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Modern Business Software
A Target for Formal Methods?

Modern business software is

complex
(large code base, various programming
languages)
parallel
(distributed, service-oriented
implementation, multi-tenancy)

Modern business software has to be

correct,
(correct and compliant processes)
reliable, and
(no crashes, guaranteed availability)
fast
(response times, virtualization)

Can formal methods/specifications help?
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The Problem:
Consistent Distributed Object Management

“ Ensure the correctness of our rule-engine.

Implementation of an event-condition-action rule engine:

events are represented as object state changes,
conditions are formulated as expressions on object, attributes
actions may change the object state.

The implementation is multi-threaded and multi-clustered:

multiple application instances are running on different server nodes
application instances may start or stop during the life-time of the cluster

Thus, we need to

coordinate object access across different application instances
deal with variations in the cluster topology, especially in the case of
unexpected changes due to application or cluster node failures.
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The Solution:
Object Ownership and Cluster Failover Management

Guarantee exclusive object ownership

Each application instance

manages the ownership of some
objects
authoritative indexer for these objects

Acquiring ownership of an object:

contacts the indexer of that object
only two messages required
indexer can be computed locally

Topology changes requires updates

Ownership via restructuring protocol

1 all instances agree on the same view
2 each instance knows the ownership

A dedicated master instance provides
the current view to joining instances.

Instance A

indexer for object 1 and 2
owns object 6

Instance B

indexer for object 3 and 4
owns object 1

Instance C

indexer for object 5 and 6
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Implementation Constraints
Industrial software development does not happen in isolation

Avoid additional functionality by reusing existing frameworks

no specialized runtime
named communication channels using JNDI

Minimize central knowledge while avoiding redundancy

existing infrastructure does not provide redundancy/replication
only local meta information (i. e.„ object ownership) per instance
needs to be synchronized whenever the cluster topology changes

Global synchronization via locks

one global lock for all instances
master election: ability to acquire global master lock

Synchronous mode of operation

synchronous communication via RMI

Continuous operation during restructuring

restructuring should not block regular operation
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Writing Formal Specifications

Formalization of an existing implementation

reverse-engineer the implementation into an executable specification
focus on robustness of the protocol against communication failures

We followed a two-staged approach:
A high-level abstract specification on paper:

initial starting point
primary communication and discussion medium with the development team
clarification of the overall system architecture

An executable specification

as soon as possible, we refined the abstract specification
using asynchronous multi-agent ASM in CoreASM

Both specifications updated in parallel
At the end: ca. 3200 lines of formal specification
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Cluster Protocol Invariants
Stable Cluster States

derived IndicesInSync =
forall node in RunningNodes() holds IndexInSync(node)

derived IndicesAreValid =
forall node in RunningNodes() holds IndexIsValid(node)

derived IndexInSync(node) =
forall oid in [1..OID_MAX] holds SlotInSync(node, oid)

derived SlotInSync(node, oid) =
node = authIndexer(oid, node) implies
OWNER(OWNER(node, oid), oid) = OWNER(node, oid)

derived IndexIsValid(node) =
forall oid in [1..OID_MAX] holds SlotIsValid(node, oid)

derived SlotIsValid(node, oid) =
node = authIndexer(oid, node) implies
OWNER(node, oid) memberof RunningNodes()

© Copyright 2010 SAP AG. All Rights Reserved. / Page 9 of 16



Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Initialize cluster with two active nodes and an inactive one:

nodeList = ["N1", "N2"]
newMasterNode = "N3"
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Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Deactivate node failure detection

SuspendNodeFailureHandlers()
clusterIsStable := true
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Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Shutdown the current master node

killedMaster := MasterNode()
remove NodeID(MasterNode()) from nodeList
SignalNodeShutdown(MasterNode(), true)
clusterIsStable := false
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Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Start inactive node

if (NodeIsDown(killedMaster)) then {
AddNode()
add newMasterID to nodeList

}
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Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Re-activate handling of node failures

if (MasterNode() != undef
and HasJoinedCluster(newMasterID)) then {

ResumeElemLossHandlers()
}

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16

Agenda

1 Introduction & Motivation

2 Case Study: Distributed Object Management

3 Lessons Learned and Conclusion

© Copyright 2010 SAP AG. All Rights Reserved. / Page 11 of 16

Lessons Learned

Missing scope for locations

Missing tool support for “Refinements”

Reusables specification modules

Insufficient support for literate specifications

Debugging support

Combining formal and semi-formal development processes

Lack of commercially applicable tools

Think twice before you decide for a specific (set of) method(s)

There are places for interactive and for automated Methods
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Conclusion

Well-know facts:

already writing a formal specification can reveal problems
Fully automated tools can be used by non-experts in formal methods

We used the “consultancy model” also in other formal method projects

requiring an formal methods exports for the (interactive) analysis is fine
non-experts in formal methods should be able to

write specifications
type-check and animate (execute) specifications
write (simple) properties that should be verified

Business applications can be worthwhile targets for formal methods

Formal methods are applied, if there is there is a business case
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Thank you!
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Specification

Table: An overview of the modules of the ASM specification

Module Lines Rules Functions

Control ASM States 50 0 1
Cluster Master 161 12 10
Protocol Messages 138 0 25
Cluster Membership and Object Management 1 796 114 159
Object Requests 128 10 3
Cluster Environment (Notification) 328 19 31
Lock Management 141 7 19
Message Passing 362 12 56
Control Flow 88 10 5
Control State Handling 63 5 9

Total 3 255 189 318
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