
Featherweight OCL
A study for the consistent semantics of OCL 2.3 in HOL

Achim D. Brucker1 Burkhart Wolff2

1SAP AG, SAP Research, Germany
achim.brucker@sap.com

2Université Paris-Sud, France
wolff@lri.fr

September 30, 2012

Outline

1 Motivation

2 Featherweight OCL

3 Conclusion and Further Work

Outline

1 Motivation

2 Featherweight OCL

3 Conclusion and Further Work

Motivation

Semantics in the OCL 2.3 Standard

The semantics of OCL 2.3 is spread over several places:

Chapter 7 “OCL Language Description” (informative): introduces OCL
informally using examples,

Chapter 10 “Semantics Described using UML” (normative): presents an
“evaluation” environment,

Chapter 11 “The OCL Standard Library” (normative): describes the
requirements (pre-/post-style) of the library,

Appendix A “Semantics” (informative): presents a formal semantics
(textbook style), based on the work of Richters.

And all that needs to be aligned with all other UML (sub-)standards

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 4



Motivation

History: A Singe Undefined Value (invalid)

OCL was equipped with a single exception element:
invalid (previously called oclUndefined)

invalid is used to model all exceptional situations

division by zero, e. g., 1/0
accessing elements of a empty list, e. g., Seq{}->first()
representation of “absence of a value”
. . .

Most operations are strict, e. g.,

self.x->including(invalid) = invalid

Exception: Boolean operations, e. g.,

invalid or true = true

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 5

Motivation

Adding a New “Undefinedness”
Motivation and Intuition

Main Motivation:
Alignment with the UML standard.

Action Taken by OMG:
Introduction of a second exception element: null.

Intuition:

null represents absence of value.
null is a potentially non-strict exception element.

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 6

Motivation

Adding a New “Undefinedness”
Observation

In OCL 2.2, his extension has been done in an ad hoc manner, e.g.,

Both invalid and null conform to all classifiers.

In particular null conforms to invalid and vice versa.

The conforms relationship is antisymmetric, thus
invalid and null are indistinguishable.

Contradiction to:
null being non-strict and invalid being strict.

Our Contribution:

At the OCL Workshop 2009, we presented a “paper and pencil”
integration of null into the semantics of OCL 2.0

Featherweight OCL formalizes this semantics in Isabelle/HOL
(following the tradition of HOL-OCL)

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 7

Outline

1 Motivation

2 Featherweight OCL

3 Conclusion and Further Work



Featherweight OCL

Featherweight OCL
Formalizing the Core of OCL

Embedding into Isabelle/HOL

Shallow embedding

Strongly typed

Any Featherweight OCL type contains at least invalid and null

All objects are represented in an object universe

Featherweight OCL types may be arbitrarily nested

Support for infinite sets

Support for equational reasoning and congruence reasoning

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 9

Featherweight OCL Semantics of Strict Operations

OCL 2.0: Strict Operations

Example: Addition of integers

The interpretation of “X+Y” for Integers:

IJX + YK τ ≡





xpIJXK τq+ pIJYK τqy if IJXK τ 6= ⊥
and IJYK τ 6= ⊥,

⊥ otherwise .

This is a strict version of the addition of Integers.

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 10

Featherweight OCL Semantics of Strict Operations

OCL 2.3: Strict Operations and Null

We define

IJX + YK τ ≡





xxppxqq+ ppyqqyy if x 6= ⊥, y 6= ⊥, pxq 6= ⊥
and pyq 6= ⊥

⊥ otherwise

where x = IJXK τ and y = IJYK τ .
(x 6= ⊥ ⇐⇒ “x is not invalid” and x 6= ⊥ ⇐⇒ “x is not null” )

Note: 3 + nullInteger = invalid

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 11

Featherweight OCL Boolean Operations (Non-strict Operations)

OCL 2.0: Boolean Operations (Non-strict Operations)

The interpretation of “X and Y” for Booleans:

IJX and YKτ ≡





xpxq ∧ pyqy if x 6= ⊥ and y 6= ⊥,
xfalsey if x = xfalsey or y = xfalsey,
⊥ otherwise .

where x = IJXKτ and y = IJYKτ .

The OCL standard demands a Strong Kleene Logic.

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 12



Featherweight OCL Boolean Operations (Non-strict Operations)

OCL 2.3: Challenges in the Standard

The standard defines

not (null) = invalid

With the consequence, that

not (not X) = X

does not hold for all values of X:

not (not null) = invalid

Similarly:

null and null = invalid

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 13

Featherweight OCL Boolean Operations (Non-strict Operations)

OCL 2.3: Boolean Operations (Non-strict Operations)

We recommend:1

IJX and YKτ ≡





xxppxqq ∧ ppyqqyy if x 6= ⊥ and y 6= ⊥
or pxq 6= ⊥ and pyq 6= ⊥,

xxfalseyy if x = xxfalseyy or y = xxfalseyy,
x⊥y if x = x⊥y and y = x⊥y

or x = xxtrueyy and y = x⊥y
or x = x⊥y and y = xxtrueyy,

⊥ otherwise .

where x = IJXKτ and y = IJYKτ .
Note: x⊥yrepresents null and ⊥ represents invalid.

This definition deviates from the current OCL 2.3.1 standard.

1modified for simplifying the presentation
A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 14

Featherweight OCL Boolean Operations (Non-strict Operations)

OCL 2.3: The Boolean Operations “and”

We formally prove the following core properties of “and”:

(invalid and true) = invalid
(invalid and false) = false
(invalid and null) = invalid
(invalid and invalid) = invalid

(null and true) = null
(null and false) = false
(null and null) = null
(null and invalid) = invalid

(false and true) = false
(false and false) = false
(false and null) = false
(false and invalid) = false

(true and true) = true
(true and false) = false
(true and null) = null
(true and invalid) = invalid

As well as:

(X and X) = X
X and true = X
X and false = false

(X and Y) = (Y and X)
(X and (Y and Z))

= (X and Y and Z)

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 15

Featherweight OCL Boolean Operations (Non-strict Operations)

Demo

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 16



Outline

1 Motivation

2 Featherweight OCL

3 Conclusion and Further Work

Conclusion and Further Work

Conclusions

We understand OCL as a specification language

Should be more abstract than a programming language

The usual algebraic laws should hold

Four-valued Kleene-Logic (lattice like organization of values)

Formalizing the core of OCL

Helps to clarify the semantics

Helps to preserve consistency while extending the language

Can provide input for updating ”Annex A”

Many new interesting extensions are discussed, e.g.,

λ-expression

. . .

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 18

Conclusion and Further Work

Personal Opinion

Status of the standard

OCL 2.2 was a total mess with respect to null

OCL 2.3 is an improvement, still many glitches

The OMG standardization process where members vote on changes

is maybe not best process to achieve a consistent standard

Technical standards should use authoring systems that ensure

the syntactical correctness

semantical consistency

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 19

Thank you for your attention!
Any questions or remaks?



Conclusion and Further Work

Related Publications

Achim D. Brucker, Matthias P. Krieger, and Burkhart Wolff.

Extending OCL with null-references.

In Sudipto Gosh, editor, Models in Software Engineering, number 6002 in LNCS, pages
261–275. Springer, 2009.

http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009.

Selected best papers from all satellite events of the MoDELS 2009 conference.

Achim D. Brucker and Burkhart Wolff.

Featherweight OCL: A study for the consistent semantics of OCL 2.3 in HOL.

In Workshop on OCL and Textual Modelling (OCL 2012). 2012.

http://www.brucker.ch/bibliography/abstract/brucker.ea-featherweight-2012.

A.D. Brucker and B. Wolff Featherweight OCL September 30, 2012 21


