of class C we add a secured wrapper:

context C::op_sec(...):...

pre: preg,
post: post,, = post,,[f() — f_sec(), att — getAtt()]

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 83

SecureUML - Model-driven Security A Formal Model Transformation

The Authorization Environment

Context
I
I
0..x

+principal|l

Principal

= isInRole(role:String):Boolean

0..x

identity‘l
Identity
= name:String

‘0..*

+roles|0..x*

Role

= name:String

= getRoleByName(role:String):Role

Figure: Basic Authorization Environment

A.D. Brucker and B. Wolff (SAP / PCRI)

Analyzing UML/OCL models with HOL-OCL

SecureUML - Model-driven Security A Formal Model Transformation

Design Model Transformation: Classes

@ for each class C

A Tutorial at MoDELS 2008

82

context C::new():C

post: result.oclIsNew() and result->modifiedOnly()
context C::delete():0clVoid
post: self.oclIsUndefined() and self@pre->modifiedOnly()

A.D. Brucker and B. Wolff (SAP /PCRI)

Analyzing UML/OCL models with HOL-OCL

A Tutorial at MoDELS 2008

84

A Formal Model Transformation
Design Model Transformation: Attributes

@ for each Attribute att of class C

context C::getAtt():T
post: result=self.att
context C::setAtt(arg:T):0clVoid
post: self.att=arg and self.att->modifiedOnly()

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 85

A Formal Model Transformation

SecureUML - Model-driven Security

Security Model Transformation

@ The role hierarchy is transformed into invariants for the Role and
Identity classes.

@ Security constraints are transformed as follows:

inve — inve
preop = preop
post,, +— if authy,

then post,,

else result.oclIsUndefined()
and Set{}->modifiedOnly()

endif

where auth,, represents the authorization requirements.

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 87

A.D. Brucker and B. Wolff (SAP /PCRI)

A Formal Model Transformation
Design Model Transformation: Operations

@ for each Operation op of class C

context C::op_sec(...):...

pre: pre,,
post: post,, = post,,[f() — f_sec(), att — getAtt()]

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

Security Model Transformation: Role Hierarchy

@ The total set of roles in the system is specified by enumerating them:

86

context Role
inv: Role.allInstances().name=Bag{<List of Role Names>}

The inheritance relation between roles is then specified by an OCL
invariant constraint on the Identity class:

context Identity
inv: self.roles.name->includes(’'<Rolel>")
implies self.roles.name->includes('<Role2>")

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

88

Relative Consistency

@ Aninvariant (class) is invariant-consistent, if a satisfying state exists:
Jdo. o Einv

@ A class model is global consistent,
if the conjunction of all invariants is invariant-consistent:

Jdo. o =inv; and inv, and and inv,

@ An operation is implementable, if
for each satisfying pre-state there exists a satisfying post-state:
V opre € X,5€lf,iv, ..., 0n. Opre = Preg, —

3 opost € L, result. (opre, opost) = POSt,,

A.D. Brucker and B. Wolff (SAP /PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 89

SecureUML - Model-driven Security

Consistency Analysis

Modularity Results

Our method allows for
a modular specifications and reasoning for secure systems.

Theorem (Implementability)

An operation op_sec of the secured system model is implementable
provided that the corresponding operation of the design model is
implementable and spo,, holds.

Theorem (Consistency)

A secured system model is consistent provided that the design model is
consistent, the class system is security consistent, and the security model is
consistent.

A.D. Brucker and B. Wolff (SAP /PCRI)

Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 91

M

N
Proof Obligations

@ We require:

e if a security violation occurs, the system state is preserved
e if access is granted, the model transformation preserves the functional
behavior

Which results for each operation in a security proof obligation:

4L

Spo,, = authy, implies post,, = post,,

@ Aclass system is called security consistent if all spo,, hold.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008

90

