
This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/
brucker.ea-integrating-2009-b for your personal use. Not for redistribution. The definitive version was
published in IBM Technical Report RZ3750, pp. 1–14, 2009.

Integrating Automated and Interactive Protocol Verification
(Extended Version)

Achim D. Brucker1 and Sebastian A. Mödersheim2

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2 IBM Research, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
smo@zurich.ibm.com

Abstract. A number of current automated protocol verification tools are based on abstract
interpretation techniques and other over-approximations of the set of reachable states or
traces. The protocol models that these tools employ are shaped by the needs of automated
verification and require subtle assumptions. Also, a complex verification tool may suffer from
implementation bugs so that in the worst case the tool could accept some incorrect protocols
as being correct. These risks of errors are also present, but considerably smaller, when using
an LCF-style theorem prover like Isabelle. The interactive security proof, however, requires
a lot of expertise and time.
We combine the advantages of both worlds by using the representation of the over-approx-
imated search space computed by the automated tools as a “proof idea” in Isabelle. Thus,
we devise proof tactics for Isabelle that generate the correctness proof of the protocol from
the output of the automated tools. In the worst case, these tactics fail to construct a proof,
namely when the representation of the search space is for some reason incorrect. However,
when they succeed, the correctness only relies on the basic model and the Isabelle core.

1 Introduction

Over the last decade, a number of automated tools for security protocol verification have been de-
veloped such as AVISPA [1] and ProVerif [4]. They allow engineers to find problems in their security
protocols before deployment. Indeed, several attacks to security protocols have been detected using
automated tools. The focus of this work is the positive case—when no attack is found: to obtain a
proof of security.

Many automated tools employ over-approximation and abstraction techniques to cope with the
infinite search spaces that are caused, e.g., by an unbounded number of protocol sessions. This
means to check the protocol in a finite abstract model that (in a sense) subsumes the original
model. Thus, if the protocol is correct in the abstract model, then so it is in the original model.
The soundness of such abstractions depends on subtle assumptions, and it is often hard to keep
track of them, even for experts. Moreover, the abstract protocol models are tuned to the method
and hard to use correctly. Finally, tools may also have bugs. For all these reasons, it is not unlikely
that insecure protocols are accidentally verified by automated verification tools.

There are semi-automated methods such as the Isabelle theorem prover which offer a high
reliability: if we trust in a small core (the proof checking and some basic logical axioms), we
can rely on the correctness of proved statements. However, conducting proofs in Isabelle requires
considerable experience in both formal logic and proof tactics, as well as a proof idea for the
statement to show.

http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009-b
http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009-b

2

In this work, we combine the best of both worlds: reliability and full automation. The idea is
that abstraction-based tools—supposedly—compute a finite representation of an over-approximated
search space, i.e., of what can happen in a given protocol, and that this representation can be used
as the basis to automatically generate a security proof in Isabelle. This proof is w.r.t. a “clean”
standard protocol model without over-approximation. If anything goes wrong, e.g., the abstraction
is not sound, this proof generation fails. However, if we succeed in generating the proof, we only need
to trust in the standard protocol model and the Isabelle core. Our vision is that such automatically
generated verifiable proofs can be the basis for reaching the highest assurance level EAL7 of a
common criteria certification at a low cost, i.e., easy-to-use automated tools.

Proof

Abstract Model

Abstraction/
Refinement

Proof
Generator

OFMCIsabelle/OFMC

Reference Model

Verified Attack
OR

TraceFixedpoint

FP Module

Isabelle Core

Fig. 1. The workflow of a protocol verifi-
cation approach combing automated (e.g.,
OFMC) and interactive (e.g., Isabelle) tech-
niques.

We have realized this integration of automated
and interactive protocol verification in a prototype
tool that is summarized in Fig. 1. The protocol
and the proof goals (e.g., secrecy, authentication)
are specified in the reference model (Sect. 2 and
Sect. 3). This reference model is not driven by tech-
nical needs of the automated verification and is close
to other high-level protocol models. The description
is fed into the automated tool, where we consider
(a novel module of) the Open-source Fixed-point
Model-Checker OFMC [21], formerly called On-the-
Fly Model-Checker. OFMC first chooses an initial
abstraction and produces an abstracted version of
the protocol description as a set of Horn clauses.
From this, the fixed-point (FP) module computes
a least fixed-point of derivable events. If this fixed-

point contains an attack, this can either be a real attack (that similarly works in the reference
model) or a false attack that was caused by the abstraction. By default, OFMC will assume that
the attack is false, refine the abstraction based on the attack details and restart the verification.
If the computed fixed-point does not contain an attack, it is handed to the proof generator of the
Isabelle/OFMC, our extension of the interactive theorem prover Isabelle [22]. The proof generator
translates the fixed-point into the terms of the reference model (using annotations about the ab-
straction OFMC considered) and generates an Isabelle proof with respect to the protocol and goal
description in the reference model. This proof is fed into the Isabelle core to check the proof.

We emphasize two points. First, the entire approach is completely automatic: after the specifica-
tion of the protocol and goals in the reference model, no further user interaction is required. Second,
we need to trust in only two points—marked with a dark-gray background in Fig. 1: the reference
model and the Isabelle core. Bugs in any other part, namely OFMC or the proof generation, can
in the worst case result in a failure to verify a (possibly correct) protocol, but they cannot make us
falsely accept a flawed protocol as being correct.

Our approach currently has two limitations: first, like in the similar Isabelle formalizations of
Paulson and Bella, we consider a typed model (excluding type-flaw attacks), and second, based
on this, we limited the intruder composition to well-typed messages of the protocol. The first
limitation can be justified by implementation discipline (see [17]). The second limitation is without
loss of generality as we show in Theorem 1; also current experiments suggest that we can eliminate
this limitation in a future version.

3

Contributions. An increasing number of works considers the combination of automated methods
with interactive theorem proving to obtain both highly reliable and fully automated verification.
In this paper, we contribute to this line of work with a novel approach for security protocols. The
first novel aspect is that our approach automatically generates a proof from the representation of
an over-approximation of the search space computed by an automated protocol verifier. Techniques
based on over-approximation, similar to the ones we consider, have turned out to be very successful
in protocol verification [4,6,7,9], and our approach is thus the first step towards employing a whole
class of established tools for automated proof generation. The second novel aspect is that the proof
is entirely based on a standard protocol model without over-approximation close to the model
employed for instance in [23]. Our approach thus relates over-approximated representations with
standard protocol models.

Practically, we have implemented the integration between Isabelle on the interactive side and the
novel FP-module of OFMC on the automated side. The result is a completely automated protocol
verifier for an unbounded number of sessions and agents that produces Isabelle-verifiable proofs
with respect to a standard protocol model.

2 The Reference Protocol Model

We begin with a reference protocol model, which is used in the Isabelle theorem prover and is thus
the basis of this work. The model is inspired by the formalization of several security protocols in
Isabelle by Paulson and others in [23,3] and is close to the persistent IF model in [20].

2.1 Messages

We follow the common black-box cryptography model where messages are modeled as symbolic
terms. We define the set of all messages in style of an inductive datatype in a functional programming
language. We discuss the subtle difference with respect to other definitions below.

Definition 1. Let F , LA, LN , LS , LP , VA, VN , VS , VP , and VU be pairwise disjoint sets of
symbols where F , LA, LN , LS , and LP are finite, and VA, VN , VS , VP , and VU are countable.
We define the sets of messages, agents, nonces, symmetric keys, and public keys, respectively, to
be the following sets of terms:

M = agent A | nonce N | symkey S | pubkey P | VU
| crypt MM | inv M | scrypt MM | cat [M] | F M

A = LA × N | VA N = LN × N | VN S = LS × N | VS P = LP × N | VP

Here, all sans-serif symbols and the symbols of F are constructors.

The set A contains both the concrete agent names (LA ×N) and the variables for agent names
(VA). The concrete agent names consist of a label and a natural number. The labels are for the
interplay of Isabelle and the automated methods, for now it is sufficient to think just of an infinite
set of agents, indexed by natural numbers. Similarly, N , S, and P define infinite reservoirs of
concrete constants and variables for nonces, symmetric keys, and public keys.

For convenience, we write in the examples of this paper simply a, b, or i for concrete agent
names, A, B for agent variables, n, n1, etc. for concrete nonces, NA, NB etc. nonce variables. In

4

general, we use lower-case letters for constants and function symbols and upper-case letters for
variables.

We distinguish atomic messages and composed messages (first and second line in the definition
ofM). Except for the untyped variables of VU , all atomic messages are of a particular type, namely
from one of the sets A, N , S, or P. The constructors like agent ensure that the respective subsets of
the message space are disjoint, for instance, no agent name can be a nonce. We discuss the details
of typing below. In examples, we will omit the constructors for convenience, when the type is clear
from the context.

Messages can be composed with one of the following operations: crypt and scrypt represent
asymmetric and symmetric encryption, respectively. In both cases, the key (first argument) can be
any message, allowing for composed keys and expressions like as pk(A) as keys. For convenience, we
also use the common notation and write {m}k instead of crypt k m, and {|m|}k instead of scrypt k m.
inv(M) represents the private key belonging to a public key, where we allow arbitrary message terms
as an argument (as in inv(pk(A))). The concatenation of a list of messages is denoted by cat. In the
examples, we omit the cat and the list brackets. We can apply any of the given function symbols of
F to a message.

Consider for instance the concrete message {na3, b}pk(a) in our convenient notation; technically
this may look as follows (for a suitable labeling and numbering):

crypt (pk (agent (honest, 1))) (cat [nonce (na, 3), agent (dishonest, 2)]) .

As we can see here, we have used two labels, honest and dishonest, for agents. This represents
the default abstraction for agents that we use in the abstract model. We assume that whatever
abstraction is chosen for the agents must be a refinement of this standard abstraction. This allows
us to distinguish honest and dishonest agents throughout the reference model.

The inductively defined datatype is interpreted like a term in the free term algebra, i.e. syntacti-
cally different terms are interpreted as being different. We do not consider any algebraic properties
of messages in this paper.

We use the standard notion of matching messages: a ground message s (i.e. one that contains
no variables) matches a message t if and only if there is a substitution σ of all variables of t such
that s = tσ. The constructors like agent here enforce a typing regime: typed variables can only be
matched with atomic messages of the same type. Note that only untyped variables can be matched
with composed messages. In rules for honest agents, we only used typed variables. Such a typed
model which is standard in protocol verification, even in interactive verification with Isabelle [23,3],
considerably simplifies the verification task. The typing can be justified by tagging as in [17].

2.2 Events and Traces

We define the set of events again as an inductive datatype, based on messages:
Definition 2. The set of events is defined as follows:

E ::= iknows M | state R [M] | secret A M | witness A A I M | request A A I M | attack M

where I is a finite set of identifiers disjoint from all other symbols so far and R ⊂ I. A trace is a
finite sequence 〈 e1 # · · · # en 〉 of events ei.

The identifier set I contains constant symbols for the protocol variables, allowing us to describe as
which protocol variable an agent interprets a particular message. We use Gothic fonts for identifiers,
e.g. A and B.

5

t ∈ T iknows m ∈ [t] iknows k ∈ [t]

iknows {m}k # t ∈ T
t ∈ T iknows m ∈ [t] iknows k ∈ [t]

iknows {|m|}k # t ∈ T

t ∈ T iknows m1 ∈ [t] . . . iknows mn ∈ [t]

iknows [m1, . . . , mn] # t ∈ T
t ∈ T iknows m ∈ [t]

iknows f(m) # t ∈ T
f ∈ Fpub

t ∈ T iknows {m}k ∈ [t] iknows inv(k) ∈ [t]

iknows m # t ∈ T

t ∈ T iknows {m}inv(k) ∈ [t] iknows k ∈ [t]

iknows m # t ∈ T

t ∈ T iknows {|m|}k ∈ [t] iknows k ∈ [t]

iknows m # t ∈ T

t ∈ T iknows m1 ∈ [t] . . . iknows mn ∈ [t]

iknows m1 #, . . . # iknows mm # t ∈ T

t ∈ T secret A M ∈ [t] iknows M ∈ [t] honest A

attack M # t ∈ T

t ∈ T request B A id M ∈ [t] witness A B id M /∈ [t] honest A

attack M#t ∈ T

Fig. 2. The protocol independent rules of the reference model: the first four are composition rules
(C), the next four are decomposition rules (D) and the last two are attack rules (A).

The event iknows m means that the intruder just learned the message m. The event state R msgs
means that an honest agent playing role R has reached a state of its protocol execution that is
characterized by the list msgs of messages. We need the other four events for expressing the goals
in a protocol independent form when we introduce attack rules below.

2.3 Rules and Protocols

Based on these definitions, we can finally define protocols by a set of inductive rules on traces
that have the following form:

t ∈ T φ(t, e1, . . . , en)
e1 # . . . # en # t ∈ T

i.e. whenever t is a valid trace of the set T of traces and e1, . . . , en are events that fulfill a certain
condition φ with t, then also the extension of t with these events is also part of T. Also, we have
the rule that the empty trace is part of T. Note that we require that all transition rules of honest
agents contain only typed variables, i.e. no variables of VU .

As an example, Fig. 2 shows the protocol independent rules for the intruder (C) and (D),
following the standard Dolev-Yao style intruder deduction, as well as the attack rules (A), which
follow the standard definitions of attacks in AVISPA [1]; here [t] denotes the set of events in the
trace t and Fpub ⊆ F is the set of functions that is accessible to the intruder. The intruder rules
are self-explanatory, e.g. if the intruder knows messages m and k on a trace t, then he can encrypt

6

m with k, and thus obtain {m}k. Before we explain the attack rules, however, we describe the
transition rules of role Alice of the standard example protocol, NSL [18] (more interesting examples
are found in Sect. 6):

Example 1.
t ∈ T NA /∈ used (t)

iknows {NA, A}pk(B) # state A [A, B,NA] #
witness A B NA NA # secret B NA # t ∈ T

t ∈ T state A [A, B,NA] ∈ [t] iknows {NA,NB , B}pk(A) ∈ [t]

iknows {NB}pk(B) # request A B NB NB # t ∈ T
Here, used (t) is the set of all atomic messages that occur in t to allow for the fresh generation of
nonces. ut

The goals of a protocol are described negatively by what counts as an attack. This is done by
attack rules that have the event attack on the right-hand side. We now explain the events that we
use in attack rules. First, secret A M means that some honest agent (not specified) requires that the
message M is a secret with agent A. Thus, it counts as an attack, if a trace contains both iknows M
and secret A M for an honest agent A (first attack rule in Fig. 2).

For authentication, the event witness A B id m means that for a particular purpose identified
by the identifier id , the honest agent A wants to transmit the message M to agent B. Corre-
spondingly, when B believes to have received message M for purpose id from agent A, the event
request B A id M occurs. It thus counts as an attack, if request B A id M occurs in a trace for an
honest agent A and the trace does not contain the corresponding event witness A B id M (second
attack rule in Fig. 2. We call a trace an attack trace if it contains the attack event.

Definition 3. Let a protocol be described by an inductive set R of rules. The protocol is said to be
safe, if the least set T of traces that is closed under R contains no attack trace.

Despite some differences, our model is similar to the one of Paulson [23]. He uses no explicit
events for the state of honest agents, and rather characterizes their states by the messages they
have sent and received. That is similar to our state terms which basically contain the sent and
received messages. In fact, our model has the same persistence property as Paulson’s: any rule of
an honest agent can fire any number of times (with fresh nonces). This is because the event that
an agent has reached a particular state of its protocol execution remains on the trace and there is
no condition in the rules that requires that the agent has not progressed further. Like Paulson, we
do not consider such conditions. More details on this phenomenon can be found in [20]. Further,
Paulson uses events to express what different agents have said (and to whom). We use instead the
iknows· events to express sent and received messages: the intruder is identified with the insecure
communication medium, but this is basically the same communication model. Paulson does not
consider any goal-related events, but rather encodes the goals directly on the exchanged messages
(which is protocol dependent and can problematic for some protocols [20]).

3 Limiting Intruder Composition

The closure of the intruder knowledge under the composition rules of the intruder is generally
infinite, e.g. the intruder can concatenate known messages arbitrarily. However, many of these
messages are useless to the intruder since, due to typing, no honest agent accepts them. It is
therefore intuitive that we do not loose any attacks if we limit intruder composition to terms, and
subterms thereof, that some honest agent can actually receive. (A similar idea has been considered

7

e.g. in [25].) This limitation on intruder composition makes our approach significantly simpler,
and we have therefore chosen to integrate this simplification into our reference model for this first
version, and leave the generalization to an unlimited intruder for future versions. We formally define
the transformation that limits intruder composition as follows:

Definition 4. For a set of rules R that contain no untyped variables VU , let MR be the set of all
messages that occur in an iknows or secret event of any rule of R along with as their sub-messages.
We say that an intruder composition rule r can compose terms for R, if the resulting term of r can
be unified with a term in MR. In this case we call rσ an r-instance for compositions of MR if σ is
the most general unifier between the resulting term of r and a message in MR. We say that R is
saturated if it contains all r-instances for composition in MR.

Since we excluded untyped variables, atomic messages in MR are typed, i.e. of the form type(·).
Also, due to typing, every finite R has a finite saturation.

Theorem 1. Given an attack against a protocol described by a set of rules R ∪ C ∪D ∪ A where
C and D are the intruder composition and decomposition rules and A are the attack rules. Let R′

be a saturated superset of R. Then there is an attack against R′ ∪D ∪A.

Proof. Given an attack trace for R∪C ∪D ∪A, we represent the attack trace in a tree form where
the root is the attack-event, every node is labeled by the rule that created the event and has as
successors the respective events of the trace that were required in the rule application. We show
how to obtain a similar attack that does not use C rules but instead appropriate rules from R′.

First, we can easily exclude some pointless steps where the intruder for instance decomposes
a message he has composed himself. In general, when the derivation tree of any event e properly
contains itself another derivation of e, we can simply replace the outer subtree for e by the inner
one and still have a valid attack. So we can safely assume that any derivation of e does not properly
contain a derivation of e.

Now consider a node that is labeled with a rule of C and such that no other rule on the path
to the root is a C rule and let iknows m be the resulting composed term. We show that there
is a rule of R′ that also can produce m from the respective subtrees, so repeated application of
this argument gives a proof tree that contains no C-rules anymore. To that end, we show that m
matches a subterm m′ of an iknows event in R. It then follows that m′ ∈ MR and, since m is the
result of a composition and m′ is typed, there is a corresponding instance of R′ that produces m
from the same assumptions, so we can replace the C rule with an R′ rule.

To show that m matches some m′ ∈MR, we consider the following cases. The considered C-node
cannot be the root itself, because no rule of C produces the attack event. So the node has a parent
node which is either an R, D, or A node. For the R-parent case, we immediately have the match.

For a D-parent, m necessarily corresponds to a decryption key: if it is an encryption that
is deciphered or a pair decomposed, then we have a trivial composition-decomposition excluded
above. Since there is no composition that produces private keys, i.e. that have inv(·) as a result, m
can only be the decryption key for a symmetric encryption or a signature, i.e. a proper subterm
of the term t being analyzed. t can only be the result of an D or an R rule (C would lead to
encryption-decryption, A produces no iknows event). In the case of an R-rule, due to typing, it has
a subterm m′ ∈ MR that matches m. In the case of a D-rule, we can trace the analyzed term t
back to some super-term t′ of t that is not obtained by decomposition, thus by an R rule. Thus t′

is typed has a subterm m′ that matches m.

8

For an A-parent, only the attack rule for secrecy has an iknows M event, and here M must occur
in the form secret A M for some agent A. The secret event in the derivation can only result form
an R rule, and thus a matching message is in MR again. ut

4 The Abstract Protocol Model

We now summarize two kinds of over-approximations of our model that are used in our automated
analysis tool to cope with the infinite set of traces induced by the reference model. These techniques
are quite common in protocol verification and a more detailed description can be found in [20];
we discuss them here only as far as they are relevant for our generation of Isabelle proofs. The
first technique is a data abstraction that maps the infinite set of ground atomic messages (that
can be created in an unbounded number of sessions) to a finite set of equivalence classes in the
style of abstract interpretation approaches. The second is a control abstraction: we forget about
the structure of traces and just consider reachable events in the sense that they are contained in
some trace of the reference model. Neither of these abstractions is safe: each may introduce false
attacks (that are not possible in the reference model). Also, it is not guaranteed in general that
the model allows only for a finite number of reachable events, i.e. the approach may still run into
non-termination.

4.1 Data Abstraction

In the style of abstract interpretation, we first partition the set of all ground atomic messages into
finitely many equivalence classes and then work on the basis of these equivalence classes. Recall that
atomic ground messages are defined as a pair (l, n) where l is a label and n is a natural number. We
use the label to denote the equivalence class of the message in the abstraction. The abstract model
thus identifies different atoms with the same label, and hence we just omit the second component
in all messages of the abstract model.

There is a large variety of such data abstractions. For the proof generation the concrete way of
abstraction is actually irrelevant, and we just give one example for illustration:

Example 2. The initial abstraction that OFMC uses for freshly created data is the following. If
agent a creates a nonce n for agent b, we characterize the equivalence class for that nonce in
the abstract model by the triple (n, a, b). This abstraction can be rephrased as “in all sessions
where a wants to talk to b, a uses the same constant for n (instead of a really fresh one)”. For
a large number of cases, this simple abstraction is sufficient; in the experiments of Sect. 6, only
two examples (NSL and Non-reversible Functions) require a more fine-grained abstraction. Note
that OFMC automatically refines abstractions when the verification fails, but this mechanism is
irrelevant for the proof generation. The protocol from Example 1, rules for A, then look as follows:

t ∈ T
iknows {(NA, A,B), A}pk(B) # state A [A,B, (NA, A,B)] #
witness A B NA (NA, A,B) # secret B (NA, A,B),# t ∈ T

t ∈ T state A [A,B,NA] ∈ [t] iknows {NA,NB , B}pk(A) ∈ [t]

iknows {NB}pk(B) # request A B NB NB # t ∈ T

Here, we only abstract NA in the first rule where it is created by the A. It is crucial that the nonce
NB is not abstracted in the second rule: since NB is not generated by A, A cannot be sure a priori

9

that was indeed generated by B. In fact, if we also abstract NB here, the proof generation fails,
because the resulting fixed-point does no longer over-approximate the traces of the reference model.
More generally, fresh data are abstracted only in a rule where they are created. Finally, observe
that the condition is gone that tells that the freshly created NA never occurred in the trace before,
because now agents may actually use the same value several times in place of the fresh nonce.

The key idea to relate our reference model with the abstract one is the use of labels in the
definition of concrete data. Recall that each concrete atomic message in the reference model is a
pair of a label and a natural number. The finite set of labels is determined by the abstraction we use
in the abstracted model; in the above example, we use LN = {NA,NB}×LA×LA where LA is the
abstraction of the agents (for instance LA = {(honest, dishonest)}). As the atomic messages consist
of both such a label and a natural number, the reference model is thus endowed with an infinite
supply of constants for each equivalence class of the abstract model. The relationship between data
in the reference and abstract models is straightforward: the abstraction of the concrete constant
(l, n) is simply l. Vice-versa, each equivalence class l in the abstract model represents the set of
data {(l, n) | n ∈ N} in the reference model.

It is crucial that in the reference model, the labels are merely annotations to the data and the
rules do not care about these annotations, except for the distinction of honest and dishonest agents
as discussed before. The labels however later allow us to form a security proof in the reference
model based on the reachable events in the concrete model.

We need to take the abstraction into account in the reference model when creating fresh data.
In particular, we need to enforce the labeling that reflects exactly the abstraction. We extend the
assumptions of the first rule from Example 1 by a condition on the label of the freshly created NA:

t ∈ T NA /∈ used (t) label(NA) = (NA, A,B)

iknows {NA, A}pk(B) # state A [A,B,NA] #
witness A B NA NA # secret B NA # t ∈ T

where label(l, n) = l. (Recall that every concrete value is a pair of label and a natural number.)

4.2 Control Abstraction

We now come to the second part of the abstraction. Even with the first abstraction on data,
the model gives us an infinite number of traces (that are of finite but of unbounded length). The
idea for simplification is that under the data-abstraction, the trace structure is usually not relevant
anymore. In the reference model, we need the trace structure for the creation of fresh data and
for distinguishing potentially different handling of the same constant in different traces. Under
the data-abstraction, however, all these occurrences fall together. In the abstract model we thus
abandon the notion of traces and consider only the set E of events that can ever occur.
Example 3. Our running example has now the following form:

iknows {(NA, A,B), A}pk(B) , state A [A,B, (NA, A,B)] ,
witness A B NA (NA, A,B) , secret B (NA, A,B) ∈ E

state A [A,B,NA] ∈ E iknows {NA,NB , B}pk(A) ∈ E
iknows {NB}pk(B) , request A B NB NB ∈ E

10

Again, there are no guarantees that this construction terminates and gives a finite fixed-point
or that the abstractions do not introduce attacks. We emphasize that a mistake in the tools and
abstraction approach itself does not endanger the soundness of the entire verification approach
presented here, as in the worst case the construction of the proof simply fails.

5 Turning Fixed-Points into Proofs

We now turn to the proof generator itself (see Fig. 1), putting the pieces together to obtain the
security proof with respect to the reference model.

Let RG denote in the following the given set of the reference model that describes the protocol,
its goals, and the intruder behavior, as described in Sect. 2 and 3. Recall that OFMC chooses
an abstraction for the data that honest agents freshly create, and refines these abstractions if the
verification fails. As described in Sect. 4, the connection between the data abstraction and the
reference model is made by annotating each freshly created message with a label expressing the
abstraction. Since this annotation is never referred to in the conditions of any rule, the set of traces
remains the same modulo the annotation. We denote by RM the variant of the rules with the
annotation of the freshly created data.

The next step is the inductive definition of the set of traces T in Isabelle, representing the least
fixed-point of RM . For such inductive definitions, Isabelle proves automatically various properties
(e.g., monotonicity) and derives an induction scheme, i.e. if a property holds for the empty trace
and is preserved by every rule of RM , then it holds for all traces of T. This induction scheme is
fundamental for the security proof.

We define in Isabelle a set of traces T′ that represents the over-approximated fixed-point FP
computed by OFMC, expanding all abstractions. We define this via a concretization function J·K:

JlK = {(l, n) | n ∈ N} Jf t1 . . . tnK = {f s1 . . . sn | si ∈ JtiK}
JF K = ∪f∈F JfK T′ = {e1# . . .#en | ei ∈ JFP K}

This replaces each occurrence of an abstract datum with an element of the equivalence class it
represents, and then builds all traces composed of events from the fixed-point. Note that while FP
is finite, T′ is infinite.

As the next step, the proof generation module proves several auxiliary theorems using a set of
specialized tactics we designed for this purpose. Each proved auxiliary theorem can be used as a
proof rule in subsequent proofs. We thus use Isabelle as a framework for constructing a formal tool
in a logically sound way (see also [28]).

The first auxiliary theorem is that T′ does not contain any attacks. The theorem is proved by
unfolding the definition of the fixed-point and applying Isabelle’s simplifier.

The main part of the proof generation is an auxiliary theorem for each rule r ∈ RM that T′ is
closed under r. In a nutshell, these theorems are also shown by unfolding the definition of T and
applying the simplifier. In this case, however, on a more technical level, we need to convert the set
comprehensions of the definition into a predicate notation so that the simplifier can recognize the
necessary proof steps. This is actually also the point where the labels that annotate the abstraction
silently fulfill their purpose: the rules are closed under any concretization of the abstract data with
the elements from the equivalence class they represent. By our construction, the proof generation
does not need to take care of the abstraction at all.

11

Protocol FP time [s] Protocol FP time [s]

Andrew Secure RPC 113 1517 ISO three pass mutual 229 21448
Bilateral-Key Exchange 85 7575 NSCK 135 9471
Denning-Sacco 71 2549 NSL 75 117
ISO one pass unilateral 40 33 Non-Reversible Functions 196 21018
ISO two pass unilateral 56 77 TLS (simplified) 172 26982
ISO two pass mutual 104 442 Wide Mouthed Frog 87 1382

Table 1. Analyzing security protocols using Isabelle/OFMC

Using the theorems that all rules are closed under T′, we can now show the last auxiliary theorem,
namely that T ⊆ T′, i.e., that OFMC indeed computed an over-approximation of what can happen
according to the reference model. This theorem is proved by induction, using the induction scheme
we have automatically obtained from the definition of T above, i.e. we show that the subset relation
is preserved for each rule of RM , using the set of the auxiliary theorems.

Finally, we derive our main theorem that T contains no attack, which immediately follows from
T ⊆ T′ and T′ containing no attack. We have thus automatically derived the proof that the protocol
is safe from the given reference model description and OFMC’s output.

6 Experimental Results

For first experiments, we have considered several protocols from the Clark-Jacob library [10] and a
simplified version of TLS. Tab. 1 shows the results in detail, namely the size of the fixed-point and
the time to generate and check the Isabelle proof. Here, we have considered for each protocol all
those secrecy and authentication goals that do actually hold (we do not report on the well-known
attacks on some of these protocols that can be detected with OFMC). The runtime for generating
the fixed-point in OFMC is negligible (< 2s for each example), while the runtime for Isabelle/OFMC
quickly increases with the size of the fixed-point, though it is feasible in all cases. We have set one
day of runtime as limit; the proof generation in Isabelle/OFMC has exceeded this limit for some
complex protocols like Kerberos (OFMC computed the fixed-point within minutes). We hope to
improve on the proof generator performance by fine-tuning and specializing the low-level proof
tactics where we currently use generic ones of Isabelle.

We suggest, however, that the proof generation time does not affect the experimentation with
OFMC such as testing different designs and variants of a newly designed protocol, because the
proof generation is meant only as a final step when the protocol design has been fixed and verified
with OFMC.

7 Related and Future Work

There is a large number of automated tools for protocol verification. [4,6,7,9] in particular are close
to the method that is implemented in the new fixed-point module of OFMC: they are all based on an
over-approximation of the search space as described in Sect. 4: the first over-approximation concerns
the fresh data, following the abstract interpretation approach of [13] and the second concerns the

12

control structure, i.e., considering a set of reachable events rather than traces. We propose that the
other over-approximation-based tools can similarly be connected to Isabelle as we did it for OFMC.

The work most closely related to ours is a recent paper by Goubault-Larrecq who similarly con-
siders generating proofs for an interactive theorem prover from the output of automated tools [16].
He considers a setting where the protocol and goal are given as a set S of Horn clauses; the tool
output is a set S∞ of Horn clauses that are in some sense saturated and such that the protocol has
an attack iff a contradiction is derivable. He briefly discusses two principal approaches to the task
of generating a proof from S∞. First, showing that the notion of saturation implies consistency of
the formula and that the formula is indeed saturated. Second, showing the consistency by finding a
finite model. He suggests that the first approach is unlikely to give a practically feasible procedure,
and rather follows the second approach using tools for finding models of a formula.

In contrast, our work, which is closer to the first kind of approach, shows that this proof gener-
ation procedure does indeed work in practice for many protocols, comparable to the results of [16].
We see the main benefit of our approach in the fact that we can indeed use the output of established
verification tools dedicated to the domain of security protocols. However, note that the work of [16]
and ours have some major differences which makes results hard to compare. First, we consider a
reference model where the protocol is modeled as a set of traces; the generated proofs are with
respect to this reference model and all abstractions are merely part of the automatic tools. In con-
trast, [16] considers only one protocol model based on Horn clauses, close to the abstract model in
our paper. Taking the soundness of all these abstractions for granted is a weakness of [16]. However,
also our approach takes some things for granted, namely a strictly typed model and, based on this,
specialized composition rules for the intruder. The typing is common in protocol verification and
can be justified by a reasonable protocol implementation discipline [17]. The second assumption is
justified by Theorem 1. Our next steps are concerned with lifting these two assumptions from our
reference model, i.e. allowing for an untyped reference model with unbounded intruder composi-
tion. First experiments suggest that at least the unbounded intruder composition can be feasibly
integrated into the proof generation procedure.

We note that some automated verification tools are based on, or related to, automated theorem
provers, e.g. SATMC [2] generates Boolean formulae that are fed into a SAT-solver, and ProVerif [4]
can generate formulae for the first-order theorem prover SPASS [27]. While there is some similarity
with our approach, namely connecting to other tools including the subtle modeling issues, this goes
into a different direction. In fact, these approaches additionally rely on both the correctness of the
translation to formulae, and the correctness of the automated theorem prover that proves them. In
contrast, we generate the proof ourselves (using the help of the Isabelle API) and let Isabelle check
that proof.

Several papers such as [8,5,20,12]have studied the relationships between protocol models and
the soundness of certain abstractions and simplifications in particular. For instance, [12] shows that
for a large class of protocols, two agents (an honest and a dishonest one) is sufficient. Recall that we
have used this as a standard abstraction of honest agents. While such arguments have thus played
an important role in the design of the automated tool and its connection to the reference model,
the correctness of our approach does not rely on such arguments and the question whether a given
protocol indeed satisfies the assumptions. Rather, it is part of the Isabelle proof we automatically
construct that the abstract model indeed covers everything that can happen in the reference model.
The automated verifier may thus try out whatever abstraction it wants, even if it is not sound.
Once again, in the worst case, the proof in Isabelle simply fails, if the abstraction is indeed unsound

13

for the given protocol, e.g., when some separation of duty constraints invalidate the assumptions of
the two-agents abstraction.

This was indeed one of the main motivations of our work: our system does not rely on the subtle
assumptions and tricks of automated verification. This also allows for some heuristic technique that
extends the classical abstraction refinement approaches such as [11]. There, the idea is to start
with a simple most abstraction, and when the automatic verification fails, to refine the abstraction
based on the counter-example obtained. This accounts for the effect that the abstraction may lead
to incompleteness (i.e., failure to verify a correct system), but it is essential that one uses only
sound abstractions (i.e., if the abstract model is flawless then so is the concrete model). With our
approach, we are now even able to try out potentially unsound abstractions in a heuristic way, i.e.
start with abstractions that usually work (like the two-agent abstraction). If they are unsound, i.e.
the Isabelle proof generation fails, then we repeat the verification with a more refined abstraction.

Isabelle has been successfully used for the interactive verification in various areas, including
protocol verification [23,3]. These works are based on a protocol model that is quite close the our
reference model (see Sect. 2). There are several works on increasing the degree of automation in
interactive theorem provers by integrating external automated tools [15,26,14,24,19]. These works
have in common that they integrate generic tools like SAT or SMT tools. In contrast, we integrate
a domain-specific tool, OFMC, into Isabelle.

As further future work, we plan the development of additional Isabelle tactics improving the
performance of the verification in Isabelle. Currently, the main bottleneck is a proof step in which
a large number of existential quantified variables need to be instantiated with witnesses. While, in
general, such satisfying candidates cannot be found efficiently, we plan to provide domain-specific
tactics that should be able infer witnesses based on domain-specific knowledge about the protocol
model. Finally, we plan to eliminate the limitations on the intruder inductions from the model
explained in Sect. 3. While this limitation can be reasonably justified in many cases, the fact that
our approach relies on it is a drawback, both in terms of efficiency and also theoretically. In fact,
tools like ProVerif instead employ a more advanced approach of rule saturation that allow to work
without the limitation. We plan to extend our approach to such representations of the fixed-point.

Acknowledgments. The work presented in this paper was partially supported by the FP7-ICT-2007-1
Project no. 216471, “AVANTSSAR: Automated Validation of Trust and Security of Service-oriented
Architectures” (www.avantssar.eu). We thank Luca Viganò for helpful comments.

References

1. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drielsma, P.,
Héam, P.C., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani,
M., Viganò, L., Vigneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: CAV’05. Springer-Verlag (2005). URL http://www.avispa-project.

org

2. Armando, A., Compagna, L.: SAT-based Model-Checking for Security Protocols Analysis. Int. J. of
Information Security 6(1), 3–32 (2007)

3. Bella, G.: Formal Correctness of Security Protocols. Springer-Verlag (2007)
4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW’01, pp.

82–96. IEEE Computer Society Press (2001)
5. Blanchet, B.: Security protocols: from linear to classical logic by abstract interpretation. Information

Processing Letters 95(5), 473–479 (2005)

www.avantssar.eu
http://www.avispa-project.org
http://www.avispa-project.org

14

6. Boichut, Y., Héam, P.C., Kouchnarenko, O., Oehl, F.: Improvements on the Genet and Klay technique
to automatically verify security protocols. In: AVIS’04, pp. 1–11 (2004)

7. Bozga, L., Lakhnech, Y., Perin, M.: Pattern-based abstraction for verifying secrecy in protocols. Int.
J. on Software Tools for Technology Transfer 8(1), 57–76 (2006)

8. Cervesato, I., Durgin, N., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: A Comparison between Strand
Spaces and Multiset Rewriting for Security Protocol Analysis. In: ISSS 2002, LNCS 2609, pp. 356–383.
Springer-Verlag (2003)

9. Chevalier, Y., Vigneron, L.: Automated Unbounded Verification of Security Protocols. In: CAV’02,
LNCS 2404, pp. 324–337 (2002)

10. Clark, J., Jacob, J.: A survey of authentication protocol: Literature: Version 1.0 (1997). www.cs.york.
ac.uk/~jac/papers/drareview.ps.gz

11. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction
and counterexample-guided refinement in model checking of hybrid systems. Int. J. of Foundations of
Computer Science 14(4), 583–604 (2003)

12. Comon-Lundh, H., Cortier, V.: Security properties: two agents are sufficient. In: ESOP’2003, LNCS
2618, pp. 99–113. Springer-Verlag (2003)

13. Cousot, P.: Abstract interpretation. Symposium on Models of Programming Languages and Computa-
tion, ACM Computing Surveys 28(2), 324–328 (1996)

14. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: AFM’08 (2008)
15. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness + automation + soundness:

Towards combining SMT solvers and interactive proof assistants. In: H. Hermanns, J. Palsberg (eds.)
TACAS, LNCS 3920, pp. 167–181. Springer-Verlag (2006)

16. Goubault-Larrecq, J.: Towards producing formally checkable security proofs, automatically. In: CSF’08,
pp. 224–238. IEEE Computer Society (2008)

17. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security protocols. In:
CSFW’00. IEEE Computer Society Press (2000)

18. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: TACAS’96,
LNCS 1055, pp. 147–166. Springer-Verlag (1996)

19. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First prototype. Information
and Computation 204(10), 1575–1596 (2006)

20. Mödersheim, S.: On the Relationships between Models in Protocol Verification. J. of Information and
Computation 206(2–4), 291–311 (2008)

21. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for symbolic analysis of security
protocols. In: Fosad 2007–2008–2009, LNCS, vol. 5705, pp. 166–194. Springer-Verlag (2009)

22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS
2283. Springer-Verlag (2002)

23. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. of Computer Security
6(1-2), 85–128 (1998)

24. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In:
K. Schneider, J. Brandt (eds.) TPHOLs, LNCS 4732, pp. 232–245. Springer-Verlag (2007)

25. Roscoe, A.W., Goldsmith, M.: The perfect spy for model-checking crypto-protocols. In: DIMACS’97
(1997)

26. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem provers. J. of
Applied Logic 7(1), 26 – 40 (2009)

27. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description: Spass version
3.0. In: CADE-21, pp. 514–520. Springer-Verlag (2007)

28. Wenzel, M., Wolff, B.: Building formal method tools in the Isabelle/Isar framework. In: K. Schneider,
J. Brandt (eds.) TPHOLs 2007, LNCS 4732, pp. 352–367. Springer-Verlag (2007)

www.cs.york.ac.uk/~jac/papers/drareview.ps.gz
www.cs.york.ac.uk/~jac/papers/drareview.ps.gz

	Integrating Automated and Interactive Protocol Verification (Extended Version)
	Achim D. Brucker and Sebastian A. Mödersheim

}
@TechReport{	 brucker.ea:integrating:2009-b,
 title		= {Integrating Automated and Interactive Protocol
		 Verification (Extended Version)},
 author	= {Achim D. Brucker and Sebastian A. M{\"o}dersheim},
 year		= {2009},
 classification= {unrefereed},
 keywords	= {protocol verification, model-checking, theorem proving},
 areas		= {security, formal methods},
 public	= {yes},
 abstract	= {A number of current automated protocol verification tools
		 are based on abstract interpretation techniques and other
		 over-approximations of the set of reachable states or
		 traces. The protocol models that these tools employ are
		 shaped by the needs of automated verification and require
		 subtle assumptions. Also, a complex verification tool may
		 suffer from implementation bugs so that in the worst case
		 the tool could accept some incorrect protocols as being
		 correct. These risks of errors are also present, but
		 considerably smaller, when using an LCF-style theorem
		 prover like Isabelle. The interactive security proof,
		 however, requires a lot of expertise and time.
		
		 We combine the advantages of both worlds by using the
		 representation of the over-approx\-imated search space
		 computed by the automated tools as a ``proof idea'' in
		 Isabelle. Thus, we devise proof tactics for Isabelle that
		 generate the correctness proof of the protocol from the
		 output of the automated tools. In the worst case, these
		 tactics fail to construct a proof, namely when the
		 representation of the search space is for some reason
		 incorrect. However, when they succeed, the correctness only
		 relies on the basic model and the Isabelle core.},
 pdf		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009-b.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2009/brucker.ea-integrating-2009-b.ps.gz},
 number	= {RZ3750},
 institution	= {IBM Research Zurich},
 url		= {http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009-b}
		
}

%0 Report
%T Integrating Automated and Interactive Protocol Verification (Extended Version)
%A Brucker, Achim D.
%A Mödersheim, Sebastian A.
%D 2009
%N RZ3750
%I IBM Research Zurich
%F brucker.ea:integrating:2009-b
%X A number of current automated protocol verification tools are based on abstract interpretation techniques and other over-approximations of the set of reachable states or traces. The protocol models that these tools employ are shaped by the needs of automated verification and require subtle assumptions. Also, a complex verification tool may suffer from implementation bugs so that in the worst case the tool could accept some incorrect protocols as being correct. These risks of errors are also present, but considerably smaller, when using an LCF-style theorem prover like Isabelle. The interactive security proof, however, requires a lot of expertise and time. We combine the advantages of both worlds by using the representation of the over-approx\-imated search space computed by the automated tools as a ?proof idea? in Isabelle. Thus, we devise proof tactics for Isabelle that generate the correctness proof of the protocol from the output of the automated tools. In the worst case, these tactics fail to construct a proof, namely when the representation of the search space is for some reason incorrect. However, when they succeed, the correctness only relies on the basic model and the Isabelle core.
%K protocol verification, model-checking, theorem proving
%U http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009-b

TY - RPRT
AU - Brucker, Achim D.
AU - Mödersheim, Sebastian A.
PY - 2009//
TI - Integrating Automated and Interactive Protocol Verification (Extended Version)
IS - RZ3750
PB - IBM Research Zurich
KW - protocol verification, model-checking, theorem proving
N2 - A number of current automated protocol verification tools are based on abstract interpretation techniques and other over-approximations of the set of reachable states or traces. The protocol models that these tools employ are shaped by the needs of automated verification and require subtle assumptions. Also, a complex verification tool may suffer from implementation bugs so that in the worst case the tool could accept some incorrect protocols as being correct. These risks of errors are also present, but considerably smaller, when using an LCF-style theorem prover like Isabelle. The interactive security proof, however, requires a lot of expertise and time. We combine the advantages of both worlds by using the representation of the over-approx\-imated search space computed by the automated tools as a ?proof idea? in Isabelle. Thus, we devise proof tactics for Isabelle that generate the correctness proof of the protocol from the output of the automated tools. In the worst case, these tactics fail to construct a proof, namely when the representation of the search space is for some reason incorrect. However, when they succeed, the correctness only relies on the basic model and the Isabelle core.
UR - http://www.brucker.ch/bibliography/abstract/brucker.ea-integrating-2009-b
ID - brucker.ea:integrating:2009-b
ER -

