HOL-TestGen
An Interactive Test-case Generation
Framework

Achim D. Brucker! Burkhart Wolff?

ISAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

2Université Paris-Sud, Parc Club Orsay Université, 91893 Orsay Cedex, France
wolff@wjpserver.cs.uni-sb.de

ETAPS 2009
York, 27th March 2009

State of the Art

“Dijkstra’s Verdict:”

Program testing can be used to show the presence of bugs, but never to
show their absence.

o Is this always true?

@ Can we bother?

A.D. Brucker and B. Wolff (SAP / Paris-Sud)

HOL-TestGen ETAPS 2009 3

Outline

@ Motivation

Motivation

Motivation

Our First Vision

Testing and verification may converge,
in a precise technical sense:

@ specification-based (black-box) unit testing
@ generation and management of formal test hypothesis

e verification of test hypothesis (not discussed here)

A.D. Brucker and B. Wolff (SAP / Paris-Sud)

HOL-TestGen ETAPS 2009

Motivation Motivation

Our Second Vision Outline

e Observation: @ Motivation
Any testcase-generation technique is based on and limited by
underlying constraint-solution techniques.

e Approach:
Testing should be integrated in an environment combining
automated and interactive proof techniques.

@ the test engineer must decide over, abstraction level, split rules,
breadth and depth of data structure exploration ...

@ byproduct: a verified test-tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 5

HOL-TestGen and its Components HOL-TestGen and its Components
Components of HOL-TestGen The System Architecture of HOL-TestGen

e HOL (Higher—order Logic); (test specification)% HOL-TestGen
e “Functional Programming Language with Quantifiers” | test cases |
e plus definitional libraries on Sets, Lists, ... ¢
e can be used meta-language for Hoare Calculus for Java, Z, ... | test data |
@ HOL-TestGen: Isabelle/HOL

e based on the interactive theorem prover Isabelle/ HOL
e implements these visions

@ Proof General:

|
(program under test Z | test SCI’ipt | :
I
I
I
I
I

h |

| test harness Test Trace

test executable SML-system I (Test Result)
1

e step-wise processing of specifications/theories
e shows current proof states

I
I
:
e user interface for Isabelle and HOL-TestGen !
I
I
I
I

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 7 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 8

Outline

@ Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test Theory

@ Write data types in HOL:

theory List_test
imports Testing

begin
datatype ’a list =
Nl (0
| Cons’a "’a list " (infixr "#" 65

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen

Tool-Demo: HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:
@ Step I: writing a test theory (in HOL)

@ Step II: writing a test specification
(in the context of the test theory)

@ Step III: generating a test theorem (roughly: testcases)
@ Step IV: generating test data
@ Step V: generating a test script
And of course:
@ building an executable test driver

@ and running the test driver

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 10

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test Theory

@ Write recursive functions in HOL:

consts is_sorted :: "(Ca:ord) list = bool"
primrec
"is_sorted] = True"
"is_sorted (x#xs) = case xs of
[] = True

| y#ys = (x <y) v (x =Y))
A is_sorted xs"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 12

Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step II: Write a Test Specification Step III: Generating Testcases

@ executing the testcase generator in form of an Isabelle proof

thod:
@ writing a test specification (TS) metho

as HOL-TestGen command: apply(gen_test_cases "prog")

@ concluded by the command:

test_spec "is_sorted (prog (l =(a list)))" store_test_thm " test_sorting "

...that binds the current proof state as test theorem to the name
test_sorting.

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 13 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen

ETAPS 2009
Tool-Demo: HOL-TestGen and its Workflow Tool-Demo: HOL-TestGen and its Workflow
Step III: Generating Testcases Step IV: Test Data Generation
@ On the test theorem,
@ The test theorem contains clauses (the test-cases): all sorts of logical massages can be performed.
is_sorted (prog []) e Finally, a test data generator can be executed:
is_sorted (prog [?X1X17]) gen_test data " test_sorting "
%s_sorted (prog [§X2X13’??X1X12?]) e The test data generator
is_sorted (prog [?X3X7, ?X2X6, ?X1X5]) e extracts the testcases from the test theorem
o as well as clauses (the test-hypothesis): e searches ground instances satisfying the constraints (none in the

example)

THYP((3x. is_sorted (prog [x])) — (Vx. is_sorted (prog [x])) e Resulting in test statements like:

THYP((¥1. 4 < |1] —> is_sorted 1 is_sorted (prog 1)
(V14 <1 is_sorted (prog 1)) is_sorted (prog [3])
e We will discuss these hypothesises later in great detail. is_sorted (prog [6, 8])

is_sorted (prog [0, 10, 1])

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 15 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

Tool-Demo: HOL- jen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step V: Generating A Test Script The Complete Test Theory

theory List_test
imports Main begin
consts is_sorted :: "(Ca:ord) list = bool"

primrec " is_sorted] = True"
o Finally, a test script or test harness can be generated: "is_sorted (x#xs) = case xs of .
= lrue
gen test script " test_lists .sml" list " prog | y#yE::» (x<y) v(x=y)
A is_sorted xs"
@ The generated test script can be used to test an implementation,
e.g., in SML, C, or Java test_spec "is_sorted (prog (1 :(a list)))"

apply(gen_test_cases prog)
store_test_thm " test_sorting "

gen_test_data " test_sorting "
gen_test_script " test_lists .sml" list " prog
end

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 17 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 18

Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Testing an Implementation

File Edit Options Buffers Tools

B DI R E

test_spec "fisord t & isin {y::intd t & strong_redine t & blackine 3
— (blackiny (prog iy, 1"

applv{gen_test_ cases "prog")

store_test_thm "red-and-black-in"

Index Isabelle Proof-General

Executing the generated test script may result in:

Test Results:
Test 0 - xxx FAILURE: post-condition false, result: [1, 0, 10]

Test 1 - SUCCESS, result: [6, 8] e testgen_parans [Iterat lons=100]
i R yerri ; gen_test_data “red-and-hlack-inw"
. est 2 - H
Test 2 - SUCCESS, result: [3] est 4 - UARNING: prfll | Ehm Fecanceblackeli fest data'l
est 5 - SUCCESS, rg
T t = E r .Lt H t B - SICCESS, q subzect ion f+ An Alternat ive aonoroach with & little Theorem Proving !
est 3 SUCCESS, resu 1 oot 7 - URRNINGS P RET_test-thy 4oy (196,33) SW-16263 (lsar scrint WM %3 isabellq|
met B - ** UARNING: prl||~| FSF — blackinv ¢orog a1, TB (TE T RE 45 B 61 B 15 E2)
cet 3 - o FRILURE: pdll | FSF — blackiny (orog (34, TB (T B E 99 B} ~86 1)
. £ 10 - SUCCESS, hlackiny (prog (-45, T B (TBE-92E -45 (TEE -11 E})}
Summary: o1l - GUCCESS, 91 Diatkine orog (11 TETRE 1B 13 (1 RE®E

blackiny (prog (33, T B (TRE&GE 16 (TRE 3 BN

Number successful tests cases: 3 of 4 (ca. 75%) T vistele e ot (350 (reponse) 677 eIl
Number of warnings: 0 of 4 (ca. 0%) ke
unber successful tests casest 7 of 12 (ca, 58¥)
Number of errors: 0 of 4 (ca. 0%) unber of warnings: 4 of 12 {oa, 332
unber of errorst 0 af 12 Eca. 02;
1 . % L f fail H 1 of 12 L B3
Number of failures: 1 of 4 (ca. 25%) unbar of Fatal eerara: 0 oF 12 {ea, 0F)
Number of fatal errors: 0 of 4 (ca. 0%) bverall result: failed

Overall result: failed

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 19 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 20

Outline

@ Case Studies

Red-black Trees: Summary

@ Statistics: 348 test cases were generated
@ One error found: crucial violation against red/black-invariants

@ Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

@ Not found within 12 years

@ Reproduced meanwhile by random test tool

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

23

Case Studies

Red-black trees

Test if balancing property is preserved by the red-black tree operations.

e part of the SML standard library

e widely used internally in the sml/NJ compiler, e.g., for
providing efficient implementation for Sets, Bags, ...;

e very hard to generate (balanced) instances randomly

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 22

Case Studies

Case Studies: Stateless Firewalls (Packet Filters)

Test if a packet filter (firewall) configuration conforms to a given policy.

e A packet filter filters (e.g., rejects or denies) packets based on

e source address destination address
e protocol

@ Asusual

e model firewalls (e.g., networks and protocols) and their policies in
HOL
e use HOL-TestGen for test-case generation

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 24

Case Studies: Stateful Firewalls Firewall Testing: Summary

k:
Test if a stateful firewall supports stateful protocols correctly. ® Remar

o Stateless firwalls are a unit testing scenario

e Obvervation: o Statefull firwalls are a sequence testing scenario
e protocols like ftp and VoIP have an internal state @ Successful testing if a concrete configuration of a network firewall
e and need to be filtered (dynamically) based on their state correctly implements a given policy
o Idea: @ Non-trivial test-case Generation
o re-use our state-less model @ Non-trivial state-space (IP Adresses)
° mf)del an observer using a monadic fold cons.truct.lon o Sequence testing used for stateful firewalls
o this observers manages the state at the execution time o]]) |
o for many cases, an observer can be generated automatically ® Realistic, but amazingly concise model in HOL!

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 25 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 26

Conclusion

Outline

Conclusion

Approach based on theorem proving

e test specifications are written in HOL
e functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user
(can be seen as proof-obligations)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”

@ Conclusion
compiler library is feasible!

Verified tool inside a (well-known) theorem prover

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 28

Ongoing and Future Work

@ Ongoing work includes the development of support for:
o integration of SAT and SMT Solvers
e domain-specific test case generation
e theories for simplifying and transforming test theories
e Future works could include the development for:

o test theories for three-valued specification (e.g., UML/OCL)
e integration of unit- and sequence testing approaches
o ...

HOL-TestGen

A.D. Brucker and B. Wolff (SAP / Paris-Sud)

ETAPS 2009 29
Bibliography I

[Achim D. Brucker, Lukas Briigger, and Burkhart Wolff.
Verifying test-hypotheses: An experiment in test and proof.
Electronic Notes in Theoretical Computer Science, 220(1):15-27, 2008.

Proceedings of the Fourth Workshop on Model Based Testing (oo 2008).

ﬁ Achim D. Brucker and Burkhart Wolff.
Symbolic test case generation for primitive recursive functions.
In Jens Grabowski and Brian Nielsen, editors, Formal Approaches to Testing of
Software, number 3395 in Lecture Notes in Computer Science, pages 16-32.
Springer-Verlag, 2004.

ﬁ Achim D. Brucker and Burkhart Wolff.
HOL-TestGen 1.0.0 user guide.
Technical Report 482, oo Zurich, April 2005.

HOL-TestGen

A.D. Brucker and B. Wolff (SAP / Paris-Sud)

ETAPS 2009 31

Thank you
for your attention!

Any questions or remarks?

The HOL-TestGen can be downloaded from:
http://www.brucker.ch/projects/hol-testgen/
(including source, examples, and documentation)

Bibliography II

@ Achim D. Brucker and Burkhart Wolff.
Interactive testing using HOL-TestGen.

In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to
Testing of Software, number 3997 in Lecture Notes in Computer Science.
Springer-Verlag, 2005.

@ Achim D. Brucker and Burkhart Wolff.

Test-sequence generation with HOL-TestGen — with an application to firewall
testing.

In Bertrand Meyer and Yuri Gurevich, editors, oo 2007: Tests And Proofs, number
4454 in Lecture Notes in Computer Science, pages 149-168. Springer-Verlag,
2007.

A.D. Brucker and B. Wolff (SAP / Paris-Sud)

HOL-TestGen ETAPS 2009 32

T I
Further Remarks

Part1] @ In HOL, Sequence Testing and Unit Testing are the same!

Appendix

@ The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 33 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009
. .
Further Remarks Further Remarks
@ In HOL, Sequence Testing and Unit Testing are the same! e In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test: TS pattern Sequence Test:
pre x —> postx(prog x) accept trace == P(Mfold trace oyprog)
e The White-box Test offers potentials to prune unfeasible paths e The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...) early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 34 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

I
Further Remarks

e In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Reactive Sequence Test:

accept trace =— P(Mfold trace o

(observer observer rebind subst prog))

@ The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 34
|
Modeling Red-black Trees II

@ Red-Black Trees: Test Theory

consts
redinv . tree = bool
blackinv : tree = bool

recdef blackinv measure () t. (size t))
blackinv E = True
blackinv (T color a y b) =
((blackinv a) A (blackinv b)
A ((max B (height a)) = (max B (height b))))

recdev redinv measure ...

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 36

[——
Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black

parent.

Black Invariant: each path from the root

to an empty node (leaf) has
the same number of black

nodes.
datatype
color =R | B
tree =E | T color (a tree) (B:ord item) (a tree)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen

Red-black Trees: sml/NJ Implementation

(a) pre-state

ETAPS 2009

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen

ETAPS 2009

35

37

]
Red-black Trees: sml/NJ Implementation

(b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

]
Red-black Trees: sml/NJ Implementation

S

(b) pre-state: delete “8” (¢) correct result) result of sml/N]J

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

37

37

]
Red-black Trees: sml/NJ Implementation

(b) pre-state: delete “8” (c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

e
Red-black Trees: Test Specification

@ Red-Black Trees: Test Specification

test_spec:

"isord t A redinv t A blackinv t
A isin (y:=int) t
SN

(blackinv (prog(y,t))) "
where prog is the program under test (e.g., delete).
e Using the standard-workflows results, among others:

RSF — blackinv (prog (100, TBE 7 E))
blackinv (prog (-91, TB (T RE —-91 E) 5 E))

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009

37

I I
The State-less Firewall Model I The State-less Firewall Model I1

First, we model a packet:

types (a,p) packet ="id x protocol x a src x & dest x f conten o A firewall (packet filter) either accepts or denies a packet:

where
datatype

id: a unique packet identifier, e.g., of type Integer a out = accept o | deny

protocol: the protocol, modeled using an enumeration type (e.g.,
@ A policy is a map from packet to packet out:

ftp, http, smtp)
a src (o dest): source (destination) address, e.g., using IPv4: types
types (a, B) Policy = "(a, B) packet — ((«, B) packet) out
ipv4_ip = "(int x int x int x int)" e Writing policies is supported by a specialised combinator set

ipv4 = "(ipv4_ip x int)"

B content: content of a packet

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 39 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 40

]
State-full Firewalls: An Example (ftp)

@ based on our state-less model:
Idea: a firewall (and policy) has an internal state:

o the firewall state is based on the history and the current policy:
types («,,y) FWState= "a x (,y) Policy"
@ where FWStateTransition maps an incoming packet to a new state

types («,,y) FWStateTransition =
"((B,y) In_Packet x (a,B,y) FWState) —~
((a,f,y) FWState)"

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 41

