
Model-based Conformance Testing

of Security Properties

Achim D. Brucker and Lukas Brügger
joint work with Burkhart Wolff

Dagstuhl Seminar 13021
“Symbolic Methods in Testing”
http://www.dagstuhl.de/13021

06.01.2013 – 11.01.2013

http://www.dagstuhl.de/13021
http://www.dagstuhl.de/13021

Abstract

Modern systems need to comply to large and complex
security policies that need to enforced at runtime. This
runtime enforcement needs to happen on different levels,
e.g., ranging from high level access control models to
firewall rules.
We present an approach for the modular specification of
security policies (e.g., access control policies, firewall
policies). Based on this formal model, i.e, the specification,
we discuss a model-based test case generation approach
that can be used for both testing the correctness of the
security infrastructure as well as the conformance of its
configuration to a high-level security policy.

Achim D. Brucker 06.01.2013 – 11.01.2013 2

Outline

1 Introduction

2 The Unified Policy Framework (UPF)

3 Testing Firewalls

4 Further Case Studies

5 Conclusion

Introduction Motivation

Motivation

Observation:

IT systems need to enforce complex security policies.

Question:

Are these rules correctly enforced at runtime?

Approach:

Conformance testing of

runtime enforcement infrastructure
(implementation) and

security policy (configuration).

Achim D. Brucker 06.01.2013 – 11.01.2013 4

Introduction Motivation

Security Policies

Define rules according to which access must be regulated

Come in many different flavors
(RBAC, Bell-LaPadula, firewall policies)

Complex implementation of policy-decision-points

Optimized for performance
Complex policy languages

Configuration often hard to get right and maintain:

Large number of rules
A lot of changes over time
Configuration by different entities
Interaction with other policies and legacy systems

Achim D. Brucker 06.01.2013 – 11.01.2013 5

Introduction Motivation

Conformance Testing of Security Policies

Validation that a range of diverse and partially unknown
systems conform to a set of high-level security policies

Characteristics: Specification-based black-box test

Coverage: Security policy model

Scalability: Security policies are large and complex

Achim D. Brucker 06.01.2013 – 11.01.2013 6

Introduction HOL-TestGen and its Components

Components of HOL-TestGen

HOL (Higher-order Logic):

“Functional Programming Language with Quantifiers”
plus definitional libraries on Sets, Lists, . . .
used as meta-language for Hoare Calculus for Java, Z, . . .

HOL-TestGen:

based on the interactive theorem prover Isabelle/HOL
integrates formal proofs and test case generation

Interactive User Interface:

user interface for Isabelle and HOL-TestGen
step-wise processing of specifications/theories
shows current proof states

Achim D. Brucker 06.01.2013 – 11.01.2013 7

Introduction HOL-TestGen and its Components

Model-based Testing with HOL-TestGen

An interactive
model-based test tool

built upon the
theorem prover
Isabelle/HOL

generates test drivers

successfully used in
various case-studies

freely available at:

http://www.brucker.ch/projects/hol-testgen/

Achim D. Brucker 06.01.2013 – 11.01.2013 8

Introduction HOL-TestGen and its Workflow

The HOL-TestGen Workflow

The HOL-TestGen workflow is basically four-fold:

1 Step I: writing a test specification
Step I’: analyzing or optimizing test specification

2 Step II: generating a test theorem (roughly: testcases)

3 Step III: generating test data

4 Step IV: generating a test script

And of course:

building an executable test driver

and running the test driver

Achim D. Brucker 06.01.2013 – 11.01.2013 9

Demo

Introduction HOL-TestGen and its Workflow

A Simple Test Theory

theory List_test
imports Main begin

fun is_sorted:: "(’a::ord) list ⇒ bool"
where " is_sorted [] = True"

| is_sorted (x#xs) = case xs of
[] ⇒ True

| y#ys⇒(x <= y)
∧ is_sorted xs"

test_spec "is_sorted (prog (l::(’a list)))"
apply(gen_test_cases prog)

store_test_thm "test_sorting"

gen_test_data "test_sorting"
gen_test_script "test_lists.sml" list" prog

end

Achim D. Brucker 06.01.2013 – 11.01.2013 11

Outline

1 Introduction

2 The Unified Policy Framework (UPF)

3 Testing Firewalls

4 Further Case Studies

5 Conclusion

The Unified Policy Framework (UPF)

The Unified Policy Framework (UPF)

An extensible framework for policy modelling
in Isabelle/HOL

Main features:

Applicable to a wide range of different kinds of policies
Modular modelling approach (combination of subpolicies)
Geared towards use in test case generation
Large executable subset
Possibility to model higher-order policies
Integrated with modeling states and state transitions

Achim D. Brucker 06.01.2013 – 11.01.2013 13

The Unified Policy Framework (UPF)

UPF: Foundations

Main concept:

Policies are modelled as partial policy decision functions
Formally: α 7→ β = α ⇀ β decision
where α decision = allow α | deny α

Input data α: users, operations, network packets, state
Output data β: return messages, state

Principles:

Functional representation
No conflicts
Three-valued decision type
Open output type

Achim D. Brucker 06.01.2013 – 11.01.2013 14

The Unified Policy Framework (UPF)

UPF: Combining Rules and Policies

Rules are defined by domain restrictions

{(Alice, obj1, read)} / AU

where AU = λ x. ballow()c
There are three categories of combination operators:

Override operators (e.g. first matching rule applies): _⊕ _
Parallel combination operators: _⊗ _
Sequential composition: _O_

A large number of algebraic properties hold over the
operators: (P1 ⊕ P2)⊗ P3 = (P1 ⊗ P3)⊕ (P2 ⊗ P3)

Achim D. Brucker 06.01.2013 – 11.01.2013 15

The Unified Policy Framework (UPF)

UPF: Transition Policies

Systems that implement a security policy are often
stateful

State transitions can be modelled as partial functions

Standard approach:

Model the pure policy P
Model the state transitions to be triggered for allow: AST

Model the state transitions to be triggered for deny: DST

Combine the three parts: (AST ,DST)⊗∇ P
To a transition policy of type: (ι× σ)→ (σ × σ)

Achim D. Brucker 06.01.2013 – 11.01.2013 16

Outline

1 Introduction

2 The Unified Policy Framework (UPF)

3 Testing Firewalls

4 Further Case Studies

5 Conclusion

Testing Firewalls Modeling Firewalls

Motivation

Scenario 1: Single Firewall

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

Scenario 2: Networks

A B

H5

H4 H3

H2

H1

Our goal:
Show correctness of
network component configurations and implementations

Achim D. Brucker 06.01.2013 – 11.01.2013 18

Testing Firewalls Firewall Testing: the Direct Approach

A Typical Scenario

DMZ

Internet (extern)

Intranet (intern)
��
��
��
��

��
��
��
��

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

In this talk, firewalls are stateless packet filters

HOL-TestGen can also handle stateful firewalls
(not considered in this talk)

Achim D. Brucker 06.01.2013 – 11.01.2013 19

Testing Firewalls Firewall Testing: the Direct Approach

HOL-Model of a Firewall Policy

A firewall makes a decision based on single packets.

types (α,β) packet
= id ×(α::adr) src ×(α::adr) dest ×βcontent

Different address and content representations are
possible.
A policy is a mapping from packets to decisions:

types (α,β) Policy = (α,β) packet 7→
unit

Policy combinators allow for defining policies:

definition
allow_all_from :: (α::adr) net⇒(α,β) Policy where
allow_all_from src_net = {pa. src pa @src_net} /allow_all

Achim D. Brucker 06.01.2013 – 11.01.2013 20

Testing Firewalls Firewall Testing: the Direct Approach

Network Address Translation (NAT)

Firewalls often perform network address translation

Input to the policies remains a network packet

Output additionally contains a description of admissible
transformed packets:

(α, β)packet 7→ ((α, β)packet) set

NAT policies are combined in parallel with stateless packet
filtering policies

Achim D. Brucker 06.01.2013 – 11.01.2013 21

Testing Firewalls Firewall Testing: the Direct Approach

The Policy

source destination protocol port action

Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

definition TestPolicy where
TestPolicy = allow_port udp 25 internet dmz ⊕

allow_port tcp 80 internet dmz ⊕
allow_port tcp 25 dmz intranet ⊕
allow_port tcp 993 intranet dmz ⊕
allow_port udp 80 intranet internet ⊕
DU

Achim D. Brucker 06.01.2013 – 11.01.2013 22

Testing Firewalls Firewall Testing: the Direct Approach

Testing Stateless Firewalls

The test specification:

test_spec test: “P x =⇒FUT x = Policy x’’

FUT: Placeholder for Firewall Under Test

Predicate P restricts packets we are interested in, e.g.,
wellformed packets which cross some network boundary

Generates test data like (simplified):

FUT(1,((8,13,12,10),6,tcp),((172,168,2,1),80,tcp),data)
= b(deny()c

Achim D. Brucker 06.01.2013 – 11.01.2013 23

Demo

Testing Firewalls Firewall Testing: the Direct Approach

Problems with the direct approach

The direct approach does not scale:

R1 R2 R3 R4

Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Reason:

Large cascades of case distinctions over input and output
=⇒ However, many of these case splits are redundant
Many combinations due to subnets
=⇒ Pre-partitioning of test space according to subnets

Achim D. Brucker 06.01.2013 – 11.01.2013 25

Testing Firewalls Firewall Testing: the Direct Approach

Problems with the direct approach

The direct approach does not scale:

R1 R2 R3 R4

Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Reason:

Large cascades of case distinctions over input and output
=⇒ However, many of these case splits are redundant
Many combinations due to subnets
=⇒ Pre-partitioning of test space according to subnets

Achim D. Brucker 06.01.2013 – 11.01.2013 25

Testing Firewalls Firewall Testing: the Optimized Approach

Model Transformations for TCG (1/2)

Test Case Generation Test Case Generation

Verified Model

Transformation

Model of Firewall

Policy

Optimized Model

of Firewall Policy

Test Cases Test Cases

Achim D. Brucker 06.01.2013 – 11.01.2013 26

Testing Firewalls Firewall Testing: the Optimized Approach

Model Transformations for TCG (2/2)

Idea is fundamental to model-based test case generation.
E.g.:

if x < −10 then if x < 0 then P else Q else Q
if x < −10 then P else Q

lead to different test cases

Similarly, the following two policies produce a different set
of test cases:

AllowAll dmz internet ⊕ DenyPort dmz internet 21 ⊕ DU

AllowAll dmz internet ⊕ DU

Achim D. Brucker 06.01.2013 – 11.01.2013 27

Testing Firewalls Firewall Testing: the Optimized Approach

Model Transformations for TCG (2/2)

Idea is fundamental to model-based test case generation.
E.g.:

if x < −10 then if x < 0 then P else Q else Q
if x < −10 then P else Q

lead to different test cases

Similarly, the following two policies produce a different set
of test cases:

AllowAll dmz internet ⊕ DenyPort dmz internet 21 ⊕ DU

AllowAll dmz internet ⊕ DU

Achim D. Brucker 06.01.2013 – 11.01.2013 27

Testing Firewalls Firewall Testing: the Optimized Approach

The Transformation

Transformations are encoded as recursive function in HOL
Provide only a fixed number of combinators

datatype (α,β) Combinators =
DenyAll

| DenyAllFromTo αα
| AllowPortFromTo αα β

| Conc ((α,β) Combinators) ((α,β) Combinators) (⊕)
and map them to the standard combinators:

fun C where
C DenyAll = deny_all
|C (DenyAllFromTo x y) = deny_all_from_to x y
|C (AllowPortFromTo x y p) = allow_port x y p
|C (x ⊕y) = C x ++ C y

Achim D. Brucker 06.01.2013 – 11.01.2013 28

Testing Firewalls Firewall Testing: the Optimized Approach

A Typical Transformation

Remove all rules allowing a port between two networks, if
a former rule already denies all the rules between these
two networks.

fun removeShadowRules2::
where
removeShadowRules2 ((AllowPortFromTo x y p)#z) =

if (DenyAllFromTo x y) ∈ (set z)
then removeShadowRules2 z
else (AllowPortFromTo x y p)#(removeShadowRules2 z)

| removeShadowRules2 (x#y) = x#(removeShadowRules2 y)
| removeShadowRules2 [] = []

Achim D. Brucker 06.01.2013 – 11.01.2013 29

Testing Firewalls Firewall Testing: the Optimized Approach

More Transformations

Other transformations include:

Remove all the rules after a DenyAll
Sort the rules along the subnet hierarchy
Add additional rules (i.e. split a global rule into smaller
ones)
Remove duplicate rules
Remove rules with an empty domain
Separate the policy into several policies

Each of them is proven formally to keep the semantics
under certain preconditions

Achim D. Brucker 06.01.2013 – 11.01.2013 30

Testing Firewalls Firewall Testing: the Optimized Approach

Computing a Normal Form for Policy Models

Transformations can be combined to compute a
normal form

The result is a list of policies, in which:

each element completely specifies the behavior of some
network segment
no element contains redundant rules

Thus, the normalization does:

pre-partition the test space
remove redundancies

Achim D. Brucker 06.01.2013 – 11.01.2013 31

Testing Firewalls Firewall Testing: the Optimized Approach

Correctness of the Normalization

Correctness
of the normalization must hold for arbitrary input policies,
satisfying certain preconditions

As HOL-TestGen is built upon the theorem prover
Isabelle/HOL, we can prove formally the correctness of
such normalizations:

theorem C_eq_normalize:
assumes member DenyAll p
assumes allNetsDistinct p

shows C (list2policy (normalize p)) = C p

Achim D. Brucker 06.01.2013 – 11.01.2013 32

Demo

Testing Firewalls Firewall Testing: the Optimized Approach

Empirical Results

The normalization of policies decreases the number of test
cases and the required time by several orders of
magnitude.

R1 R2 R3 R4

Not Normalized Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

Normalized Rules 14 14 24 26
Normalization (sec) 0.6 0.4 1.1 0.8
TC Generation Time (sec) 0.9 0.6 1.2 0.7
Test Cases 20 20 34 22

Achim D. Brucker 06.01.2013 – 11.01.2013 34

Testing Firewalls Firewall Testing: the Optimized Approach

Number of Test Cases

10

100

1000

ETH 1
ETH 2

ETH 3
R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10

nu
m

be
r

of
te

st
ca

se
s

unnormalized policy normalized policy

The normalization of policies decreases the number of test
cases by several orders of magnitude.

Achim D. Brucker 06.01.2013 – 11.01.2013 35

Testing Firewalls Firewall Testing: the Optimized Approach

Number of Rules

0

100

200

300

400

500

600

50 100 150 200 250 300nu
m

be
r

of
ru

le
s

(n
or

m
al

iz
ed

)

number of rules (unnormalized)

5 networks 10 networks 25 networks

Achim D. Brucker 06.01.2013 – 11.01.2013 36

Outline

1 Introduction

2 The Unified Policy Framework (UPF)

3 Testing Firewalls

4 Further Case Studies

5 Conclusion

Further Case Studies NPfIT

NPfIT: Overview

National Programme for IT (NPfIT) in the NHS

Health care records of every patient
(accessible over the network)

Large number of applications that need to conform to
Information Governance Principles (policy):

RBAC
Legitimate Relationships
Patient Consent
Sealed Envelopes

Achim D. Brucker 06.01.2013 – 11.01.2013 38

Further Case Studies NPfIT

NPfIT: Lessons Learned

We modeled large parts of the
Information Governance Principles in UPF

different parts are modelled separate and using the UPF
operators
Modelling system behaviour considerably more complex
than the pure policy rules alone

Testing requires choice of good test specification

Achim D. Brucker 06.01.2013 – 11.01.2013 39

Further Case Studies WS Testing: Motivation

Today’s World is Distributed

Modern applications are built

by composing (black-box) services

are re-composing happens relatively often

require complex security configurations

There are

widely adopted standards (e. g., WSDL)

powerful frameworks for building Web Services

Idea:

Let’s try to apply HOL-TestGen in this scenario

Necessary steps:

model Web Service Application API in HOL

connect HOL-TestGen to a Web service Framework
Achim D. Brucker 06.01.2013 – 11.01.2013 40

Further Case Studies WS Testing: Motivation

WS Testing: Remote Setup

System under
Test

Test Script

Mappings

Test Binary
HOL-

TestGen

Test Harness

WSDL File

8080

Provide support for the .net/mono framework:

Add support for F# code generator to Isabelle
(HOL-TestGen)
Develop Test Harness in F#
Use the WSDL toolchain for C# (F# not stable yet)
Achim D. Brucker 06.01.2013 – 11.01.2013 41

Outline

1 Introduction

2 The Unified Policy Framework (UPF)

3 Testing Firewalls

4 Further Case Studies

5 Conclusion

Conclusion

Conclusion

Approach based on theorem proving

test specifications are written in HOL
functional programming, higher-order, pattern matching

Verified Transformations of test-specifications

Test hypothesis explicit and controllable by the user

Proof-state explosion controllable by the user

Verified tool inside a (well-known) theorem prover

Achim D. Brucker 06.01.2013 – 11.01.2013 43

Thank you

for your attention!

Any questions or remarks?

http://www.brucker.ch/projects/hol-testgen/

Please consider to submit a paper to

“Tests and Proofs” 2013

Deadline February, 1st

http://www.spacios.eu/TAP2013/

http://www.brucker.ch/projects/hol-testgen/
http://www.spacios.eu/TAP2013/

Bibliography

Bibliography I

Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff.

Verified firewall policy transformations for test-case generation.

In Third International Conference on Software Testing, Verification, and
Validation (ICST), pages 345–354. IEEE Computer Society, 2010.

Achim D. Brucker, Lukas Brügger, Paul Kearney, and Burkhart Wolff.

An approach to modular and testable security models of real-world
health-care applications.

In ACM symposium on access control models and technologies
(SACMAT), pages 133–142. ACM Press, 2011.

Lukas Brügger.

A Framework for Modelling and Testing of Security Policies.

PhD thesis, ETH Zurich, 2012.

Achim D. Brucker 06.01.2013 – 11.01.2013 45

Bibliography

Bibliography II

Achim D. Brucker and Burkhart Wolff.

Test-sequence generation with HOL-TestGen – with an application to
firewall testing.

In Bertrand Meyer and Yuri Gurevich, editors, TAP 2007: Tests And
Proofs, number 4454 in Lecture Notes in Computer Science, pages
149–168. Springer-Verlag, 2007.

Achim D. Brucker and Burkhart Wolff.

On theorem prover-based testing.

Formal Aspects of Computing (FAC), 2012.

Achim D. Brucker 06.01.2013 – 11.01.2013 46

	Introduction
	Motivation
	Detour: HOL-TestGen
	HOL-TestGen and its Components
	HOL-TestGen and its Workflow

	The Unified Policy Framework (UPF)
	Testing Firewalls
	Modeling Firewalls
	Firewall Testing: the Direct Approach
	Firewall Testing: the Optimized Approach

	Further Case Studies
	NPfIT
	WS Testing: Motivation

	Conclusion

