
Practical Issues with

Formal Specifications
Lessons Learned from an Industrial Case Study

Michael Altenhofen Achim D. Brucker
{michael.altenhofen, achim.brucker}@sap.com

Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

15th International Workshop on
Formal Methods for Industrial Critical Systems

(FMICS 2010)
Antwerp, Belgium, September 20-21, 2010

THE BEST-RUN BUSINESS RUN SAP™

Agenda

1 Introduction & Motivation

2 Case Study: Distributed Object Management

3 Lessons Learned and Conclusion

© Copyright 2010 SAP AG. All Rights Reserved. / Page 2 of 16

Modern Business Software
A Target for Formal Methods?

Modern business software is

complex
(large code base, various programming
languages)
parallel
(distributed, service-oriented
implementation, multi-tenancy)

Modern business software has to be

correct,
(correct and compliant processes)
reliable, and
(no crashes, guaranteed availability)
fast
(response times, virtualization)

Can formal methods/specifications help?

Request
Travel

Approve
Travel

Approve
Budget

Notify
RequestorSoD3

SoD1

SoD2

Staff

Manager

Manager

© Copyright 2010 SAP AG. All Rights Reserved. / Page 3 of 16

Modern Business Software
A Target for Formal Methods?

Modern business software is

complex
(large code base, various programming
languages)
parallel
(distributed, service-oriented
implementation, multi-tenancy)

Modern business software has to be

correct,
(correct and compliant processes)
reliable, and
(no crashes, guaranteed availability)
fast
(response times, virtualization)

Can formal methods/specifications help?

Request
Travel

Approve
Travel

Approve
Budget

Notify
RequestorSoD3

SoD1

SoD2

Staff

Manager

Manager

© Copyright 2010 SAP AG. All Rights Reserved. / Page 3 of 16



Modern Business Software
A Target for Formal Methods?

Modern business software is

complex
(large code base, various programming
languages)
parallel
(distributed, service-oriented
implementation, multi-tenancy)

Modern business software has to be

correct,
(correct and compliant processes)
reliable, and
(no crashes, guaranteed availability)
fast
(response times, virtualization)

Can formal methods/specifications help?

Request
Travel

Approve
Travel

Approve
Budget

Notify
RequestorSoD3

SoD1

SoD2

Staff

Manager

Manager

© Copyright 2010 SAP AG. All Rights Reserved. / Page 3 of 16

Agenda

1 Introduction & Motivation

2 Case Study: Distributed Object Management

3 Lessons Learned and Conclusion

© Copyright 2010 SAP AG. All Rights Reserved. / Page 4 of 16

The Problem:
Consistent Distributed Object Management

“ Ensure the correctness of our rule-engine.

Implementation of an event-condition-action rule engine:

events are represented as object state changes,
conditions are formulated as expressions on object, attributes
actions may change the object state.

The implementation is multi-threaded and multi-clustered:

multiple application instances are running on different server nodes
application instances may start or stop during the life-time of the cluster

Thus, we need to

coordinate object access across different application instances
deal with variations in the cluster topology, especially in the case of
unexpected changes due to application or cluster node failures.

© Copyright 2010 SAP AG. All Rights Reserved. / Page 5 of 16

The Solution:
Object Ownership and Cluster Failover Management

Guarantee exclusive object ownership

Each application instance

manages the ownership of some
objects
authoritative indexer for these objects

Acquiring ownership of an object:

contacts the indexer of that object
only two messages required
indexer can be computed locally

Topology changes requires updates

Ownership via restructuring protocol

1 all instances agree on the same view
2 each instance knows the ownership

A dedicated master instance provides
the current view to joining instances.

Instance A

indexer for object 1 and 2
owns object 6

Instance B

indexer for object 3 and 4
owns object 1

Instance C

indexer for object 5 and 6

11 22

44 55 66

33

B xx

11 22

Instance A

x xx

33 44

Instance B

x AA

55 66

Instance C

© Copyright 2010 SAP AG. All Rights Reserved. / Page 6 of 16



The Solution:
Object Ownership and Cluster Failover Management

Guarantee exclusive object ownership

Each application instance

manages the ownership of some
objects
authoritative indexer for these objects

Acquiring ownership of an object:

contacts the indexer of that object
only two messages required
indexer can be computed locally

Topology changes requires updates

Ownership via restructuring protocol

1 all instances agree on the same view
2 each instance knows the ownership

A dedicated master instance provides
the current view to joining instances.

After instance C has left

Instance A and B agree

on cluster size 2
A indexer for 1,2,3
B indexer for 4,5,6

B is informed that A owns 6

11 22

44 55 66

33

x AA

44 55 66

x

Instance B Instance A

B xx

11 22

xx

33

© Copyright 2010 SAP AG. All Rights Reserved. / Page 6 of 16

Implementation Constraints
Industrial software development does not happen in isolation

Avoid additional functionality by reusing existing frameworks

no specialized runtime
named communication channels using JNDI

Minimize central knowledge while avoiding redundancy

existing infrastructure does not provide redundancy/replication
only local meta information (i. e.„ object ownership) per instance
needs to be synchronized whenever the cluster topology changes

Global synchronization via locks

one global lock for all instances
master election: ability to acquire global master lock

Synchronous mode of operation

synchronous communication via RMI

Continuous operation during restructuring

restructuring should not block regular operation

© Copyright 2010 SAP AG. All Rights Reserved. / Page 7 of 16

Writing Formal Specifications

Formalization of an existing implementation

reverse-engineer the implementation into an executable specification
focus on robustness of the protocol against communication failures

We followed a two-staged approach:
A high-level abstract specification on paper:

initial starting point
primary communication and discussion medium with the development team
clarification of the overall system architecture

An executable specification

as soon as possible, we refined the abstract specification
using asynchronous multi-agent ASM in CoreASM

Both specifications updated in parallel
At the end: ca. 3200 lines of formal specification

© Copyright 2010 SAP AG. All Rights Reserved. / Page 8 of 16

Cluster Protocol Invariants
Stable Cluster States

derived IndicesInSync =
forall node in RunningNodes() holds IndexInSync(node)

derived IndicesAreValid =
forall node in RunningNodes() holds IndexIsValid(node)

derived IndexInSync(node) =
forall oid in [1..OID_MAX] holds SlotInSync(node, oid)

derived SlotInSync(node, oid) =
node = authIndexer(oid, node) implies
OWNER(OWNER(node, oid), oid) = OWNER(node, oid)

derived IndexIsValid(node) =
forall oid in [1..OID_MAX] holds SlotIsValid(node, oid)

derived SlotIsValid(node, oid) =
node = authIndexer(oid, node) implies
OWNER(node, oid) memberof RunningNodes()

© Copyright 2010 SAP AG. All Rights Reserved. / Page 9 of 16



Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Initialize cluster with two active nodes and an inactive one:

nodeList = ["N1", "N2"]
newMasterNode = "N3"

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16

Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Deactivate node failure detection

SuspendNodeFailureHandlers()
clusterIsStable := true

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16

Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Shutdown the current master node

killedMaster := MasterNode()
remove NodeID(MasterNode()) from nodeList
SignalNodeShutdown(MasterNode(), true)
clusterIsStable := false

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16

Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Start inactive node

if (NodeIsDown(killedMaster)) then {
AddNode()
add newMasterID to nodeList

}

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16



Simulation Results

The original implementation was based on a wrong assumption:

notifications in the case of failure are always sent immediately
this should be ensured by the runtime environment

Assume a delayed notification while a new node is starting up:

the new node becomes master of new cluster
if delayed notification is received, the old nodes will

try to become master and fail
do nothing and wait for restructuring

resulting in an inconsistent state (IndicesInSync does not hold)

Re-activate handling of node failures

if (MasterNode() != undef
and HasJoinedCluster(newMasterID)) then {

ResumeElemLossHandlers()
}

© Copyright 2010 SAP AG. All Rights Reserved. / Page 10 of 16

Agenda

1 Introduction & Motivation

2 Case Study: Distributed Object Management

3 Lessons Learned and Conclusion

© Copyright 2010 SAP AG. All Rights Reserved. / Page 11 of 16

Lessons Learned

Missing scope for locations

Missing tool support for “Refinements”

Reusables specification modules

Insufficient support for literate specifications

Debugging support

Combining formal and semi-formal development processes

Lack of commercially applicable tools

Think twice before you decide for a specific (set of) method(s)

There are places for interactive and for automated Methods

© Copyright 2010 SAP AG. All Rights Reserved. / Page 12 of 16

Conclusion

Well-know facts:

already writing a formal specification can reveal problems
Fully automated tools can be used by non-experts in formal methods

We used the “consultancy model” also in other formal method projects

requiring an formal methods exports for the (interactive) analysis is fine
non-experts in formal methods should be able to

write specifications
type-check and animate (execute) specifications
write (simple) properties that should be verified

Business applications can be worthwhile targets for formal methods

Formal methods are applied, if there is there is a business case

© Copyright 2010 SAP AG. All Rights Reserved. / Page 13 of 16



Thank you!

Bibliography I

Michael Altenhofen and Achim D. Brucker.

Practical issues with formal specifications: Lessons learned from an industrial case study.

In Stefan Kowalewski and Marco Roveri, editors, International Workshop on Formal
Methods for Industrial Critical Systems (FMICS), number 6371 in Lecture Notes in
Computer Science, pages 17–32. Springer-Verlag, 2010.

© Copyright 2010 SAP AG. All Rights Reserved. / Page 15 of 16

Specification

Table: An overview of the modules of the ASM specification

Module Lines Rules Functions

Control ASM States 50 0 1
Cluster Master 161 12 10
Protocol Messages 138 0 25
Cluster Membership and Object Management 1 796 114 159
Object Requests 128 10 3
Cluster Environment (Notification) 328 19 31
Lock Management 141 7 19
Message Passing 362 12 56
Control Flow 88 10 5
Control State Handling 63 5 9

Total 3 255 189 318

© Copyright 2010 SAP AG. All Rights Reserved. / Page 16 of 16

© Copyright 2010 SAP AG

All Rights Reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The
information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.
Microsoft, Windows, Excel, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.
IBM, DB2, DB2 Universal Database, System i, System i5, System p, System p5, System x, System z, System z10, System z9, z10, z9, iSeries, pSeries,
xSeries, zSeries, eServer, z/VM, z/OS, i5/OS, S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterprise Server, PowerVM, Power Architecture,
POWER6+, POWER6, POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes, BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2
Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX, Intelligent Miner, WebSphere, Netfinity, Tivoli and Informix are trademarks or
registered trademarks of IBM Corporation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.
UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of Citrix Systems, Inc.
HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts Institute of Technology.
Java is a registered trademark of Sun Microsystems, Inc.
JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape.
SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign, and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP AG in Germany and other countries.
Business Objects and the Business Objects logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius, and other Business
Objects products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of Business Objects S.A.
in the United States and in other countries. Business Objects is an SAP company.
All other product and service names mentioned are the trademarks of their respective companies. Data contained in this document serves
informational purposes only. National product specifications may vary.
These materials are subject to change without notice. These materials are provided by SAP AG and its affiliated companies (“SAP Group”) for
informational purposes only, without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to
the materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty statements
accompanying such products and services, if any. Nothing herein should be construed as constituting an additional warrant.

© Copyright 2010 SAP AG. All Rights Reserved. / Page 17 of 16


