
Analyzing UML/OCL Models with HOL-OCL

Achim D. Brucker1 Burkhart Wolff2

1SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2PCRI/co INRIA-Futurs, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@lri.fr

A Tutorial at MoDELS 2008
Toulouse, 28th September 2008

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff
mailto:achim.brucker@sap.com
mailto:wolff@lri.fr

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

Introduction Motivation

The Situation Today
A Software Engineering Problem

Software systems

are becoming more and more complex and
are used in safety and security critical applications.

Formal methods are one way to increase their reliability.

But, formal methods are hardly used by mainstream industry:

difficult to understand notation
lack of tool support
high costs

Semi-formal methods, especially UML,

are widely used in industry, but
they lack support for formal methodologies.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 5

Introduction Motivation

Is OCL an Answer?

UML/OCL attracts the practitioners:

is defined by the object-oriented community,
has a “programming language face,”
increasing tool support.

UML/OCL is attractive to researchers:

defines a “core language” for object-oriented modeling,
provides good target for object-oriented semantics research,
offers the chance for bringing formal methods closer to industry.

Turning OCL into a full-fledged formal methods is deserving and interesting.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 6

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Generic

SecureUML

ArgoUML−plugin

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Code Generator

SecureUML, UML, OCL

Java, C#, Junit, XACL, USE, ...

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Methodologies:

Well−formedness checking

Proof−obligation generation

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

Transformations:

SecureUML −> UML/OCL

UML/OCL −> UML/OCL

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

HOL−OCL

formal analysis

 formal verification

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

HOL−TestGen

model−based unit test

sequence testing

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Introduction The HOL-OCL Vision

The HOL-OCL Vision:
Tool Supported Formal Methods for (Model-driven) Software Development

1..∗

Role

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Class

+ Public Method
Protected Method

attribute: Type

− Private Method

Model TransformationDesign

Phase Phase

Verification and

Code−generation Phase Deployment Phase

Testing and

UML/OCL

(XMI)

or
SecureUML/OCL

Code
Generator

Repository
Model

(su4sml)

Model−Analysis
and Verification

(HOL−OCL)
Transformation

Model

HOL−TestGen

ArgoUML

AC
Config

C#
+OCL

Test
Harness

manual
Code

Proof

Obligations

Test Data

Program

Generation

Validation

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 7

Background

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 8

Background UML/OCL in a Nutshell

The Unified Modeling Language (UML)

Visual modeling language

Object-oriented
development

Industrial tool support

OMG standard

Many diagram types, e. g.,

activity diagrams
class diagrams
. . .

Eat something

Read a book Listen to music

still hungry

had enough

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..*

owner 1

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 9

Background UML/OCL in a Nutshell

The Unified Modeling Language (UML)

Visual modeling language

Object-oriented
development

Industrial tool support

OMG standard

Many diagram types, e. g.,

activity diagrams
class diagrams
. . .

Eat something

Read a book Listen to music

still hungry

had enough

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

accounts
1..*

owner 1

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

Customer

id:Integer
name:String

getId():Integer
setName(n:String):Boolean
getName():String

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 9

Background UML/OCL in a Nutshell

The Object Constraint Language (OCL)

Textual extension of the UML

Allows for annotating UML diagrams

In the context of class–diagrams:

invariants
preconditions
postconditions

Can be used for other diagrams

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 10

Background UML/OCL in a Nutshell

The Object Constraint Language (OCL)

Textual extension of the UML

Allows for annotating UML diagrams

In the context of class–diagrams:

invariants
preconditions
postconditions

Can be used for other diagrams

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 10

Background UML/OCL in a Nutshell

The Object Constraint Language (OCL)

Textual extension of the UML

Allows for annotating UML diagrams

In the context of class–diagrams:

invariants
preconditions
postconditions

Can be used for other diagrams

Account

balance:Integer
id:Integer

getId():Integer
getBalance():Integer
deposit(a:Integer):Boolean
withdraw(a:Integer):Boolean

accounts
1..*

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

context Account
inv: 0 <= id

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre+a

and id = id@pre

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 10

Background UML/OCL in a Nutshell

OCL by Example

Class invariants:

context Account inv: 0 <= id

Operation specifications:

context Account::deposit(a:Integer):Boolean
pre: 0 < a
post: balance = balance@pre + a

A “uniqueness” constraint for the class Account:

context Account inv:
Account::allInstances()

->forAll(a1,a2 | a1.id = a2.id implies a1 = a2)

OCL context OCL keywords UML path expressions

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 11

Formalization of UML and OCL

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 19

Formalization of UML and OCL

Developing Formals Tools for UML/OCL?
Turning UML/OCL into a formal method

1 A formal semantics of UML class models

typed path expressions
inheritance
dynamic binding
. . .

2 A formal semantics of OCL and proof support for OCL

reasoning over UML path expressions
large libraries
three-valued logic
. . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 20

Formalization of UML and OCL Formalization of OCL

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL
Formalization of OCL
Formalization of UML
The OCL Standard

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 21

Formalization of UML and OCL Formalization of OCL

How to Formalize OCL ?

The semantic foundation of the OCL standard:

Chapter 11 “The OCL Standard Library” (normative):
describes the requirements (pre-/post-style)

Appendix A “Semantics” (informative):
presents a formal semantics (paper and pencil)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 22

Formalization of UML and OCL Formalization of OCL

The OCL Semantics: An Example

The Interpretation of “X->union(Y)” for sets (“X ∪ Y”):

I(∪)(X, Y) ≡

{
X ∪ Y if X 6=⊥ and Y 6=⊥,

⊥ otherwise

This is a

lifted (sets can be undefined, denoted by ⊥) and
strict (the union of undefined with anything is undefined)

version of the union of “mathematical sets.”

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 23

Formalization of UML and OCL Formalization of OCL

A Machine-checked Semantics

Our formalization of “X->union(Y)” for sets (“X ∪ Y”):

_->union _ ≡
(

strictify
(
λX. strictify(λ Y. xpXq ∪ pYqy)

))
.

We model concepts like strict and lifted explicit, i. e., we introduce:

a datatype for lifting:
α⊥ := xαy | ⊥

a combinator for strictification:

strictify f x ≡ if x = ⊥ then⊥ else f x

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 24

Formalization of UML and OCL Formalization of OCL

Is This Semantics Compliant?

We prove formally (within our embedding):

SemJnot XKγ =

{
x¬pSemJXKγqy if SemJXKγ 6= ⊥ ,
⊥ otherwise .

lemma "
`
SemJnot xKγ

´
=

`
if SemJxKγ 6= ⊥ then x¬pSemJxKγqy else ⊥

´
"

apply(simp add: OclNot_def DEF_def lift0_def lift1_def lift2_def
semfun_def)

done

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 25

Formalization of UML and OCL Formalization of OCL

Proving Requirements

isEmpty() : Boolean (11.7.1-g)
Is self the empty collection?

post: result = (self->size() = 0)

Bag
lemma (self ->isEmpty()) = ((self, β :: bot)Bag)->size()

.
= 0

apply(rule Bag_sem_cases_ext, simp_all)
apply(simp_all add: OCL_Bag.OclSize_def OclMtBag_def

OclStrictEq_def
Zero_ocl_int_def ss_lifting’)

done

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 26

Formalization of UML and OCL Formalization of UML

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL
Formalization of OCL
Formalization of UML
The OCL Standard

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 27

Formalization of UML and OCL Formalization of UML

A Semantics of Typed Path Expressions

Question: What is the semantics of self.s?

Access the value of the attribute s of the object self.

Formalizing type safe path expressions requires

a HOL representation of class types
HOL functions for accessing attributes
support for inheritance and subtyping

After adding new classes to a model

there is no need for re-proving
definitions can be re-used

Goal: a type-safe object store, supporting modular proofs

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 28

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α B := (Otag×oid)×
(

(Atag×String)

×
(
(Btag×Integer)

× α⊥

)
⊥

)
⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α

B :=

(Otag×oid)×
(

(Atag×String)

×
(
(Btag×Integer)

× α⊥

)
⊥

)
⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α

B := (Otag×oid)

×
(

(Atag×String)

×
(
(Btag×Integer)

× α⊥

)
⊥

)
⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α

B := (Otag×oid)×
(

(Atag×String)

×
(
(Btag×Integer)

× α⊥

)
⊥

)

⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α

B := (Otag×oid)×
(

(Atag×String)×
(
(Btag×Integer)

× α⊥

)

⊥

)

⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types

The “extensible records” approach

We assume a common superclass (O).
The uniqueness is guaranteed by a tag type, e. g.:

Otag := classO

Construct class type as tuple along inheritance
hierarchy

O

A

s:String

B

b:Integer

α

α B := (Otag×oid)×
(

(Atag×String)×
(
(Btag×Integer)× α⊥

)
⊥

)
⊥

where _⊥ denotes types supporting undefined values.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 29

Formalization of UML and OCL Formalization of UML

Representing Class Types: Summary

Advantages:

it allows for extending class types (inheritance),
subclasses are type instances of superclasses

⇒ it allows for modular proofs, i. e.,
a statement φ(x : : (α B)) proven for class B is still valid
after extending class B.

However, it has a major disadvantage:

modular proofs are only supported
for one extension per class

O

A

s:String

B

b:Integer

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 30

Formalization of UML and OCL Formalization of UML

A Universe Type

A universe type represents all classes

supports modular proofs with arbitrary extensions

provides a formalization of a extensible typed object store

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 31

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A

A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

An Extensible Object Store

O O

αO

U
(αO) = O × α

O
⊥

A A βO

αA

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

B B βA

αB

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥C C βA

αC

U
(αO) = O × αO⊥

U
(αA ,βO) = O × (A× αA

⊥ + βO)⊥

U
(αB ,βO ,βA) = O × (A× (B × αB

⊥ + βA)⊥ + βO)⊥

U
(αB ,αC ,βO ,βA) = O × (A× (B × αB

⊥ + (C × αC
⊥ + βA))⊥ + βO)⊥

U 3
(αB,αC,βO,βA) ≺ U 2

(αB,βO,βA) ≺ U 1
(αA,βO) ≺ U 0

(αO)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 32

Formalization of UML and OCL Formalization of UML

Operations Accessing the Object Store

injections
mkO o = Inl o with type αO O→ U 0

αO

projections
getO u = u with type U 0

αO → αO O

type casts
A[O] = getO ◦mkA with type αA A→ (A× αA

⊥ + βO) O

O[A] = getA ◦mkO with type (A× αA
⊥ + βO) O→ αA A

. . .

All definitions are generated automatically

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 33

Formalization of UML and OCL Formalization of UML

Does This Really Model Object-orientation?

For each UML model, we have to show several properties:

O

A

s:String

B

b:Integer

subclasses are of the superclasses kind:

isTypeB self

isKindA self

“re-casting”:

isTypeB self

self [A][B] 6= ⊥ ∧ isTypeB (self [A][B][A]
)

monotonicity of invariants, . . .

All rules are derived automatically

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 34

Formalization of UML and OCL The OCL Standard

First Results of Formalizing the OCL Standard

We found several glitches:

inconsistencies between the formal semantics and the requirements
missing pre- and postconditions
wrong (e.g., to weak) pre- and postconditions
. . .

and examined possible extensions (open problems):

operations calls and invocations
smashing of datatypes
equalities
recursion
semantics for invariants (type sets)
. . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 35

Mechanized Support for Model Analysis Methods

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 36

Mechanized Support for Model Analysis Methods

Motivation

Observation:

UML/OCL is a generic modeling language:

usually, only a sub-set of UML is used and
per se there is no standard UML-based development process.

Successful use of UML usually comprises

a well-defined development process and
tools that integrate into the development process.

Conclusion:

Formal methods for UML-based development should

support the local UML development methodologies and
integrate smoothly into the local toolchain.

A toolchain for formal methods should provide
tool-support for methodologies.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 37

Mechanized Support for Model Analysis Methods Well-formedness Checking: Enforcing Syntactical Requirements

Well-formedness of Models

Well-formedness Checking

Enforce syntactical restriction on (valid) UML/OCL models.

Ensure a minimal quality of models.

Can be easily supported by fully-automatic tools.

Example

There should be at maximum five inheritance levels.

The Specification of public operations may only refer to public class
members.

. . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 38

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations for Models

Proof Obligation Generation

Enforce semantical restriction on (valid) UML/OCL models.

Build the basis for formal development methodologies.

Require formal tools (theorem prover, model checker, etc).

Example

Liskov’s substitution principle.

Model consistency

Refinement.

. . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 39

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Liskov substitution principle

Let q(x) be a property provable about objects x of type T. Then q(y) should
be true for objects y of type S where S is a subtype of T.

For constraint languages, like OCL, this boils down to:

pre-conditions of overridden methods must be weaker.

post-conditions of overridden methods must be stronger.

Which can formally expressed as implication:

Weakening the pre-condition:

oppre → opsub
pre

Weakening the pre-condition:

opsub
post → oppost

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 40

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Proof Obligations: Liskov’s Substitution Principle

Example

Rectangle

width:Integer
height:Integer

setHeight(h:Integer):OclVoid
setWidth(w:Integer):OclVoid

context Rectangle::setWidth(w:Integer):OclVoid
pre: w >= 0
post: self.width = w

context Square::setWidth(w:Integer):OclVoid
pre: w >= 0
post: self.width = w and self.height=w

Square

setHeight(h:Integer):OclVoid
setWidth(w:Integer):OclVoid

Weakening the pre-condition:

(w >= 0)→ (w >= 0)

Strengthening the post-condition:

(self.width = w and self.height = w)→ (self.width = w)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 41

Mechanized Support for Model Analysis Methods Proof Obligations: Enforcing Syntactical Requirements

Well-formedness and Proof Obligations

Repository
Model

(su4sml)

UML
OCL

Verification

(e.g., HOL−OCL)

Validation
(e.g., USE, OCLE)

Syntactic Checks
(e.g., su4sml)

Well−formedness

Proof Obligation

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 42

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Methodology

A tool-supported methodology should

integrate into existing toolchains and processes,

provide a unified approach, integrating ,

syntactic requirements (well-formedness checks),
generation of proof obligations,
means for verification (proving) or validation, and of course

all phases should be supported by tools.

Example

A package-based object-oriented refinement methodology.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 43

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement – Motivation

Support top-down development from an abstract model to
a more concrete one.

We start with an abstract transition system

sysabs = (σabs, initabs, opabs)

We refine each abstract operation opabs

to a more concrete one: opconc.

Resulting in a more concrete transition system

sysconc = (σconc, initconc, opconc)

Such refinements can be chained:

sys1 sys2 · · · sysn

E.g., from an abstract model to one that supports code generation.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 44

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement: Well-formedness

If package B refines a package A, then
one should be able to substitute every usage of package A with package B.

1 The concrete package must provide at a corresponding public class for
each public class of the abstract model.

2 For public attributes we require that their type and for public operations
we require that the return type and their argument types are either
basic datatypes or public classes.

3 For each public class of the abstract package, we require that the
corresponding concrete class provides at least

1 public attributes with the same name and
2 public operations with the same name.

4 The types of corresponding abstract and concrete attributes and
operations are compatible.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 45

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement: Proof Obligtations – Consistency

A transition system is consistent if:

The set of initial states is non-empty, i. e.,

∃σ. σ ∈ init

The state invariant is satisfiable, i. e.,
the conjunction of all invariants is invariant-consistent:

∃σ. σ |= inv1 ∧ ∃σ. σ |= inv2 ∧ · · · ∧ ∃σ. σ |= invn

All operations op are implementable, i. e.,
for each satisfying pre-state there exists a satisfying post-state:

∀ σpre ∈ Σ, self , i1, . . . , in. σpre |= preop −→
∃ σpost ∈ Σ, result. (σpre, σpost) |= postop

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 46

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement: Proof Obligtations – Implements

Given an abstraction relation R : P(σabs × σconc)
relating a concrete state S and an abstract states T.

A forward refinement S vR
FS T ≡ po1(S,R, T) ∧ po2(S,R, T)

requires two proof obligations po1 and po2.

Preserve Implementability (po1):

opc

R

σa

σc

⇒ R

σa

σc

σ′aσ′a

σ′c

opaopa

po1(S,R, T) ≡ ∀σa ∈ pre(S), σc ∈ V. (σa, σc) ∈ R→ σc ∈ pre(T)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 47

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement: Proof Obligtations – Refines

Given an abstraction relation R : P(σabs × σconc)
relating a concrete state S and an abstract states T.

A forward refinement S vR
FS T ≡ po1(S,R, T) ∧ po2(S,R, T)

requires two proof obligations po1 and po2.

Refinement (po2):

opa

opc σ′c
opc

RR

σa

σc

⇒
σa

σc

σ′a

σ′c

R

po2(S,R, T) ≡ ∀σa ∈ pre(S), σc ∈ V. σc′ . (σa, σc) ∈ R

∧ (σc, σ
′
c) |=M T → ∃σ′a ∈ V. (σa, σ

′
a) |=M S ∧ (σa′ , σc′) ∈ R

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 48

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement Example: Abstract Model

Role

Hearer

Speaker

CoChair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

Participant

AbstractSimpleChair

Person
name:String

Role

Participant
Hearer CoChair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

person
0..*

role
0..*

0..*
session0..1

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 49

Mechanized Support for Model Analysis Methods Formal Methodologies for UML/OCL

Refinement Example: Concrete Model

Role

Hearer

Speaker

CoCair

Chair

Person
name:String

Session
name:String
findRole(p:Person):Role

ConcreteSimpleChair

Person
name:String

Role

Hearer CoCair

ChairSpeaker

Session
name:String
findRole(p:Person):Role

participants
{ordered}

0..*

sessions0..*

sessions
0..*

{ordered}
roles
0..*

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 50

The HOL-OCL Architecture

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 51

The HOL-OCL Architecture

The HOL-OCL Architecture

 (Standard )

susml Isabelle/

Datatype Package - Library �eory Morpher

- User Interface (based on Proof General)

HOL-OCL

/
Specification

import

Proof Document
(�eory Files)

import

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 52

The HOL-OCL Architecture The Model Repository: su4sml

su4sml – Overview

su4sml is a UML/OCL (and SecureUML) model repository providing

a database for syntactic elements of UML core, namely class models
and state machines as well as OCL expressions.

support for SecureUML.

import of UML/OCL models in different formats:

XMI and ArgoUML (class models and state machines)
OCL (plain text files)
USE (plain text files describing class models with OCL annotations)

a template-based code generator (export) mechanism.

an integrated framework for model transformations.

a framework for checking well-formedness conditions.

a framework for generating proof obligations.

an interface to HOL-OCL (encoder, po manager).

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 53

The HOL-OCL Architecture The Model Repository: su4sml

su4sml – Code Generators

su4sml provides a template-based code generator for

Java, supporting

class models and state machines
OCL runtime enforcement
SecureUML

C#, supporting

class models and state machines
SecureUML

USE

. . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 54

The HOL-OCL Architecture The Model Repository: su4sml

su4sml – Model Transformations

su4sml provides a framework for model transformation that

supports the generation of proof obligations

can be programmed in SML.

Currently, the following transformations are provided:

a family of semantic preserving transformations for converting
associations (e. g., n-ary into binary ones)

a transformation from SecureUML/ComponentUML to UML/OCL.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 55

The HOL-OCL Architecture The Model Repository: su4sml

su4sml – Well-formedness Checks

su4sml provides an framework for extended well-formedness checking:

Checks if a given model satisfies certain syntactic constraints,

Allows for defining dependencies between different checks

Examples for well-formedness checks are:

restricting the inheritance depth
restringing the use of private class members
checking class visibilities with respect to member visibilities
. . .

Can be easily extended (at runtime).

Is integrated with the generation of proof obligations.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 56

The HOL-OCL Architecture The Model Repository: su4sml

su4sml – Proof Obligation Generator

su4sml provides an framework for proof obligation generation:

Generates proof obligation in OCL plus minimal meta-language.

Only minimal meta-language necessary:

Validity: |= _, _ |= _
Meta level quantifiers: ∃_. _, ∃_. _
Meta level logical connectives: _ ∨ _, _ ∧ _, ¬_

Examples for proof obligations are:

(semantical) model consistency
Liskov’s substitution principle
refinement conditions
. . .

Can be easily extended (at runtime).

Builds, together with well-formedness checking, the basis for
tool-supported methodologies.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 57

The HOL-OCL Architecture The Encoder

The Encoder

The model encoder is the main interface between su4sml and the Isabelle
based part of HOL-OCL. The encoder

declarers HOL types for the classifiers of the model,

encodes

type-casts,
attribute accessors, and
dynamic type and kind tests implicitly declared in the imported data
model,

encodes the OCL specification, i. e.,

class invariants
operation specifications

and combines it with the core data model, and

proves (automatically) methodology and analysis independent
properties of the model.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 58

The HOL-OCL Architecture The Library

The Library

The HOL-OCL library

formalizes the built-in operations of UML/OCL,

comprises over 10 000 definitions and theorems,

build the basis for new, OCL specific, proof procedures,

provides proof support for (formal) development methodologies.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 59

The HOL-OCL Architecture Automated Proof Procedures

Tactics (Proof Procedures)

OCL, as logic, is quite different from HOL (e. g., three-valuedness)

Major Isabelle proof procedures, like simp and auto,
cannot handle OCL efficiently.

HOL-OCL provides several UML/OCL specific proof procedures:

embedding specific tactics (e. g., unfolding a certain level)
a OCL specific context-rewriter
a OCL specific tableaux-prover
. . .

These language specific variants increase the degree of proof for OCL.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 60

The HOL-OCL Architecture The User Interface

The HOL-OCL User Interface

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 61

The HOL-OCL Architecture The User Interface

The HOL-OCL High-level Language

The HOL-OCL proof language is an extension of Isabelle’s Isar language:

importing UML/OCL:

import_model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include_only "AbstractSimpleChair"

check well-formedness and generate proof obligations for refinement:

analyze_consistency [data_refinement] "AbstractSimpleChair"

starting a proof for a generated proof obligation:

po "AbstractSimpleChair.findRole_enabled"

generating code:

generate_code "java"

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 62

Applications

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 63

Applications Consistency Analysis

Simple Consistency Analysis I

DriversLicense

licenseClass:String

Person

age:Integer

context Person
inv AllPersonsWithDriversLicenseAdult:

self.driversLicense->notEmpty()
implies self.age > 17

context DriversLicense
inv AllLicenseOwnersAdult:

person.age > 17

person

driversLicense 0..1

Figure: A simple model of vehicles and licenses

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 64

Applications Consistency Analysis

Simple Consistency Analysis II

lemma
assumes "τ � (Vehicles.Person.driversLicense(

Vehicles.DriversLicense.person self)).IsDefined()"
and "τ � (Vehicles.Person.age

(Vehicles.DriversLicense.person self)).IsDefined() "
shows "τ � Person.inv.AllPersonsWithDriversLicenseAdult (

Vehicles.DriversLicense.person self)
−→ τ � DriversLicense.inv.AllLicenseOwnersAdult self"

apply(auto elim!: OclImpliesE)
apply(cut_tac prems)
apply(auto simp: inv.AllPersonsWithDriversLicenseAdult_def

inv.AllLicenseOwnersAdult_def
elim!: OclImpliesE SingletonSetDefined)

done

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 65

Applications Liskov’s Substitution Principle

Liskov’s Substitution Principle I

context A::m(p:Integer):Integer
pre: p > 0
post: result > 0

context A::m(p:Integer):Integer
pre: p >= 0
post: result = p*p + 5

-- The following constraints overrides the specification for
-- m(p:Integer):Integer that was originally defined in
-- class A, i.e., C is a subclass of A.
-- (Stricly, this is not valid with respect to the
-- UML/OCL standards...)
context C::m(p:Integer):Integer
pre: p >= 0
post: result > 1 and result = p*p+5

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 66

Applications Liskov’s Substitution Principle

Liskov’s Substitution Principle II

import_model "overriding.zargo" "overriding.ocl"

generate_po_liskov "pre"
generate_po_liskov "post"

po "overriding.OCL_liskov−po_lsk_pre−1"
apply(simp add: A.m_Integer_Integer.pre1_def

A.m_Integer_Integer.pre1.pre_0_def
C.m_Integer_Integer.pre1_def
C.m_Integer_Integer.pre1.pre_0_def
A.m_Integer_Integer.pre1.pre_1_def)

apply(ocl_auto)
discharged

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 67

Conclusion and Future Work

Outline

1 Introduction

2 Background

3 Formalization of UML and OCL

4 Mechanized Support for Model Analysis Methods

5 The HOL-OCL Architecture

6 Applications

7 Conclusion and Future Work

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 68

Conclusion and Future Work Conclusion

Conclusion

HOL-OCL provides:

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications,
publicly available:
http://www.brucker.ch/projects/hol-ocl/,
next (major) release planned in October/November 2008.

HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,
proof-obligation generation,
methodology support for UML/OCL,
a transformation framework (including PO generation),
code generators,
support for SecureUML.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 69

http://www.brucker.ch/projects/hol-ocl/

Conclusion and Future Work Future Work

Ongoing and Future Work

Ongoing work includes improving the infrastructures for

well-formedness-checking,
proof-obligation generation (Liskov, Refinement,),
consistency checking,
Hoare-style program verification,
better proof automation in general.

Future works could include the development for

integrating OCL validation tools, e.g., USE,
test-case generation (i.e., integrating HOL-TestGen),
supporting SecureUML.
. . . .

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 70

Thank you
for your attention!

Any questions or remarks?

Bibliography

Bibliography I

Achim D. Brucker, Jürgen Doser, and Burkhart Wolff.
An MDA framework supporting OCL.
Electronic Communications of the EASST, 5, 2006.

Achim D. Brucker.
An Interactive Proof Environment for Object-oriented Specifications.
Ph.d. thesis, ETH Zurich, March 2007.
ETH Dissertation No. 17097.

Achim D. Brucker and Burkhart Wolff.
HOL-OCL – A Formal Proof Environment for UML/OCL.
In José Fiadeiro and Paola Inverardi, editors, Fundamental Approaches to
Software Engineering (FASE08), number 4961 in Lecture Notes in
Computer Science, pages 97–100. Springer-Verlag, 2008.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 72

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.
Extensible universes for object-oriented data models.
In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming,
number 5142 in Lecture Notes in Computer Science, pages 438–462.
Springer-Verlag, 2008.

The HOL-OCL Website.
http://www.brucker.ch/projects/hol-ocl/.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 73

http://www.brucker.ch/projects/hol-ocl/

Part II

Appendix

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 74

Outline

8 SecureUML – Model-driven Security

SecureUML – Model-driven Security

Outline

8 SecureUML – Model-driven Security
SecureUML
A Formal Model Transformation
Consistency Analysis

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 76

SecureUML – Model-driven Security

Model-driven Security

Goals:

A method to model secure designs and automatically transform these
into secure systems.

Supports well-established standards/technology for modelling
components and security.

Models are expressive, comprehensible, and maintainable.

Reduces complexity of application development and improves the
quality of the resulting applications.

The entire process is semantically well-founded.

Allows integrated formal reasoning over security design models.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 77

SecureUML – Model-driven Security SecureUML

SecureUML

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*

0..* 0..* 0..*

0..1 0..*

0..*

Figure: The SecureUML Metamodel

SecureUML

provides abstract Syntax given by MOF compliant metamodel

is a UML-based notation supporting role-based access control

is pluggable into arbitrary design modeling languages

is supported by an ArgoUML plugin

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 78

SecureUML – Model-driven Security SecureUML

Modeling Access Control with SecureUML

Meeting

start:Date
duration:Time

notify():OclVoid
cancel():OclVoid

Person

name:String

0..*

owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMeeting

Meeting:update
Meeting:delete

caller=self.owner.name

Figure: Access Control Policy for Class Meeting Using SecureUML

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 79

SecureUML – Model-driven Security SecureUML

Supporting SecureUML in ArgoUML

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 80

SecureUML – Model-driven Security SecureUML

Supporting SecureUML in ArgoUML

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 80

SecureUML – Model-driven Security A Formal Model Transformation

From SecureUML to UML/OCL

Substitute the SecureUML model by an explicit enforcement model using
UML/OCL.

The transformation basically

1 initializes a concrete authorization environment,

2 transforms the design model, and

3 transforms the security model.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 81

SecureUML – Model-driven Security A Formal Model Transformation

The Authorization Environment

Context

Principal

isInRole(role:String):Boolean

Identity

name:String

Role

name:String

getRoleByName(role:String):Role

0..*

+principal 1

0..*

identity 1

0..*

+roles 0..*

Figure: Basic Authorization Environment

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 82

SecureUML – Model-driven Security A Formal Model Transformation

Design Model Transformation

Generate secured operations for each class, attribute and operation in the
design model.

For each class C we add constructors and destructors,

for each attribute of class C we add getter and setter operations, and

for each operation op of class C we add a secured wrapper:

context C::op_sec(...):...
pre: preop

post: postop = postop[f() 7→ f_sec(), att 7→ getAtt()]

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 83

SecureUML – Model-driven Security A Formal Model Transformation

Design Model Transformation: Classes

for each class C

context C::new():C
post: result.oclIsNew() and result->modifiedOnly()

context C::delete():OclVoid
post: self.oclIsUndefined() and self@pre->modifiedOnly()

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 84

SecureUML – Model-driven Security A Formal Model Transformation

Design Model Transformation: Attributes

for each Attribute att of class C

context C::getAtt():T
post: result=self.att

context C::setAtt(arg:T):OclVoid
post: self.att=arg and self.att->modifiedOnly()

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 85

SecureUML – Model-driven Security A Formal Model Transformation

Design Model Transformation: Operations

for each Operation op of class C

context C::op_sec(...):...
pre: preop

post: postop = postop[f() 7→ f_sec(), att 7→ getAtt()]

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 86

SecureUML – Model-driven Security A Formal Model Transformation

Security Model Transformation

The role hierarchy is transformed into invariants for the Role and
Identity classes.

Security constraints are transformed as follows:

invC 7→ invC

preop 7→ preop

postop 7→ if authop

then postop

else result.oclIsUndefined()
and Set{}->modifiedOnly()

endif

where authop represents the authorization requirements.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 87

SecureUML – Model-driven Security A Formal Model Transformation

Security Model Transformation: Role Hierarchy

The total set of roles in the system is specified by enumerating them:

context Role
inv: Role.allInstances().name=Bag{<List of Role Names>}

The inheritance relation between roles is then specified by an OCL
invariant constraint on the Identity class:

context Identity
inv: self.roles.name->includes(’<Role1>’)

implies self.roles.name->includes(’<Role2>’)

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 88

SecureUML – Model-driven Security Consistency Analysis

Relative Consistency

An invariant (class) is invariant-consistent, if a satisfying state exists:

∃σ. σ |= inv

A class model is global consistent,
if the conjunction of all invariants is invariant-consistent:

∃σ. σ |= inv1 and inv2 and · · · and invn

An operation is implementable, if
for each satisfying pre-state there exists a satisfying post-state:

∀ σpre ∈ Σ, self , i1, . . . , in. σpre |= preop −→
∃ σpost ∈ Σ, result. (σpre, σpost) |= postop

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 89

SecureUML – Model-driven Security Consistency Analysis

Proof Obligations

We require:

if a security violation occurs, the system state is preserved
if access is granted, the model transformation preserves the functional
behavior

Which results for each operation in a security proof obligation:

spoop := authop implies postop , postop

A class system is called security consistent if all spoop hold.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 90

SecureUML – Model-driven Security Consistency Analysis

Modularity Results

Our method allows for
a modular specifications and reasoning for secure systems.

Theorem (Implementability)

An operation op_sec of the secured system model is implementable
provided that the corresponding operation of the design model is
implementable and spoop holds.

Theorem (Consistency)

A secured system model is consistent provided that the design model is
consistent, the class system is security consistent, and the security model is
consistent.

A.D. Brucker and B. Wolff (SAP / PCRI) Analyzing UML/OCL models with HOL-OCL A Tutorial at MoDELS 2008 91

	Analyzing UML/OCL Models with HOL-OCL
	Introduction
	Motivation
	The HOL-OCL Vision

	Background
	UML/OCL in a Nutshell
	The Unified Modeling Language (UML)
	The Object Constraint Language (OCL)

	Formal Methods and Embeddings
	Defining Formal Semantics
	Textbook Semantics
	Machine-checked Semantics

	Formalization of UML and OCL
	Formalization of OCL
	Formalization of UML
	The OCL Standard

	Mechanized Support for Model Analysis Methods
	Well-formedness Checking: Enforcing Syntactical Requirements
	Proof Obligations: Enforcing Syntactical Requirements
	Formal Methodologies for UML/OCL

	The HOL-OCL Architecture
	The Model Repository: su4sml
	The Encoder
	The Library
	Automated Proof Procedures
	The User Interface

	Applications
	Model Consistency and Wellformedness
	Consistency Analysis
	Liskov's Substitution Principle

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

	Appendix
	SecureUML -- Model-driven Security
	SecureUML
	A Formal Model Transformation
	The Transformation: From SecureUML to uml/ocl

	Consistency Analysis
	Relative Consistency
	Proof Obligations
	Modularity Results

