Software and Softw Syst Model
DOI 10.1007/s10270-009-0123-6

Efficient analysis of pattern-based constraint specifications

Michael Wahler -
Jana Koehler

David Basin - Achim D. Brucker -

Received: 14 June 2008 / Revised: 4 May 2009 / Accepted: 26 June 2009 / Published online: 14 August 2009

Abstract Precision and consistency are important prereq-
uisites for class models to conform to their intended do-
main semantics. Precision can be achieved by augment-
ing models with design constraints and consistency can be
achieved by avoiding contradictory constraints. However,
there are different views of what constitutes a contradic-
tion for design constraints. Moreover, state-of-the-art anal-
ysis approaches for proving constrained models consistent
either scale poorly or require the use of interactive theo-
rem proving. In this paper, we present a heuristic approach
for efficiently analyzing constraint specifications built from
constraint patterns. This analysis is based on precise notions
of consistency for constrained class models and exploits the
semantic properties of constraint patterns, thereby enabling
syntax-based consistency checking in polynomial-time. We
introduce a consistency checker implementing these ideas
and we report on case studies in applying our approach
to analyze industrial-scale models. These studies show that
pattern-based constraint development supports the creation

Communicated by Dr. Alessandra Cavarra.

M. Wahler (X))

ABB Corporate Research, Industrial Software Systems,
5405 Baden-Dittwil, Switzerland

E-mail: michael.wahler@ch.abb.com

D. Basin
ETH Zurich, 8092 Zurich, Switzerland
E-mail: basin@inf.ethz.ch

A.D. Brucker
SAP Research, 76131 Karlsruhe, Germany
E-mail: achim.brucker @sap.com

J. Koehler
IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland
E-mail: koe @zurich.ibm.com

of concise specifications and provides immediate feedback
on model consistency.

Keywords UML - OCL - Constraints - Patterns -
Consistency

1 Introduction

Model-Driven Engineering (MDE) [39] comprises the gen-
eration of executable code from specifications given by
models. In MDE, a model of the intended system and its var-
ious aspects (e. g., security requirements [4]) can be initially
specified using graphical models at a high level of abstrac-
tion. During the development process, these models are in-
crementally refined and eventually transformed into code in
some programming language that describes a partial imple-
mentation. In particular, graphical models can be refined by
annotating model elements with constraints in a textual con-
straint language. This increases the models’ precision be-
cause model developers can express details of the system
not expressible with graphical languages and thus specify a
system that conforms to the intended domain semantics.

In order to use textual constraints, model developers
must have three different kinds of expertise. First, they must
be knowledgeable about the application domain in order to
understand the requirements behind each constraint. Sec-
ond, they must understand the graphical modeling language
employed. Third, they must be able to correctly formulate
constraints on their models in the textual constraint language
used. These are nontrivial requirements and developers of-
ten fall short of the task. In particular, due to the quantity
and complexity of the model elements involved, constraint
specifications can contain constraints that are inadvertently
contradictory, resulting in an inconsistent model. Such in-

© 2010 Springer-Verlag. This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/wahler.
ea-efficient-2010 by permission of Springer-Verlag for your personal use. Not for redistribution. The definitive version was published in Software and Systems Modeling,

pp. 225-255, 2010, doi: 10.1007/s10270-009-0123-6.

http://www.brucker.ch/bibliography/abstract/wahler.ea-efficient-2010
http://www.brucker.ch/bibliography/abstract/wahler.ea-efficient-2010
http://dx.doi.org/10.1007/s10270-009-0123-6
http://dx.doi.org/10.1007/s10270-009-0123-6

226

Michael Wabhler et al.

consistencies violate the validity of the model and can lead
to the generation of erroneous code, which will only be de-
tected during testing, if at all. Since detecting and remedying
inconsistencies requires costly development iterations, it is
important that inconsistencies are detected as early as possi-
ble in the development process.

Whereas the topic of constraint consistency has recently
attracted some attention in the context of MDE, existing
approaches either consider the consistency of models with-
out general constraints, fail to precisely define the underly-
ing consistency notions, or abstract from intricacies such as
infinitely-large model states. Moreover, we have not found a
comprehensive survey of formal consistency notions in the
MBDE literature and it is unclear which consistency notions
are relevant for MDE-based processes. As we will see, dif-
ferent consistency notions are relevant for different develop-
ment phases.

Detecting inconsistencies in object-oriented specifica-
tions with arbitrary constraints is undecidable. Currently,
there are two kinds of tools tackling this problem. The
first kind is based on interactive theorem proving and has
the advantage of supporting the analysis of arbitrary spec-
ifications. Successfully applying such tools, however, re-
quires expertise in interactive theorem proving. In contrast,
the second kind is based on automated model-checking
techniques [15]. Their use requires simplifying the prob-
lem by restricting the specification to a decidable, usually
NP-complete, subset of the specification language. Subse-
quently, classical model-checking or SAT-solving [22] tech-
niques can be applied. Hence, current tools require a trade-
off between expressiveness and automation.

1.1 Motivation

We motivate the problem of consistency for constrained
class models with an example. Figure 1 shows a class
model of a company in the Unified Modeling Language
(UML) [50]. The model defines the concepts of employee,
manager (a kind of employee), office, and two kinds of of-
fices: single offices and cubicles. Employees and managers
are related by an association that represents an employment
relationship. Employees and offices are related by another
association with the requirement that each employee can
work in at most one office.

In UML, model states (i. e., instances of a model) can be
constrained in only limited ways using graphical elements
of class models. For example, the multiplicity of associa-
tion ends can be constrained by specifying natural numbers
as the lower and upper bound. Multiplicities cannot, how-
ever, be constrained to stand in some given relation to an
attribute value. For example, it is impossible in class mod-
els to specify without textual constraints that the number of

+ employs Employee + inhabitant 0.1 Office
name : String
* salary : Integer N T workeln | desks : Integer
L Manager Single Cubicle
" [budget : Integer

headCount : Integer
isCEO : Boolean
hire (‘e : Employee) : Boolean

+ worksFor

Figure 1 Class model of a company.

m,:Manager

name = ‘Paul’
headCount=1

\—

-
e;:Employee

e,:Employee

name = ‘Mike’ J

S

name = ‘Boris’
-

Figure 2 Invalid company state.

employees of each manager cannot be more than the value
of the manager’s headCount attribute. As a result, multiplic-
ity constraints of association ends are often too general to
be used in code generation because they allow the instanti-
ation of states that do not conform to the intended domain
semantics.

Figure 2 provides an example of a state where a manager
employs two employees, despite having a headcount of one.
Although this state does conform to the model in Figure 1, it
does not conform to the domain semantics where the num-
ber of employees under a manager must be at most the man-
ager’s head count. Excluding such states can be achieved by
augmenting class models with textual constraints. Such con-
straints provide a means to reduce the possible states of the
models so that they conform to the intended domain seman-
tics.

The standard constraint language for UML class models
is the Object Constraint Language (OCL) [49]". In this pa-
per, we assume readers to be familiar with OCL and refer
to [40] for an introduction. OCL is a textual constraint lan-
guage based on first-order logic (FOL). For example, the fol-
lowing OCL invariant on the model specifies that the num-
ber of employees of each manager must not exceed the man-
ager’s headcount.

context Manager
inv headCountRestriction:
self .employs—>size() <= self.headCount

A state of a class model is defined in terms of an object
model. Informally, the semantics of a class model M is de-
fined as the set of valid states of M. A valid state satisfies all

I We base our work on [49] as more recent versions of the OCL 2.0
standard fail to provide a consistent semantic, e. g., see [8] for details.

Efficient analysis of pattern-based constraint specifications

227

T

m,:Manager
name = ‘Paul’ s,:Single
salary = 2000
budget = 5000 desks =2
headCount = 2 \ J
isCEO = true

e,:Employee ¢,:Cubicle
name = ‘Boris’ desks =2
salary = 1000

—

Figure 3 Example state of the company model.

constraints defined on the elements of the model. An exam-
ple state that satisfies the constraint headCountRestriction is
shown in Figure 3.

In order to simplify the definition of constraints, the con-
cept of specification patterns [24] has recently been intro-
duced as constraint patterns in MDE [1,17,21,47,59]. Con-
straint patterns are parameterized constraint expressions that
can be instantiated to specific constraints.

Definition 1 (Constraint Pattern) A constraint pattern I7
with respect to a meta-model M is a function that maps a
set of meta-model elements to a constraint.

An example of a constraint pattern is the No Cyclic De-
pendency pattern, which can be used to prohibit cyclic links
between objects of a class. It has one parameter property of
type Sequence(Property), denoting an OCL navigation path
x.y.z in the model. In general, all argument types in pattern
definitions are defined in the UML or OCL specification.
The definition of the No Cyclic Dependency pattern is based
on the closure pattern, which we define as follows.

pattern NoCyclicDependency(property: Sequence(Property)) =
self .closure(property,Set{}) —>excludes(self)

pattern closure(property : Sequence(Property),S:Set(Class)) =
property—>union((property — S)—>
collect (0:Class | o.closure(property,S—>including(self)))—>
asSet())

By instantiating the No Cyclic Dependency pattern, we
can specify the constraint noCycles, which forbids managers
to manage themselves.

context Manager
inv noCycles: NoCyclicDependency(worksFor)

In MDE tools, pattern instantiation can be implemented
by adding the required pattern definitions to the context
class in the form of OCL operation definitions. To this
end, it is sufficient to replace the keyword pattern by
the OCL keyword def and to replace the parameter type
Sequence(Property) by the actual type of the correspond-
ing navigation path x.y.z. Consequently, the respective MDE

tool can be used to check the syntax and type correctness of
the constraint statement.

Even if constraints are correct with respect to syntax and
types, they can be inconsistent and thus there is no valid
state of the model. This often occurs in industrial-scale mod-
els, which possess dozens or even hundreds of constraints.
Here model developers can easily lose track of how their
constraints interact and inadvertently specify contradictory
constraints.

Some inconsistencies are easy to spot and therefore to
avoid, for example, contradictory constraints on the value
of an attribute. However, other inconsistencies are difficult
for model developers to detect because they require a thor-
ough understanding of the semantics of the modeling lan-
guage and experience in using it. For example, the multi-
plicity constraint on the worksFor association end requires
that every employee has at least one manager. As a conse-
quence, management hierarchies must be cyclic to ensure
finitely large and non-empty states. But, if cycles in man-
agement hierarchies were undesired (which they are in most
companies) and ruled out by the noCycles constraint, it is
not obvious whether the model would remain consistent.

1.2 Contributions and Results

Our first contribution in this paper is a survey of consistency
notions for UML/OCL models, which provides a uniform
representation and comparison of these notions. Based on
this comparison, we recommend a consistency notion for
real-world MDE development processes. In addition, we use
the results from this survey as a foundation for our consis-
tency analysis.

Our second contribution is an automatic polynomial-
time analysis approach for constraint specifications based
on constraint patterns. Whereas constraint patterns have pri-
marily been introduced to simplify and accelerate constraint
development, we show how consistency analysis can also
benefit from constraint patterns. Efficient, automated consis-
tency analysis is essential for the model developer to receive
immediate feedback during model development. However,
existing analysis tools scale poorly to large input models be-
cause automatically analyzing the consistency of OCL spec-
ifications requires exponential complexity.

Our analysis consists of two parts. In the first part, we
show how the semantic properties of the patterns can be
approximated by syntactic properties and formalize them
as consistency lemmas. These lemmas state sufficient con-
ditions under which adding an instance of the respective
pattern to the model preserves the model’s consistency. As
an example, we present one assumption of the consistency
lemma for the No Cyclic Dependency pattern. When con-
straining a path, i.e., a sequence p;.--- .p, of association
ends, with the No Cyclic Dependency pattern, the model

228

Michael Wabhler et al.

remains consistent if single edges can be deleted from in-
stances of this path without violating any multiplicity con-
straints. In particular, there must be one association end in
this path whose lower multiplicity bound is zero and, in
addition, there is one association end whose opposite end
also has a lower multiplicity bound of zero. If this condition
does not hold, there can only be infinitely long noncyclic in-
stances of this path, which rules out finitely large states of
the respective model.

In the second part of the analysis, we use these lemmas
to check the consistency of constrained class models. Here
it is sufficient to check for each pattern instance whether
the assumptions of the consistency lemma of the respective
pattern are satisfied. It will turn out that these assumptions,
which are syntactic properties of the model and the pattern
instances, can be checked in polynomial time. Hence our
analysis is efficient. However, since there is no decision pro-
cedure for the consistency of a set of OCL formulas, there is
a price to be paid: We sacrifice a complete procedure for the
sake of a (quickly) decidable one. As a result, our analysis
can produce false positives, i.e., consistent constraints can
be displayed as potentially inconsistent.

Our third contribution is to validate that our analysis is
applicable to real-world constraints. To this end, we have
carried out extensive case studies on industrial-scale models.
The results show that our pattern-based analysis approach is
applicable to the majority of constraints and has a good run-
time performance. Moreover, our approach offers immedi-
ate feedback about model consistency to model developers
without interrupting their workflow. Thus, we provide an ef-
fective means for domain specialists to develop large parts
of their constraint specifications in a concise and consistent
way, without the need to acquire knowledge of formal spec-
ification languages and deduction machinery.

1.3 Organization

This paper is structured as follows. In Sect. 2, we survey dif-
ferent consistency notions in the literature and recommend
a practically relevant notion of consistency for class models.
In Sect. 3, we introduce an efficient approach to checking
the consistency of pattern-based constraint specifications. In
Sect. 4, we present an implementation of our analysis for
a Computer Aided Software Engineering (CASE) tool. In
Sect. 5, we validate our approach by analyzing the consis-
tency of industrial-scale models that are used in commercial
software. In Sect. 6, we discuss related work and we sum-
marize our findings in Sect. 7.

2 Consistency Notions for UML/OCL

In MDE, the term consistency is used with two different
meanings: inter-model consistency and intra-model consis-
tency. Inter-model consistency with respect to a predicate P

denotes that two or more model states satisfy P. For exam-
ple, an activity model (visualized as an activity diagram) A
and a state model (visualized as a statechart) S are consis-
tent if the state transitions of the data items in A are defined
in S [42]. Inter-model consistency is the subject of numer-
ous publications, e. g., [25,36,41,42,54]. In contrast, intra-
model consistency of a model M denotes that M can be
instantiated, i. e., there exists at least one state for M. This
corresponds to consistency in classical logic. When we refer
to consistency in this paper, we mean intra-model consis-
tency.

Different notions of consistency for class models have
been proposed in the literature, but there are still open ques-
tions that require answers. Although there is an intuitive un-
derstanding of consistency, not all of the notions given have
been precisely defined. Moreover, there is no comprehen-
sive study of the relationships between the notions and their
practical relevance. For example, it is unclear which of the
different consistency notions are best suited for MDE devel-
opment projects.

In this section, we survey different consistency notions
for UML/OCL models. In doing so, we provide a uniform
representation and a comparison of these notions. Before
we begin, we review consistency in first-order logic (FOL)
to highlight the basic concepts behind consistency and de-
rive a first notion of consistency for UML/OCL. Focusing
on the specifics of UML/OCL, we subsequently obtain al-
ternative notions of consistency. Finally, we recommend a
consistency notion for real-world MDE development pro-
cesses.

2.1 Consistency in First-Order Logic

We first set the stage for UML/OCL consistency by review-
ing consistency in classical first-order logic (FOL). Our mo-
tivation for choosing FOL is twofold: First, we view OCL
to be an extension of FOL, adding recursion. Second, most
readers will be familiar with FOL, which makes it a suitable
starting point from a didactic perspective. In the following,
we assume that the reader is familiar with the syntax and
terminology of FOL as represented for instance in [27].

To simplify our presentation, we focus on FOL sen-
tences, that is, formulas without free variables. The seman-
tics ¢, of a first-order sentence ¢ is defined as a function
oo = ¢ — {T, F'}, where the state 0 = (U,,Z,) is a struc-
ture in which U, is a set, called the universe, and Z, is a
mapping from syntax to semantics, called the interpretation.
We require that the universe is nonempty, as otherwise uni-
versally quantified formulas trivially hold.

A sentence ¢ is called satisfiable if there exists a struc-
ture o such that ¢, = T, also denoted by o =roL ¢. In this
case, o is called a valid state (or a model) of ¢. The notion
of satisfiability is related to the notion of consistency, which
is defined as follows.

Efficient analysis of pattern-based constraint specifications

229

Definition 2 (Consistency in FOL) A set ¢ =
{¢1,...,¢n} of FOL sentences is consistent if and
only if there exists a state o such that

a|:FOL¢1/\.../\¢nand u(;?é@,

i.e., 1 A... A @y, is satisfiable. @ is inconsistent otherwise.

In contrast to FOL, OCL is a typed logic. Fortunately,
FOL can be extended with types. In addition, OCL is a
three-valued logic, which entails that all datatypes, includ-
ing Boolean, are extended with an additional exception el-
ement OclUndefined. OCL reasons over an object-oriented
data model, that is, OCL formulas can contain path expres-
sions. Thus, we need to adopt and extend the concepts intro-
duced for FOL.

As a prerequisite, we must clarify the semantics of the
OCL operation ::allinstances(). Informally, C::allinstances()
returns a set containing all instances (i. e., objects) of class C
in a given state. The following features of the OCL seman-
tics in general and C::allinstances() in particular are impor-
tant:

1. OCL considers valid states only [49, Appendix A], i.e.,
states in which the invariants of all objects evaluate to
true. Thus, C::allinstances() contains only objects that
satisfy their invariant.

2. The set C::allinstances() contains all objects of kind C,
i. e., instances of class C and all subclasses thereof.

3. Following [7], we assume that C::allinstances() may re-
turn a set containing infinitely many elements. Operators
such as size() are undefined on infinite sets.

Analogous to =foL, we introduce the relation =oc be-
tween states and OCL formulas. This relation holds for a
pair (7, ¢) if and only if 7 is a state (represented by an ob-
ject model) that satisfies the formula ¢, i. e., evaluating the
formula ¢ over the object model 7 results in true (see [7] for
formal definitions). Note that 7 in |=ocL plays the role of a
first-order structure in |=goL .

Now, based on Definition 2 of consistency for FOL and
the semantics of UML/OCL as introduced above, we define
a first notion of consistency for UML/OCL models. In the

following, we write 3_. _ for unbounded existential quan-
tification and V_ € _. _ for bounded universal quantifica-
tion.

Definition 3 (Consistency in UML/OCL (i)) A con-
strained UML model M is consistent if and only if there
exists a valid state 7 in which there exists an instance of all
classes C'in M. Formally,

Ir.VC € M. 7 EocL C:allinstances()—>notEmpty() .

This definition takes into account that the universe of
each type must be nonempty and that all objects satisfy

the constraints of their class. However, the type system of
UML/OCL is more complicated than the type systems typ-
ically used in (sorted) FOL [29]. For example, UML pos-
sesses abstract classes, which cannot be instantiated by def-
inition. In the following subsections, we investigate these
characteristics of UML/OCL and provide alternative consis-
tency definitions.

2.2 Subtype Consistency and Abstract Classes

The notion of subtype (or specialization in UML terminol-
ogy) is an important concept in object-oriented modeling as
it allows model developers to extend and thereby special-
ize concepts. The invariants specified for a superclass are
typically not added explicitly to its subclasses. Instead, sub-
classes are usually annotated with additional invariants that
their instances must satisfy, as in the following example.

context Employee
inv positiveSalary: salary > 0

context Manager
inv positiveBudget: budget > 0

These constraints require that the salary of all employees is
positive and, in addition, the budget of all managers must be
positive for the company model.

In UML, an instance of a class is also considered an in-
stance of each of its superclasses [50, Sect. 7.3.20]. Thus,
if C” is a subclass of C, instances of C’ need not only sat-
isfy the invariants of C’, but also of C' and each of its su-
perclasses. This principle is known as Liskov’s substitution
principle [45]. Tt requires that if ¢ is a property that holds
for objects of type 7', then ¢ should hold for objects of type
S, where S is a subtype of 7' (S < T'). We call the property
that instances of subclasses must satisfy both their own in-
variants and the invariants of their superclasses subtype con-
sistency, which we define as follows.

Definition 4 (Subtype Consistency) A model M is sub-
type consistent if and only if for all C, C’ € M, where
C" is a subclass of C, a valid instance of C" is also a valid
instance of C'. Formally,
VC,C" € M. V1. 7 [=ocL C’:allinstances()—>forAll(z|
z.0cllsTypeOf(C’) and z.ocllsKindOf(C)
implies
not x.oclAsType(C).ocllsUndefined()) .

The above definition expresses the subtype relation between
some class C” and its superclass C'. If each instance z of
some class C” is also an instance of some class C, then it
must be possible to cast x to its superclass C.

Subtype consistency ensures that subclasses inherit the
invariants from their superclasses. Subtype consistency is

230

Michael Wabhler et al.

also known as class subsumption [5] for class models with-
out OCL invariants or structural subtyping [2] for models
with OCL invariants, which requires that the invariant of a
subclass implies the invariant of its superclass. Since sub-
type consistency is an important requirement for class mod-
els, we refine our definition of consistency as follows.

Definition 5 (Consistency in UML/OCL (ii)) A con-
strained UML model M is consistent if and only if it is sub-
type consistent and there exists a valid state 7 in which there
exists an instance for all classes C'in M.

A special case of a subtyping relationship between a
superclass C' and a subclass C” occurs when C' is an ab-
stract class. At first glance, any model that contains abstract
classes cannot be consistent because, according to the UML
specification [50], an abstract class(ifier) “does not provide
a complete declaration and can typically not be instanti-
ated.” Interfaces are treated similarly in the UML specifi-
cation: “Since interfaces are declarations, they are not in-
stantiable.” Does this mean that any model that contains at
least one abstract class is inconsistent by definition?

To clarify the role of abstract classes and interfaces for
model consistency, we must investigate their roles in the
model. We interpret these roles as follows. Model develop-
ers usually create an abstract class or interface C' assuming
that there will be at least one concrete class C’ that spe-
cializes (or implements) C, since C' would be superfluous
otherwise. Thus, if C’ can be instantiated, then C can also
be instantiated because an instance of a subclass C” is con-
sidered an instance of all of its superclasses in UML. Thus,
the classical notion of consistency is generally applicable
to UML with its concepts of interfaces and abstract classes,
provided that subtype consistency is additionally required.

Interestingly, subtype consistency distinguishes between
classes that cannot be instantiated because they are defined
as abstract and those that cannot be instantiated because they
have contradictory invariants. Suppose the following invari-
ant is added to the company model.

context Employee
inv noEmployee: false

The invariant noEmployee excludes valid instances of
Employee because no object can satisfy this invariant. This
invariant therefore renders the model inconsistent. In con-
trast, if Employee was defined as an abstract class with-
out the noEmployee invariant, the model would remain con-
sistent because there is at least one subclass of Employee
(Manager, which is also an instance of Employee according
to the UML standard [50]) that can be instantiated. Thus, we
can specify a state containing one object o of type Manager,
for which o.ocllsKindOf(Employee) holds. For this state,

it holds that Employee::allinstances()—>notEmpty() and the
model is therefore consistent according to our definition.

2.3 Finitely Large Model States

In Definition 5, we defined a model M as consistent if there
is a state of M that contains at least one object for each
class of M. According to the classical notion of consistency,
such a state can be infinitely large. Moreover, it is possible
that only infinitely large states satisfy all the constraints of
a given model. Since states with infinitely many objects are
rarely desirable in practice, we discuss this problem in this
subsection.

The requirement for models to have finitely large states
is well-known in database theory [10] and has recently been
explored in the context of UML/OCL [13,46,53]. Consider
the following constraint, which forbids cycles in the man-
agement hierarchy of a company, i. e., managers must not be
their direct or indirect (i. e., via transitivity) manager.

context Manager
inv noCycles: NoCyclicDependency(worksFor)

This constraint is an instance of the previously defined
pattern No Cyclic Dependency. Since the multiplicity con-
straints in the UML model require that each employee is
associated with at least one manager, noCycles can only be
satisfied by a state in which there are either no employees at
all or infinitely many managers. However, states with no em-
ployees violate consistency and states with infinitely many
managers are undesirable.

In this situation, the model developer has two choices:
either drop the constraint noCycles or change the model to
make it consistent. Suppose the developer changes the mul-
tiplicity of the worksFor association end from 1..x to * and
leaves the rest of the company model as is. This results in the
model company?2, displayed in part in Figure 4, which has
finitely large states. We show one of these states in Figure 5,
named 7.

+ employs Employee

name : String
* | salary : Integer

T

Manager

% | budget : Integer

headCount : Integer

isCEO : Boolean

hire (e : Employee) : Boolean

+ worksFor

Figure 4 Extract of the modified company model.

Efficient analysis of pattern-based constraint specifications

231

1 /—\
m,:Manager s;:Single
name = ‘Paul’ desks =2
salary = 2000
budget = 5000
headCount = 2]
isCEO = true ¢;:Cubicle
desks =2
e;:Employee \),
name = ‘Boris’
salary = 1000

Figure 5 Valid state of the company2 model.

The updated model company?2 has a valid state with a fi-
nite number of objects that satisfies the constraint noCycles.
In general, we can formalize the requirement that a model
M must have at least one finitely large state as follows.

Definition 6 (Finitely large states) A model M has at least
one finitely large state if and only if for all classes C' of M,
there exists a valid state 7 and a natural number n > 0 such
that

7 EocL C:allinstances()—>size() < n

Having investigated the characteristic features of
UML/OCL, we can check whether our company model is
consistent. It will turn out that the classical notion of con-
sistency is too strong for the company model. In the follow-
ing subsection, we investigate the reason for this and incre-
mentally weaken the classical notion of consistency in or-
der to obtain more fine-grained notions of consistency for
UML/OCL.

2.4 Weaker Notions of Consistency

We have seen in the previous subsection that the updated
model company2 is consistent and has at least one state with
a finite number of objects. However, it is not always possible
to find a single state in which all classes of a given model
can be instantiated. Consider the following invariant, which
allows companies to have either offices of type Single or of
type Cubicle, but not both.

context Office

inv workConditions:
Single :: allinstances () —>isEmpty() or
Cubicle:: allinstances () —>isEmpty()

The company2 model with the constraint
workConditions is inconsistent with respect to the clas-
sical notion of consistency because no instance of the

model exists in which all classes are instantiated and the
workConditions constraint is satisfied. However, the model
developer may have deliberately created this scenario
because it reflects company policy. In contrast, the require-
ment from the classical consistency notion that each class
must be instantiated (or, in our scenario, that both types of
office are instantiated) does not conform to the company
policy. Therefore, the classical notion of consistency is not
applicable in this scenario because it is too strong.

Another example that illustrates that the classical notion
of consistency can be too strong in practice is the following.
In early phases of system development, there may be an ab-
stract class C' for which no concrete subclasses have been
defined yet. As a consequence, there is no state that contains
objects of type C' and thus, the model is inconsistent. How-
ever, this contradicts the intention of the model developer
for whom the presence of C' is desired. To reconcile the de-
veloper’s intention with a formal notion of consistency, we
must weaken the classical notion of consistency. To this end,
we investigate which notions of consistency a model devel-
oper may be concerned about.

Can each class be instantiated in the same state? As shown,
if a set of constraints is consistent in the classical sense, there
exists at least one state in which all classes can be instanti-
ated. This is a strong requirement, but it can be useful for
UML/OCL models with strong dependencies between the
classes in the model, i.e., an instance of a class can only
exist if instances of all other classes also exist.

The classical notion of consistency is presented in [38,
46]. We refer to the classical notion of consistency as strong
consistency, which we define as follows.

Definition 7 (Strong Consistency) A UML/OCL model M
is strongly consistent if and only if M is subtype consistent
and there exists a valid state in which all classes of M are
instantiated. Formally,

3r.VC € M. 7 [=ocL C:allinstances()—>notEmpty() .

We have seen that the model company?2 is strongly con-
sistent because there exists a state with the required proper-
ties (cf. Figure 5).

Can each class be instantiated in some state? Since strong
consistency can be too strong for certain desired constraints,
we follow [5,46,52] and weaken the previous requirement
by asking for the existence of a set of states for M such that
each class in M is instantiated in at least one of these states.
We call this weaker notion of consistency class consistency
and define it as follows.

Definition 8 (Class Consistency) A UML/OCL model M
is class consistent if and only if M is subtype consistent and

232

Michael Wabhler et al.

m,:Manager

s;:Single

T
c;:Cubicle

name = ‘Paul’
salary = 2000
budget = 5000
headCount = 2
isCEO = true

e;:Employee

name = ‘Boris’

salary = 1000
——

desks =2

i

desks =2

i

Figure 6 Witnesses for the class consistency of company?2.

for each class C' € M, there exists a valid state that contains
an instance of class C'. Formally,

VC € M. 3r. 7 =ocL C:allinstances()—>notEmpty() .

We have seen that the company model is not strongly
consistent if it is annotated with the constraint workCondi-
tions. However, the model is class consistent and we show
witness model states in Figure 6. In this figure, the constraint
workConditions is satisfied by both the state 7y, which con-
tains objects of type Single only, and by the state 75, which
contains objects of type Cubicle only. Thus, each class of
the company model can be instantiated, although in different
states. Every strongly consistent model is also class consis-
tent, but not vice versa.

Can any class of the model be instantiated? In the early
phases of system development, some classes in a model may
not yet be implemented. It can also happen that some classes
are still in the model, but using them is discouraged or they
no longer have an implementation.

According to the previously defined notions of consis-
tency, such models are neither strongly consistent nor class
consistent because not all classes can be instantiated. How-
ever, as explained above, such a situation may be desired.
Thus, the developer may want to know whether there is a
nonempty subset of all classes in M that can be instanti-
ated. Such a weak notion of consistency is used in [5,46,
521, which we define as follows.

Definition 9 (Weak Consistency) A UML/OCL model M
is weakly consistent if and only if M is subtype consistent
and a nonempty subset of the classes of M can be instanti-
ated in some valid state. Formally,

Ir.3C € M. 7 |=ocL C:allinstances() —>notEmpty() .

Every class consistent model is also weakly consistent,
but not vice versa. Given a UML/OCL model that is weakly

consistent, the model developer can incrementally modify
the model to achieve a stronger notion of consistency.

The weakest notion of all is inconsistency. In an incon-
sistent class model, not a single class can be instantiated in
any state. This, of course, is undesirable in practice.

Definition 10 (Inconsistency) A UML/OCL model M is
inconsistent if and only if it is not weakly consistent.

As mentioned before, strongly consistent models and
class consistent models are also weakly consistent and there-
fore, they are not inconsistent.

2.5 Practically Relevant Consistency Notions

We have investigated different notions of consistency based
on the characteristic features of UML/OCL. We now assess
which notions are most relevant for model development.

We believe that UML/OCL models in MDE should be
subtype consistent and have at least one finitely large state.
We consider subtype consistency a necessary requirement
for object-oriented models [45], and if a model is not sub-
type consistent, it should be revised. In certain scenarios,
such as code re-use, subtype consistency can be ignored.
We also propose that models should have finitely large states
when used in MDE processes.

At the end of the development process, when code is
generated from the models, we propose that class models
should be class consistent because every class should be in-
stantiable in at least one system state or be removed other-
wise. Earlier in the process, the models may be weakly con-
sistent, but they should be refined such that they are even-
tually at least class consistent. To this end, the next section
covers consistency analysis, that is, a method for determin-
ing whether a model is consistent.

Efficient analysis of pattern-based constraint specifications

233

3 Pattern-Based Consistency Analysis

In this section, we introduce a novel approach to the con-
sistency analysis of pattern-based constraint specifications.
Our approach consists of proving general consistency prop-
erties of the constraint patterns once and subsequently using
these properties for an efficient, automatic, heuristic anal-
ysis of pattern instances. The basis for our analysis is the
previously defined consistency notions.

We make the following assumptions. First, we assume
that graphical constraints on the class model, e.g., cardinal-
ity constraints, are removed from the model and specified
as textual constraints as presented in [31]. We further as-
sume that these textual constraints are represented using our
library of constraint patterns. Finally, we assume that there
are only binary associations in the UML class model and no
association ends that are derived unions. Note that we make
this restriction only to keep this paper concise. Our approach
can be generalized to n-ary associations with n > 2.

3.1 Introducing Consistency Lemmas

We capture the general consistency properties of a constraint
pattern I7 as a set of assumptions under which adding an in-
stance of I7 to a constraint specification preserves the spec-
ification’s consistency. This analysis must be done just once
for each constraint pattern in a given pattern library. As a re-
sult, we formulate and prove a consistency lemma for each
pattern. We define consistency lemmas in Definition 11. In
this definition, we use a general notion of consistency that
must be replaced by a specific notion as defined in the pre-
vious section.

Definition 11 (Consistency Lemma) A consistency lemma
for a constraint pattern 11 states sufficient conditions for the
consistency of instances of I7. It has the following structure:

— Let (M, ®;;) be consistent, where M is a class model
and @, is its constraint specification. Let ¢/ be an in-
stance of the pattern /7.

— Assume the syntactic properties Py(M,Py), ...,
P, (M, ®) hold for the model and its constraint speci-
fication.

— Then (M, @y U {}) is consistent.

When the patterns are used, it is sufficient to check
whether the assumptions P, ..., P, hold. Since these as-
sumptions are syntactic properties of the UML/OCL model
(M, ®yr), they can be checked in polynomial time. In our
approach, we first must prove that the initial class model
without any textual constraints is consistent, which is a de-
cidable property that can be computed in linear time [46].

In the following, we analyze our pattern library for po-
tential contradictions. The main challenge is identifying

which patterns can potentially contradict a given pattern 7.
To this end, we classify constraint patterns into three kinds:
(1) those that constrain the value of attributes, e. g., Unique
Identifier, (2) those that constrain the structure of the object
graph spanned by objects and links between them, e. g., Sur-
jective Association, and (3) those that constrain both an at-
tribute value and the object graph. The only pattern of the
third kind is the Multiplicity Restriction pattern, which relates
the multiplicity of an association to an attribute value.

We use the No Cyclic Dependency pattern as an exam-
ple to illustrate a consistency lemma. The following lemma
defines sufficient assumptions under which a constrained
model remains strongly consistent after instantiating the pat-
tern. We use strong consistency in the consistency lemmas in
this paper because the proofs for this notion of consistency
are more compact and illustrative. However, the lemmas can
be easily adapted to the other notions of consistency. Fol-
lowing the proof sketch for the example lemma below, we
provide a variant for class consistency. In our lemmas and
proofs, we use the notation p~! to denote the opposite asso-
ciation end of an association end p in a binary association.

Lemma 1 (Strong Consistency of No Cyclic Dependen-
cy) Let M be a model and ®y; be a constraint specifica-
tion based on patterns. Let (M, ;) be strongly consistent
and have at least one finitely large state, and let ¢ be an
instance of the No Cyclic Dependency pattern with class C
as context and navigation path p1.pa. --- .py. If there are
J k€ {1,...,n} such that
(i) the lower multiplicity bound of p; and plzl in M is
zero,
(ii) there is no instance of the Surjective Association or Bi-
jective Association pattern in @ with parameter value
Pk,
(iii) there is no instance of the Multiplicity Restriction pat-
tern in @ with p; and pgl as values for any parame-

ter, and
(iv) there is no instance of the Object In Collection pattern
in @y on any element of the path p1.p2. - .Dp,

then (M, @y U {¢}) is strongly consistent and has at least
one finitely large state.

In the following, we explain the assumptions of this
lemma and we give the proof in the subsequent section. Be-
cause of the requirement that the initial model is strongly
consistent, there is a state 7 in which each class of M is
instantiated. If 7 does not satisfy the new constraint ¢, we
construct a state 7/ from 7 as follows. First, we delete the
4" link from the path. Now, 7/ [=ocL ¢, but 7/ may not sat-
isfy the multiplicity constraints in @,,. Thus, we walk along
the path backwards starting from position j and instantiate
and link new objects until the multiplicity constraints hold.
This will eventually be the case because of the existence of

234

Michael Wabhler et al.

pr. and its assumed properties. Thus, 7/ =ocL @as and M
and (M, Py, U {¢}) is strongly consistent and has at least
one finitely large state.

The assumptions (i)-(iv) are crucial for the correctness
of above construction. Assumption (i) requires the existence
of an association end p; on the constrained path that has a
lower multiplicity bound of zero, and there must be an as-
sociation end p; whose opposite association end also has a
lower multiplicity bound of zero. Generally speaking, this
assumption allows us to delete existing links in the above
construction and ensures its termination. However, it is not
sufficient that the lower multiplicity bound of these associ-
ation ends is zero. In addition, there must be no constraints
in the constraint specification @), of the model M that con-
strain the lower multiplicity bound of these association ends.
There are three constraint patterns in our library that can
be used to constrain lower multiplicity bounds: Surjective
Association, Bijective Association, and Multiplicity Restric-
tion. Therefore, we added assumptions (ii) and (iii) to the
consistency lemma. In addition, we forbid that the reflexive
path is constrained by an instance of the Object In Collection
pattern (iv), which would otherwise affect these association
ends.

In the presence of constraint-pattern instances and the
absence of general OCL constraints, the consistency lemmas
implicitly guarantee subtype consistency because all other
pattern instances are examined for contradictory statements.
This includes all pattern instances defined on superclasses
of the analyzed classes. For example, assumption (iii) of
Lemma 1 requires the absence of instances of the Multipli-
city Restriction pattern on the respective association ends.
This includes the case that a contradictory instance of the
Multiplicity Restriction pattern is specified for a superclass of
the class for which an instance of the No Cyclic Dependency
pattern is specified.

To support analysis for different kinds of consistency,
we must establish additional consistency lemmas. For ex-
ample, we show the consistency lemma for the No Cyclic
Dependency pattern for class consistency. This lemma is al-
most identical to the lemma for strong consistency, with the
exception that the term “strongly consistent” is replaced by
“class consistent”.

Lemma 2 (Class Consistency of No Cyclic Dependency)
Let M be a model and @) be a class consistent constraint
specification based on patterns that has at least one finitely
large state. Let ¢ be an instance of the No Cyclic Depen-
dency pattern with class C' as context and navigation path
p1.p2. - pp. If there are j k € {1,... n} such that
(i) [...same as in Lemma I...],

then (M, @y U{p}) is class consistent and has at least one
finitely large state.

Whereas the lemma statement for class consistency is
almost identical to that of strong consistency, the proof of
class consistency requires some changes. Since our basic
assumption is now the class consistency of the constraint
specification, there exists a set of states T = {r1,...,7,}
in which each class of M is instantiated. For each 7, € T
that does not satisfy ¢, we apply the construction from the
proof for strong consistency for 7;. We thereby obtain a set
of states 7" in which each 7; satisfies both @, and ¢. Thus,
T’ is a witness for the class consistency of (M, Py U {@}).

Note that we are interested in sufficient conditions for
pattern instances to preserve the consistency of the model.
Thus, the lemmas typically have the form P = @), where
‘P is a set of syntactic assumptions and () states that the
refined model is consistent. In general, it is not possible to
have consistency lemmas of the form P < () because the
consistency of @ is, in general, undecidable, whereas the
conditions in P can be checked in polynomial time.

3.2 Library of Consistency Lemmas

In this section, we present the library of constraint patterns
previously defined in [56] and investigate under which as-
sumptions instances of these constraint patterns preserve
model consistency. Starting from a model M and a strongly
consistent constraint specification @,,, we add instances of
our constraint patterns and analyze potential conflicts. We
assume that all constraints in the constraint specification are
pattern instances and no literal OCL expressions are present.
An overview of the patterns from [56] is shown in Figure 7.

We use the example model in Figure 8, which repre-
sents a simple class model with classes, attributes, associ-
ations, and generalization, to illustrate our findings. Need-
less to say, our consistency lemmas make statements about
arbitrary class models.

3.2.1 Association-Constraining Patterns.

In this subsection, we introduce the association-constraining
patterns shown in Figure 7. For each pattern, we provide its
definition, a consistency lemma, its proof, and an example
of inconsistent pattern instances.

Injective Association. The Injective Association pattern
can be instantiated to make an association end injective.

pattern InjectiveAssociation (property:Sequence(Property)) =
self .property—>size() = 1 and
self .class :: allinstances()—>forAll (x,y | x.property = y.property
implies x=y)

Note that the shorthand .class is replaced with the type name
of the actual class with which the pattern is instantiated by

Efficient analysis of pattern-based constraint specifications

235

Injective

Association- Association

constraining

Surjective
Association

Bijective
Association

Object In
Collection

No Cyclic
Depen-
dency

Type

Constraint Restriction

Pattern
Type Path
Relation Depth
Restriction
Reflexive
— Association
Constraint

Unique Path

Attribute

Attribute- Relation

Constraining

Attribute
— Sum
Restriction

Attribute
— Value
Restriction

Unique
Identifier

Multiplicity
Restriction

Figure 7 Library of constraint patterns.

ac
al* *lC

B bc ¢

A ab
i: Integer

s : String
*| .
j : Integer

Figure 8 Generic class diagram.

the pattern instantiation mechanism. We define the consis-
tency lemma for the Injective Association pattern as follows.

Lemma 3 (Consistency of Injective Association) Ler
(M, ®@yr) be a strongly consistent model that has at least
one finitely large state. Let ¢ be an instance of the Injective
Association pattern with class C' as context and navigation
path P = py.pa. - .pp. If
(i) the upper multiplicity bound of the opposite associa-
tion end of each p; € {p1,...,pn} is either one or *
and
(ii) there is no instance of the Multiplicity Restriction pat-
tern in @) that constrains the opposite association

end of any p; € {p1,...,pn},

S T D
Y T IS
()

Figure 9 Illustration of the proof for Lemma 3.

then (M, @y U{o}) is strongly consistent.

Proof (for Lemma 3) Because (M, ®,s) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y; U {¢}). In the following, we
do not consider the trivial case and thus assume 7 FocL .

In this case, there are two or more objects of class C' in
7 that are connected to the same object of class type(p,,) as
illustrated in Figure 9. We construct 7/ from 7 as follows.
For every object o,, of class type(p,,), we walk the path P
backwards. For all 4,1 < ¢ < n, if there is more than one
link from o; to 0,41, we arbitrarily select and delete all but
one link. This preserves the invariants of the classes on the
“right-hand side” of the link, because exactly one link will
be left and the multiplicity of this association is either one or
unlimited (*) (i) and not further constrained (ii). After this
construction, there is at most one link from an object of class
C' to an object of class type(py,,) and thus, 7 E=ocL ¢.

However, the multiplicities of the classes on the “left-
hand side” of the deleted links may have been violated by
the previous construction. We repair the multiplicities as fol-
lows. For each object of class C, we walk the path P from
1 < i < n. If the multiplicity invariants of class type(p;)
are violated, we create objects of class type(p;+1) until the
invariants are satisfied. Since each newly created object o; is
connected to exactly one object 0;—1, 7' FEocL ¢ still holds.
After this second part of the construction, all the multiplicity
constraints hold and thus, 7’ |=ocL @as. Because 7/ F=ocL ¢
also holds, (M, @5 U {¢}) is strongly consistent. O

The following is an example of an inconsistent constraint.

context A

inv: InjectiveAssociation (b)
context B

inv: MultiplicityRestriction (a,>,1)

236

Michael Wabhler et al.

Whereas the first invariant states that no object of class B
may be connected to more than one object of class A, the
second invariant states the exact opposite.

Surjective Association. The Surjective Association pattern
can be instantiated to make an association end surjective.

pattern SurjectiveAssociation(property:Sequence(Property)) =
self .property.class :: allinstances () —>forAll (vy |
self .class :: allinstances () —>exists(x |
x.property—>includes(y)
and x.property—>size()=1))

We define the consistency lemma for the Surjective
Association pattern as follows.

Lemma 4 (Consistency of Surjective Association) Let
(M, DPyr) be a strongly consistent model that has at least
one finitely large state. Let ¢ be an instance of the Surjective
Association pattern with class C' as context and navigation
path P =py.pa. -+ .pp. If

(i) forall i, 1 < i < n, the upper multiplicity bound of
property p; L is greater than zero,

(ii) there is no instance of the Multiplicity Restriction pat-
tern in @y that constrains any opposite association
endp{lforall 1,1 <1 <mn, and

(iii) there is no instance of the No Cyclic Dependency pat-
tern in @y with the navigation path P,

then (M, @y U{o}) is strongly consistent.

Proof (for Lemma 4) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, &y U {¢}). In the following, we
do not consider the trivial case and thus assume 7 ocr ¢.

In this case, there is an object y of class type(p,,) in T
that is not linked to an object of class C' via the path P. We
establish a link between an object of class C' and y as fol-
lows. From y, we navigate for all 7, 1 < ¢ < n, backwards
along the path P. For each part i of the path for which there
does not exist a link, we either create an instance of p; be-
tween object 0,41 and an existing object o; if the multiplic-
ity constraints of class type(o;) allow o; be connected to o;
or, otherwise, we create a new object o} of class type(o;).
Creating such a link is possible because objects of class
type(0;+1) can be connected to objects of type(o;) since the
multiplicity of association end p;” !is at least one (i) and not
further constrained by an Multiplicity Restriction (ii). Since
we try to connect to an existing object, a cycle can be in-
troduced, but because cycles on this part are not forbidden
(iii), this construction does not violate @,,. This construc-
tion terminates after the n*" step connecting an object of
type C' to a path that leads to y. Therefore, 7’ =ocL ¢,
and since this construction has not violated any constraint in
Dpp, (M, Ppr U{p}) is strongly consistent. O

D aralca

Figure 10 Illustration of the proof for Lemma 4.

The following is an example of an inconsistent constraint.

context A
inv: SurjectiveAssociation(b)

context B
inv: MultiplicityRestriction (a,<,1)

Whereas the first invariant requires every object of class B
to be connected to an object of class A, the second invari-
ant forbids this by stating that no objects of class A may be
connected to objects of class B.

Bijective Association. The Bijective Association pattern
can be instantiated to make an association bijective.

pattern BijectiveAssociation (property:Sequence(Property)) =
InjectiveAssociation (property) and
SurjectiveAssociation(property)

We define the consistency lemma for the Bijective Associa-
tion pattern as follows.

Lemma 5 (Consistency of Bijective Association) Ler
(M, D) be a strongly consistent model that has at least
one finitely large state. Let ¢ be an instance of the Bijective
Association pattern with class C' as context and navigation
path P =py.pa. -+ .pp. If

(i) for all v, 1 < i < n, the upper multiplicity bound of
property p; L is greater than zero,

(ii) there is no instance of the Multiplicity Restriction pat-
tern in @y that constrains any opposite association
endpi_lforalli, 1<i<n,

(iii) there is no instance of the No Cyclic Dependency pat-
tern in @y with the navigation path P,

(iv) the upper multiplicity bound of the opposite associa-
tion end of each p; € {p1,...,pn} is either one or *,
and

(v) there is no instance of the Multiplicity Restriction pat-
tern in ©y; that constrains the opposite association
end of any p; € {p1,...,pn},

then (M, @ U{¢}) is strongly consistent.

Note that assumptions (i)-(iii) are the assumptions from the
Surjective Association pattern and assumptions (iv) and (v)
are the assumptions from the Injective Association pattern.

Efficient analysis of pattern-based constraint specifications

237

Proof (for Lemma 5) Because (M, P is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus assume 7 Eocr ¢.

We construct a state 7/ from the state 7 by making the
navigation path P both surjective and injective. Making P
surjective is possible because of the assumptions (i)-(iii) (cf.
Lemma 4) and (iv)-(v) (cf. Lemma 3). After this construc-
tion, P is both surjective and injective. Thus, P is bijective
and (M, &y U {¢}) is strongly consistent. O

The following is an example of an inconsistent constraint.

context A

inv: BijectiveAssociation (b)
context B

inv: MultiplicityRestriction (a,>,1)

These invariants are inconsistent because the first invariant
specifies a one-to-one relation between objects of classes A
and B whereas the second invariant imposes a one-to-many
relation between objects of B and objects of A.

Object In Collection. The Object In Collection pattern can
be instantiated to require objects of a class to be contained
in a set of related elements.

pattern ObjectInCollection(set:Sequence(Property),
element:Sequence(Property)) =
self . set—>includesAll(self.element)

In Lemma I, we stated dependencies between this pattern
and the No Cyclic Dependency pattern. In addition, there are
further dependencies, as stated in the following lemma.

Lemma 6 (Consistency of Object In Collection) Let
(M, @yr) be a strongly consistent model that has at least one
finitely large state. Let ¢ be an instance of the Object In Col-
lection pattern with context class C, set = p1.pa. -+ .Pm,
and element = p1.pa. -+ .pp. If
(i) there is no instance of the No Cyclic Dependency pat-
tern in @y with parameter property = set and
(ii) the upper multiplicity bound of p,, is at least one, and
(iii) there is no instance of the Multiplicity Restriction pat-
tern in @y with any p; € {p1,...,pm} as a value for
the navigation parameter,
then (M, @y U{o}) is strongly consistent.

Proof (for Lemma 6) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus assume 7 Focp ¢.
For each object oy of type C' for which the instance of
the Object In Collection pattern does not hold, we perform
the following construction, illustrated in Figure 11. Starting

from og, we navigate along the path p1.ps. --- .py,. This
path ends at an object oy because of 7 [~oc. ¢. For all
1, where ¢ > k and i < m, create an object o; of class
type(p;) and link it to the previous object. This does not vi-
olate any constraints because at least one relation between
these objects can exist because their multiplicities are not
constrained (iii). Connect the last object of type(p,,—1) to
0p. This does not violate any constraints because arbitrary
many objects of type C' can be connected to objects of type
type(pm—1) because the multiplicity of p,, is at least one
(ii). The last step creates a cyclic link between oy and it-
self, which does not violate any constraint because cycles
are not forbidden (i). Due to this cycle, 7’ =ocL ¢ and thus
(M, Py U {¢}) is strongly consistent. O

oG9 G

= [eic]

Figure 11 Illustration of the proof for Lemma 6.

The following is an example of an inconsistent constraint.

context A
inv: ObjectinCollection(Sequence{}, b.c.a)
inv: NoCyclicDependency(b.c.a)

These invariants are inconsistent because the first invariant
requires each object of class A to be in the set of objects
reachable via path b.c.a, which implies a cycle. However,
the second invariant explicitly forbids such cycles.

Type Restriction. The Type Restriction pattern can be used
to constrain an association that is defined between a class
and a superclass by limiting the allowed subclasses.

pattern TypeRestriction(property:Property,
allowedClasses:Set(Class)) =
self .property—>forAll(x | allowedClasses—>exists(t |
x.ocllsTypeOf(t)))

We define the consistency lemma for the Type Restriction
pattern as follows.

Lemma 7 (Consistency of Type Restriction) Let
(M, @) be a strongly consistent model that has at
least one finitely large state. Let ¢ be an instance of the

238

Michael Wabhler et al.

Type Restriction pattern with class C as context, a naviga-
tion path P = py.pa. -+ .ppand a set S = {C4,...,Cy}
of allowed classes. If

(i) for all i, 1 < i < n, the lower multiplicity bound of
property p;” Lis zero,

(ii) there is no instance of the Multiplicity Restriction pat-
tern in @y that constrains any of the opposite associ-
ation end pflfor all, 1 <3 <n,

(iii) there is no instance ¥ (p’, S’) of the Type Relation pat-
tern in ®p; where p' is a suffix of p and S'\S # 0,
and

(iv) there is no other instance ¥ (p',S") of the Type Re-
striction pattern in &y where p' is a suffix of p and
S'NS#£0,

then (M, @y U {¢}) is strongly consistent.

Proof (for Lemma 7) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is in-
stantiated. Based on 7, we construct a state 7’ that witnesses
the strong consistency of (M, @5 U {¢}). In the following,
we do not consider the trivial case and thus 7 £ocp ¢.

In this case, there exists a path between an object o7 of
class C to an object o,,, where class(o,) ¢ {C1,...,Cp}.
We construct 7/ by deleting all links between objects of class
type(p;;*) and o,, as shown in Figure 12. This does not vi-
olate the multiplicity constraints of class(o,) because this
class can be related to zero objects of class type(p;, ') be-
cause the lower multiplicity bound of p,! is zero (i) and
not further constrained (ii). The deletion of the link does not
violate any Type Relation constraint because no object of
class(oy,) is required to be on path P (iii). Now, 7/ FocL ¢.

If the multiplicity constraints of class type(p, ') are
violated, we create objects of any allowed class C; €
{C1,...,C,} until the multiplicity constraints of class
type(p;,*) are satisfied. Furthermore, the newly created ob-
jects do not violate any Type Restriction constraint in @, be-
cause there is no other type restriction that requires any class
notin {C1,...,Cy} (iv). Now, also 7" |=ocL @ holds and
thus (M, @y U {¢}) is strongly consistent. O

The following is an example of an inconsistent constraint.

context A

inv: TypeRestriction(b,E)
context D

inv: MultiplicityRestriction (a,>,0)

These invariants applied to the model in Figure 8 are not
strongly consistent because no instance of D can be created.
In particular, the first invariant requires that only objects of
the subclass E of B may be connected to objects of class A
on the association end b. However, the second invariant re-
quires that objects of class D, the other subclass of B, must
be connected to at least one object of class A, which contra-
dicts the first invariant.

[al:A]_[by B]_[cl:C]
@9) (o)

G (=)
i

Figure 12 Illustration of the proof for Lemma 7.

Type Relation. The Type Relation pattern can be used to
enforce that instances of certain subclasses C1,...,C), of
Co, the requiredClasses, must participate in some relation.

pattern TypeRelation(property:Sequence(Property),
requiredClasses:Set(Class)) =
requiredClasses—>forAll(c | self .property—>exists(p |
p.ocllsTypeOf(p)))

We define the consistency lemma for the Type Relation pat-
tern as follows.

Lemma 8 (Consistency of Type Relation) Ler (M, ®y;)
be a strongly consistent model that has at least one finitely
large state. Let ¢ be an instance of the Type Relation pat-
tern with class C as context, a navigation path P =
p1.p2. -+ .pn and a set S = {Cy,...,Cp} of required
classes. If

(i) there exists a p; € {p1,...,pn} for which the upper

multiplicity is greater than or equal to |5,

(ii) there is no instance of the Multiplicity Restriction pat-
tern in @y that constrains the above-mentioned asso-
ciation end p;, and

(iii) there is no instance ¥ (p',S’) of the Type Restriction
pattern in Pyr, where p' is a suffix of p and S'\S # 0,

then (M, Dy U{¢}) is strongly consistent.

Proof (for Lemma 8) Because (M, ®) is strongly consis-
tent, there exists a state 7 in which each class of M is in-
stantiated. Based on 7, we construct a state 7’ that witnesses
the strong consistency of (M, @5 U {¢}). In the following,
we do not consider the trivial case and thus, 7 ~EocL ¢.

In this case, there is an object 07 : C' that is not linked
to an object of class C; € S. We walk the path P from o;
to p;. At p;, we create a new object o} of class type(p;) and
link it to the previous object in the path as illustrated in Fig-
ure 13. After this construction, 7' [FocL @as still holds be-
cause the unlimited multiplicity of p; (i), which is not further

Efficient analysis of pattern-based constraint specifications

239

constrained (ii), allows one to connect an unlimited number
of elements to the previous objects in the path.

From o}, we continue to walk the path P, creating a new
object in each step. The last object in the path must be of
type C;. This is possible because objects of this class are
not forbidden to connect to this path by any instance of the
Type Restriction pattern (iii). Then, 7/ EocL ¢, and thus
(M, Py U {p}) is strongly consistent. O

1)
|

(@

Figure 13 Illustration of the proof for Lemma 8.

The following set of invariants is inconsistent.

context A
inv: TypeRelation(b,{D,E})
inv: MultiplicityRestriction (b,<=,1)

The first invariant requires every object of class A to be re-
lated to objects of class D and objects of class E, whereas
the second invariant allows objects of class A to be related
to at most one object of class B, the superclass of D and E.

No Cyclic Dependency. The No Cyclic Dependency pat-
tern can be instantiated to disallow cyclic links between ob-
jects on a given navigation path. We defined it as follows in
Sect. 1.2.

pattern NoCyclicDependency(property: Sequence(Property)) =
self .closure(property, Set{}) —>excludes(self)

pattern closure(property : Sequence(Property),S:Set(Class)) =
property—>union((property — S)—>
collect (0:Class | o.closure(property,S—x>including(self)))—>
asSet())

The No Cyclic Dependency pattern has a parameter prop-
erty, which denotes a path in the model that must be non-
cyclic in all model states. The pattern invokes the closure
pattern, which denotes the transitive closure of a path prop-
erty in the model. The closure pattern has an additional pa-
rameter S, which we use to ensure termination of the compu-

tation on finite model states. Since S grows with each recur-
sive invocation, the set property — S (where ‘—’ is the OCL
syntax for the set difference operator ‘\’) will eventually be
empty and the recursion will terminate.

Lemma 9 (Termination of the Closure Pattern) Ler M
be a class model and T be an arbitrary, but finite, state of
M. Let C € M be a class and p be a path in M from C
to C. If o € T is an object of class C, the computation of
o.closure(p,Set{}) terminates.

Proof (for Lemma 9) The closure pattern recursively in-
vokes closure on all objects in the set (property — S). On
each invocation, the context object self is added to the set
S. This prevents closure from being invoked more than once
for each object o € 7. Since T is a finite state, there can be
only finitely many recursive invocations of closure and thus
closure terminates. O

If the pattern is instantiated on a navigation path p, it
must be checked that the multiplicities of the association
ends included in p allow for noncyclic instantiations. We
expressed this property in Lemma 1, which we defined in
Sect. 3.1. We now prove this lemma.

Proof (for Lemma 1) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, ®yr U {¢}). We distinguish two
cases:

Case 1: T =oc. Par N ¢. In this case, 7 does not con-
tain a cyclic link between objects of class C' on path
p1.p2. -+ .pp. Thus, 7/ = 7.

Case 2: 1 [~ocL Pu A ¢. In this case, there is an object
01 : C € 7 and a sequence (01, ..., 0.,,01) of objects that
represent a cyclic link in which the link from object 0;_; to
0; is an instance of association end p;. We construct 7/ from
7 by deleting the link from o0;_; to o;. This deletion does
not violate any invariant of C';_; because our assumptions
state that no relation between objects of class C;_; and C}
is required by an instance of the Object In Collection pattern
(iv), and objects of class C;_; are not required to relate to
objects of class C; because the lower multiplicity bound of
association end p; is zero (i) and not further constrained (iii).
NOW, T’ ':OCL d)

If, after deleting the link, 7/ |=ocL @ar holds, the con-
struction is finished. If not, the deletion has violated the mul-
tiplicity constraints of at least one class of which an object
participates in the cycle. In this case, we initially create an
object 09-71 of type C'j_1 and link it to o;. Subsequently, we
iterate the index ¢ from 7 — 1 down to 1 (and potentially from
m to j + 1 afterwards) and create an object of type C;_;.

240

Michael Wabhler et al.

We link this object to o; only if class C; requires a link to
class C;_1; the algorithm terminates otherwise. It eventu-
ally terminates because there exists a class C); that does not
require a link to class Cx_1. This is the case because the
lower multiplicity bound of the opposite association end of
pi. can be zero, it is not further constrained (i-iii), and there
is no instance of the Object In Collection pattern on py, (iv).
After this construction, the multiplicity constraints hold that
were violated by the deletion and thus 7" =ocL @/ and, as
shown before, 7/ |=ocL ¢. Thus, (M, @y U{¢}) is strongly
consistent. [

Figure 14 shows the construction that we use in the proof
on an example. In this example, there exists a state 7 in
which there is a cyclic link between the objects. We con-
struct a state 7’ according to the construction in the proof;
the association end b is the required p; and ¢ is the required

Pk

(r oo {0

T [

[(a:a J]/ ooe —| cl:IC]
[cz:C]—[a; A

Figure 14 Illustration of the proof for Lemma 1.

Path Depth Restriction. The Path Depth Restriction pattern
can be used to limit instances of reflexive associations to a
given length.

pattern PathDepthRestriction(property: Sequence(Property),
maxDepth:Integer) =
self .pathDepthSatisfied(property,maxDepth—1,0)

pattern pathDepthSatisfied(property: Sequence(Property),
max:Integer, counter:Integer) =
if (counter > max or max < 0) then false
else if (self.property—>isEmpty()) then true
else self .property—>forAll(m|
m.pathDepthSatisfied(property, max, counter+1))
endif
endif

We define the consistency lemma for the Path Depth Restric-
tion pattern as follows.

Lemma 10 (Consistency of Path Depth Restriction) Ler
(M, @) be a strongly consistent model that has at least

one finitely large state. Let ¢ be an instance of the Unique
Path pattern with class C' as context, a navigation path P =
P1-P2. ++ Dn, and a maximum depth of n. (M, Py U{d})
is strongly consistent.

Proof (for Lemma 10) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y; U {¢}). In the following, we
do not consider the trivial case and thus, 7 [~ocL ¢.

In this case, there is an instance of the path P in 7 of
length m, with m > n. We know that the length of the path
is finite because (M, ®P,) is strongly consistent. Thus, we
know that instances of this path with finite length can exist.

We create a state 7/ from 7 as follows. Starting from the
first element og on the path of class C', we follow the path in-
stance n times, ending at another object o; of class C'. We cut
the path by deleting the link between o; and 0,1, as shown
in Figure 15. Next, we restore the head of the remainder of
the path by instantiating a new object of class C' and link-
ing it to 0;41. We recursively apply these steps until the end
of the path is reached. With this construction, we have split
the instance of the path into parts with a maximum size of n
each. Thus (M, @ U {¢}) is strongly consistent. O

t [al:A]—[bl:B

,—,—,—
NO
(@]
II
SRS
w
<
>
I B _»

Figure 15 Illustration of the proof for Lemma 10.

3.2.2 Attribute-Constraining Patterns.

Whereas the previous constraint patterns can be used to con-
strain the structure of the object graph, the following pat-
terns constrain the values of attributes. Since the values of

Efficient analysis of pattern-based constraint specifications

241

two or more attributes can be mutually dependent, instances
of attribute-constraining patterns can also be contradictory.
Consider the following example.

context A

inv: self.b—>forAll(b | self.x >b.y) —— Attribute Relation
context B

inv: self.y = self.c—>sum(z) —— AttributeSumRestriction
context C

inv: self.z = self.a.x —— AttributeValueRestriction

In every model state, each summand of the sum restriction
for class B is greater than the sum. This is a contradiction
and thus no satisfying instance exists. We reflect this in the
following consistency lemmas in which we do not ensure
consistency if attributes are constrained more than once.

Attribute Relation. Using the Attribute Relation pattern, at-
tributes can be related to other attributes.

pattern AttributeRelation (navigation:Sequence(Property),
remoteAttribute:Property,
operator: OclExpression,
contextAttribute : Property) =
self .navigation—>forAll(x |
x.remoteAttribute operator contextAttribute)

We define the consistency lemma for the Attribute Relation
pattern as follows.

Lemma 11 (Consistency of Attribute Relation) Ler
(M, ®@yr) be a strongly consistent model that has at least
one finitely large state and let ¢(navigation,remote-
Attribute, op, context Attribute) be an instance of the
Attribute Relation pattern with class C' as context. If
(i) there is no instance of the Attribute Sum Restriction,
Attribute Value Restriction, Multiplicity Restriction, or
another Attribute Relation pattern in ®y; in which
context Attribute is used as a parameter,
(ii) remoteAttribute # contextAttribute, and
(iii) there is no instance of the Unique Identifier pattern in
@) in which contextAttribute is one of the unique
properties,
then (M, @y U {¢}) is strongly consistent.

Proof (for Lemma 11)Because (M, ®) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus, 7 [~ocL ¢.

In this case, there exists an object o of class C' in T
for which the contextAttribute violates ¢. We set the value
of contextAttribute such that it satisfies ¢ as shown in Fig-
ure 16. Now, 7/ |=ocL ¢. Furthermore, no constraint in
@) 1s violated because contextAttribute is not related to an-
other property (i), to itself (ii), and its value need not be
unique (iii). Thus it holds that 7" Foc. @as and therefore
(M, Ppr U {¢p}) is strongly consistent. O

Figure 16 Illustration of the proof for Lemma 11.

The following constraints are inconsistent.

context A
inv: AttributeRelation (b.c.a,i,>, i)
inv: AttributeSumRestriction(i,b.c.a,i)

Whereas the first invariant requires that for each object of
class A, the value of the attribute i must be less than the
value of the same attribute of all related A objects, the sec-
ond invariant requires that the value of attribute i must be
equal to the sum of the values of attribute i of all related A
objects.

Attribute Sum Restriction. The Attribute Sum Restriction
pattern can be used to limit the value of an integer attribute
to the sum of the values of related attributes.

pattern AttributeSumRestriction(navigation: Sequence(Property),
summand: Property,
summation: Property) =
self .navigation.summand—>sum() <= summation

We define the consistency lemma for the Attribute Sum Re-
striction pattern as follows.

Lemma 12 (Consistency of Attribute Sum Restriction)
Let (M, ®y) be a strongly consistent model that has at
least one finitely large state and let ¢(navigation, sum-
mand, summation) be an instance of the Attribute Sum
Restriction pattern with class C' as context. If
(i) there is no instance of the Attribute Relation, Attribute
Value Restriction, Multiplicity Restriction, or another
Attribute Sum Restriction pattern in ®; in which
summation is used as parameter and
(ii) if navigation is reflexive and summation =
summand, there is no instance of the Unique Identi-
fier pattern in @ ,; in which summation is one of the
unique properties,

242

Michael Wabhler et al.

then (M, @y U{o}) is strongly consistent.

Proof (for Lemma 12) Because (M, ®) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus 7 FocL ¢-

In this case, there exists an object o of class C' for
which the summation attribute does not have the correct
value. We therefore set the value of summation to the sum
of the summand properties of all objects related to o via
navigation as shown in Figure 17. Now 7' EocL ¢ holds.
Furthermore, the value of summation is not related to any
other property (i) and it is not related to itself (ii). Thus,
no existing constraint in @,y is violated, 7’ FEocL @, and
(M, Py U{¢}) is strongly consistent. O

Figure 17 Illustration of the proof for Lemma 12.

The following constraints are inconsistent.

context A
inv: AttributeSumRestriction(i,b.c.a,i)
inv: Uniqueldentifier (i)

The first invariant requires that the value of attribute i must
be equal to the sum of the values of all i attributes of related
A objects, which leaves zero as the only possible value for
i for two or more related objects. In contrast, the second in-
variant requires i to have a unique value for all objects of
class A.

Attribute Value Restriction. The Attribute Value Restriction
pattern represents a common kind of constraint, namely sim-
ple value restrictions for attributes.

pattern AttributeValueRestriction (property:Property,
operator:OclExpression,
value:OclExpression) =
self .property operator value

We define the consistency lemma for the Attribute Value Re-
striction pattern as follows.

Lemma 13 (Consistency of Attribute Value Restriction)
Let (M, @) be a strongly consistent model that has at least
one finitely large state and let ¢(p, op,v) be an instance of
the Attribute Value Restriction pattern with class C' as con-
text. If
(i) there is no instance of the Attribute Sum Restriction, At-
tribute Relation, Multiplicity Restriction, or another At-
tribute Value Restriction pattern in @,y in which p is
used as a parameter,

(ii) if op is “=", there is no instance of the Unique Iden-
tifier pattern in @,y in which p is one of the unique
properties,

then (M, @y U {¢}) is strongly consistent.

Proof (for Lemma 13) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus, 7 EocL ¢.

In this case, there exists an object o of class C' in 7 for
which the property p violates ¢. We set the value of p such
that it satisfies ¢ as shown in Figure 18. Now, 7/ EocL ¢.
Furthermore, no constraint in @, is violated because p is
not related to another property or to itself (i), and its value
need not be unique (ii). Thus, 7 FocL Par, (M, PprU{d})
is strongly consistent. [

| i=3 j=2 I

Figure 18 Illustration of the proof for Lemma 13.

The following constraints are obviously inconsistent.

context A
inv: AttributeValueRestriction (i ,<,0)
inv: AttributeValueRestriction (i,>,0)

Unique Identifier. Using the Unique Identifier pattern, a tu-
ple of properties can be specified that must be unique for
each object of the context class.

pattern Uniqueldentifier (property:Tuple(Property)) =
self .class :: allinstances () —>isUnique(property)

Efficient analysis of pattern-based constraint specifications

243

We define the consistency lemma for the Unique Identifier
pattern as follows.

Lemma 14 (Consistency of Unique Identifier) Let
(M, ®@yr) be a strongly consistent model that has at least
one finitely large state. Let ¢ be an instance of the Unique
Identifier pattern with class C as context, and a set P of
properties. If for all p € P,
(i) the domain of the type of p is infinite,
(ii) there is no instance ¥ (p, _, p) of the Attribute Sum Re-
striction pattern in @,
(iii) there is no instance (_, _,=,p) of the Attribute Rela-
tion pattern on C' in &y, and
(iv) there is no instance ¢ (p,=,_) of the Attribute Value
Restriction pattern in Dy,
then (M, @y U{o}) is strongly consistent.

Proof (for Lemma 14) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y U {¢}). In the following, we
do not consider the trivial case and thus, 7 [~ocL ¢.

In this case, there exist two objects o, and o9, both of
class C, for which p;(01) = p;(02), for all p; € P. We ar-
bitrarily choose some 4 and change the value of p;(02) such
that there is no other object o of class C' with p; (0) = p;(03),
as shown in Figure 19. Now, 7/ |=ocL ¢. This is possible
because there are infinitely many possible values for p; (i).
Furthermore, there would be only one possible value for p;
in the presence of a reflexive Attribute Sum Restriction con-
straint, which we exclude in the assumptions (ii) and objects
of class C' are not required to have the same value (iii and
iv). After this change, it is possible that 7/ [EocL @ if p;
is the parameter of an instance of the Attribute Sum Restric-
tion, Attribute Relation, or Attribute Value Restriction pattern.
In this case, the attribute values in 7/ must be changed such
that 7/ FocL @p. This is possible because each attribute
value is constrained by at most one constraint because of
the assumption that (M, @) is strongly consistent and be-
cause of the Lemmas 11, 12, and 13. Now, 7’ =ocL @ and
(M, Py U{p}) is strongly consistent. O

The following constraints are inconsistent as explained
above for the Attribute Sum Restriction pattern.

context A
inv: Uniqueldentifier (i)
inv: AttributeSumRestriction(i,b.c.a,i)

3.2.3 Other Patterns.

The next pattern is the only pattern that constrains both the
structure of the object graph and attribute values.

Figure 19 Illustration of the proof for Lemma 14.

Multiplicity Restriction. The Multiplicity Restriction pattern
can be instantiated to limit the multiplicity of an association
to a given attribute value.

pattern MultiplicityRestriction (navigation: Sequence(Property),
operator: OclExpression,
value:OclExpression) =
self .navigation—>asSet() —>size() operator value

Since the Multiplicity Restriction pattern constrains both
the structure of the object graph and attribute values, it is
related to almost all other patterns as shown in the previous
lemmas. We take this into account in the following consis-
tency lemma.

Lemma 15 (Consistency of Multiplicity Restriction) Ler
(M, ®pr) be a strongly consistent model that has at least
one finitely large state and let ¢(P, op,v) be an instance of
the Multiplicity Restriction pattern with class C' as context. If
(i) v is not a property that is used as parameter for an in-
stance of the Attribute Sum Restriction, Attribute Rela-
tion, Attribute Value Restriction, or another Multiplicity
Restriction pattern in @y,

(ii) the tuple (op,v) is not one of (<, 1), (=,0), or (<,0),
where the lower multiplicity bound of the last element
of P is greater than zero,

(iii) for all p € P, the multiplicity is unbounded (*),

(iv) there is no other instance of the Multiplicity Restriction
pattern on any p € P in @y, and

(v) p is not used as part of a parameter value for any
instance of the No Cyclic Dependency, Object In Col-
lection, Surjective Association, Injective Association, or
Type Relation pattern in @y, and p~* is not used in
any instance of the Type Restriction pattern in ®y,

then (M, @ U {d}) is strongly consistent.

Proof (for Lemma 15) Because (M, @) is strongly consis-
tent, there exists a state 7 in which each class of M is instan-
tiated. Based on 7, we construct a state 7’ that witnesses the
strong consistency of (M, @y; U {¢}). In the following, we
do not consider the trivial case and thus, 7 ~ocL ¢.

In this case, there exists an object o of class C' that has
either too few or too many links to objects of class type(P).

244

Michael Wabhler et al.

We therefore create or delete objects of class type(P) un-
til 7 EocL ¢, as shown in Figure 20. Creating or deleting
such objects does not violate any constraint in @ ,; because
P is not constrained by any other constraint (v); further-
more, at least one object of class type(P) will remain be-
cause the case is excluded that zero objects of class type(P)
are connected to o. This follows because the value of v is
not constrained if v is a property (i), the multiplicity of P
is unbounded (iii), there is no other instance of Multiplicity
Restriction on p (iv), and the parameters of ¢ allow for at
least one link (ii). Thus 7" FocL @, and (M, Py U {¢})
is strongly consistent. O

b,: B
b,: B

T

Figure 20 Illustration of the proof for Lemma 15.

The following constraints are inconsistent.

context A
inv: MultiplicityRestriction (b,<=,i)
inv: AttributeValueRestriction (i,=,0)
inv: MultiplicityRestriction (b,>=,1)

Whereas the first invariant limits the number of associa-
tions between an A object and a B object to the value of i, the
second invariant determines this value to be zero. The third
invariant contradicts the previous two by requiring at least
one B object to be related to each A object.

3.3 Summary of Constraint Pattern Dependencies.

In the previous subsection, we have stated consistency lem-
mas for each constraint pattern in our library by exploring
dependencies between the patterns. Figure 21 helps visual-
ize the results. In the graph shown in this figure, solid edges
between two patterns denote that instances of the respective
patterns can potentially contradict each other.

The figure is split into two halves. The patterns that con-
strain the object graph are in the left half and the patterns that
constrain attribute values are in the right half. The Multiplici-
ty Restriction pattern sits in the middle because it belongs to
both groups. Note that there is no edge, and thus no imme-
diate contradiction, between a pattern in the left half and a
pattern in the right half, with the exception of the Multiplicity

Restriction pattern. As a consequence, instances of patterns
in the left half of the figure and in the right half of the figure
can contradict each other only if an instance of the Multiplici-
ty Restriction pattern is present. This motivates the following
corollary.

Corollary 1 Two pattern instances ¢1, 92 € D can be in-
consistent iff there exists a path between their patterns in
the graph in Figure 21 and there exists a pattern instance in
D for each node on this path.

3.4 Automating the Analysis

In this section, we explain how the consistency lemmas can
be used to implement an automatic, efficient analysis. To an-
alyze pattern-based constraint specifications for consistency,
it is sufficient to check for each pattern instance whether
the assumptions defined in the lemma of the respective pat-
tern hold. This consists of syntactic checks that can be per-
formed in polynomial time. For each pattern instance in the
constraint specification, the consistency analysis can either
result in consistent if the assumptions in the respective the-
orem hold or unknown otherwise. In the latter case, the con-
sistency of the constraint specification must be proven by
using alternative analysis approaches. We will explain how
to deal with the unknown case in Sect. 3.5.4 and present al-
ternative analysis approaches in Sect. 6.

In the following, we explain our analysis algorithm in a
Java-like language. We assume that constraint patterns are
represented by classes that implement the respective consis-
tency assumptions in a method isConsistent(). The consis-
tency analysis for a model (M, @) first iterates over all
pattern instances in the constraint specification @, and in-
vokes the method isConsistent() on each pattern instance).

void validateModel (Model M, Set<ConstraintPattern> @) {
boolean modelConsistent = true;

foreach (v € @) {
if (I +.isConsistent(M, (®a\{})))
modelConsistent = false;

}

if (modelConsistent)
System.out.println ("Model is consistent.");
else
System.out.println ("Consistency of model is unknown.");

The method isConsistent() evaluates all consistency as-
sumptions for a given pattern instance. If one of these as-
sumptions does not hold, the pattern instance is not consis-
tent with the rest of the pattern specification.

abstract class ConstraintPattern {
Set<ConsistencyAssumption> A;

Efficient analysis of pattern-based constraint specifications

245

Ope Type Qbute Unique
Restriction Relation Relation Identifier
Object In
Collection /‘\
Multiplicity
Restriction
No Cyclic
Dependency \/
—_— 7 1
E Surjective Injective g Attribute Value Attribute Sum
i Association Association H Restriction Restriction
' 1
E Bijective Association E
Path Depth Unique
Restriction Path

Figure 21 Conflict matrix of constraint patterns.

boolean isConsistent (Model M, Set<ConstraintPattern> &) {

foreach (assumption € A)
if (assumption.evaluate(this, M, @,) == false)
return false;

return true;
}
}

The following code snippet shows an implementation of
Consistency Assumption (i) of the No Cyclic Dependency
pattern (cf. Lemma 1). Consistency assumptions are imple-
mented as specializations of the abstract class Consisten-
cyAssumption and implement the evaluate() method. For As-
sumption (i) of No Cyclic Dependency, this method checks
whether the parameter property contains association ends p;
and p,zl whose lower multiplicity bounds are zero. If both
such association ends are found, the assumption holds.

class Assumption1 extends ConsistencyAssumption {

public boolean evaluate (ConstraintPattern v, Model M,
Set<ConstraintPattern> &) {
boolean foundJ = false;
boolean foundK = false;

List<Property> P = ¢/.getParameterValue("property");

foreach (p € P) {
if (p.getLowerBound() == 0)
foundd = true;

if (p.getOpposite().getLowerBound() == 0)
foundK = true;

}

return (foundd && foundK);
}

We compute the time complexity of our algorithm as
follows. In our approach, the method validateModel() iter-
ates over each pattern instance v in the constraint specifica-
tion @), and invokes its isConsistent() method. This method
iterates over the consistency assumptions A of the respec-
tive constraint pattern and invokes the evaluate() method for
each assumption. We analyze below the complexity of this
check for each assumption.

There are two types of consistency assumptions. As-
sumptions of the first type are syntactic checks in the
model regarding multiplicity bounds (e. g., Assumption i of
Lemma 1) or the reflexivity of navigation paths (e.g., As-
sumption ii of Lemma 12). Such checks have linear com-
plexity in the length of the path, assuming that accessing
model information (e. g., values of multiplicity bounds) has
constant complexity. The second type of assumptions are
checks that instances of certain patterns exist. Such checks
have linear complexity in the number of pattern instances in
the specification. As a consequence, evaluate() always has
linear complexity.

Checking the consistency assumptions for one pattern
instance 1 hence requires time O(|A| - || - |M]) in the
worst case, where |A| is the number of consistency assump-
tions of ¢ and |®)| is the total number of pattern instances
in the constraint specification. Since the number of associa-
tion ends constitutes an upper bound for the length of each
path P in the class model, | M| is the size of the input model
in terms of the number of association ends contained. The
analysis of a whole constraint specification @, hence takes
time O(|Ps|? | Apaz| - |M]) in the worst case, where A,,q.
is the maximum number of consistency assumptions of all

246

Michael Wabhler et al.

pattern instances in @ ;. Thus, this analysis has polynomial-
time complexity.

3.5 Characteristics of the Algorithm

Our analysis is incomplete because it can return unknown
even for a consistent UML/OCL model. In contrast, a
consistency analysis is complete if for every consistent
UML/OCL model, the algorithm returns consistent.

Our analysis approach is sound. A consistency analy-
sis is sound if whenever it returns frue, then the UML/OCL
model is consistent. Since our analysis algorithm only re-
turns true if the consistency assumptions hold (and these
have been proven to be sufficient conditions for consis-
tency), it is sound.

In the following, we point out four limitations of our
analysis approach: arbitrary OCL constraints cannot be an-
alyzed, the return values of methods cannot be used as pa-
rameter values in patterns, adding new constraint patterns is
non-trivial, and providing sufficient (but not necessary) con-
ditions in the consistency lemmas generates warnings.

3.5.1 Arbitrary OCL Constraints

Our analysis only analyzes the consistency of constraints
that are instances of constraint patterns. Thus, the consis-
tency of models that are additionally annotated with arbi-
trary OCL constraints cannot be analyzed.

We see two options if arbitrary OCL constraints appear
in a constraint specification. First, each OCL constraint can
be abstracted into a constraint pattern and a consistency
lemma for this new pattern can be established. However, this
is often infeasible because adding new constraint patterns to
a pattern library requires significant effort in updating the
existing consistency lemmas. Second, the development pro-
cess can be split into two phases. In the first phase, the model
is only augmented with pattern instances and subsequently
analyzed for consistency. This allows model developers to
receive immediate feedback about the consistency of one
part of the constraint specification because of the polyno-
mial complexity of our approach. In the second phase, the
model is augmented with the remaining constraints in OCL.
The model developer must then analyze the consistency of
the fully constrained model using other analysis approaches.
We describe other approaches, which have a significantly
higher complexity than our approach, in Sect. 6.

3.5.2 Method Calls in Pattern Instances

In our constraint patterns, the types of the pattern parameters
are typically properties or sets thereof, classes, or integer. In

typical constraint languages, it is also possible to call meth-
ods in invariants. For example, the fact that managers should
not be able to hire themselves could be expressed as an in-
variant not self.hire(self)—although such a condition should
clearly be stated in the pre-condition of hire(). When analyz-
ing the consistency of this invariant, the definition of hire()
must be taken into account. Since methods can be recursive
and potentially nonterminating, we do not allow methods as
parameter types for our patterns, following [20].

3.5.3 Adding New Constraint Patterns

Clearly, the library of constraint patterns presented in
Sect. 3.2 is extensible. However, after each extension of the
library, two tasks must be carried out. First, a new consis-
tency lemma for the newly added constraint pattern must
be proven. Second, the consistency lemmas of all existing
patterns must be revised. In particular, for each lemma, it
must be analyzed whether instances of the newly added
pattern can cause inconsistencies with instances of the re-
spective pattern. Not all consistency lemmas must be ana-
lyzed though: If the newly added pattern is a pure attribute-
constraining pattern, it will not contradict pure association-
constraining patterns and vice versa. We further elaborate on
extending the pattern library in Sect. 5.2.

3.5.4 Handling “Unknown” Consistency

Since the assumptions in our consistency lemmas represent
sufficient conditions and not necessary conditions, there are
models that are consistent, but our analysis cannot determine
the consistency because the assumptions are overly restric-
tive. In this case, the model developer is confronted with
pairs of pattern instances that can potentially contradict each
other.

Consider the following two pattern instances, which can-
not be shown to be consistent by our analysis.

context Manager
inv c1: TypeRelation(worksIn,{Single})
inv c2: MultiplicityRestriction (worksin,=,1)

The analysis warns that these instances may be inconsistent
because assumption (v) of the consistency lemma for the
Multiplicity Restriction pattern is violated for constraint c2.
An instance ¢ of the Multiplicity Restriction pattern and an
instance 1 of the Type Relation pattern can be contradictory
if 1 requires objects of n different classes to be in a relation,
but the multiplicity of this relation is constrained by ¢ to
some m, where m < n.

Since a consistency assumption is violated, our analy-
sis cannot determine the consistency of ¢1 and c2. In this
case, the model developer must use alternative analysis ap-
proaches to determine whether the warning generated by

Efficient analysis of pattern-based constraint specifications

247

constraint |::> constraint |::> consistency |:> code
elicitation specification analySIS generanon

Figure 22 Process for pattern-based constraint development.

the analysis indicates an actual inconsistency. We present
several alternative analysis approaches in Sect. 6. However,
these approaches typically have exponential complexity and
cannot directly benefit from the pattern representation of the
constraints. Thus, an interesting question is whether the for-
malization of the constraints using patterns can help to ac-
celerate consistency analysis with alternative approaches?
Using the dependency graph shown in Figure 21, one could
divide the set of constraints to obtain smaller inputs for con-
sistency analysis. Analyzing such a divide-and-conquer ap-
proach remains as future work.

4 Tool Support

The success of MDE depends on tool support. Hence, we
have implemented a tool, which we call Constraint Patterns
and Consistency Analysis (Copacabana), as a collection of
plug-ins for the MDE tool IBM Rational Software Archi-
tect (RSA). This tool supports model developers during
the consistency-preserving refinement of UML class models
with constraint patterns and guides them through the differ-
ent phases of a pattern-based development process. As illus-
trated in Figure 22, this process comprises the phases con-
straint elicitation (the tool automatically analyzes the model
and proposes a set of constraints that should be added to the
model), constraint specification (the developer selects con-
straints from the proposed set and adds them to the model by
instantiating constraint patterns), consistency analysis (de-
scribed in this paper), and code generation. This process is
explained in detail in [57].

Figure 23 shows a screenshot of RSA with the
Copacabana plug-ins. The largest view (1) contains the com-
pany model and an instance of the No Cyclic Dependency
pattern. In this view, models can be edited and patterns can
be instantiated via drag-and-drop. Below this view, the con-
straint elicitation view (2) shows the results of the constraint
elicitation component. The bottom part of the window con-
tains two additional views. The results of the consistency
analysis are shown in the bottom-left part in the problems
view (3) of RSA. In the bottom-right is the pattern explorer
(4), which displays the available patterns along with their
description. The pattern explorer also displays all available
model transformations in the RSA transformation frame-
work.

In the following, we further describe the component for
consistency analysis and provide examples based on our
company model.

4.1 Consistency Analysis

Copacabana implements the pattern-based consistency anal-
ysis introduced in Sect. 3. To this end, we store with each
pattern the assumptions from the respective consistency
lemma, i.e., the assumptions under which the pattern can
be instantiated in a consistency-preserving way. The current
implementation contains the lemmas for strong consistency.

The analysis uses these consistency assumptions and
checks for each pattern instance whether the assumptions
hold. If they hold, the constraint specification is consistent.
Otherwise, no statement about consistency can be made, as
explained in Sect. 3.5. In this case, the consistency analy-
sis component issues a warning that the pattern instance is
potentially inconsistent. Such a warning can be seen in Fig-
ure 24, which displays the analysis results for the company
model and the constraints that we have presented in this pa-
per. As can be seen, a warning is displayed that the con-
straint noCycles cannot be shown to be consistent because
the constraint noCycles disallows cyclic management hierar-
chies, whereas the company model requires every manager
to have at least one superior. As a result, there is no state of
the company model with a nonempty, finite set of managers.

In cases where models cannot be shown to be consistent,
the model developer must examine the warnings and under-
stand if they indicate a consistency problem. This can be ei-
ther done by an alternative consistency analysis (cf. Sect. 6)
or by manually inspecting the model and its constraint speci-
fication. Subsequently, the model developer can either adapt
the model or correct the incorrect constraint if the warning
represents an actual error.

4.2 Summary

Copacabana extends IBM Rational Software Architect
(RSA) to support developers in using our pattern approach to
developing consistent constraint specifications. The result-
ing tool supports, besides consistency analysis for pattern-
based constraint specifications, constraint elicitation, con-
straint specification using constraint patterns, and code gen-
eration. Using Copacabana, model developers can create

248 Michael Wahler et al.
@'(_ Modeling - company - Rational Software Architect I _ID ﬁl
Hle Edit Navigate Search Project Diagram Dats Modeling RBun Window Help
[5e e || e @ @] e G | ElRmes
“Tanoma jl? zl | vi P b | ‘ Be ol oy Ry | | a0 W <3 Plugn Devel

%24 company.emx Bl company X = &
1)
* Employee +inhabitant + worksIn Office noCycles ”
it y
name : String 5 desks : Integer o o i
employs | salary:Integer 0.1 NoCyclicDependency s
property [1.5]: =1 # worksFor | ||
‘T‘ | context[1]: % :Manager |
Manager
+ WorksFor b daet: Integer
N headCount: Integer single Cubicle
1. iSCED : Boolean
-
i A
T Constraint Elidtation &3 ‘\d‘,@'ﬂ
16 elements,
Context | Problem | Priority | Remedy Pattern _ +
Manager Property 'employs' refers to general dass Employee', medium TypeRestriction
Manager Unbounded multiplicity {*) on property 'employs". medium MultiplicityRestrictio
Manager Froperty 'worksIn' refers to general dass 'Office’. medium TypeRestriction
Manager Property 'worksFor' is part of a reflexive association. This may cause cydic structures. high NoCydicDependenc
Office Property 'inhabitant refers to general dass Employee’. medium TypeRestriction
Office Unbounded multiplicity {*) on property ‘inhabitant', medium MultiplicityRestrictio
Office Class Office does not have a unique key, medium Uniqueldentifier «
i = Ty S | : e
Console | [%/ Problems 3 "\ History | Asset Explorer ‘ Propenies| T % Pattern Explorer 52 (EN o) N =
1 error, 0 warnings, 0 infos (Filter matched 1 of 26 items) \3 [F1-+5" Constraint Patterns 4 é
i fes " Composite Patterns
El ' Errors (1 item) Elementary Patterns LI
@ Pattern instance oCydes” i inconsistent. At lzast one of the parameters | |
i | ﬂ Overview | Short Deseription |
| B° lis |

Figure 23 Screenshot of the Copacabana prototype in RSA.

i [T

_ Properties | Pattern Explorer | Constraint Eligtation

0 errors, 1 warning, 0 infos

Description =

= E: Warnings (1 item)
(% Pattern instance "noCydles” is potentially inconsistent. At leas

Figure 24 Consistency analysis results of the constrained company model.

consistent OCL specifications without writing a single line
of OCL.

Since we built Copacabana on top of various frameworks
in RSA, the code base for Copacabana only contains the ap-
plication logic and is thus rather small. In total, Copacabana
consists of 101 classes, together containing around 4,200
lines of code.

Copacabana has been published as IBM Constraint Pat-
terns and Consistency Analysis on the IBM developerWorks
website [33]. On this website, there is also a tutorial [58] that
guides model developers, step-by-step, through the instal-
lation and the development process. The plug-ins are bun-
dled as a reusable asset for RSA; using the Reusable Asset
Specification (RAS) explorer in RSA, the plug-ins can be
downloaded and used for free.

t one of the parameters must have a lower multiplicity bound of zero.

5 Case Studies

We have validated our pattern-based analysis approach in
three case studies. In these studies, we used our tool sup-
port to formalize the constraint specifications of three dif-
ferent industrial-scale models using constraint patterns and
we subsequently analyzed their consistency. In this section,
we summarize the results of these case studies. In Sect. 5.1,
we give an overview of the models involved and introduce
the metrics of interest. Next, we describe how we devel-
oped pattern-based constraint specifications for the respec-
tive models in Sect. 5.2. In Sect. 5.3, we report on the results
of our consistency analysis.

Efficient analysis of pattern-based constraint specifications

249

5.1 Subject Models and Evaluation Metrics

We used constraint patterns to develop consistent constraint
specifications for three different models. In each case, a
class model and a constraint specification were given in ad-
vance. Our objective in each case study was to formalize
the constraints using constraint patterns and to evaluate their
consistency. We used the following models for our case stud-
ies.

Business monitors. We formalized the constraint specifi-
cation of a meta-model for business monitors used in
an IBM product. Business monitor models describe the
workflow of messages created during the execution of
business processes. The model comprises 25 classes
and the specification document comprises 71 informally
specified constraints.

Business processes. We formalized constraints on business
process models that originate from an IBM-internal pro-
totype for merging process models. This prototype re-
quires input models to satisfy five constraints in addition
to the standard constraints on process models. The meta-
model for business process models, which is used in an
IBM product, comprises 33 classes.

Royal & Loyal. We formalized the Royal & Loyal model,
a model of a customer bonus program. This model is fre-
quently used in publications on MDE and as an example
in MDE tools. It can thus be considered a benchmark
model for MDE approaches. The model as presented
in [40] comprises 11 classes and 26 constraints, which
are specified in OCL.

The main metric of interest is the fraction of con-
straints that can be analyzed with our algorithm presented in
Sect. 3.4. This metric is the product of the fraction of con-
straints that can be formalized using our constraint patterns
and the fraction of these constraints for which our algorithm
returns a result. In addition, we are interested in the fraction
of false positives, i.e., consistent constraints that cannot be
shown to be consistent by our analysis.

5.2 Developing Pattern-based Specifications

In this subsection, we report on specification coverage re-
sults, that is, the fraction of constraints that can be expressed
using constraint patterns. Specification coverage is an im-
portant metrics for our analysis approach because if only a
low percentage of constraints could be expressed using pat-
terns, our analysis would be applicable only to a minority of
constraints.

Fortunately, around 75% of constraints in our case stud-
ies could be expressed using constraint patterns. The re-
maining 25% of constraints must thus be formalized using

plain OCL and fall outside of our automated analysis. This
raises two questions. First, what are the reasons why there
are no suitable constraint patterns for 25% of the constraints
and second, should our pattern library be extended to ac-
count for the remaining 25%?

The constraints not expressible using our constraint pat-
terns can be divided into two groups. First, constraints that
invoke user-defined functions cannot be expressed using our
constraint patterns. In the course of constraint development,
one must sometimes define functions such as transitive clo-
sure operations or domain-specific parsing of recursive ex-
pressions, and such functions must be hand-written in OCL.
In fact, approximately 66% of the constraints that could not
be expressed using patterns required user-defined functions.
Second, there are constraints that share a similar structure
with a constraint pattern, but they do not match any existing
constraint pattern. An example is the requirement that the
budget of managers must exactly cover the salaries of their
employees. This constraint, when formalized, differs from
the Attribute Sum Restriction pattern only in the binary op-
erator.

context Manager
inv salariesExactlyCovered:
self .employs.salary—>sum() = self.budget

In such cases, one has two choices: specify the con-
straints using plain OCL or change the pattern library. As
mentioned previously, hand-written OCL constraints are
error-prone and cannot be analyzed using our analysis.

The second choice, changing the constraint-pattern li-
brary, has the advantage that the constraint can subsequently
be checked for consistency by our analysis. The library can
be changed in two ways: an existing pattern can be gener-
alized or a new constraint pattern can be added. General-
izing an existing pattern requires consistency lemmas to be
re-proved. The consistency matrix (cf. Figure 21) helps one
to identify those patterns whose lemmas are affected by the
pattern update.

Adding new constraint patterns, in contrast, has two sub-
stantial disadvantages. First, when too many constraint pat-
terns are offered to the model developer, it becomes diffi-
cult to find the right pattern. In the worst case, if the pattern
library offers a specification coverage of 100%, it merely
represents a different syntax for the underlying specification
language. Second, extending the pattern library with a new
pattern entails that both a new consistency lemma for the
new pattern must be proven and the consistency lemmas of
the existing patterns must be checked whether they still hold.

Due to these reasons, the developer of the constraint-
pattern library must carefully evaluate whether new con-
straint patterns should be added to the library. An impor-
tant metrics is the number of constraints that can be ex-
pressed using the new pattern. In our case studies, several

250

Michael Wabhler et al.

constraints occur that forbid a certain class to be instanti-
ated. Since there are several such constraints, we can add a
new pattern to our library, which we define as follows.

pattern Nolnstances(class:Class) =
class :: allinstances () —>isEmpty()

Using this pattern increases the coverage, i. e., the frac-
tion of constraints that can be expressed using patterns, by
a few percent. However, this pattern has important conse-
quences for the consistency of the model: Since the con-
strained class cannot be instantiated in any model state, the
model can be weakly consistent at best. This supports our
hypothesis that weak consistency is an appropriate notion of
consistency in early development phases. In our case, weak
consistency of input models was sufficient for the prototype
version of the tool.

5.3 Analyzing Pattern-based Specifications

Our second task in each case study was to analyze the
consistency of the pattern-based constraint specification.
Among others, two evaluation criteria were especially im-
portant in our investigation. First, the performance of the
analysis is crucial because one of the goals of our approach
is to offer an efficient consistency analysis that does not in-
terrupt the model developer’s workflow. Second, the quality
of the analysis is important. Since our analysis can either
return “consistent” or “unknown”, we define the quality of
our analysis as the fraction of consistent constraints that our
analysis can show to be consistent.

On average, 75% of the constraints in our case studies
can be shown to be consistent. For the remaining 25%, our
analysis returns “unknown”. Thus, we must prove or refute
their consistency as described in Sect. 3.5.4.

Analyzing the consistency of the models in our case
study had an interesting side effect. Consider the follow-
ing two constraints, which the analysis could not show to
be consistent.

context StructuredActivityNode
inv explicitControlFlow :
MultiplicityRestriction (StructuredActivityNode,
inputControlPin, <=, 1) and
MultiplicityRestriction (StructuredActivityNode,
outputControlPin, <=, 1) and
MultiplicityRestriction (StructuredActivityNode,
inputObjectPin, <=, 1) and
MultiplicityRestriction (StructuredActivityNode,
outputObjectPin, <=, 1)

context Action

inv noObjectFlow:
MultiplicityRestriction (Action,inputObjectPin,=,0) and
MultiplicityRestriction (Action,outputObjectPin,=,0)

The reason why these constraints cannot be shown
to be consistent is that they violate an assumption in the
consistency lemma for the Multiplicity Restriction pattern
(Lemma 15). The following is an extract from this lemma.

Let (M, D) be a strongly consistent model and let
o(p, op,v) be an instance of the Multiplicity Restriction pat-
tern. If
(i ...
(ii) there is no other instance of the Multiplicity Restriction
pattern in @y that constrains p,
then (M, D U{¢}) is strongly consistent.

As can be seen, assumption (ii) is violated because both
constraints restrict the association ends inputObjectPin and
outputObjectPin. However, the above constraints explicit-
ControlFlow and noObjectFlow are obviously consistent. The
reason why assumption (ii) is violated is because the consis-
tency assumptions are sufficient conditions for consistency
and not necessary conditions, as explained in Sect. 3.5.4.

The case studies contained several other consistent con-
straints for which the consistency assumptions are too
strong. In general, such information helps the developer of
the pattern library to weaken the consistency assumptions
such that they can show a larger fraction of constraints con-
sistent. Consequently, this will help to decrease the number
of warnings in consistency analysis.

5.4 Quantitative Results

We used two measures to assess our analysis: execution time
and the fraction of constraints that can be analyzed. The ex-
ecution time of the implementation of our analysis algo-
rithm in IBM Rational Software Architect (RSA) is very
small. Our analysis is integrated in the validation framework
of RSA. Thus, when the developer validates a model, nu-
merous constraints from the UML meta-model are checked
in addition to our consistency assumptions. Nevertheless,
full model validation, including consistency analysis on our
fully constrained models, takes between 2 and 4 seconds.
Thus, the execution time of our analysis does not signifi-
cantly interrupt the workflow of the model developer. Re-
garding the quality of the analysis, our approach was able to
show 75% of the formalized constraints consistent. Since we
were able to formalize 75% of all constraints using patterns,
we compute a quality measure of (75%)? ~ 56%.

coverage 75%
execution time 4 sec
quality 56%

Table 1 Results from our case studies.

Efficient analysis of pattern-based constraint specifications

251

In our case studies, we have seen that a majority of
constraints could be formalized using our library of con-
straint patterns. Furthermore, the majority of each pattern-
based constraint specification could be shown to be consis-
tent within a few seconds. In addition, we have seen that our
approach is capable of handling industrial-scale models with
large constraint specifications.

6 Related Work

Previous work on intra-model consistency of class models
either examines the consistency of models without OCL
constraints, lacks uniform representation, or only defines in-
dividual, specialized notions of consistency. Until now, a
comprehensive study of consistency for UML/OCL models
has been missing as well as a detailed analysis of which as-
pects of consistency are relevant in practice. In particular,
there is no prior work that contrasts different strong notions
of consistency within the development process.

Several publications cover the consistency of class mod-
els without general OCL constraints. In [46], an algorithm
is given for computing the consistency of class models
without general OCL constraints. While the authors present
definitions for strong consistency, class consistency, and
weak consistency, they do not cover abstract classes and
infinitely large model states. Their algorithm can be inte-
grated in our approach to show the consistency of uncon-
strained class models before pattern instances are added.
In [38], class models without general OCL constraints are
transformed into a consistency problem in FOL. Although
no explicit notion of consistency is given, the notion implic-
itly used is strong consistency. In [5], class models with-
out general OCL constraints are transformed into a consis-
tency problem in Description Logic (DL). The paper pro-
vides an informal definition of weak consistency. A different
approach translates a subset of UML to the B specification
language [55], which can then be automatically checked for
consistency [44]. Since B is not object-oriented, only a sub-
set of class models can be used in this approach. Further-
more, OCL constraints are not translated to B.

Different researchers have considered the problem of es-
tablishing the consistency of class models with OCL con-
straints. In [52], the authors show how to transform UML
class models and a subset of OCL into a constraint-solving
problem for the CQC method [26], a semi-decision pro-
cedure for the finite satisfiability of deductive database
schemes. The authors provide informal definitions for class
consistency and weak consistency.

OCL evaluation tools such as USE [30] or OCLE [14]
are not geared towards automatic validation. Nevertheless,
they provide limited support for consistency analysis of
UML/OCL models. For example, USE provides a means for

programmatically generating snapshots on which arbitrary
OCL formulas can be evaluated. This can be used for manu-
ally testing specific model instances for consistency. In this
approach, it is the responsibility of the model developer to
specify an input script to find a witness for whatever notion
of consistency is desired.

The UMLLtoCSP tool [11] transforms a class diagram
with OCL invariants to a constraint satisfaction problem.
As such, UMLtoCSP allows for an automated validation
(bounded verification) of strong consistency and weak con-
sistency of UML/OCL models. For analyzing larger models
efficiently, UMLtoCSP requires the user to precisely spec-
ify the search space (i.e., the range in which a solution
for the underlying CSP is searched for) because the run-
time of UMLtoCSP grows exponentially with the size of the
searched result space. In contrast, our approach achieves ef-
ficient analysis without such an additional user input.

In [23], an approach is described to translate UML/OCL
into a model checking problem. The paper provides a map-
ping of UML and a subset of OCL into a temporal logic
called BOTL. Consistency notions can be expressed in
BOTL, although doing so is not covered by this approach.

The Alloy Analyzer [35] is a consistency checker for
specifications in the Alloy specification language [34],
which is less expressive than OCL. However, this approach
can be applied to UML/OCL models because there exists a
method and tool to transform UML and a subset of OCL into
Alloy [6].

The work that is most closely related to ours is [18],
which presents a pattern-based constraint specification ap-
proach that uses stereotypes on UML constraints to imple-
ment the pattern concept. Analogous to our consistency lem-
mas, the authors define consistency rules for their patterns,
which are used in a tool for automatic reasoning over the
constraints. Furthermore, redundancy rules are presented
that help to identify superfluous constraints. In contrast to
our work, their consistency rules are used to check whether
a given constraint specification is inconsistent. Analogous
to our approach, nothing can be concluded if these rules are
violated, e.g., the specification cannot then be assumed to
be consistent. By combining our approach with theirs, more
detailed (yet still incomplete) consistency information could
be given to model developers.

In contrast to the automatic approaches summarized
above, interactive analysis approaches have also been pro-
posed. In these approaches, consistency must be manually
encoded as a proof obligation and interactively proven us-
ing a theorem-proving system. In [57], we show how this
can be done in the HOL-OCL system [9], which provides
a formal semantics for UML/OCL and a proof environment
for Isabelle/HOL [48]. Another example is given by [43],
who provide a proof environment for UML/OCL in higher-

252

Michael Wabhler et al.

Interactive Theorem Proving

Witness Creation

SAT and Model Checking Pattern-Based Analysis

coverage full UML/OCL full UML/OCL UML, subset of OCL UML, subset of OCL
flexibility high high low medium
complexity undecidable undecidable exponential polynomial

full automation no no yes yes

Table 2 Comparison of consistency analysis approaches.

order logic within the PVS proof environment [51]. The KeY
tool, an interactive reasoning environment for UML/OCL
that translates constrained models into dynamic logic, is pre-
sented in [2]. Such approaches are more powerful than the
automated approach we take here and they do not suffer
from the problem of incomplete analysis due to heuristics,
although the human who guides the prover may still fail to
find a consistency proof. Interactive theorem proving, how-
ever, requires considerable interaction as well as specialized
knowledge and is therefore not amenable for use by non-
specialists, such as typical model designers.

Consistency is, of course, also important in other for-
mal development approaches. VDM++ is an object-oriented
extension of the formal modeling language Vienna Deve-
lopment Method (VDM) [37]. Different consistency prop-
erties of VDM are considered in [19]. [3] explains how
proof obligations can be generated that ensure the consis-
tency of VDM specifications. However, their approach ab-
stracts from the object-oriented aspects of VDM++ and fo-
cuses on the functional aspects only, which can be analyzed
more easily.

Summarizing the related work, we can thus group the
various approaches as follows: interactive theorem prov-
ing (e.g., HOL-OCL), witness creation (e.g., USE), SAT
and model checking (e. g., BOTL), and pattern-based anal-
ysis. In Table 2, we summarize these different kinds of ap-
proaches and compare them according to the following cri-
teria. Coverage denotes the subset of UML/OCL that is sup-
ported. All approaches in our investigation support class
models. Approaches that do not support full OCL are typ-
ically pattern approaches such as ours or exclude recursive
expressions. Since we have identified different notions of
consistency, we highlight the flexibility of each approach,
i.e., to what extent and with what effort it is possible to
analyze a given model for different notions of consistency.
Whereas analysis approaches in which a certain consistency
notion is “hard-coded” have low flexibility, approaches such
as witness creation allow developers to easily switch to
stronger or weaker consistency notions. We classify our ap-
proach as having medium flexibility because different con-
sistency notions can be used, but it requires some effort to
state and prove consistency lemmas. Complexity denotes the
computational effort required to perform consistency check-
ing in the respective approach. The degree of automation

ranges from “low” for interactive approaches to “high” for
fully automatic approaches.

As explained in Sect. 1.2, we have developed our ap-
proach with a focus on efficiency and automation. Besides
SAT-based approaches, our approach is the only one that
offers full automation to model developers. In contrast to
SAT-based approaches, our approach has polynomial com-
plexity, which allows consistency analysis to scale to large
models, as shown in Sect. 5.

7 Conclusion

In this paper, we provided precise notions of consistency for
constrained class models and identified practically relevant
notions for different software engineering problems. Based
on this, we presented a polynomial-time approach for ana-
lyzing pattern-based constraint specifications. We have im-
plemented a consistency checker based on these ideas and
used it to carry out case studies on industrial-scale mod-
els. Overall, the consistency analysis presented in this pa-
per complements the pattern-based constraint elicitation and
specification process presented in [56].

Our case studies highlighted two substantial benefits of
our approach over other approaches. First, our analysis of-
fers immediate feedback to model developers, which is ben-
eficial because development can proceed without significant
delay. Second, it is currently the only approach that can han-
dle large models with comprehensive constraint specifica-
tions.

Since our approach is limited to pattern-based constraint
specifications, it can be used in a two-phase development
process where pattern-based constraints are added to the
model before the remaining constraints in OCL are added.
This has the advantage that model developers can learn
about the consistency of the majority of their constraints
without invoking other analysis approaches, which are time-
consuming or require theorem proving expertise.

We see several directions for future work. First, the con-
ditions could be explored under which the different notions
of consistency can be composed. For example, how is con-
sistency affected if a strongly consistent and a class consis-
tent model are merged? Second, the number of warnings in
consistency analysis can be reduced by appropriately weak-
ening the assumptions in the patterns’ consistency theorems.

Efficient analysis of pattern-based constraint specifications

253

For example, assumption (iii) of Lemma | can be weak-
ened such that it does not exclude instances of Multiplicity
Restriction with the operators < or <. Third, our approach
can be combined with existing approaches to increase the
fraction of constraints that can be analyzed. For example,
the consistency lemmas for the constraint patterns can be
used to automate proofs in interactive analysis approaches.
Fourth, normalizing the OCL formulas, e. g., based on the
calculi presented in [7] or simplification rules [12,16,28],
increases the number of UML/OCL specifications to which
our pattern-based analysis approach is applicable. Fifth, if
a constraint specification contains inconsistent constraints,
the inconsistencies must be remedied [32]. It would be inter-
esting to investigate whether constraint patterns can support
remediation in an efficient and user-friendly way.

Acknowledgments

We thank the anonymous reviewers for their detailed feed-
back.

References

1. Jorg Ackermann and Klaus Turowski. A Library of OCL Speci-
fication Patterns to Simplify Behavioral Specification of Software
Components. In Proceedings of Conference on Advanced Infor-
mation Systems Engineering., number 4001 in LNCS, pages 255—
269, 2006.

2. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hdhnle, Wolfram Menzel, Wojciech
Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt.
The KeY Tool. Software and System Modeling, 4(1):32-54, 2005.

3. Bernhard K. Aichernig and Peter Gorm Larsenz. A Proof Obliga-
tion Generator for VDM-SL. In FME ’97: Industrial Applications
and Strengthened Foundations of Formal Methods, volume 1313
of LNCS, pages 338-357, 1997.

4. David Basin, Jirgen Doser, and Torsten Lodderstedt. Model
Driven Security: from UML Models to Access Control Infrastruc-
tures. ACM Transactions on Software Engineering and Methodol-
0gy, 15(1):39-91, January 2006.

5. Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo.
Reasoning on UML Class Diagrams. Artificial Intelligence,
168(1):70-118, 2005.

6. Behzad Bordbar and Kyriakos Anastasakis. UML2Alloy: A Tool
for Lightweight Modelling of Discrete Event Systems. In Pro-
ceedings of IADIS International Conference in Applied Comput-
ing 2005, pages 209-216, Algarve, Portugal, 2005.

7. Achim D. Brucker. An Interactive Proof Environment for Object-
oriented Specifications. PhD Thesis, ETH Zurich, March 2007.
ETH Dissertation No. 17097.

8. Achim D. Brucker, Jiirgen Doser, and Burkhart Wolff. Semantic
issues of OCL: Past, present, and future. Electronic Communica-
tions of the EASST, 5, 2006.

9. Achim D. Brucker and Burkhart Wolff. HOL-OCL — A Formal
Proof Environment for UML/OCL. In José Fiadeiro and Paola In-
verardi, editors, Fundamental Approaches to Software Engineer-
ing (FASEOS), number 4961 in Lecture Notes in Computer Sci-
ence, pages 97-100. Springer-Verlag, Budapest, Hungary, 2008.

11.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Francois Bry and Rainer Manthey. Checking Consistency of
Database Constraints: a Logical Basis. In VLDB ’86: Proceedings
of the 12th International Conference on Very Large Data Bases,
pages 13-20, San Francisco, CA, USA, 1986. Morgan Kaufmann
Publishers Inc.

Jordi Cabot, Robert Clarisd, and Daniel Riera. UMLtoCSP: A
Tool for the Formal Verification of UML/OCL Models Using Con-
straint Programming. In ASE ’07: Proceedings of the twenty-
second IEEE/ACM international conference on Automated soft-
ware engineering, pages 547-548, New York, NY, USA, 2007.
ACM.

Jordi Cabot and Ernest Teniente. Transformation Techniques for
OCL Constraints. Sci. Comput. Program., 68(3):179-195, 2007.

. M. Cadoli, D. Calvanese, G. De Giacomo, and T. Mancini. Fi-

nite Model Reasoning on UML Class Diagrams Via Constraint
Programming. AI*IA 2007: Artificial Intelligence and Human-
Oriented Computing, pages 3647, 2007.

Dan Chiorean, Mihai Pasca, Adrian Carcu, Cristian Botiza, and
Sorin Moldovan. Ensuring UML Models Consistency Using the
OCL Environment. In UML 2003 - Workshop: OCL 2.0 - Industry
standard or scientific playground?, 2003.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 2000.

Alexandre L. Correa and Cldudia Werner. Refactoring Object
Constraint Language Specifications. Software and System Mod-
eling, 6(2):113-138, 2007.

Dolors Costal, Cristina Gémez, Anna Queralt, Ruth Raventds, and
Ernest Teniente. Facilitating the Definition of General Constraints
in UML. In Oscar Nierstrasz, Jon Whittle, David Harel, and
Gianna Reggio, editors, MoDELS 2006, number 4199 in LNCS,
pages 260-274. Springer-Verlag, 2006.

Dolors Costal, Cristina Gomez, Anna Queralt, Ruth Raventés, and
Ernest Teniente. Improving the Definition of General Constraints
in UML. Software and Systems Modeling, 2008.

Flemming M. Damm, Bo Stig Hansen, and Hans Bruun. On Type
Checking in VDM and Related Consistency Issues. In 4th Inter-
national Symposium of VDM Europe on Formal Software Devel-
opment - Volume I, volume 551 of LNCS, pages 45-62, 1991.
Adam Darvas and Peter Miiller. Reasoning About Method Calls in
Interface Specifications. Journal of Object Technology, 5:59-85,
2006.

James P. Davis and Ronald D. Bonnell. Propositional Logic Con-
straint Patterns and Their Use in UML-Based Conceptual Mod-
eling and Analysis. IEEE Transactions on Knowledge and Data
Engineering, 19(3):427-440, 2007.

Martin Davis, George Logemann, and Donald Loveland. A Ma-
chine Program for Theorem-proving. Commun. ACM, 5(7):394—
397, 1962.

Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Towards
Model Checking OCL. In Proceedings of the ECOOP Workshop
on Defining a Precise Semantics for UML, 2000.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Property Specification Patterns for Finite-state Verification. In
FMSP ’98: Proceedings of the second workshop on Formal meth-
ods in software practice, pages 7-15, New York, NY, USA, 1998.
ACM Press.

Wolfgang Emmerich, Anthony Finkelstein, and Christian Nen-
twich. Consistency Management with Repair Actions. In Pro-
ceedings of the 25th International Conference on Software Engi-
neering, pages 455-464, Portland, Oregon, 2003. IEEE Computer
Society.

Carles Farré, Ernest Teniente, and Toni Urpi. Checking Query
Containment with the CQC Method. Data & Knowledge Engi-
neering, 53(2):163-223, 2005.

Jean H. Gallier. Logic for Computer Science: Foundations of Au-
tomatic Theorem Proving. Harper & Row, 1986.

254

Michael Wabhler et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Martin Giese and Daniel Larsson. Simplifying Transformations of
OCL Constraints. In Lionel C. Briand and Clay Williams, editors,
MoDELS, volume 3713 of Lecture Notes in Computer Science,
pages 309-323. Springer, 2005.

Jirgen-Michael Glubrecht, Arnold Oberschelp, and Giinter Todt.
Klassenlogik. Bibliographisches Institut, Mannheim/Wien/Ziirich,
1983.

Martin Gogolla, Jgrn Bohling, and Mark Richters. Validating
UML and OCL Models in USE by Automatic Snapshot Gener-
ation. Software and Systems Modeling, 4(4):386-398, 2005.
Martin Gogolla and Mark Richters. Expressing UML Class Dia-
grams Properties with OCL. In Object Modeling with the OCL,
The Rationale behind the Object Constraint Language, pages 85—
114, London, UK, 2002. Springer-Verlag.

Sven Hartmann. Coping with Inconsistent Constraint Specifica-
tions. In Hideko S. Kunii, Sushil Jajodia, and Arne Sglvberg, ed-
itors, ER, volume 2224 of Lecture Notes in Computer Science,
pages 241-255. Springer, 2001.

IBM. developerWorks. http://www.ibm.com/
developerworks/, December 2007.

Daniel Jackson. Alloy: A Lightweight Object Modelling Nota-
tion. ACM Transactions on Software Engineering and Methodol-
ogy, 11(2):256-290, 2002.

Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: The
Alloy Constraint Analyzer. Proceedings of the International Con-
ference on Software Engineering, pages 730733, 2000.

Viviane Jonckers, Tom Mens, Jocelyn Simmonds, and Ragnhild
Van Der Straeten. Using Description Logic to Maintain Consis-
tency between UML Models. In Perdita Stevens, Jon Whittle,
and Grady Booch, editors, UML, volume 2863 of Lecture Notes
in Computer Science, pages 326-340. Springer, 2003.

CIliff B. Jones. Systematic Software Development using VDM.
Prentice Hall, 1990. ISBN 0-13-880733-7.

Ken Kaneiwa and Ken Satoh. Consistency Checking Algorithms
for Restricted UML Class Diagrams. In Jiirgen Dix and Stephen J.
Hegner, editors, FoIKS, volume 3861 of Lecture Notes in Com-
puter Science, pages 219-239. Springer, 2006.

Stuart Kent. Model Driven Engineering. In Michael J. Butler,
Luigia Petre, and Kaisa Sere, editors, /FM, volume 2335 of Lec-
ture Notes in Computer Science, pages 286-298. Springer, May
2002.

Anneke Kleppe and Jos Warmer. The Object Constraint Lan-
guage. Second Edition. Addison-Wesley, 2003.

Jochen M. Kiister. Consistency Management of Object-Oriented
Behavioral Models. PhD Thesis, University of Paderborn, Jan.
2004.

Jochen M. Kiister, Ksenia Ryndina, and Harald Gall. Generation
of Business Process Models for Object Life Cycle Compliance.
In Proceedings of the 5th International Conference on Business
Process Management (BPM), volume 4714 of LNCS, pages 165—
181. Springer, 2007.

Marcel Kyas, Harald Fecher, Frank S. de Boer, Joost Jacob, Jozef
Hooman, Mark van der Zwaag, Tamarah Arons, and Hillel Kugler.
Formalizing UML Models and OCL Constraints in PVS. Elec-
tronic Notes in Theoretical Computer Science, 115:39-47, 2005.
Michael Leuschel and Michael J. Butler. ProB: An Automated
Analysis Toolset for the B Method. STTT, 10(2):185-203, 2008.
Barbara H. Liskov and Jeannette M. Wing. A Behavioral Notion
of Subtyping. ACM Transactions on Programming Languages and
Systems, 16(6):1811-1841, 1994.

Azzam Maraee and Mira Balaban. Efficient Reasoning about
Finite Satisfiability of UML Class Diagrams with Constrained
Generalization Sets. In David H. Akehurst, Régis Vogel, and
Richard F. Paige, editors, ECMDA-FA, volume 4530 of Lecture
Notes in Computer Science, pages 17-31. Springer, 2007.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Elita Miliauskaité and Lina Nemuraité. Representation of Integrity
Constraints in Conceptual Models. Information Technology and
Control, 34(4):355-365, 2005.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic. Number
2283 in Lecture notes in computer science. Springer-Verlag Berlin
Heidelberg New York, 2002.

Object Management Group (OMG). UML 2.0 OCL Final
Adopted Specification. http://www.omg.org/cgi-bin/
apps/doc?ptc/03-10-14.pdf, 2003.

Object Management Group (OMG). Unified Modeling Lan-
guage: Superstructure. Version 2.1. http://www.omg.org/
cgi-bin/doc?ptc/2006-04-02, April 2006.

Sam Owre, S. Rajan, John M. Rushby, Natarajan Shankar, and
M. Srivas. PVS: Combining Specification, Proof Checking, and
Model Checking. Computer-Aided Verification, CAV, 96:411-414,
1996.

Anna Queralt and Ernest Teniente. Reasoning on UML Class Di-
agrams with OCL Constraints. In Proceedings of the 25th Inter-
national Conference on Conceptual Modeling (ER 2006), volume
4215 of LNCS, pages 497-512. Springer, 2006.

Anna Queralt and Ernest Teniente. Decidable Reasoning in UML
Schemas with Constraints. In Zohra Bellahsene and Michel
Léonard, editors, CAiSE, volume 5074 of Lecture Notes in Com-
puter Science, pages 281-295. Springer, 2008.

Mehrdad Sabetzadeh, Shiva Nejati, Sotirios Liaskos, Steve Easter-
brook, and Marsha Chechik. Consistency Checking of Conceptual
Models via Model Merging. In Proceedings of the 15th IEEE In-
ternational Requirements Engineering Conference 2007, 2007.
Colin F. Snook and Michael J. Butler. UML-B: Formal Modeling
and Design Aided by UML. ACM Trans. Softw. Eng. Methodol.,
15(1):92-122, 2006.

Michael Wahler. Model-Driven Software Development: Integrat-
ing Quality Assurance, chapter A Pattern Approach to Increasing
the Maturity Level of Class Models. Idea Group Inc., 2008.
Michael Wahler. Using Patterns to Develop Consistent Design
Constraints. PhD thesis, ETH Zurich, Switzerland, February
2008. No. 17643.

Michael Wahler, Lee Ackerman, and Scott Schneider. Using the
IBM Constraint Patterns and Consistency Analysis Extension. A
Step by Step Guide. Online document. http://www. ibm.
com/developerworks/edu/dw-r-conpatcon.html?
S_TACT=105AGX15&S_CMP=EDU, May 2008.

Michael Wabhler, Jana Koehler, and Achim D. Brucker. Model-
Driven Constraint Engineering. Electronic Communications of the
EASST, 5, 2006.

http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf
http://www.omg.org/cgi-bin/doc?ptc/2006-04-02
http://www.omg.org/cgi-bin/doc?ptc/2006-04-02
http://www.ibm.com/developerworks/edu/dw-r-conpatcon.html?S_TACT=105AGX15&S_CMP=EDU
http://www.ibm.com/developerworks/edu/dw-r-conpatcon.html?S_TACT=105AGX15&S_CMP=EDU
http://www.ibm.com/developerworks/edu/dw-r-conpatcon.html?S_TACT=105AGX15&S_CMP=EDU

Efficient analysis of pattern-based constraint specifications

255

Author Biographies

Michael Wahler is a scien-
tist at ABB Corporate Research.
His research focuses on meth-
ods and tools for developing
correct, secure, and sustainable
software systems. Before join-
ing ABB, Michael conducted
his doctoral studies at the IBM
Zurich Research Laboratory and
ETH Zurich, obtaining his Ph.D.
in 2008. Michael also holds a
diploma degree in computer sci-
ence from the Technical Univer-
sity of Munich

David Basin is full professor
and has the chair for Information
Security at the Department of
Computer Science, ETH Zurich
since 2003. He is also the di-
rector of the ZISC, the Zurich
Information Security Center. He
received his Ph.D. from Cor-
nell University in 1989, and his
Habilitation from the University
of Saarbriicken in 1996. His re-
search focuses on Information
Security, in particular methods
and tools for modeling, building,
and validating secure and reli-
able systems

Achim D. Brucker is a Senior
Researcher in the Security and
Trust group at SAP Research.
He received his Ph.D. from ETH
Zurich, Switzerland in 2007. His
research interests include secu-
rity, software engineering and
formal methods. In particular, he
is interested in tools and meth-
ods for modeling, building, and
validating secure and reliable
systems. He also participates in
the OCL standardization process
of the OMG. Further informa-
tion can be found on his website:
http://www.brucker.ch.

Jana Koehler holds a Ph.D.
from Saarland University Saar-
briicken, Germany, and leads the
Business Integration Technolo-
gies group at the IBM Zurich
Research Laboratory. She joined
IBM in Spring 2001 after hav-
ing worked at the German Re-
search Center for Artificial In-
telligence, the University of
Freiburg, and Schindler Eleva-
tors R&D. Her current work fo-
cuses on software engineering
and compiler-based methods for
process-oriented distributed sys-
tems. Major milestones of her
previous work are novel algorithmic techniques that enabled Al planning
systems to scale to complex realistic problems and a software architecture
and algorithms that permitted the commercial breakthrough of destination
control systems in the elevator industry.

http://www.brucker.ch

	1 Introduction
	1.1 Motivation
	1.2 Contributions and Results
	1.3 Organization

	2 Consistency Notions for UML/OCL
	2.1 Consistency in First-Order Logic
	2.2 Subtype Consistency and Abstract Classes
	2.3 Finitely Large Model States
	2.4 Weaker Notions of Consistency
	2.5 Practically Relevant Consistency Notions

	3 Pattern-Based Consistency Analysis
	3.1 Introducing Consistency Lemmas
	3.2 Library of Consistency Lemmas
	3.2.1 Association-Constraining Patterns.
	3.2.2 Attribute-Constraining Patterns.
	3.2.3 Other Patterns.

	3.3 Summary of Constraint Pattern Dependencies.
	3.4 Automating the Analysis
	3.5 Characteristics of the Algorithm
	3.5.1 Arbitrary OCL Constraints
	3.5.2 Method Calls in Pattern Instances
	3.5.3 Adding New Constraint Patterns
	3.5.4 Handling ``Unknown'' Consistency

	4 Tool Support
	4.1 Consistency Analysis
	4.2 Summary

	5 Case Studies
	5.1 Subject Models and Evaluation Metrics
	5.2 Developing Pattern-based Specifications
	5.3 Analyzing Pattern-based Specifications
	5.4 Quantitative Results

	6 Related Work
	7 Conclusion

@Article{	 wahler.ea:efficient:2010,
 author	= {Michael Wahler and David Basin and Achim D. Brucker and
		 Jana Koehler},
 title		= {Efficient Analysis of Pattern-Based Constraint
		 Specifications},
 journal	= {Software and Systems Modeling},
 classification= {journal},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 areas		= {formal methods, software},
 keywords	= {UML, OCL, Constraints, Patterns, Consistency},
 year		= {2010},
 abstract	= {Precision and consistency are important prerequisites for
		 class models to conform to their intended domain semantics.
		 Precision can be achieved by augmenting models with design
		 constraints and consistency can be achieved by avoiding
		 contradictory constraints. However, there are different
		 views of what constitutes a contradiction for design
		 constraints. Moreover, state-of-the-art analysis approaches
		 for proving constrained models consistent either scale
		 poorly or require the use of interactive theorem proving.
		 In this paper, we present a heuristic approach for
		 efficiently analyzing constraint specifications built from
		 constraint patterns. This analysis is based on precise
		 notions of consistency for constrained class models and
		 exploits the semantic properties of constraint patterns,
		 thereby enabling syntax-based consistency checking in
		 polynomial-time. We introduce a consistency checker
		 implementing these ideas and we report on case studies in
		 applying our approach to analyze industrial-scale models.
		 These studies show that pattern-based constraint
		 development supports the creation of concise specifications
		 and provides immediate feedback on model consistency.},
 public	= {yes},
 issn		= {1619-1366},
 volume	= {9},
 number	= {2},
 month		= apr,
 doi		= {10.1007/s10270-009-0123-6},
 pages		= {225--255},
 pdf		= {http://www.brucker.ch/bibliography/download/2010/wahler.ea-efficient-2010.pdf},
 ps		= {http://www.brucker.ch/bibliography/download/2010/wahler.ea-efficient-2010.ps.gz},
 url		= {http://www.brucker.ch/bibliography/abstract/wahler.ea-efficient-2010}
		
}

%0 Journal Article
%T Efficient Analysis of Pattern-Based Constraint Specifications
%A Wahler, Michael
%A Basin, David
%A Brucker, Achim D.
%A Koehler, Jana
%J Software and Systems Modeling
%D 2010
%8 apr
%V 9
%N 2
%I Springer-Verlag
%C Heidelberg
%@ 1619-1366
%F wahler.ea:efficient:2010
%X Precision and consistency are important prerequisites for class models to conform to their intended domain semantics. Precision can be achieved by augmenting models with design constraints and consistency can be achieved by avoiding contradictory constraints. However, there are different views of what constitutes a contradiction for design constraints. Moreover, state-of-the-art analysis approaches for proving constrained models consistent either scale poorly or require the use of interactive theorem proving. In this paper, we present a heuristic approach for efficiently analyzing constraint specifications built from constraint patterns. This analysis is based on precise notions of consistency for constrained class models and exploits the semantic properties of constraint patterns, thereby enabling syntax-based consistency checking in polynomial-time. We introduce a consistency checker implementing these ideas and we report on case studies in applying our approach to analyze industrial-scale models. These studies show that pattern-based constraint development supports the creation of concise specifications and provides immediate feedback on model consistency.
%K UML, OCL, Constraints, Patterns, Consistency
%U http://www.brucker.ch/bibliography/abstract/wahler.ea-efficient-2010
%U http://www.brucker.ch/bibliography/download/2010/wahler.ea-efficient-2010.pdf
%U http://dx.doi.org/10.1007/s10270-009-0123-6
%P 225-255

TY - JOUR
AU - Wahler, Michael
AU - Basin, David
AU - Brucker, Achim D.
AU - Koehler, Jana
PY - 2010/apr/
TI - Efficient Analysis of Pattern-Based Constraint Specifications
JO - Software and Systems Modeling
SP - 225
EP - 255
VL - 9
IS - 2
PB - Springer-Verlag
CY - Heidelberg
KW - UML, OCL, Constraints, Patterns, Consistency
N2 - Precision and consistency are important prerequisites for class models to conform to their intended domain semantics. Precision can be achieved by augmenting models with design constraints and consistency can be achieved by avoiding contradictory constraints. However, there are different views of what constitutes a contradiction for design constraints. Moreover, state-of-the-art analysis approaches for proving constrained models consistent either scale poorly or require the use of interactive theorem proving. In this paper, we present a heuristic approach for efficiently analyzing constraint specifications built from constraint patterns. This analysis is based on precise notions of consistency for constrained class models and exploits the semantic properties of constraint patterns, thereby enabling syntax-based consistency checking in polynomial-time. We introduce a consistency checker implementing these ideas and we report on case studies in applying our approach to analyze industrial-scale models. These studies show that pattern-based constraint development supports the creation of concise specifications and provides immediate feedback on model consistency.
SN - 1619-1366
UR - http://www.brucker.ch/bibliography/abstract/wahler.ea-efficient-2010
L1 - http://www.brucker.ch/bibliography/download/2010/wahler.ea-efficient-2010.pdf
UR - http://dx.doi.org/10.1007/s10270-009-0123-6
ID - wahler.ea:efficient:2010
ER -

