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State of the Art

“Dijkstra’s Verdict:”

Program testing can be used to show the presence of bugs, but never to
show their absence.

o Is this always true?

@ Can we bother?
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Outline

@ Motivation

Motivation

Motivation

Our First Vision

Testing and verification may converge,
in a precise technical sense:

@ specification-based (black-box) unit testing
@ generation and management of formal test hypothesis

e verification of test hypothesis (not discussed here)
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Motivation Motivation

Our Second Vision Outline

e Observation: @ Motivation
Any testcase-generation technique is based on and limited by
underlying constraint-solution techniques.

e Approach:
Testing should be integrated in an environment combining
automated and interactive proof techniques.

@ the test engineer must decide over, abstraction level, split rules,
breadth and depth of data structure exploration ...

@ byproduct: a verified test-tool
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HOL-TestGen and its Components HOL-TestGen and its Components
Components of HOL-TestGen The System Architecture of HOL-TestGen

e HOL (Higher—order Logic); ( test specification )% HOL-TestGen
e “Functional Programming Language with Quantifiers” | test cases |
e plus definitional libraries on Sets, Lists, ... ¢
e can be used meta-language for Hoare Calculus for Java, Z, ... | test data |
@ HOL-TestGen: Isabelle/HOL

e based on the interactive theorem prover Isabelle/ HOL
e implements these visions

@ Proof General:

|
(program under test Z | test SCI’ipt | :
I
I
I
I
I

h |

| test harness Test Trace

test executable SML-system I (Test Result)
1

e step-wise processing of specifications/theories
e shows current proof states

I
I
:
e user interface for Isabelle and HOL-TestGen !
I
I
I
I
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Outline

@ Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test Theory

@ Write data types in HOL:

theory List_test
imports Testing

begin
datatype ’a list =
Nl (0
| Cons’a "’a list " (infixr "#" 65
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Tool-Demo: HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically fivefold:
@ Step I: writing a test theory (in HOL)

@ Step II: writing a test specification
(in the context of the test theory)

@ Step III: generating a test theorem (roughly: testcases)
@ Step IV: generating test data
@ Step V: generating a test script
And of course:
@ building an executable test driver

@ and running the test driver
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Tool-Demo: HOL-TestGen and its Workflow

Step I: Writing a Test Theory

@ Write recursive functions in HOL:

consts is_sorted :: "(Ca:ord) list = bool"
primrec
"is_sorted ] = True"
"is_sorted (x#xs) = case xs of
[] = True

| y#ys = (x <y) v (x =Y))
A is_sorted xs"
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Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step II: Write a Test Specification Step III: Generating Testcases

@ executing the testcase generator in form of an Isabelle proof

thod:
@ writing a test specification (TS) metho

as HOL-TestGen command: apply( gen_test_cases "prog")

@ concluded by the command:

test_spec "is_sorted (prog (l =( a list )))" store_test_thm " test_sorting "

...that binds the current proof state as test theorem to the name
test_sorting.
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Tool-Demo: HOL-TestGen and its Workflow Tool-Demo: HOL-TestGen and its Workflow
Step III: Generating Testcases Step IV: Test Data Generation
@ On the test theorem,
@ The test theorem contains clauses (the test-cases): all sorts of logical massages can be performed.
is_sorted (prog []) e Finally, a test data generator can be executed:
is_sorted (prog [?X1X17]) gen_test data " test_sorting "
%s_sorted (prog [§X2X13’??X1X12?]) e The test data generator
is_sorted (prog [?X3X7, ?X2X6, ?X1X5]) e extracts the testcases from the test theorem
o as well as clauses (the test-hypothesis): e searches ground instances satisfying the constraints (none in the

example)

THYP((3x. is_sorted (prog [x])) — (Vx. is_sorted (prog [x])) e Resulting in test statements like:

THYP((¥1. 4 < |1] —> is_sorted 1 is_sorted (prog 1)
(V14 <1 is_sorted (prog 1)) is_sorted (prog [3])
e We will discuss these hypothesises later in great detail. is_sorted (prog [6, 8])

is_sorted (prog [0, 10, 1])
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Tool-Demo: HOL- jen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Step V: Generating A Test Script The Complete Test Theory

theory List_test
imports Main begin
consts is_sorted :: "(Ca:ord) list = bool"

primrec " is_sorted ] = True"
o Finally, a test script or test harness can be generated: "is_sorted (x#xs) = case xs of .
= lrue
gen test script " test_lists .sml" list " prog | y#yE::» (x<y) v(x=y)
A is_sorted xs"
@ The generated test script can be used to test an implementation,
e.g., in SML, C, or Java test_spec "is_sorted (prog (1 :( a list )))"

apply( gen_test_cases prog)
store_test_thm " test_sorting "

gen_test_data " test_sorting "
gen_test_script " test_lists .sml" list " prog
end
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Tool-Demo: HOL-TestGen and its Workflow

Tool-Demo: HOL-TestGen and its Workflow

Testing an Implementation

File Edit Options Buffers Tools

B DI R E

test_spec "fisord t & isin {y::intd t & strong_redine t & blackine 3
— (blackiny (prog iy, 1"

applv{gen_test_ cases "prog" )

store_test_thm "red-and-black-in"

Index Isabelle Proof-General

Executing the generated test script may result in:

Test Results:
Test 0 - xxx FAILURE: post-condition false, result: [1, 0, 10]

Test 1 - SUCCESS, result: [6, 8] e testgen_parans [Iterat lons=100]
i R yerri ; gen_test_data “red-and-hlack-inw"
. est 2 - H
Test 2 - SUCCESS, result: [3] est 4 - UARNING: prfll | Ehm Fecanceblackeli fest data'l
est 5 - SUCCESS, rg
T t = E r .Lt H t B - SICCESS, q subzect ion f+ An Alternat ive aonoroach with & little Theorem Proving !
est 3 SUCCESS, resu 1 oot 7 - URRNINGS P RET_test-thy 4oy (196,33) SW-16263 (lsar scrint WM %3 isabellq|
met B - ** UARNING: prl||~| FSF — blackinv ¢orog a1, TB (TE T RE 45 B 61 B 15 E2)
cet 3 - o FRILURE: pdll | FSF — blackiny (orog (34, TB (T B E 99 B} ~86 1)
. £ 10 - SUCCESS, hlackiny (prog (-45, T B (TBE-92E -45 (TEE -11 E})}
Summary: o1l - GUCCESS, 91 Diatkine orog (11 TETRE 1B 13 (1 RE®E

blackiny (prog (33, T B (TRE&GE 16 (TRE 3 BN

Number successful tests cases: 3 of 4 (ca. 75%) T vistele e ot (350 (reponse) 677 eIl
Number of warnings: 0 of 4 (ca. 0%) ke
unber successful tests casest 7 of 12 (ca, 58¥)
Number of errors: 0 of 4 (ca. 0%) unber of warnings: 4 of 12 {oa, 332
unber of errorst 0 af 12 Eca. 02;
1 . % L f fail H 1 of 12 L B3
Number of failures: 1 of 4 (ca. 25%) unbar of Fatal eerara: 0 oF 12 {ea, 0F)
Number of fatal errors: 0 of 4 (ca. 0%) bverall result: failed

Overall result: failed
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Outline

@ Case Studies

Red-black Trees: Summary

@ Statistics: 348 test cases were generated
@ One error found: crucial violation against red/black-invariants

@ Red-black-trees degenerate to linked list
(insert/search, etc. only in linear time)

@ Not found within 12 years

@ Reproduced meanwhile by random test tool
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Case Studies

Red-black trees

Test if balancing property is preserved by the red-black tree operations.

e part of the SML standard library

e widely used internally in the sml/NJ compiler, e.g., for
providing efficient implementation for Sets, Bags, ...;

e very hard to generate (balanced) instances randomly
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Case Studies

Case Studies: Stateless Firewalls (Packet Filters)

Test if a packet filter (firewall) configuration conforms to a given policy.

e A packet filter filters (e.g., rejects or denies) packets based on

e source address destination address
e protocol

@ Asusual

e model firewalls (e.g., networks and protocols) and their policies in
HOL
e use HOL-TestGen for test-case generation
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Case Studies: Stateful Firewalls Firewall Testing: Summary

k:
Test if a stateful firewall supports stateful protocols correctly. ® Remar

o Stateless firwalls are a unit testing scenario

e Obvervation: o Statefull firwalls are a sequence testing scenario
e protocols like ftp and VoIP have an internal state @ Successful testing if a concrete configuration of a network firewall
e and need to be filtered (dynamically) based on their state correctly implements a given policy
o Idea: @ Non-trivial test-case Generation
o re-use our state-less model @ Non-trivial state-space (IP Adresses)
° mf)del an observer using a monadic fold cons.truct.lon o Sequence testing used for stateful firewalls
o this observers manages the state at the execution time o ] ] ) |
o for many cases, an observer can be generated automatically ® Realistic, but amazingly concise model in HOL!
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Conclusion

Outline

Conclusion

Approach based on theorem proving

e test specifications are written in HOL
e functional programming, higher-order, pattern matching

Test hypothesis explicit and controllable by the user
(can be seen as proof-obligations)

Proof-state explosion controllable by the user

Although logically puristic, systematic unit-test of a “real”

@ Conclusion
compiler library is feasible!

Verified tool inside a (well-known) theorem prover
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Ongoing and Future Work

@ Ongoing work includes the development of support for:
o integration of SAT and SMT Solvers
e domain-specific test case generation
e theories for simplifying and transforming test theories
e Future works could include the development for:

o test theories for three-valued specification (e.g., UML/OCL)
e integration of unit- and sequence testing approaches
o ...

HOL-TestGen
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Thank you
for your attention!

Any questions or remarks?

The HOL-TestGen can be downloaded from:
http://www.brucker.ch/projects/hol-testgen/
(including source, examples, and documentation)
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T I
Further Remarks

Part1] @ In HOL, Sequence Testing and Unit Testing are the same!

Appendix

@ The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)

A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009 33 A.D. Brucker and B. Wolff (SAP / Paris-Sud) HOL-TestGen ETAPS 2009
. .
Further Remarks Further Remarks
@ In HOL, Sequence Testing and Unit Testing are the same! e In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Unit Test: TS pattern Sequence Test:
pre x —> postx(prog x) accept trace == P(Mfold trace oyprog)
e The White-box Test offers potentials to prune unfeasible paths e The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...) early ... (but no large programs tried so far ...)
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I
Further Remarks

e In HOL, Sequence Testing and Unit Testing are the same!
TS pattern Reactive Sequence Test:

accept trace =— P(Mfold trace o

(observer observer rebind subst prog))

@ The White-box Test offers potentials to prune unfeasible paths
early ... (but no large programs tried so far ...)
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Modeling Red-black Trees II

@ Red-Black Trees: Test Theory

consts
redinv . tree = bool
blackinv : tree = bool

recdef blackinv measure () t. (size t))
blackinv E = True
blackinv (T color a y b) =
((blackinv a) A (blackinv b)
A ((max B (height a)) = (max B (height b))))

recdev redinv measure ...
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Modeling Red-black Trees I

Red-Black Trees:

Red Invariant: each red node has a black

parent.

Black Invariant: each path from the root

to an empty node (leaf) has
the same number of black

nodes.
datatype
color =R | B
tree =E | T color (a tree) (B:ord item) (a tree)
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Red-black Trees: sml/NJ Implementation

(a) pre-state

ETAPS 2009

Figure: Test Data for Deleting a Node in a Red-Black Tree
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]
Red-black Trees: sml/NJ Implementation

(b) pre-state: delete “8”

Figure: Test Data for Deleting a Node in a Red-Black Tree
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]
Red-black Trees: sml/NJ Implementation

S

(b) pre-state: delete “8” (¢) correct result ) result of sml/N]J

Figure: Test Data for Deleting a Node in a Red-Black Tree
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]
Red-black Trees: sml/NJ Implementation

(b) pre-state: delete “8” (c) correct result

Figure: Test Data for Deleting a Node in a Red-Black Tree
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e
Red-black Trees: Test Specification

@ Red-Black Trees: Test Specification

test_spec:

"isord t A redinv t A blackinv t
A isin (y:=int) t
SN

(blackinv (prog(y,t))) "
where prog is the program under test (e.g., delete).
e Using the standard-workflows results, among others:

RSF — blackinv (prog (100, TBE 7 E))
blackinv (prog (-91, TB (T RE —-91 E) 5 E))
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I I
The State-less Firewall Model I The State-less Firewall Model I1

First, we model a packet:

types (a,p) packet ="id x protocol x a src x & dest x f conten o A firewall (packet filter) either accepts or denies a packet:

where
datatype

id: a unique packet identifier, e.g., of type Integer a out = accept o | deny

protocol: the protocol, modeled using an enumeration type (e.g.,
@ A policy is a map from packet to packet out:

ftp, http, smtp)
a src (o dest): source (destination) address, e.g., using IPv4: types
types (a, B) Policy = "(a, B) packet — ((«, B) packet) out
ipv4_ip = "(int x int x int x int)" e Writing policies is supported by a specialised combinator set

ipv4 = "(ipv4_ip x int)"

B content: content of a packet
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]
State-full Firewalls: An Example (ftp)

@ based on our state-less model:
Idea: a firewall (and policy) has an internal state:

o the firewall state is based on the history and the current policy:
types («,,y) FWState= "a x (,y) Policy"
@ where FWStateTransition maps an incoming packet to a new state

types («,,y) FWStateTransition =
"((B,y) In_Packet x (a,B,y ) FWState) —~
((a,f,y) FWState)"
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