Featherweight OCL

A Proposal for a Machine-Checked Formal Semantics for OCL 2.5

Achim D. Brucker? Frédéric Tuong? Burkhart Wolff!

January 15, 2014

*SAP AG, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com

'Univ. Paris-Sud, IRT SystemX, 8 av. de la Vauve,
91120 Palaiseau, France
frederic.tuong@{u-psud, irt-systemx}.fr

fUniv. Paris-Sud, Laboratoire LRI, UMR8623, 91405 Orsay, France
CNRS, 91405 Orsay, France
burkhart.wolff@lri.fr

http://www.brucker.ch/
https://www.lri.fr/~tuong/
https://www.lri.fr/~wolff/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Burkhart Wolff" <burkhart.wolff@lri.fr>

Abstract

The Unified Modeling Language (UML) is one of the few modeling languages that is
widely used in industry. While UML is mostly known as diagrammatic modeling lan-
guage (e.g., visualizing class models), it is complemented by a textual language, called
Object Constraint Language (OCL). OCL is a textual annotation language, based on a
three-valued logic, that turns UML into a formal language. Unfortunately the semantics
of this specification language, captured in the “Annex A” of the OCL standard, leads to
different interpretations of corner cases. Many of these corner cases had been subject to
formal analysis since more than ten years.

The situation complicated when with version 2.3 the OCL was aligned with the latest
version of UML: this led to the extension of the three-valued logic by a second exception
element, called null. While the first exception element invalid has a strict seman-
tics, null has a non strict semantic interpretation. These semantic difficulties lead to
remarkable confusion for implementors of OCL compilers and interpreters.

In this paper, we provide a formalization of the core of OCL in HOL. It provides deno-
tational definitions, a logical calculus and operational rules that allow for the execution
of OCL expressions by a mixture of term rewriting and code compilation. Our formaliza-
tion reveals several inconsistencies and contradictions in the current version of the OCL
standard. They reflect a challenge to define and implement OCL tools in a uniform
manner. Overall, this document is intended to provide the basis for a machine-checked
text “Annex A” of the OCL standard targeting at tool implementors.

Contents

I.__Introductionl

T Motivation

[2. Background|

R

A Guided Tour Through UML/OCL|

[2.2.2. Higher-order Logic (HOL)[.

2.3.

Featherweight OCL: Design Goals|

R

The Theory Organization|

2.4.1. Denotational Semanticsl
[2.4.2. Logical Layer|
[2.4.3. Algebraic Layer|.

5.

Object-oriented Datatype Theories|

[2.5.1. Object Universes
[2.5.2. Accessors on Objects and Associations|. . .
[2.5.3. Other Operations on States|

2.6. A Machine-checked Annex Al

IT.

A Proposal for Formal Semantics of OCL 2.5

[3.1.1. Notations for the Option Typel

3.1.2. Minimal Notions of State and State Iransitionsl

[3.1.3. Prerequisite: An Abstract Interface for OCL Types|.

[3.1.4. Accommodation of Basic Types to the Abstract Interface]

[3.1.5. The Semantic Space of OCL Types: Valuations|

B2

Definition of the Boolean Type|

8.2.1. Basic Constantsl
[3.2.2. Validity and Definedness|.

B33,

The Equalities of OCL|
3.3.1. Definitionl

11

13
13
15
15
16
18
19
19
21
23
26
26
28
31
32

35

37
37
37
37
38

39
40
40
41
43
44
45

[3.4. Logical Connectives and their Universal Properties| 46

13.5. A Standard Logical Calculus tor OCL| 51
[3.5.1. Global vs. Local Judgements 51
[3.5.2. Local Validity and Meta-logic| 52
[3.5.3. Local Judgements and Strong Equality|. 54
[3.5.4. Laws to Establish Definedness (o-closure)| 56

3.6, Miscellaneous 56
B.6.1. OCL’sifthenelseendifl 56
[3.6.2. A Side-calculus for (Boolean) Constant Terms|. 57

[4. Formalization II: Library Definitions| 61

4.1. Basic Types: Void and Integer| 61
[4.1.1. The Construction of the Void Type]. 61
[4.1.2. The Construction of the Integer Type| 61
|4.1.3. Validity and Definedness Properties] 62
[4.1.4. Arithmetical Operations on Integer|. 62

[4.2. Fundamental Predicates on Basic Types: Strict kquality] 64
[42.1. Definition] 64
4.2.2. Logic and Algebraic Layer on Basic Types|. 64
4.2.3. Test Statements on Basic Types.| 67

[4.3. Complex Types: The Set-Collection Type (I) Corel 68
4.3.1. The Construction of the Set Typel 68
|4.3.2. Validity and Definedness Properties] 69
433, Constantson Sets 69

[4.4. Complex Types: The Set-Collection Type (II) Library| 70
[4.4.1. Computational Operations on Set| 70
[4.4.2. Validity and Definedness Properties| 73
14.4.3. Execution with Invalid or Null or Infinite Set as Argument| 76
4.4.4. Context Passing| 78
A5 "Constl oo o 80

|4.5. Fundamental Predicates on Set: Strict Equality| 80
4.5.1. Definitionl 80
[4.5.2. Logic and Algebraic Layer on Set|. 81

[4.6. Execution on Set’s Operators (with mtSet and recursive case as arguments)| 82
[4.6.1. Ocllncluding] 82
4.6.2. OclExcluding| 82
4.6.3. Ocllncludesl 84
4.6.4. OclExcluded 85
465, OclSizel 85
[4.6.6. OcllskEmpty| o oo 86
[4.6.7. OcINotEmpty|. 86
46.8. OcANYI. 86
4.6.9. Oclloralll 86
[4.6.10. OclExistsl o oo 87

[5. Formalization Ill: State Operations and Objects|

5.1

Introduction: States over Typed Object Universes|

I;i.l.l, l;s:s:il]l; Ills: (;f:“g:[ls :ill!l‘:l llls: slt :““lf:ﬁl

B2,

Fundamental Predicates on Object: Strict Equality|

[5.2.1. Logic and Algebraic Layer on Object|.

[5.3.

Operations on Object|

[5.3.1. Initial States (for testing and code generation)|

[T, Examples|

6.

The Employee Analysis Model|

6.1

The Employee Analysis Model (UML)
[6.1.1. Tntroductionl
[6.1.2. Example Data-Universe and its Infrastructurel.
|6.1.3. Instantiation of the Generic Strict Equality]
6.1.4. OclAsType| o
6.1.5. OcllsTypeOff o o
6.1.6. OcllsKindOff

[6.1.8. The Accessors (any, boss, salary)|
16.1.9. A Little Intra-structure on Example States|

6.2.

The Employee Analysis Model (OCL)[.

93
93
93
94
94
96
96
96
103
104
104
105
105

107

109
109
109
110
111
112
114
117
119
121
126
130
131
131
131
132

[7. The Employee Design Model| 133

[7.1. The Employee Design Model (UML) 133
[f.1.1. Introductionl 133

[7.1.2. Example Data-Universe and its Infrastructure]. 133

[7.1.3. Instantiation of the Generic Strict Equality] 135

[71.4. OclAsType o 136

[7.1.5. OcllsTypeOff o 138

[(1.6. OcllsKindOff 141

[(1.7. OclAlllnstanceslo 143

[7.1.8. The Accessors (any, boss, salary)| 145

[7.1.9. A Little Infra-structure on Example States| 148

[7.2. The Employee Design Model (OCL)| 154
[(.2.1. Standard State Infrastructurel o0 154

[(.2.2. Invariant] 154

[7.2.3. The Contract ot a Recursive Query|. 155

[r.2.4. The Contract of a Methodl. 155

V. Conclusion| 157
8. Conclusionl 159
B.1. Lessons Learned and Contributions/ 159
B2. Tessons Learned 160
8.3. Conclusion and Future Workl 161

Part |I.

Introduction

1. Motivation

The Unified Modeling Language (UML) [31], 32] is one of the few modeling languages
that is widely used in industry. UML is defined, in an open process, by the Object
Management Group (OMG), i.e., an industry consortium. While UML is mostly known
as diagrammatic modeling language (e.g., visualizing class models), it also comprises
a textual language, called Object Constraint Language (OCL) [33]. OCL is a textual
annotation language, originally conceived as a three-valued logic, that turns substantial
parts of UML into a formal language. Unfortunately the semantics of this specification
language, captured in the “Annex A” (originally, based on the work of Richters [35])
of the OCL standard leads to different interpretations of corner cases. Many of these
corner cases had been subject to formal analysis since more than nearly fifteen years
(see, e.g., [5, 11 19 22, 26]).

At its origins [28] [35], OCL was conceived as a strict semantics for undefinedness (e. g.,
denoted by the element invalicED, with the exception of the logical connectives of type
Boolean that constitute a three-valued propositional logic. At its core, OCL comprises
four layers:

1. Operators (e.g., _ and + _) on built-in data structures such as Boolean,

- =

Integer, or typed sets (Set(_).

2. Operators on the user-defined data model (e.g., defined as part of a UML class
model) such as accessors, type casts and tests.

3. Arbitrary, user-defined, side-effect-free methods,

4. Specification for invariants on states and contracts for operations to be specified
via pre- and post-conditions.

Motivated by the need for aligning OCL closer with UML, recent versions of the
OCL standard [30, 33] added a second exception element. While the first exception
element invalid has a strict semantics, null has a non strict semantic interpretation.
Unfortunately, this extension results in several inconsistencies and contradictions. These
problems are reflected in difficulties to define interpreters, code-generators, specification
animators or theorem provers for OCL in a uniform manner and resulting incompatibil-
ities of various tools.

For the OCL community, the semantics of invalid and null as well as many related
issues resulted in the challenge to define a consistent version of the OCL standard that
is well aligned with the recent developments of the UML. A syntactical and semantical

'In earlier versions of the OCL standard, this element was called OclUndefined.

11

consistent standard requires a major revision of both the informal and formal parts of
the standard. To discuss the future directions of the standard, several OCL experts
met in November 2013 in Aachen to discuss possible mid-term improvements of OCL,
strategies of standardization of OCL within the OMG, and a vision for possible long-term
developments of the language [I5]. During this meeting, a Request for Proposals (RFP)
for OCL 2.5 was finalized and meanwhile proposed. In particular, this RFP requires
that the future OCL 2.5 standard document shall be generated from a machine-checked
source. This will ensure

e the absence of syntax errors,
e the consistency of the formal semantics,
e a suite of corner-cases relevant for OCL tool implementors.

In this document, we present a formalization using Isabelle/HOL [27] of a core
language of OCL. The semantic theory, based on a “shallow embedding”, is called
Featherweight OCL, since it focuses on a formal treatment of the key-elements of the
language (rather than a full treatment of all operators and thus, a “complete” implemen-
tation). In contrast to full OCL, it comprises just the logic captured in Boolean, the basic
data type Integer, the collection type Set, as well as the generic construction principle
of class models, which is instantiated and demonstrated for two examples (an automated
support for this type-safe construction is again out of the scope of Featherweight OCL).
This formal semantics definition is intended to be a proposal for the standardization
process of OCL 2.5, which should ultimately replace parts of the mandatory part of the
standard document [33] as well as replace completely its informative “Annex A.”

12

2. Background

2.1. A Guided Tour Through UML/OCL

The Unified Modeling Language (UML) [31], 32] comprises a variety of model types for
describing static (e. g., class models, object models) and dynamic (e. g., state-machines,
activity graphs) system properties. One of the more prominent model types of the UML
is the class model (visualized as class diagram) for modeling the underlying data model
of a system in an object-oriented manner. As a running example, we model a part of
a conference management system. Such a system usually supports the conference or-
ganizing process, e. g., creating a conference Website, reviewing submissions, registering
attendees, organizing the different sessions and tracks, and indexing and producing the
resulting proceedings. In this example, we constrain ourselves to the process of organiz-
ing conference sessions; [Figure 2.1] shows the class model. We model the hierarchy of
roles of our system as a hierarchy of classes (e.g., Hearer, Speaker, or Chair) using an
inheritance relation (also called generalization). In particular, inheritance establishes a
subtyping relationship, i. e., every Speaker (subclass) is also a Hearer (superclass).

A class does not only describe a set of instances (called objects), i. e., record-like data
consisting of attributes such as name of class Session, but also operations defined over
them. For example, for the class Session, representing a conference session, we model
an operation findRole(p:Person) :Role that should return the role of a Person in the
context of a specific session; later, we will describe the behavior of this operation in more
detail using UML. In the following, the term object describes a (run-time) instance of a
class or one of its subclasses.

Person person role| Role

= name:String [Q. . * he 0..%

|

: Z%

1

Participant
0..% Hearer i] CoCair

0..1|session

Session
& name:String

= findRole(p:Person) :Role Speaker Chair

Figure 2.1.: A simple UML class model representing a conference system for organizing
conference sessions: persons can participate, in different roles, in a session.

13

Relations between classes (called associations in UML) can be represented in a
class diagram by connecting lines, e.g., Participant and Session or Person and
Role. Associations may be labeled by a particular constraint called multiplicity, e.g.,
0..*x or 0..1, which means that in a relation between participants and sessions, each
Participant object is associated to at most one Session object, while each Session
object may be associated to arbitrarily many Participant objects. Furthermore, as-
sociations may be labeled by projection functions like person and role; these implicit
function definitions allow for OCL-expressions like self.person, where self is a vari-
able of the class Role. The expression self .person denotes persons being related to the
specific object self of type role. A particular feature of the UML are association classes
(Participant in our example) which represent a concrete tuple of the relation within
a system state as an object; i.e., associations classes allow also for defining attributes
and operations for such tuples. In a class diagram, association classes are represented
by a dotted line connecting the class with the association. Associations classes can take
part in other associations. Moreover, UML supports also n-ary associations (not shown
in our example).

We refine this data model using the Object Constraint Language (OCL) for specifying
additional invariants, preconditions and postconditions of operations. For example, we
specify that objects of the class Person are uniquely determined by the value of the name
attribute and that the attribute name is not equal to the empty string (denoted by ’?):

context Person
inv: name <> ’’ and
Person::alllInstances()->isUnique(p:Person | p.name)

Moreover, we specify that every session has exactly one chair by the following invariant
(called onlyOneChair) of the class Session:

context Session
inv onlyOneChair: self.participants->one(p:Participant |
p-role.oclIsTypeOf (Chair))

where p.role.oclIsTypeOf (Chair) evaluates to true, if p.role is of dynamic type
Chair. Besides the usual static types (i.e., the types inferred by a static type inference),
objects in UML and other object-oriented languages have a second dynamic type concept.
This is a consequence of a family of casting functions (written oc) for an object o into
another class type C) that allows for converting the static type of objects along the class
hierarchy. The dynamic type of an object can be understood as its “initial static type”
and is unchanged by casts. We complete our example by describing the behavior of the
operation findRole as follows:

context Session::findRole(person:Person):Role

pre: self.participates.person->includes (person)
post: result=self.participants->one(p:Participant |
p.person = person).role
and self.participants = self.participants@pre
and self.name = self.name@pre

14

where in post-conditions, the operator @pre allows for accessing the previous state.

In UML, classes can contain attributes of the type of the defining class. Thus, UML
can represent (mutually) recursive datatypes. Moreover, OCL introduces also recursively
specified operations.

A key idea of defining the semantics of UML and extensions like SecureUML [12]
is to translate the diagrammatic UML features into a combination of more elementary
features of UML and OCL expressions [21]. For example, associations are usually rep-
resented by collection-valued class attributes together with OCL constraints expressing
the multiplicity. Thus, having a semantics for a subset of UML and OCL is tantamount
for the foundation of the entire method.

2.2. Formal Foundation

2.2.1. Isabelle

Isabelle [27] is a generic theorem prover. New object logics can be introduced by spec-
ifying their syntax and natural deduction inference rules. Among other logics, Isabelle
supports first-order logic, Zermelo-Fraenkel set theory and the instance for Church’s
higher-order logic (HOL).

Isabelle’s inference rules are based on the built-in meta-level implication _=—>_ allowing
to form constructs like Aj—> .- = A,,=— A, 11, which are viewed as a rule of the form
“from assumptions Ay to A, infer conclusion A,,11” and which is written in Isabelle as

A .. A
[Ai;.. s A]=— At or, in mathematical notation, 1 = (2.1)
n+1

The built-in meta-level quantification Az. x captures the usual side-constraints “x must
not occur free in the assumptions” for quantifier rules; meta-quantified variables can be
considered as “fresh” free variables. Meta-level quantification leads to a generalization
of Horn-clauses of the form:

/\xl,...,mm. [Ai;...; A= Any1 (2.2)

Isabelle supports forward- and backward reasoning on rules. For backward-reasoning,
a proof-state can be initialized and further transformed into others. For example, a proof
of ¢, using the Isar [38] language, will look as follows in Isabelle:

lemma label: ¢
apply (case_tac)
apply (simp_all)
done

(2.3)

This proof script instructs Isabelle to prove ¢ by case distinction followed by a simplifi-
cation of the resulting proof state. Such a proof state is an implicitly conjoint sequence

15

of generalized Horn-clauses (called subgoals) ¢1, ...,¢on and a goal ¢. Proof states were
usually denoted by:

label : ¢
1.
fbl (2.4)
n. én

Subgoals and goals may be extracted from the proof state into theorems of the form
[#1;...; dn]=¢ at any time; this mechanism helps to generate test theorems. Further,
Isabelle supports meta-variables (written 2z, 7, ...), which can be seen as “holes in a
term” that can still be substituted. Meta-variables are instantiated by Isabelle’s built-in
higher-order unification.

2.2.2. Higher-order Logic (HOL)

Higher-order logic (HOL) [1l, I7] is a classical logic based on a simple type system. It
provides the usual logical connectives like - A _, _—_ —_ as well as the object-logical
quantifiers Vx. P x and Jx. P x; in contrast to first-order logic, quantifiers may range
over arbitrary types, including total functions f :: « = . HOL is centered around
extensional equality - = _:: @ = a = bool. HOL is more expressive than first-order
logic, since, e.g., induction schemes can be expressed inside the logic. Being based
on some polymorphically typed)-calculus, HOL can be viewed as a combination of
a programming language like SML or Haskell and a specification language providing
powerful logical quantifiers ranging over elementary and function types.

Isabelle/HOL is a logical embedding of HOL into Isabelle. The (original) simple-
type system underlying HOL has been extended by Hindley-Milner style polymorphism
with type-classes similar to Haskell. While Isabelle/HOL is usually seen as proof as-
sistant, we use it as symbolic computation environment. Implementations on top of
Isabelle/HOL can re-use existing powerful deduction mechanisms such as higher-order
resolution, tableaux-based reasoners, rewriting procedures, Presburger arithmetic, and
via various integration mechanisms, also external provers such as Vampire [34] and the
SMT-solver Z3 [20].

Isabelle/HOL offers support for a particular methodology to extend given theories
in a logically safe way: A theory-extension is conservative if the extended theory is
consistent provided that the original theory was consistent. Conservative extensions
can be constant definitions, type definitions, datatype definitions, primitive recursive
definitions and wellfounded recursive definitions.

For instance, the library includes the type constructor 7 := L | _ : o that assigns to
each type T a type 7| disjointly extended by the exceptional element L. The function
"_':a] — ais the inverse of _, (unspecified for). Partial functions a—f are defined
as functions a=-3] supporting the usual concepts of domain (dom _) and range (ran _).

As another example of a conservative extension, typed sets were built in the Isabelle
libraries conservatively on top of the kernel of HOL as functions to bool; consequently,

16

the constant definitions for membership is as follows{]]

types aset = a = bool

definition Collect ::(a = bool) = a set — set comprehension

where Collect S =5 (2.5)
definition member ::a = a = bool — membership test

where member s S = Ss

Isabelle’s syntax engine is instructed to accept the notation {x | P} for Collect \ z. P and
the notation s € S for member sS. As can be inferred from the example, constant defi-
nitions are axioms that introduce a fresh constant symbol by some closed, non-recursive
expressions; this type of axiom is logically safe since it works like an abbreviation. The
syntactic side conditions of this axiom are mechanically checked, of course. It is straight-
forward to express the usual operations on sets like _U_,_N_:: aset = aset = aset as
conservative extensions, too, while the rules of typed set theory were derived by proofs
from these definitions.
Similarly, a logical compiler is invoked for the following statements introducing the

types option and list:

datatype option = None | Some « 56

datatype alist = Nil | Cons al 26)
Here, [| or a#l are an alternative syntax for Nil or Cons a [; moreover, [a,b,c| is de-
fined as alternative syntax for a#b#c#[]. These (recursive) statements were internally
represented in by internal type and constant definitions. Besides the constructors None,
Some, || and Cons, there is the match operation

case of None=-F | Somea=Ga (2.7)
respectively
case z of [|[=F | Cons ar=Gar. (2.8)

From the internal definitions (not shown here) several properties were automatically
derived. We show only the case for lists:

(case[] of | = F'| (a#r) = Gar)=F
(case b#t of [| = F | (a#r) = Gar)=G bt

[| # a#t — distinctness (2.9)
[a=[—P;3xt. a=a#t—-P] =P — exhaust
[P[;V at. Pt—P(a#t)] = Pz — induct

Finally, there is a compiler for primitive and wellfounded recursive function definitions.
For example, we may define the sort operation of our running test example by:

fun ins :[ac:: linorder, o list] = o list
where ins z [] =[] (2.10)
ins z (y#ys) =ifz < ythenax#y#yselsey#(ins x ys)

'To increase readability, we use a slightly simplified presentation.

17

fun sort (e :: linorder) list = o list
where sort [] =] (2.11)
sort(x#xs) =ins x (sort xs)

The internal (non-recursive) constant definition for these operations is quite involved;
however, the logical compiler will finally derive all the equations in the statements above
from this definition and make them available for automated simplification.

Thus, Isabelle/HOL also provides a large collection of theories like sets, lists, multisets,
orderings, and various arithmetic theories which only contain rules derived from conser-
vative definitions. In particular, Isabelle manages a set of executable types and operators,
i.e., types and operators for which a compilation to SML, OCaml or Haskell is possible.
Setups for arithmetic types such as int have been done; moreover any datatype and any
recursive function were included in this executable set (providing that they only consist
of executable operators). Similarly, Isabelle manages a large set of (higher-order) rewrite
rules into which recursive function definitions were included. Provided that this rule set
represents a terminating and confluent rewrite system, the Isabelle simplifier provides
also a highly potent decision procedure for many fragments of theories underlying the
constraints to be processed when constructing test theorems.

2.3. Featherweight OCL: Design Goals

Featherweight OCL is a formalization of the core of OCL aiming at formally investigating
the relationship between the various concepts. At present, it does not attempt to define
the complete OCL library. Instead, it concentrates on the core concepts of OCL as well
as the types Boolean, Integer, and typed sets (Set(T)). Following the tradition of
HOL-OCL [6], 8], Featherweight OCL is based on the following principles:

1. It is an embedding into a powerful semantic meta-language and environment,
namely Isabelle/HOL [27].

2. It is a shallow embedding in HOL; types in OCL were injectively mapped to types
in Featherweight OCL. Ill-typed OCL specifications cannot be represented in
Featherweight OCL and a type in Featherweight OCL contains exactly the values
that are possible in OCL. Thus, sets may contain null (Set{null} is a defined
set) but not invalid (Set{invalid} is just invalid).

3. Any Featherweight OCL type contains at least invalid and null (the type Void
contains only these instances). The logic is consequently four-valued, and there is
a null-element in the type Set (A).

4. Tt is a strongly typed language in the Hindley-Milner tradition. We assume that
a pre-process eliminates all implicit conversions due to subtyping by introducing
explicit casts (e.g., oclAsType()). The details of such a pre-processing are de-
scribed in [4]. Casts are semantic functions, typically injections, that may convert
data between the different Featherweight OCL types.

18

5. All objects are represented in an object universe in the HOL-OCL tradition [7].
The universe construction also gives semantics to type casts, dynamic type tests,
as well as functions such as oc1Al1Instances(), or oclIsNew().

6. Featherweight OCL types may be arbitrarily nested. For example, the expression
Set{Set{1,2}} = Set{Set{2,1}} is legal and true.

7. For demonstration purposes, the set type in Featherweight OCL may be infinite,
allowing infinite quantification and a constant that contains the set of all Integers.
Arithmetic laws like commutativity may therefore be expressed in OCL itself. The
iterator is only defined on finite sets.

8. It supports equational reasoning and congruence reasoning, but this requires a
differentiation of the different equalities like strict equality, strong equality, meta-
equality (HOL). Strict equality and strong equality require a subcalculus, “cp” (a
detailed discussion of the different equalities as well as the subcalculus “cp”—for
three-valued OCL 2.0—is given in [10]), which is nasty but can be hidden from the
user inside tools.

2.4. The Theory Organization

The semantic theory is organized in a quite conventional manner in three layers. The first
layer, called the denotational semantics comprises a set of definitions of the operators of
the language. Presented as definitional azioms inside Isabelle/HOL, this part assures the
logically consistency of the overall construction. The second layer, called logical layer, is
derived from the former and centered around the notion of validity of an OCL formula P
for a state-transition from pre-state o to post-state o/, validity statements were written
(0,0") = P. The third layer, called algebraic layer, also derived from the former layers,
tries to establish algebraic laws of the form P = P’; such laws are amenable to equational
reasoning and also help for automated reasoning and code-generation.

For space reasons, we will restrict ourselves in this paper to a few operators and make
a traversal through all three layers to give a high-level description of our formalization.
Especially, the details of the semantic construction for sets and the handling of objects
and object universes were excluded from a presentation here.

2.4.1. Denotational Semantics

OCL is composed of
1. operators on built-in data structures such as Boolean, Integer, or Set(A),

2. operators of the user-defined data-model such as accessors, type-casts and tests,
and

3. user-defined, side-effect-free methods.

19

Conceptually, an OCL expression in general and Boolean expressions in particular (i. e.,
formulae) depends on the pair (o,0’) of pre-and post-state. The precise form of states
is irrelevant for this paper (compare [I3]) and will be left abstract in this presentation.
We construct in Isabelle a type-class null that contains two distinguishable elements bot
and null. Any type of the form (o)| is an instance of this type-class with bot = L and
null = | L|. Now, any OCL type can be represented by an HOL type of the form:

V(o) := state x state — « ::null .

On this basis, we define V{((bool,),) as the HOL type for the OCL type Boolean and
define:

I[invalid :: V(«a)]7 = bot I[null :: V(a)]7 = null
I[true :: Boolean|r = |[true] | I[false]r = | |false]]
I[X .oclIsUndefined O]r = (if I[X]7 € {bot,null} then I[true]r else I[false]T)
I[X .oc1lIsInvalid)] = (if I[X]7 = bot then I[true]r else I[false]r)

where I[E] is the semantic interpretation function commonly used in mathematical
textbooks and 7 stands for pairs of pre- and post state (o, 0’). For reasons of conciseness,
we will write 6 X for not X .oclIsUndefined() and v X for not X .oclIsInvalid()
throughout this paper.

Due to the used style of semantic representation (a shallow embedding) I is in fact
superfluous and defined semantically as the identity; instead of:

I[true :: Boolean|r = | [true] |
we can therefore write:

true :: Boolean =)\ 7.||true] |

In Isabelle theories, this particular presentation of definitions paves the way for an au-
tomatic check that the underlying equation has the form of an axiomatic definition and
is therefore logically safe. Since all operators of the assertion language depend on the
context 7 = (o, 0’) and result in values that can be L, all expressions can be viewed as
evaluations from (o,0’) to a type a which must posses a L and a null-element. Given
that such constraints can be expressed in Isabelle/HOL via type classes (written: « :: k),
all types for OCL-expressions are of a form captured by

V(a) := state x state — « :: {bot, null} ,

where state stands for the system state and state x state describes the pair of pre-state
and post-state and _ := _ denotes the type abbreviation.

The current OCL semantics [29, Annex A] uses different interpretation functions for
invariants and pre-conditions; we achieve their semantic effect by a syntactic transfor-
mation _pe which replaces, for example, all accessor functions _.a by their counterparts
_.a@pre. For example, (self.a > 5)pe is just (self.a@pre > 5). This way, also invari-
ants and pre-conditions can be interpreted by the same interpretation function and have
the same type of an evaluation V(«).

20

On this basis, one can define the core logical operators not and and as follows:

I[not Xt = (case I[X]7 of
L =1
Ll =L
ILl=]] = [[~=]))

I[X and Y] = (case I[X]7 of

1 = (case I[Y]7of
1 =1
| L] =1

|

|[[true|] = L

|| |false|| = [|false]])
[|L] = (case I[Y]7of

L = 1
L] = [L]

|

[Ltrue)] = 1]

|[[false|| = ||false]])
|| [true]| = (caseI[Y]rof

1 = 1L

L] = [L]

ILly]] = [ly]])
|||false|| = ||false]])

These non-strict operations were used to define the other logical connectives in the usual
classical way: X or Y = (not X) and (not Y') or X implies Y = (not X)orY.

The default semantics for an OCL library operator is strict semantics; this means that
the result of an operation f is invalid if one of its arguments is invalid. For a semantics
comprising null, we suggest to stay conform to the standard and define the addition for
integers as follows:

Iz +y]r = HI[6 z]r = |[true] | A I[0 y]T = |[true] |

then[[[[Iz]7]] + [[I[y]11]]
else L

where the operator “+” on the left-hand side of the equation denotes the OCL addition
of type [V((int),), V((int;),)] = V((int})|) while the “+” on the right-hand side of the
equation of type [int, int] = int denotes the integer-addition from the HOL library.

2.4.2. Logical Layer

The topmost goal of the logic for OCL is to define the validity statement:

(0,0')F P,

21

where o is the pre-state and o’ the post-state of the underlying system and P is a
formula. Informally, a formula P is valid if and only if its evaluation in (o,0’) (i.e., 7
for short) yields true. Formally this means:

TE P = (I[P]r = |[true]]).

On this basis, classical, two-valued inference rules can be established for reasoning
over the logical connective, the different notions of equality, definedness and validity.
Generally speaking, rules over logical validity can relate bits and pieces in various OCL
terms and allow—via strong logical equality discussed below—the replacement of seman-
tically equivalent sub-expressions. The core inference rules are:

T = true —(7 |= false) (7 |= invalid) —(7 = null)
T Enot P = —(7 = P)
TEPandQ=7FP 7EFPand@Q=717FCQ
7 = P = (if P then Bj else By endif)Tr = B1 7
T = not P = (if P then Bj else By endif)r = By 7
TEP=717F0/P 71 X=7FvX

By the latter two properties it can be inferred that any valid property P (so for example:
a valid invariant) is defined, which allows to infer for terms composed by strict operations
that their arguments and finally the variables occurring in it are valid or defined.

We propose to distinguish the strong logical equality (written _ = _), which follows
the general principle that “equals can be replaced by equals,” from the strict referential

equality (written _ = _), which is an object-oriented concept that attempts to approxi-
mate and to implement the former. Strict referential equality, which is the default in the
OCL language and is written _ = _ in the standard, is an overloaded concept and has

to be defined for each OCL type individually; for objects resulting from class definitions,
it is implemented by comparing the references to the objects. In contrast, strong logical
equality is a polymorphic concept which is defined once and for all by:

IIX £Y]r = |I[X]r = I[Y]7]]
It enjoys nearly the laws of a congruence:
Tk (@2)

TE@ESy)=r1kE{y=2
TE@2yY)=1EF@y22)=1F@%22)
cpP=71F@2y)=717F(Pz)= 1} (Py)
where the predicate cp stands for context-passing, a property that is characterized by
P(X) equals A\7. P(A_. X7)7. It means that the state tuple 7 = (0,0’) is passed
unchanged from surrounding expressions to sub-expressions. it is true for all pure OCL

expressions (but not arbitrary mixtures of OCL and HOL) in Featherweight OCL. The
necessary side-calculus for establishing cp can be fully automated.

22

The logical layer of the Featherweight OCL rules gives also a means to convert an OCL
formula living in its four-valued world into a representation that is classically two-valued
and can be processed by standard SMT solvers such as CVC3 [2] or Z3 [20]. J-closure
rules for all logical connectives have the following format, e. g.:

TEIx= (T E notz) = (—(1 =Ex))
TEdr=717EFdy= (TExandy)=(TEzATEvY)
TEde=T1Fdy
— (r = (z impliss) = (7 = 2) — (7 - 9))

Together with the general case-distinction
TEfrVTET 2 invalidV T 2 2 null,

which is possible for any OCL type, a case distinction on the variables in a formula can
be performed; due to strictness rules, formulae containing somewhere a variable x that is
known to be invalid or null reduce usually quickly to contradictions. For example, we
can infer from an invariant 7 =2 =y - 3that we have 7 =2 =y - 3AT = dx AT = dy.
We call the latter formula the d-closure of the former. Now, we can convert a formula
like 7 =z > 0o0r 3 * y >z * x into the equivalent formula 7 =2 >0V 7T E3*y>z*x
and thus internalize the OCL-logic into a classical (and more tool-conform) logic. This
works—for the price of a potential, but due to the usually “rich” §-closures of invariants
rare—exponential blow-up of the formula for all OCL formulas.

2.4.3. Algebraic Layer

Based on the logical layer, we build a system with simpler rules which are amenable
to automated reasoning. We restrict ourselves to pure equations on OCL expressions,
where the used equality is the meta-(HOL-)equality.

Our denotational definitions on not and and can be re-formulated in the following
ground equations:

v invalid = false v null = true
v true = true v false = true
6 invalid = false 0 null = false
0 true = true 0 false = true
not invalid = invalid not null = null
not true = false not false = true
(null and true) = null (null and false) = false
(null and null) = null (null and invalid) = invalid
(false and true) = false (false and false) = false
(false and null) = false (false and invalid) = false

23

(true and true) = true (true and false) = false
(true and null) = null (true and invalid) = invalid
(invalid and true) = invalid
(invalid and false) = false
(invalid and null) = invalid
(invalid and invalid) = invalid

On this core, the structure of a conventional lattice arises:

Xand X = X XandY =Y and X
false and X = false X and false — false
trueand X = X X and true = X

X and (YandZ) =X and Y and 7

as well as the dual equalities for _ or _ and the De Morgan rules. This wealth of
algebraic properties makes the understanding of the logic easier as well as automated
analysis possible: it allows for, for example, computing a DNF of invariant systems (by
clever term-rewriting techniques) which are a prerequisite for J-closures.

The above equations explain the behavior for the most-important non-strict opera-
tions. The clarification of the exceptional behaviors is of key-importance for a seman-
tic definition the standard and the major deviation point from HOL-OCL [6, §], to
Featherweight OCL as presented here. The standard expresses at many places that
most operations are strict, i.e., enjoy the properties (exemplary for _ + _):

invalid + X = invalid X + invalid = invalid
X +null = invalid null + X = invalid
null.oclAsType(X) = invalid
besides “classical” exceptional behavior:
1/ 0 =invalid 1/ null = invalid
null->isEmpty() = true

Moreover, there is also the proposal to use null as a kind of “don’t know” value for
all strict operations, not only in the semantics of the logical connectives. Expressed in

algebraic equations, this semantic alternative (this is not Featherweight OCL at present)
would boil down to:

invalid + X = invalid X + invalid = invalid
X +null =null null + X = null
null.oclAsType(X) = null
1/ 0 = invalid 1/ null = null

null->isEmpty() = null

While this is logically perfectly possible, while it can be argued that this semantics is
“intuitive”, and although we do not expect a too heavy cost in deduction when computing

24

d-closures, we object that there are other, also “intuitive” interpretations that are even
more wide-spread: In classical spreadsheet programs, for example, the semantics tends
to interpret null (representing empty cells in a sheet) as the neutral element of the
type, so 0 or the empty string, for exampleE] This semantic alternative (this is not
Featherweight OCL at present) would yield:

invalid + X = invalid X + invalid = invalid
X +null =X null + X = X
null.oclAsType(X) = invalid
1/ 0= invalid 1 / null = invalid

null->isEmpty () = true

Algebraic rules are also the key for execution and compilation of Featherweight OCL
expressions. We derived, e. g.:

0 Set{} = true
0 (X->including(x)) =d X and 6 =
Set{}->includes(z) = (if v x then false
else invalid endif)

(X->including(z)->includes(y)) =

(if § X

then ifz =y
then true
else X->includes (y)
endif

else invalid
endif)

As Set{1,2} is only syntactic sugar for

Set{}->including (1) ->including (2)

an expression like Set{1,2}->includes (null) becomes decidable in Featherweight OCL
by a combination of rewriting and code-generation and execution. The generated doc-
umentation from the theory files can thus be enriched by numerous “test-statements”
like:

value "7 |=(Set{Set{2,null}} = Set{Set{null,2}})”

which have been machine-checked and which present a high-level and in our opinion
fairly readable information for OCL tool manufactures and users.

2In spreadsheet programs the interpretation of null varies from operation to operation; e. g., the average
function treats null as non-existing value and not as 0.

25

2.5. Object-oriented Datatype Theories

As mentioned earlier, the OCL is composed of
1. operators on built-in data structures such as Boolean, Integer or Set(_), and
2. operators of the user-defined data model such as accessors, type casts and tests.

In the following, we will refine the concepts of a user-defined data-model (implied by
a class-model, visualized by a class-diagram) as well as the notion of state used in the
previous section to much more detail. In contrast to wide-spread opinions, UML class
diagrams represent in a compact and visual manner quite complex, object-oriented data-
types with a surprisingly rich theory. It is part of our endeavor here to make this theory
explicit and to point out corner cases. A UML class diagram—underlying a given OCL
formula—produces several implicit operations which become accessible via appropriate
OCL syntax:

1. Classes and class names (written as C1, ..., C,), which become types of data in
OCL. Class names declare two projector functions to the set of all objects in a
state: C;.allInstances() and C;.alllnstances@pre(),

2. an inheritance relation _ < _ on classes and a collection of attributes A associated
to classes,

3. two families of accessors; for each attribute a in a class definition (denoted X.a ::
C; - Aand X.a6pre :: C; = Afor Ac {V(...]),C1,...,Cp}),

4. type casts that can change the static type of an object of a class (X. oc1AsType (C;)
of type C; — ()

5. two dynamic type tests (X.oclIsType0f (C;) and X.oclIsKindOf (C;)),

6. and last but not least, for each class name C; there is an instance of the overloaded
referential equality (written _ = _).

Assuming a strong static type discipline in the sense of Hindley-Milner types,
Featherweight OCL has no “syntactic subtyping.” This does not mean that subtyping
cannot be expressed semantically in Featherweight OCL; by giving a formal semantics
to type-casts, subtyping becomes an issue of the front-end that can make implicit type-
coersions explicit by introducing explicit type-casts. Our perspective shifts the emphasis
on the semantic properties of casting, and the necessary universe of object representa-
tions (induced by a class model) that allows to establish them.

2.5.1. Object Universes

It is natural to construct system states by a set of partial functions f that map object
identifiers oid to some representations of objects:

typedef a state := {0 :: oid—a | inv, (o)} (2.12)

26

where inv, is a to be discussed invariant on states.

The key point is that we need a common type « for the set of all possible object
representations. Object representations model “a piece of typed memory,” i.e., a kind of
record comprising administration information and the information for all attributes of
an object; here, the primitive types as well as collections over them are stored directly
in the object representations, class types and collections over them are represented by
oid’s (respectively lifted collections over them).

In a shallow embedding which must represent UML types injectively by HOL types,
there are two fundamentally different ways to construct such a set of object representa-
tions, which we call an object universe A:

1. an object universe can be constructed for a given class model, leading to closed
world semantics, and

2. an object universe can be constructed for a given class model and all its extensions
by new classes added into the leaves of the class hierarchy, leading to an open world
semantics.

For the sake of simplicity, we chose the first option for Featherweight OCL, while HOL-
OCL [7] used an involved construction allowing the latter.

A naive attempt to construct 2 would look like this: the class type C; induced by a
class will be the type of such an object representation: C; := (oid x A;; X -- - x A;,) where
the types A;,, ..., A;, are the attribute types (including inherited attributes) with class
types substituted by oid. The function OidOf projects the first component, the oid, out
of an object representation. Then the object universe will be constructed by the type
definition:

A:=C1+---+C,. (2.13)

It is possible to define constructors, accessors, and the referential equality on this object
universe. However, the treatment of type casts and type tests cannot be faithful with
common object-oriented semantics, be it in UML or Java: casting up along the class
hierarchy can only be implemented by loosing information, such that casting up and
casting down will not give the required identity:

X.oclIsTypeOf (Cy) implies X .oclAsType(C;).oclAsType(Cy) = X (2.14)
whenever Cy, < C; and X is valid. (2.15)

To overcome this limitation, we introduce an auxiliary type Ciext for class type exten-
sion; together, they were inductively defined for a given class diagram:
Let C; be a class with a possibly empty set of subclasses {C},,...,Cj,, }.

e Then the class type extension Ciext associated to Cj is Aj; x -+ X A;, X (Cjrext +
o+ + Cjext)] Where A; ranges over the local attribute types of C; and Cjext
ranges over all class type extensions of the subclass C; of Cj.

27

e Then the class type for C; is oid x Aj; x --- x Aj, X (Cjjext + -+ Cjext)| Where
Aj;, ranges over the inherited and local attribute types of C; and C,cxt ranges over
all class type extensions of the subclass C; of Cj.

Example instances of this scheme—outlining a compiler—can be found in
and

This construction can not be done in HOL itself since it involves quantifications and
iterations over the “set of class-types”; rather, it is a meta-level construction. Technically,
this means that we need a compiler to be done in SML on the syntactic “meta-model”-
level of a class model.

With respect to our semantic construction here, which above all means is intended to
be type-safe, this has the following consequences:

e there is a generic theory of states, which must be formulated independently from
a concrete object universe,

e there is a principle of translation (captured by the inductive scheme for class type
extensions and class types above) that converts a given class model into an concrete
object universe,

e there are fixed principles that allow to derive the semantic theory of any concrete
object universe, called the object-oriented datatype theory.

We will work out concrete examples for the construction of the object-universes in
[Section 6.1 and [Section 7.1] and the derivation of the respective datatype theories.
While an automatization is clearly possible and desirable for concrete applications of
Featherweight OCL, we consider this out of the scope of this paper which has a focus
on the semantic construction and its presentation.

2.5.2. Accessors on Objects and Associations

Our choice to use a shallow embedding of OCL in HOL and, thus having an injective
mapping from OCL types to HOL types, results in type-safety of Featherweight OCL.
Arguments and results of accessors are based on type-safe object representations and
not oid’s. This implies the following scheme for an accessor:

e The evaluation and extraction phase. If the argument evaluation results in an
object representation, the oid is extracted, if not, exceptional cases like invalid
are reported.

e The dereferentiation phase. The oid is interpreted in the pre- or post-state, the
resulting object is casted to the expected format. The exceptional case of nonex-
istence in this state must be treated.

e The selection phase. The corresponding attribute is extracted from the object
representation.

28

e The re-construction phase. The resulting value has to be embedded in the adequate
HOL type. If an attribute has the type of an object (not value), it is represented
by an optional (set of) oid, which must be converted via dereferentiation in one
of the states to produce an object representation again. The exceptional case of
nonexistence in this state must be treated.

The first phase directly translates into the following formalization:

definition
eval_extract X f = (A 7. case X Tof L = invalid T exception
| L = invalidr deref. null (2.16)

| Lobj, = f(oidof obj)T)

For each class C, we introduce the dereferentiation phase of this form:

definition deref_oid¢ fst_snd f oid = (A 7. case (heap (fst_snd 7)) oid of

dincobj, = fobjT

|- = invalid) (2.17)

The operation yields undefined if the oid is uninterpretable in the state or referencing
an object representation not conforming to the expected type.

We turn to the selection phase: for each class C in the class model with at least one
attribute, and each attribute a in this class, we introduce the selection phase of this
form:

definition select, f = (\ mkc oid ---L--+ Cxext = null

' 2.18
| mkeg oid - a0 Cxes = f(N\2_ 7,)a) (2.18)

This works for definitions of basic values as well as for object references in which the
a is of type oid. To increase readability, we introduce the functions:

definition in_pre_state = fst first component
definition in_post_state = snd second component (2.19)
definition reconst_basetype =id identity function

Let _.getBase be an accessor of class C yielding a value of base-type Apgse. Then its
definition is of the form:

definition _.getBase :1C = Apgse
where X .getBase = eval extract X (deref_oidc in post_state (2.20)
(selectgetBase reconst_basetype))

Let _.getObject be an accessor of class C' yielding a value of object-type Agpject-
Then its definition is of the form:

definition _.getObject ::C = Agpject
where X .getObject = eval extract X (deref_oid¢ in_post_state (2.21)
(selectgetobject (deref_oidc in_post_state)))

29

The variant for an accessor yielding a collection is omitted here; its construction follows
by the application of the principles of the former two. The respective variants _. a @pre
were produced when in_post_state is replaced by in_pre_state.

Examples for the construction of accessors via associations can be found in
[Section 6.1.8] the construction of accessors via attributes in The con-
struction of casts and type tests —>oc1IsTypeOf () and ->o0clIsKind0f () is similarly.

In the following, we discuss the role of multiplicities on the types of the accessors.
Depending on the specified multiplicity, the evaluation of an attribute can yield just a
value (multiplicity 0..1 or 1) or a collection type like Set or Sequence of values (other-
wise). A multiplicity defines a lower bound as well as a possibly infinite upper bound on
the cardinality of the attribute’s values.

Single-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is one, then an evaluation of
the attribute yields a single value. Thus, the evaluation result is not a collection. If the
lower bound specified by the multiplicity is zero, the evaluation is not required to yield
a non-null value. In this case an evaluation of the attribute can return null to indicate
an absence of value.

To facilitate accessing attributes with multiplicity 0. .1, the OCL standard states that
single values can be used as sets by calling collection operations on them. This implicit
conversion of a value to a Set is not defined by the standard. We argue that the resulting
set cannot be constructed the same way as when evaluating a Set literal. Otherwise,
null would be mapped to the singleton set containing null, but the standard demands
that the resulting set is empty in this case. The conversion should instead be defined as
follows:

context OclAny::asSet():T
post: if self = null then result = Set{}
else result = Set{selfl} endif

Collection-Valued Attributes

If the upper bound specified by the attribute’s multiplicity is larger than one, then an
evaluation of the attribute yields a collection of values. This raises the question whether
null can belong to this collection. The OCL standard states that null can be owned
by collections. However, if an attribute can evaluate to a collection containing null, it
is not clear how multiplicity constraints should be interpreted for this attribute. The
question arises whether the null element should be counted or not when determining
the cardinality of the collection. Recall that null denotes the absence of value in the
case of a cardinality upper bound of one, so we would assume that null is not counted.
On the other hand, the operation size defined for collections in OCL does count null.

We propose to resolve this dilemma by regarding multiplicities as optional. This point
of view complies with the UML standard, that does not require lower and upper bounds

30

to be defined for multiplicitiesﬁ In case a multiplicity is specified for an attribute, i.e., a
lower and an upper bound are provided, we require any collection the attribute evaluates
to not contain null. This allows for a straightforward interpretation of the multiplicity
constraint. If bounds are not provided for an attribute, we consider the attribute values
to not be restricted in any way. Because in particular the cardinality of the attribute’s
values is not bounded, the result of an evaluation of the attribute is of collection type.
As the range of values that the attribute can assume is not restricted, the attribute can
evaluate to a collection containing null. The attribute can also evaluate to invalid.
Allowing multiplicities to be optional in this way gives the modeler the freedom to define
attributes that can assume the full ranges of values provided by their types. However,
we do not permit the omission of multiplicities for association ends, since the values of
association ends are not only restricted by multiplicities, but also by other constraints
enforcing the semantics of associations. Hence, the values of association ends cannot be
completely unrestricted.

The Precise Meaning of Multiplicity Constraints

We are now ready to define the meaning of multiplicity constraints by giving equivalent
invariants written in OCL. Let a be an attribute of a class C with a multiplicity specifying
a lower bound m and an upper bound n. Then we can define the multiplicity constraint
on the values of attribute a to be equivalent to the following invariants written in OCL:

context C inv lowerBound: a->size() >= m
inv upperBound: a->size() <= n
inv notNull: not a->includes (null)

If the upper bound n is infinite, the second invariant is omitted. For the definition of
these invariants we are making use of the conversion of single values to sets described
in If n < 1, the attribute a evaluates to a single value, which is then
converted to a Set on which the size operation is called.

If a value of the attribute a includes a reference to a non-existent object, the attribute
call evaluates to invalid. As a result, the entire expressions evaluate to invalid, and
the invariants are not satisfied. Thus, references to non-existent objects are ruled out
by these invariants. We believe that this result is appropriate, since we argue that the
presence of such references in a system state is usually not intended and likely to be the
result of an error. If the modeler wishes to allow references to non-existent objects, she
can make use of the possibility described above to omit the multiplicity.

2.5.3. Other Operations on States

Defining _.allInstances() is straight-forward; the only difference is the property
T .alllnstances()>excludes(null) which is a consequence of the fact that null’s
are values and do not “live” in the state. In our semantics which admits states with

3We are however aware that a well-formedness rule of the UML standard does define a default bound
of one in case a lower or upper bound is not specified.

31

“dangling references,” it is possible to define a counterpart to _.oclIsNew() called
_.oclIsDeleted() which asks if an object id (represented by an object representation)
is contained in the pre-state, but not the post-state.

OCL does not guarantee that an operation only modifies the path-expressions men-
tioned in the postcondition, i.e., it allows arbitrary relations from pre-states to post-
states. This framing problem is well-known (one of the suggested solutions is [23]). We
define

(S:Set(0clAny))->o0clIsModifiedOnly ():Boolean

where S is a set of object representations, encoding a set of oid’s. The semantics of this
operator is defined such that for any object whose oid is not represented in S and that
is defined in pre and post state, the corresponding object representation will not change
in the state transition. A simplified presentation is as follows:

: / /

I[X->o0clIsModifiedOnly()](o,0’) = {J_ . ') it X o L Vmulle X
VieM.oi=0"1i, otherwise.

where X’ = I[X](0,0") and M = (dom o Ndom ¢’) — {OidOf z| x € "X""}. Thus, if we
require in a postcondition Set{}->o0c1IsModifiedOnly () and exclude via _.oclIsNew()
and _.oclIsDeleted() the existence of new or deleted objects, the operation is a query
in the sense of the OCL standard, i.e., the isQuery property is true. So, whenever we
have 7 F X—>excluding(s.a)j>oclIsModifiedOnly () and 7 F X->forAll(z|not(z =
s.a)), we can infer that 7 F s.a £ s.a @pre.

2.6. A Machine-checked Annex A

Isabelle, as a framework for building formal tools [37], provides the means for generating
formal documents. With formal documents (such as the one you are currently reading)
we refer to documents that are machine-generated and ensure certain formal guaran-
tees. In particular, all formal content (e.g., definitions, formulae, types) are checked for
consistency during the document generation.

For writing documents, Isabelle supports the embedding of informal texts using a
ITEX-based markup language within the theory files. To ensure the consistency, Isabelle
supports to use, within these informal texts, antiquotations that refer to the formal parts
and that are checked while generating the actual document as PDF. For example, in an
informal text, the antiquotation @{thm "not_not”} will instruct Isabelle to lock-up the
(formally proven) theorem of name ocl.not_not and to replace the antiquotation with
the actual theorem, i.e., not (not x) = x.

illustrates this approach: shows the jEdit-based development
environment of Isabelle with an excerpt of one of the core theories of Featherweight OCL.
shows the generated PDF document where all antiquotations are replaced.
Moreover, the document generation tools allows for defining syntactic sugar as well as
skipping technical details of the formalization.

32

File Edit Search Markers Folding View Utiliies Macros Plugins Help File Edit View Go Bookmarks Help

[0 OCL_core.thy (~/projects/hol-tastgen/hol-testgen/add -ons/Featherweight-QCL/) ™ . . L
Y| L) = L) &= definition ocl-and :: () Boolean, () Booiean] = (") Boolean (infix] and 50)
P | (LTrel) = 1L o where Xamd ¥ = (3 7. case X 7 of

— 1 = (ease ¥ 7 of
446 | [[False]] = [|False]]) [+ -1
447| | [[True|] = (case Y 7 of — | L) =1
418 1= 1 § | [[Frue]] = L
440] | 1L = L) z lmse]] = [Fatse]y
150) = L) = ILL) = (e d 7 of
451 | [[False]] = || False)" T
< | [True]] = | L]
453| text{* | [| False]] = || Fase]|)
454] The gfconst "not"} is \emph{not} defined as a strict function; proximity to H | || True || = (case ¥ 7 of
455 lattice laws implies that we \emph{need} a definition of @{const "not'} that | \i\: t

456| satisfies a{thm "not_not"} e = |||WHZ‘
457] | || Fatse |) = || False |])

458 In textbook notation, the logical cere constructs @{const "not'} and
450) @fconst "ocl_and"} were represented as follows: *}

460|Lenna textbook_not:

Note that not is not defined as a strict function; proximity to lattice laws implies that

we need a definition of not that satisfies not(not(r))=z

461 “Ifnot (X)] = = (case I[¥] 7 of L = 1 Tn textbook notation, the logical core constructs nof and op and were represented as
452] I LL)=1L1] follows:

463 Pl = - lemma tezthook-not

464|by(sinp add: Sem_def not_def) Iaot(X)] 7= (case [[X] 7 of L = L

a5 - [[L)=11]

< B Hl=z]]=I[l-=1)

] ‘\ - ‘\ Console ‘\ Output ‘\ Prover Session | by (simp add: Sem-def not-def)

452,1(16517/36292) (isabelle, sidekick, UTF—8—Isabelle) UGB/ 282Mb_ 10:37

(a) The Isabelle jEdit environment. (b) The generated formal document.

Figure 2.2.: Generating documents with guaranteed syntactical and semantical
consistency.

Thus, applying the Featherweight OCL approach to writing an updated Annex A that
provides a formal semantics of the most fundamental concepts of OCL would ensure

1. that all formal context is syntactically correct and well-typed, and
2. all formal definitions and the derived logical rules are semantically consistent.

Overall, this would contribute to one of the main goals of the OCL 2.5 RFP, as discussed
at the OCL meeting in Aachen [15].

33

Part II.

A Proposal for Formal Semantics of
OCL 2.5

35

3. Formalization |: Core Definitions

theory
OCL-core

imports
Main

begin

3.1. Preliminaries

3.1.1. Notations for the Option Type

First of all, we will use a more compact notation for the library option type which occur
all over in our definitions and which will make the presentation more like a textbook:

notation Some (|(-)])
notation None (1)

The following function (corresponding to the in the Isabelle/HOL library) is defined
as the inverse of the injection Some.

fun drop :: ‘a option = ‘o ([(-)])
where drop-lift[simp]: [|v]] = v

3.1.2. Minimal Notions of State and State Transitions

Next we will introduce the foundational concept of an object id (oid), which is just some
infinite set.

In order to assure executability of as much as possible formulas, we fixed the type of
object id’s to just natural numbers.

type-synonym oid = nat

We refrained from the alternative:
type-synonym oid = ind
which is slightly more abstract but non-executable.

States are just a partial map from oid’s to elements of an object universe 2, and state
transitions pairs of states ...
record ("A)state =
heap :: otd — A
assocsg :: oid — (oid x oid) list
assocss :: oid — (oid X oid x oid) list

37

type-synonym (")st = U state x " state

3.1.3. Prerequisite: An Abstract Interface for OCL Types

To have the possibility to nest collection types, such that we can give semantics to
expressions like Set{Set{2},null}, it is necessary to introduce a uniform interface for
types having the invalid (= bottom) element. The reason is that we impose a data-
invariant on raw-collection types_code which assures that the invalid element is not
allowed inside the collection; all raw-collections of this form were identified with the
tnvalid element itself. The construction requires that the new collection type is not
comparable with the raw-types (consisting of nested option type constructions), such
that the data-invariant must be expressed in terms of the interface. In a second step,
our base-types will be shown to be instances of this interface.

This uniform interface consists in a type class requiring the existence of a bot and a
null element. The construction proceeds by abstracting the null (defined by | L | on ‘a
option option) to a null element, which may have an arbitrary semantic structure, and
an undefinedness element | to an abstract undefinedness element bot (also written L
whenever no confusion arises). As a consequence, it is necessary to redefine the notions
of invalid, defined, valuation etc. on top of this interface.

This interface consists in two abstract type classes bot and null for the class of all
types comprising a bot and a distinct null element.

class bot =
fixes bot :: 'a
assumes nonEmpty : 3 z. x # bot

class null = bot +
fixes null :: 'a
assumes null-is-valid : null # bot

3.1.4. Accommodation of Basic Types to the Abstract Interface

In the following it is shown that the “option-option” type is in fact in the null class
and that function spaces over these classes again “live” in these classes. This motivates
the default construction of the semantic domain for the basic types (Boolean, Integer,
Real, ...).
instantiation option :: (type)bot
begin

definition bot-option-def: (bot::'a option) = (None::'a option)

instance (proof)
end

instantiation option :: (bot)null

38

begin
definition null-option-def: (null::’a::bot option) = | bot |
instance (proof)

end

instantiation fun :: (type,bot) bot
begin
definition bot-fun-def: bot = (\ z. bot)

instance (proof)
end

instantiation fun :: (type,null) null
begin
definition null-fun-def: (null::'a = 'bunull) = (X z. null)

instance (proof)
end

A trivial consequence of this adaption of the interface is that abstract and concrete
versions of null are the same on base types (as could be expected).

3.1.5. The Semantic Space of OCL Types: Valuations

Valuations are now functions from a state pair (built upon data universe %) to an
arbitrary null-type (i. e., containing at least a destinguished null and invalid element).

type-synonym (A,'«) val = A st = 'a::null

The definitions for the constants and operations based on valuations will be geared
towards a format that Isabelle can check to be a “conservative” (i.e., logically safe)
axiomatic definition. By introducing an explicit interpretation function (which happens
to be defined just as the identity since we are using a shallow embedding of OCL into
HOL), all these definitions can be rewritten into the conventional semantic textbook
format as follows:
definition Sem :: ‘a = 'a (I[-])
where I[z] = z

As a consequence of semantic domain definition, any OCL type will have the two
semantic constants invalid (for exceptional, aborted computation) and null:

definition invalid :: ("A,’a::bot) val
where invalid =)\ 7. bot

This conservative Isabelle definition of the polymorphic constant invalid is equivalent
with the textbook definition:

lemma textbook-invalid: I[invalid]T = bot

39

(proof)
Note that the definition :

definition null = 7 (A anull) val”
where "null =)\ 7. null”

is not necessary since we defined the entire function space over null types again as
null-types; the crucial definition is null = \z. null. Thus, the polymorphic constant null
is simply the result of a general type class construction. Nevertheless, we can derive the
semantic textbook definition for the OCL null constant based on the abstract null:

lemma textbook-null-fun: I[null::("A, c::null) val] 7 = (null::'az:null)
(proof)

3.2. Definition of the Boolean Type
The semantic domain of the (basic) boolean type is now defined as the Standard: the
space of valuation to bool option option:

type-synonym (") Boolean = ("2,bool option option) val

3.2.1. Basic Constants
lemma bot-Boolean-def : (bot::("A)Boolean) = (X 7. L)
(proof)

lemma null-Boolean-def : (null::("A)Boolean) = (A 7. | L])
(proof)

definition true :: ("A)Boolean
where true =)\ 7. || True]]

definition false :: (") Boolean
where false =)\ 7. || False]]

lemma bool-split: X 7 = invalid 7V X 7 = null 7V
X7t=truer V X 7=falser

(proof)

lemma [simp]: false (a, b) = || False] |
(proof)

lemma [simp]: true (a, b) = || True]|
(proof)

lemma textbook-true: I[true] 7 = || True]]

(proof)

40

lemma textbook-false: I[false] T = || False] |

(proof)

Name

Theorem

textbook-invalid
textbook-null-fun
textbook-true
textbook-false

I[invalid] ?T = OCL-core.bot-class.bot
I[null] 27 = null
I[true] ¢ = || True]]
I[false] ?T = || False]]

Table 3.1.: Basic semantic constant definitions of the logic (except null)

3.2.2. Validity and Definedness

However, this has also the consequence that core concepts like definedness, validness and
even cp have to be redefined on this type class:

definition valid :: ("A, a::null)val = ("A)Boolean (v - [100]100)

where v X = N7 .4 X 7 = bot

T then false T else true T

lemma validl [simp]: v invalid = false

(proof)

lemma valid2[simp]: v null = true
{proof)

lemma valid3[simp]: v true = true

{proof)

lemma valid/[simp]: v false = true
(proof)

lemma cp-valid: (v X) 7= (v (\ -

(proof)

XT7)T

definition defined :: ("A,’a::null)val = ("A)Boolean (§ - [100]1100)

where 6§ X = N7 .4 X 7 = bot

7 VX 7 = null 7 then false 7 else true

The generalized definitions of invalid and definedness have the same properties as the

old ones :

lemma defined1[simp]: § invalid = false

(proof)

41

lemma defined?2[simp]: § null = false
(proof)

lemma defined3[simp]: § true = true
{proof)

lemma defined4 [simp]: § false = true

{proof)

lemma defined5[simpl: § 6 X = true
{proof)

lemma defined6[simp]: § v X = true
{proof)

lemma valid5[simp]: v v X = true

{proof)

lemma valid6[simp]: v § X = true

{proof)

lemma cp-defined:(6 X)r =0 (\-.- X 7)) 7
(proof)

The definitions above for the constants defined and wvalid can be rewritten into the
conventional semantic "textbook” format as follows:
lemma textbook-defined: I[6(X)] 7 = (if I[X] 7 = I[bot] 7 Vv I[X] 7 = I[null] T
then I[false] T
else I[true] 7)

(proof)

lemma textbook-valid: I[u(X)] 7 = (if I[X] 7 = I[bot] T
then I[[false] T
else I[true])

(proof)
[Table 3.2 and [Table 3.3l summarize the results of this section.

Name Theorem

textbook-defined — I[6 X|| 7 = (if I[X] 7 = I[OCL-core.bot-class.bot] 7 V I[X] T
= I[null] 7 then I[false] T else I[true] T)
textbook-valid Ifv X] 7 = (if I[X] 7 = I[OCL-core.bot-class.bot] T then
I[false] T else I[true] T)

Table 3.2.: Basic predicate definitions of the logic.

42

Name Theorem

defined1 6 invalid = false
defined?2 6 null = false
defined3 0 true = true
defined, 0 false = true
defined5 00 ?2X = true
defined6 o v ?X = true

Table 3.3.: Laws of the basic predicates of the logic.

3.3. The Equalities of OCL

The OCL contains a particular version of equality, written in Standard documents _ = _
and _ <> _ for its negation, which is referred as weak referential equality hereafter and
for which we use the symbol _ =_ throughout the formal part of this document. Its
semantics is motivated by the desire of fast execution, and similarity to languages like
Java and C, but does not satisfy the needs of logical reasoning over OCL expressions
and specifications. We therefore introduce a second equality, referred as strong equal-
ity or logical equality and written _ = _ which is not present in the current standard
but was discussed in prior texts on OCL like the Amsterdam Manifesto [19] and was
identified as desirable extension of OCL in the Aachen Meeting [I5] in the future 2.5
OCL Standard. The purpose of strong equality is to define and reason over OCL. It
is therefore a natural task in Featherweight OCL to formally investigate the somewhat
quite complex relationship between these two.

Strong equality has two motivations: a pragmatic one and a fundamental one.

1. The pragmatic reason is fairly simple: users of object-oriented languages want
something like a “shallow object value equality”. You will want to say a.boss =
b.boss@pre instead of

a.boss =b.boss@pre and (* just the pointers are equal! x)
a.boss.name =b.boss@pre.name@pre and
a.boss.age =b.bossQ@Qpre.age@pre

Breaking a shallow-object equality down to referential equality of attributes is cum-
bersome, error-prone, and makes specifications difficult to extend (add for example
an attribute sex to your class, and check in your OCL specification everywhere that
you did it right with your simulation of strong equality). Therefore, languages like
Java offer facilities to handle two different equalities, and it is problematic even
in an execution oriented specification language to ignore shallow object equality
because it is so common in the code.

2. The fundamental reason goes as follows: whatever you do to reason consistently
over a language, you need the concept of equality: you need to know what expres-
sions can be replaced by others because they mean the same thing. People call

43

this also “Leibniz Equality” because this philosopher brought this principle first
explicitly to paper and shed some light over it. It is the theoretic foundation of
what you do in an optimizing compiler: you replace expressions by equal ones,
which you hope are easier to evaluate. In a typed language, strong equality exists
uniformly over all types, it is “polymorphic” _ = _:: a * a — bool—this is the way
that equality is defined in HOL itself. We can express Leibniz principle as one
logical rule of surprising simplicity and beauty:

s=t=> P(s) = P(t) (3.1)

“Whenever we know, that s is equal to ¢, we can replace the sub-expression s in a
term P by ¢ and we have that the replacement is equal to the original.”

While weak referential equality is defined to be strict in the OCL standard, we will
define strong equality as non-strict. It is quite nasty (but not impossible) to define the
logical equality in a strict way (the substitutivity rule above would look more complex),
however, whenever references were used, strong equality is needed since references refer
to particular states (pre or post), and that they mean the same thing can therefore not
be taken for granted.

3.3.1. Definition

The strict equality on basic types (actually on all types) must be exceptionally defined
on null—otherwise the entire concept of null in the language does not make much sense.
This is an important exception from the general rule that null arguments—especially if
passed as “self”-argument—Ilead to invalid results.

We define strong equality extremely generic, even for types that contain a null or L
element. Strong equality is simply polymorphic in Featherweight OCL, i.e., is defined
identical for all types in OCL and HOL.

definition StrongEq:: [st = 'a,"A st = 'a] = ("A)Boolean (infixl = 30)
where X2£Y= A7 [[X7=Yr71]]

From this follow already elementary properties like:
lemma [simp,code-unfold]: (true = false) = false

(proof)

lemma [simp,code-unfold]: (false = true) = false

(proof)

In contrast, referential equality behaves differently for all types—on value types, it
is basically strong equality for defined values, but on object types it will compare
references—we introduce it as an overloaded concept and will handle it for each type
instance individually.

consts StrictRefEq :: [("A,’a)val,("A,'a)val] = ("A)Boolean (infix]l = 30)

44

Here is a first instance of a definition of weak equality—for the special case of the type
Rl Boolean, it is just the strict extension of the logical equality:

defs StrictRefEqBoolean|code-unfold] :
(z::("A)Boolean) =y = X 7. if (vz) T =truet A (v y) T = true 7
then (z = y)T
else invalid T

which implies elementary properties like:

lemma [simp,code-unfold] : (true = false) = false

(proof)

lemma [simp,code-unfold] : (false = true) = false
(proof)

lemma [simp,code-unfold] : (invalid = false) = invalid
(proof)

lemma [simp,code-unfold] : (invalid = true) = invalid
(proof)

lemma [simp,code-unfold)] : (false = invalid) = invalid
(proof)

lemma [simp,code-unfold] : (true = invalid) = invalid
(proof)

lemma [simp,code-unfold] : ((invalid::("A)Boolean) = invalid) = invalid
(proof)

Thus, the weak equality is not reflexive.
lemma null-non-false [simp,code-unfold):(null = false) = false

{proof)

lemma null-non-true [simp,code-unfold]:(null = true) = false

(proof)

lemma false-non-null [simp,code-unfold]:(false = null) = false

{proof)

lemma true-non-null [simp,code-unfold]:(true = null) = false

{proof)

3.3.2. Fundamental Predicates on Strong Equality

Equality reasoning in OCL is not humpty dumpty. While strong equality is clearly an
equivalence:

lemma StrongEq-refl [simp]: (X £ X) = true
(proof)

lemma StrongEq-sym: (X £ Y) = (Y £ X)
(proof)

45

lemma StrongEq-trans-strong [simp):
assumes A: (X £ Y) = true

and B: (Y 2 Z) = true
shows (X £ 7) = true
{proof)

it is only in a limited sense a congruence, at least from the point of view of this
semantic theory. The point is that it is only a congruence on OCL expressions, not
arbitrary HOL expressions (with which we can mix Featherweight OCL expressions). A
semantic—not syntactic—characterization of OCL expressions is that they are context-
passing or context-invariant, i.e., the context of an entire OCL expression, i.e. the pre
and post state it referes to, is passed constantly and unmodified to the sub-expressions,
i.e., all sub-expressions inside an OCL expression refer to the same context. Expressed
formally, this boils down to:

lemma StrongFEq-subst :
assumes cp: AX. P(X)1 = P(\ -. X 7)7
and eq: (X 2 V)T = true 7
shows (PX 2 P Y)r = true t
(proof)

lemma defined?[simp]: § (X 2 Y) = true
{proof)

lemma valid7[simp]: v (X £ Y) = true

{proof)

(V- X1 2\-Y7)T

lemma cp-StrongEq: (X £ Y) 7
(proof)

3.4. Logical Connectives and their Universal Properties

It is a design goal to give OCL a semantics that is as closely as possible to a “logical
system” in a known sense; a specification logic where the logical connectives can not be
understood other that having the truth-table aside when reading fails its purpose in our
view.

Practically, this means that we want to give a definition to the core operations to be
as close as possible to the lattice laws; this makes also powerful symbolic normalization
of OCL specifications possible as a pre-requisite for automated theorem provers. For
example, it is still possible to compute without any definedness and validity reasoning the
DNF of an OCL specification; be it for test-case generations or for a smooth transition to
a two-valued representation of the specification amenable to fast standard SMT-solvers,
for example.

Thus, our representation of the OCL is merely a 4-valued Kleene-Logics with invalid
as least, null as middle and true resp. false as unrelated top-elements.

definition OciNot :: ("A)Boolean = (") Boolean (not)

46

where not X = \7.case X 7 of
L = 1
[LL] =11]
[lz]] =l-=]]

with term "not” we can express the notation:

syntax

notequal it ("A)Boolean = ("A)Boolean = ("A)Boolean (infix <> 40)
translations

a <> b == CONST OclNot(a = b)

lemma cp-OclNot: (not X)r = (not (A -. X 7)) 7
(proof)

lemma OciNot1[simp|: not invalid = invalid
{proof)

lemma OclNot2[simp]: not null = null

{proof)

lemma OclNot3[simp]: not true = false
{proof)

lemma OclNot/[simp]: not false = true

{proof)

lemma OclNot-not[simp]: not (not X) = X
{proof)

lemma OclNot-inject: \ zy. not x = not y = = =y
(proof)

definition OclAnd :: [("A)Boolean, (") Boolean] = ("A)Boolean (infixl and 30)
where XandY = (A7 . case X 7 of

|| False]] = || False]]
| L = (case Y 7 of
| [False|| = || False] |
- =)
| | L] = (case Y 7 of
|[False|] = || False] |
| L =1
| - = L))
| |[True]] = Y 1)

Note that not is not defined as a strict function; proximity to lattice laws implies that
we need a definition of not that satisfies not(not(z))=xz.

47

In textbook notation, the logical core constructs not and op and were represented as
follows:

lemma textbook-OclNot:
I[not(X)] 7 = (case I[X] 7 of L = L
| [L]=1[1]
[LLz]]=l-2]])
(proof)

lemma textbook-OclAnd:
I[X and Y] 7 = (case I[X] T of
L = (case I[Y] 7 of
L= 1
| |L] = L
| |[True]| = L
| [[False]] = |
| | L] = (case I[Y] 7 of
1= 1
L) = |1
[True]] = L]
|[False|| = || False]])
ase I[Y] 7 of
1= 1
| L) = |1
| Lly]] = Llwl])
| || False]] = || False |])

| False] |)

|
|
| L[True]] = (e

(proof)

definition OclOr :: [("A)Boolean, (") Boolean] = ("A)Boolean (infixl or 25)
where X or Y = not(not X and not Y)

definition OclImplies :: [("A)Boolean, ("A)Boolean] = (") Boolean (infix] implies 25)
where X implies Y = not X or Y

lemma cp-OclAnd:(X and Y) T = (A - X 7)and (A - Y 7)) T
(proof)

lemma cp-OclOr:((X::("A)Boolean) or Y) 7 =((A - X 1) or A - Y 7)) 7
(proof)

lemma cp-Ocllmplies:(X implies Y) 7 = (A -. X 7) implies (\ -. Y 7)) 7
(proof)

lemma OclAnd1[simp]: (invalid and true) = invalid

{proof)

lemma OclAnd2[simp]: (invalid and false) = false
{proof)

lemma OclAnd3[simp|: (invalid and null) = invalid
(proof)

48

lemma OclAnd/[simp]: (invalid and invalid) = invalid
{proof)

lemma OclAnd5[simp]: (null and true) = null

{proof)

lemma OclAnd6[simp]: (null and false) = false
{proof)

lemma OclAnd7[simp]: (null and null) = null
{proof)

lemma OclAnd8[simp]: (null and invalid) = invalid
{proof)

lemma OclAnd9[simp]: (false and true) = false

{proof)

lemma OclAnd10[simp]: (false and false) = false
{proof)

lemma OclAnd11[simp]: (false and null) = false
{proof)

lemma OclAnd12[simp]: (false and invalid) = false
{proof)

lemma OclAnd13[simp]: (true and true) = true

{proof)

lemma OclAnd1[simp]: (true and false) = false
{proof)

lemma OclAnd15[simp]: (true and null) = null
{proof)

lemma OclAnd16[simp]: (true and invalid) = invalid
{proof)

lemma OclAnd-idem[simp]: (X and X) = X
{proof)

lemma OclAnd-commute: (X and Y) = (Y and X)
{proof)

lemma OclAnd-falsel [simp]: (false and X) = false
{proof)

lemma OclAnd-false2[simp|: (X and false) = false
{proof)

lemma OclAnd-truel [simp]: (true and X) = X
{proof)

lemma OclAnd-true2[simpl: (X and true) = X
{proof)

49

lemma OclAnd-bot1[simp]: N7. X T # false 7 = (bot and X) 7 = bot T
{proof)

lemma OclAnd-bot2[simp]: N7. X T # false T = (X and bot) T = bot T
{proof)

lemma OclAnd-nulll [simp]: N7. X T # false 1 = X 7 # bot 7 = (null and X) 7 = null 7
(proof)

lemma OclAnd-null2[simp]: A7. X 7 # false 1 = X 7 # bot 7 = (X and null) 7 = null T
{proof)

lemma OclAnd-assoc: (X and (Y and Z)) = (X and Y and Z)
{proof)

lemma OclOr1[simp]: (invalid or true) = true

(proof)

lemma OclOr2[simp]: (invalid or false) = invalid
(proof)

lemma OclOr3[simp|: (invalid or null) = invalid
(proof)

lemma OclOr/[simp]: (invalid or invalid) = invalid
(proof)

lemma OclOr5[simp): (null or true) = true
(proof)

lemma OclOr6[simp]: (null or false) = null
(proof)

lemma OclOr7[simp]: (null or null) = null
(proof)

lemma OclOr8[simp]: (null or invalid) = invalid
(proof)

lemma OclOr-idem[simp]: (X or X) = X
{proof)

lemma OclOr-commute: (X or Y) = (Y or X)
(proof)

lemma OclOr-falsel [simp]: (false or V) =Y
{proof)

lemma OclOr-false2[simp): (Y or false) = Y
{proof)

lemma OclOr-truel [simp]: (true or Y) = true

{proof)

50

lemma OclOr-true2: (Y or true) = true
(proof)

lemma OclOr-bot1[simp]: N7. X T # true 7 = (bot or X) 7 = bot T
{proof)

lemma OclOr-bot2[simp]: AT. X T # true 7 = (X or bot) T = bot T
{proof)

lemma OclOr-nulll [simp]: AT. X T # true 7 = X 7 # bot 7 = (null or X) 7 = null 7

(proof)

lemma OclOr-null2[simp]: NT. X T # true 7 = X 7 % bot 7 = (X or null) 7 = null 7
{proof)

lemma OclOr-assoc: (X or (Y or Z)) = (X or Yor Z)
{proof)

lemma OclImplies-true: (X implies true) = true
{proof)

lemma deMorgani: not(X and Y) = ((not X) or (not Y))
{proof)

lemma deMorgan2: not(X or Y) = ((not X) and (not Y))
{proof)
3.5. A Standard Logical Calculus for OCL

definition OciValid :: [("A)st, ("A)Boolean] = bool ((1(-)/ = (-)) 50)
where 7 P = ((P71)=truer)

value 7 = true <> false
value 7 | false <> true

3.5.1. Global vs. Local Judgements

lemma transformi: P = true = 7 = P
(proof)

lemma transformi-rev: ¥V 7.7 | P = P = true
(proof)

lemma transform2: (P = Q) = ((r = P) = (1 E Q))
(proof)

lemma transform2-rev:¥ 7. (T ESP)AN(TEIQ AN(TEP)=TEFEQ) = P=Q

o1

(proof)

However, certain properties (like transitivity) can not be transformed from the global
level to the local one, they have to be re-proven on the local level.

lemma
assumes H : P = true = @ = true
shows T = P =7 F Q

(proof)

3.5.2. Local Validity and Meta-logic

lemma foundationl [simp]: T | true
(proof)

lemma foundation2[simp|: =(7 |= false)

(proof)

lemma foundation3[simp|: —(7 = invalid)
(proof)

lemma foundation [simp]: —~(7 = null)
(proof)

lemma bool-split-local|simp]:
ET)=f(>a: 2 dnvalid)) V (1 = (z £ null)) V (7 |= (z 2 true)) V (7 |= (z £ false))
Proo

lemma def-split-local:
(r 6 2) = (=(r = (2 2 invalid))) A (= (7 = (2 2 nuil))))
(proof)

lemma foundation5:
TEPmdQ) = (TEP)AN(TEQ)
(proof)

lemma foundation6:

TEP=T1EJ{P
(proof)

lemma foundation7|[simp]:
(1 = not (6 2)) = (= (1 |= 6 z))
(proof)

lemma foundation7'[simp]:
(1 | not (v 2)) = (= (7 v)

(proof)

Key theorem for the §-closure: either an expression is defined, or it can be replaced

52

(substituted via StrongFEq-L-subst2; see below) by invalid or null. Strictness-reduction
rules will usually reduce these substituted terms drastically.

lemma foundation$§:
(tESz)V (T E (z 2 inwvalid)) V (T = (z £ null))
(proof)

lemma foundation9:
TEdz = (T Entz)= (- (1 1))
(proof)

lemma foundation10:

rhde=TESy = (rk (andy) = ((r | 2) A (7 = y)
(proof)

lemma foundation11:
z#f[)x:‘ TEIy= (T kE@oy)=(TkF2)V(Ey)
proo

lemma foundation12:
Z’):(;>l':> TEdy = (t E (zimpliesy)) = ((t Ez) — (T Ev))
proo,

lemma foundation13:(t = A 2 true) = (1 = A)

(proof)

lemma foundation1):(t = A = false) = (7 |= not A)
(proof)

lemma foundation15:(t = A £ invalid) = (7 = not(v A))
(proof)

lemma foundation16: 7 = (6 X) = (X 7 # bot A X 7 # null)
(proof)

lemma foundation16”: (1 |= (6§ X)) = (X 7 # invalid 7 A X 7 # null T)
(proof)

lemmas foundation17 = foundation16|THEN iffD1,standard]
lemmas foundation17’ = foundation16'| THEN iffD1,standard)

lemma foundation18: 7 = (v X) = (X 7 # invalid T)

93

(proof)

lemma foundation18” 7 = (v X) = (X 7 # bot)
(proof)

lemmas foundation19 = foundation18[THEN iffD1,standard]

lemma foundation20 : 7= (6 X) =717 EFv X
(proof)

lemma foundation21: (not A = not B) = (A = B)
(proof)

lemma foundation22: (t (X £ Y)=(X7=Y 1)
(proof)

lemma foundation23: (r = P)=(tr = (\-.P71))
(proof)

lemmas cp-validity=foundation23

lemma foundation2:(t = not(X £ Y)) = (X 7 # Y 71)
(proof)

lemma defined-not-I : 7 = 6 () = 7 = 0 (not)

(proof)

lemma valid-not-I : 7 = v (z) = 7 = v (not x)

{proof)

lemma defined-and-I : 7 =0 (z) = 76 (y) = 7 E J (z and y)
{proof)

lemma valid-and-I : 7lEv(z) = 7EFEv(y) = 7Fv (zandy)

{proof)

3.5.3. Local Judgements and Strong Equality

lemma StrongEq-L-refl: 7 = (z = 1)
(proof)

lemma StrongEq-L-sym: 7 |= (v £ y) = 7 |= (y £ 1)
(proof)

lemma StrongEq-L-trans: 7 = (z 2 y) = 717E (y 2 2) =717 (z &

o4

(proof)

In order to establish substitutivity (which does not hold in general HOL formulas)
we introduce the following predicate that allows for a calculus of the necessary side-
conditions.
definition c¢p :: ((A,'a) val = (A,’3) val) = bool
where o@P=3 f VX717 PX1t=f(X7)7)

The rule of substitutivity in Featherweight OCL holds only for context-passing expres-
sions, i.e. those that pass the context 7 without changing it. Fortunately, all operators
of the OCL language satisfy this property (but not all HOL operators).

lemma StrongEq-L-substl: N7.cp P =17 (22 y) =717k (Pzx 2 Py)
(proof)

lemma StrongFEq-L-subst2:
ANT. pP=71F@x2y)=7F(Pz)=171F(Py)
(proof)

lemma StrongEq-L-subst2-rev: T =y =1 = cp P =7 Pr =7 Py
(proof)

lemma StrongEq-L-subst3:
assumes cp: c¢p P
and e¢TET2

shows (tEPx)y=(r=Py)
(proof)

lemma cpli:
VX1 fX7=f)O X7)7) = cp P = cp(0X. [(P X))
(proof)

lemma cpl2:

VXY fXYrT=f(X1\ Y 7)71) =
p P = cp Q@ = cp(AX. [(P X) (Q X))
(proof)

lemma cpl3:

WV XYZrfXYZ7=fO X1 YT\ Z7)7) =
epP=cpQ = cpR= cp(MX. f(PX)(QX)(RX))
(proof)

lemma cply:

WXYZr. fWXYZ71=Ff\ W) X 1)\ Y 7)Y\~ Z 1) 7) =
pP=cpQ = cpR—=cp S = cp(MX.f(PX)(QX)(RX)(SX))
(proof)

lemma cp-const : cp(\-. ¢)

{proof)

95

lemma cp-id : ep(A\X. X)
(proof)

lemmas cp-intro[intro!,simp,code-unfold] =
cp-const
cp-id
cp-defined|[THEN alll[THEN allI[THEN cpll], of defined]]
cp-valid[THEN allIl[THEN allI[THEN cpl1], of valid]]
cp-OciNot[THEN ollI[THEN ollI[THEN cpll], of not]]
cp-OclAnd|THEN alll[THEN alll[THEN allI[THEN cplI2]], of op and]]
¢p-OclOr|THEN ollI[THEN alll[THEN alll[THEN cpl2]], of op or]]
cp-OclImplies| THEN alll[THEN alll[THEN allI[THEN cpI2]], of op implies])
cp-StrongEq[THEN allI[THEN allI[THEN allI[THEN cpl2]],

of StrongEq||

3.5.4. Laws to Establish Definedness (d-closure)

For the logical connectives, we have — beyond ?7 |= 7P = 77 |= § 7P — the following
facts:

lemma OcINot-defargs:
TE(MtP)=TEJP
(proof)

lemma OclNot-contrapos-nn:
assumes 7 =9 A

assumes 7 | not B
assumes 7T A= 7 E B
shows 7 = not A

(proof)

So far, we have only one strict Boolean predicate (-family): the strict equality.

3.6. Miscellaneous

3.6.1. OCL'’s if then else endif

definition OclIf :: [("A)Boolean , (", a:null) val, ("A,'a) val] = (A,'a) val
(if (-) then (-) else (-) endif [10,10,10]50)
where (if C then By else By endif) = (A 7. if (6 C) 7 = true T
then (if (C T) = true 7
then By 7
else By 1)
else invalid T)

lemma cp-Ocllf:((if C then By else By endif) 7 =
(if (X - C) then (X -. By 7) else (X -. By 1) endif) T)

56

(proof)

lemmas cp-intro’[introl,simp,code-unfold] =
cp-intro

ep-Ocllf|[THEN alll[THEN allI[THEN alll[THEN allI[THEN cpI3)]], of Ocllf]]

lemma Ocllf-invalid [simp]: (if invalid then By else By endif) = invalid

(proof)

lemma OclIf-null [simp]: (if null then By else By endif) = invalid
(proof)

lemma Ocllf-true [simp]: (if true then By else By endif) = By
(proof)

lemma Ocllf-true’ [simp]: T = P = (if P then B; else By endif)t = By 7
(proof)

lemma Ocllf-false [simp]: (if false then By else By endif) = Bs
(proof)

lemma OclIf-false’ [simp]: T = not P = (if P then B; else By endif)T = By 7
(proof)

lemma Oclif-idem1[simp]:(if § X then A else A endif) = A
(proof)

lemma OclIf-idem2[simp]:(if v X then A else A endif) = A
(proof)

lemma OcINot-if [simp]:
not(if P then C else E endif) = (if P then not C else not E endif)

{proof)

3.6.2. A Side-calculus for (Boolean) Constant Terms

definition const X =V 7 7. X 7= X 1/

lemma const-charn: const X = X 7= X 7'

(proof)

lemma const-subst:
assumes const-X: const X
and const-Y: const Y
and eq : Xt=Yr71
and cp-P: c¢p P
and pp : PYT=PYT

o7

shows PX r=P X 7'
(proof)

lemma const-imply2 :
assumes A71 72. P71 =P 72 = Q11 =Q 12
shows const P — const Q

(proof)

lemma const-imply3 :
assumes A7/ 72. P71 =P 72 = Q711 =Q12 = R71 =R72
shows const P — const () — const R

(proof)

lemma const-imply4 :
assumes A71 72. P71 =P 72 = Q71 =Q72 = R71 =R72=—S71=572
shows const P = const) = const R = const S

(proof)

lemma const-lam : const (\-. e)
(proof)

lemma const-true : const true

(proof)

lemma const-false : const false

(proof)

lemma const-null : const null
(proof)

lemma const-invalid : const invalid

(proof)

lemma const-bot : const bot
(proof)

lemma const-defined :
assumes const X
shows const (§ X)

(proof)

lemma const-valid :
assumes const X
shows const (v X)

(proof)

o8

lemma const-OclValid1:
assumes const T
shows (t=0z)= (7"} 0)
(proof)

lemma const-OclValid2:
assumes const T
shows (rEvz)=("Ewvau1)
(proof)

lemma const-OclAnd :
assumes const X
assumes const X'
shows const (X and X')

(proof)

lemma const-OclNot :
assumes const X
shows const (not X)

(proof)

lemma const-OclOr :
assumes const X
assumes const X'
shows const (X or X')

(proof)

lemma const-Ocllmplies :
assumes const X
assumes const X'
shows const (X implies X')

(proof)

lemma const-StrongEq:
assumes const X
assumes const X'
shows const(X £ X)

{proof)

lemma const-Ocllf :
assumes const B
and const C1
and const C2
shows const (if B then C1 else C2 endif)
(proof)

99

lemmas const-ss = const-bot const-null const-invalid const-false const-true const-lam
const-defined const-valid const-StrongEq const-OclNot const-OclAnd
const-OclOr const-Ocllmplies const-Ocllf

end

60

4. Formalization Il: Library Definitions

theory OCL-lib
imports OCL-core
begin

The structure of this chapter roughly follows the structure of Chapter 10 of the OCL
standard [33], which introduces the OCL Library.

4.1. Basic Types: Void and Integer

4.1.1. The Construction of the Void Type
type-synonym () Void = ("2(,unit option) val

This minimal OCL type contains only two elements: invalid and null. Void could
initially be defined as unit option option, however the cardinal of this type is more than
two, so it would have the cost to consider Some None and Some (Some ()) seemingly
everywhere.

4.1.2. The Construction of the Integer Type

Since Integer is again a basic type, we define its semantic domain as the valuations over
mnt option option.

type-synonym (") Integer = (", int option option) val

Although the remaining part of this library reasons about integers abstractly, we
provide here as example some convenient shortcuts.
definition OclInt0 ::("A)Integer (0)
where 0=(\-.[[0:int]])

definition OclInt! ::("A)Integer (1)
where 1=(\-.[[I:int]])

definition OclInt2 ::("A)Integer (2)
where 2=(\-.[|2:int]])

definition OclInt3 ::("A)Integer (3)
where 3=(\-.[[3:int]])

definition OclIntf ::("A)Integer (4)
where 4=(\-.[[4:int]])

61

definition OclInt5 ::("A)Integer (5)
where 5=(\-.[|5:int]])

definition OclInt6 ::("A)Integer (6)
where 6 =(\-.[|6:int]])

definition OclInt7 ::("A)Integer (7)
where 7T=(\-.[|7int]])

definition OclInt8 ::("A)Integer (8)
where 8 =(\-.[|8:int]])

definition OclInt9 ::("A)Integer (9)
where 9=(\-.[]9:int]])

definition OclInt10 ::("A)Integer (10)
where 10 = (\ - . |[10:int]])

4.1.3. Validity and Definedness Properties

lemma 6(null::("A) Integer) = false (proof)
lemma v(null:("A) Integer) = true (proof)

lemma [simp,code-unfold]: 6 (\-. [|[n]]) = true

(proo)

lemma [simp,code-unfold]: v (\-. || n]]) = true
(proof)

lemma [simp,code-unfold]: § 0 = true (proof)
lemma [simp,code-unfold]: v 0 = true (proof)
lemma [simp,code-unfold]: § 1 = true (proof)
lemma [simp,code-unfold]: v 1 = true (proof)
lemma [simp,code-unfold]: 6 2 = true (proof)
lemma [simp,code-unfold]: v 2 = true (proof)
lemma [simp,code-unfold]: § 6 = true (proof)
lemma [simp,code-unfold]: v 6 = true (proof)
lemma [simp,code-unfold]: § 8 = true (proof)
lemma [simp,code-unfold]: v 8 = true (proof)
lemma [simp,code-unfold]: 6 9 = true (proof)
lemma [simp,code-unfold]: v 9 = true (proof)

4.1.4. Arithmetical Operations on Integer
Definition

Here is a common case of a built-in operation on built-in types. Note that the arguments
must be both defined (non-null, non-bot).

62

Note that we can not follow the lexis of the OCL Standard for Isabelle technical rea-
sons; these operators are heavily overloaded in the HOL library that a further overloading
would lead to heavy technical buzz in this document.
definition OclAddnteger ::("A) Integer = ("U)Integer = ("A)Integer (infix ‘+ 40)
where z ‘+ y =\ 7.4 (§a) T =truet A (6 y) T = true T

then [[[Tz 711 + [Ty 711]]

else invalid T

definition OclLessinieger :("A)Integer = ("A)Integer = ("A)Boolean (infix ‘< 40)
where z ‘< y=) 7.4 0z) 7T =trueT A (0 y) T = true 7

then [[[Tz 711 < [Ty 7]1]]

else invalid T

definition Ocllerpieger :("A)Integer = ("A)Integer = ("A) Boolean (infix ‘< 40)
where z ‘< y=\X71.4f 0z) 7 =trueT A (0 y) T = true 7

then [[[[z 711 < [Ty 7]1]]

else invalid

Basic Properties

lemma OclAdd pteger-commute: (X ‘+ Y) = (Y ‘+ X)
(proof)

Execution with Invalid or Null or Zero as Argument
lemma OclAdd nteger-strictl [simp,code-unfold] : (z ‘+ invalid) = invalid

(proof)

lemma OclAddpteger-strict2[simp,code-unfold) : (invalid ‘+ z) = invalid

(proof)

lemma [simp,code-unfold] : (z ‘+ null) = invalid

(proof)

lemma [simp,code-unfold] : (null ‘+ z) = invalid

(proof)

lemma OclAddypteger-zerol [simp,code-unfold)
(z “+ 0) = (if vz and not (& x) then invalid else x endif)

{proof)

lemma OclAdd yteger-zero2[simp,code-unfold) :
(0 ‘4 z) = (¢f v z and not (0 =) then invalid else z endif)

(proof)

Context Passing

lemma cp-OclAddrpieger(X ‘“+ Y)7=((NA--X7T)‘+ N~ Y 7)) 7T
(proof)

63

lemma cp-Ocllessinieger:(X ‘< Y)7=((A--X7)‘<A--Y7)T
(proof)

lemma cp-Ocllerpteger(X ‘< Y)7=((A-X7)<(A-Y 7)1
(proof)

Test Statements

Here follows a list of code-examples, that explain the meanings of the above definitions
by compilation to code and execution to True.

value 7FE (9 ‘<10)

value 7 ((4 ‘+4) ‘<10)

value ~(7 = ((4 ‘“+ (4 ‘“+4)) ‘<10))
value 7 = not (v (null ‘+ 1))

4.2. Fundamental Predicates on Basic Types: Strict Equality
4.2.1. Definition

The last basic operation belonging to the fundamental infrastructure of a value-type
in OCL is the weak equality, which is defined similar to the R Boolean-case as strict
extension of the strong equality:

defs StrictRefEqrnieger|code-unfold) :
(z::("A)Integer) =y = 7. if (V)T =trueT A (v y) T =true T
then (z = y) T
else invalid T

value 7 = 1 <> 2
value T =2 <> 1
value 7 = 2 = 2

4.2.2. Logic and Algebraic Layer on Basic Types

Validity and Definedness Properties (1)

lemma StrictRefEqooican-defined-args-valid:
ET)=f5>(($11(’91)30016an) =y)) = ((r E(v) A7 E(v y))
Proo

lemma StrictRefEqnicger-defined-args-valid:

(7 | 6((z:() Integer) = y)) = (T =(v 2)) A (7 (v y)))
(proof)

Validity and Definedness Properties (l1)

lemma StrictRefEqpooiean-defargs:
7 E ((z::("A)Boolean) = y) = (7 = (v z)) A (7 E(v y))

64

(proof)

lemma StrictRefEqrntcger-defargs:
z = ;()xii(’ﬂ)fnteger) =y)= (tE@Wz) AT E@y)
proo

Validity and Definedness Properties (111) Miscellaneous

lemma StrictRefEqpooican-strict’”’ : § ((x:("A) Boolean) = y) = (v(z) and v(y))

(proof)

lemma StrictRefEqrnieger-strict’’ : 6 ((z::("A)Integer) = y) = (v(z) and v(y))

(proof)

lemma StrictRefEq ntcger-strict :
assumes A: v (z::("A)Integer) = true
and B: vy = true
shows v (z = y) = true
{proof)

lemma StrictRefEqrpieger-strict’ :
assumes A: v (((z:("A) Integer)) = y) = true
shows v & = true AN vy = true
(proof)

Reflexivity

lemma StrictRefEqpootean-refl[simp,code-unfold] :
((z::("A)Boolean) = z) = (if (v z) then true else invalid endif)

(proof)
lemma StrictRefEq e ger-refl[simp,code-unfold) :

((z::("A) Integer) = x) = (if (v z) then true else invalid endif)
(proof)

Execution with Invalid or Null as Argument

lemma StrictRefEqpooiean-strict] [simp,code-unfold] : ((z::("A)Boolean) = invalid) = invalid

(proof)

lemma StrictRefEqpoolcan-strict2[simp,code-unfold] : (invalid = (z::("A)Boolean)) = invalid

(proof)

lemma StrictRefEqrpeger-strictl [simp,code-unfold] : ((z::("A)Integer) = invalid) = invalid

(proof)

lemma StrictRefEqnieger-strict2[simp,code-unfold] : (invalid = (z::("A)Integer)) = invalid

65

(proof)

lemma integer-non-null [simp]: ((A-. [[n]]) = (null::("A) Integer))

(proof)

lemma null-non-integer [simp]: ((null::("2A)Integer)

(proof)

lemma OclInt0-non-null [simp,code-unfold]:
lemma null-non-OclInt0 [simp,code-unfold):
lemma OclInt1-non-null [simp,code-unfold):
lemma null-non-Ocllnt! [simp,code-unfold):
lemma OclInt2-non-null [simp,code-unfold]:
lemma null-non-OclInt2 [simp,code-unfold):
lemma OclInt6-non-null [simp,code-unfold]:
lemma null-non-OclInt6 [simp,code-unfold):
lemma OclInt8-non-null [simp,code-unfold):
lemma null-non-OclInt8 [simp,code-unfold):
lemma OclInt9-non-null [simp,code-unfold):
lemma null-non-OclInt9 [simp,code-unfold):

Const

lemma [simp,code-unfold]: const(0) {proof)
lemma [simp,code-unfold]: const(1) {proof)
lemma [simp,code-unfold]: const(2) {proof)
lemma [simp,code-unfold]: const(6) {proof)
lemma [simp,code-unfold]: const(8) (proof)
lemma [simp,code-unfold]: const(9) (proof)

Behavior vs StrongEq

lemma StrictRefEqpooican-vs-StrongFEq:
TEvz) =71Ervy = (1 F (=
(proof)

lemma StrictRefEqrnicger-vs-Stronglq:
TEvr) =r1kEvy) = (1 FE {((z
(proof)

Context Passing

lemma cp-StrictRefEqBooican:
((X:("A)Boolean) = Y) 7= (A - X 7) =
(proof)

lemma cp-StrictRefEqrpieger:
((X:(A)Integer) = V) T =
(proof)

66

(\- Y

(V- X1)=(\-Y

(0 = null) =
(null = 0) =
(1 = null) =
(null = 1) =
(2 = null) =
(null = 2) =
(6 = null) =
(null = 6) =
(8 = null) =
(null = 8) =
(9 = null) =
(null = 9) =

(") Boolean) = y)

=("A) Integer) = y)

= (- Lnl]) =

) T

) T

(
false (
false {
false {
false (
false {proof
false {
false (
false (

(
(
(

= (z 2))

= (z 2 y))

= false

lemmas cp-intro’[introl,simp,code-unfold] =
cp-intro’

cp-StrictRefEqpooiean| THEN alll[THEN alll[THEN allI[THEN cpl2]], of StrictRefEq]]
cp-StrictRefEqrnteger| THEN olll[THEN ollI[THEN allI[THEN cpI2]], of StrictRefEq]

ep-OclAdd 1 nteger [THEN alll[THEN alll[THEN alll[THEN cpl2]], of OclAddynteger]]
cp-OclLessipieger[THEN alll[THEN alll[THEN alll[THEN cplI?2]], of OclLessipieger]]
cp-OclLlerpteger[THEN alll[THEN alll[THEN alll[THEN cplI2]], of OclLerpieger)]

4.2.3. Test Statements on Basic Types.

Here follows a list of code-examples, that explain the meanings of the above definitions

by compilation to code and execution to True.

Elementary computations on Booleans

value 7 = v(true)

value 7 = (false)

value —(7 | §(null))

value —(7 | d(invalid))

value 7 = v((null::("A) Boolean))
value —(7 | v(invalid))

value 7 = (true and true)

value 7 |= (true and true = true)
value 7 = ((null or null) £ null)
value 7 = ((null or null) = null)
value 7 = ((true = false) = false)
value 7 = ((invalid = false) = false)
value 7 = ((invalid = false) £ invalid)

P e N s N e

Elementary computations on Integer

value 7fFv4

value 744

value 7 = v (null:("A)Integer)
value 7 = (invalid = invalid)

value 7 |= (null £ null)

value 7= (4 £ 4)

value —(7 = (9 £ 10))

value —(7 = (invalid £ 10))

value —(7 = (null £ 10))

value —(7 | (invalid = (invalid::("A) Integer)))
value (7 | v (invalid = (invalid::("A) Integer)))
value —(7 | (invalid <> (invalid::("A)Integer)))
value —(7 = v (invalid <> (invalid::("A) Integer)))
value 7 = (null = (null::("A)Integer))

value 7 = (null = (null:("2A)Integer))

value 7 (4 =4)

value =(7 = (4 <> 4))

value —(7 | (4 = 10))

67

value 7 (4 <> 10)
value =(7 = (0 ‘< null))
value =(7 | (6 (0 ‘< null)))

4.3. Complex Types: The Set-Collection Type (1) Core

4.3.1. The Construction of the Set Type

no-notation None (L)
notation bot (1)

For the semantic construction of the collection types, we have two goals:

1. we want the types to be fully abstract, i.e., the type should not contain junk-
elements that are not representable by OCL expressions, and

2. we want a possibility to nest collection types (so, we want the potential to talking
about Set(Set(Sequences(Pairs(X,Y))))).

The former principle rules out the option to define ‘a Set just by (%A, (‘a option option)
set) wal. This would allow sets to contain junk elements such as { L} which we need to
identify with undefinedness itself. Abandoning fully abstractness of rules would later on
produce all sorts of problems when quantifying over the elements of a type. However, if
we build an own type, then it must conform to our abstract interface in order to have
nested types: arguments of type-constructors must conform to our abstract interface,
and the result type too.

The core of an own type construction is done via a type definition which provides the
raw-type ‘a Set-0. It is shown that this type “fits” indeed into the abstract type interface
discussed in the previous section.

typedef ‘a Set-0 ={X::(‘a::null) set option option.
X =bot VX =nulVv Vee[[X]]. ¢ # bot)}
(proof)

instantiation Set-0 :: (null)bot
begin

definition bot-Set-0-def: (bot::('a::null) Set-0) = Abs-Set-0 None
instance (proof)

end

instantiation Set-0 :: (null)null

begin
definition null-Set-0-def: (null::(‘a::null) Set-0) = Abs-Set-0 | None |

instance (proof)

68

end

. and lifting this type to the format of a valuation gives us:

type-synonym (", 'a) Set = (", ‘o Set-0) val

4.3.2. Validity and Definedness Properties

Every element in a defined set is valid.

lemma Set-inv-lemma: 7 |= (6 X) = Vz€[[Rep-Set-0 (X 7)]]. © # bot
(proof)

lemma Set-inv-lemma’ :
assumes z-def : 7 =0 X
and e-mem : e € [[Rep-Set-0 (X 7)]]
shows 7 = v (\-. €)
(proof)

lemma abs-rep-simp’ :
assumes S-all-def : 7 E§ S
shows Abs-Set-0 ||[[Rep-Set-0 (S 7)]1]] =S

(proof)

lemma S-lift’ :

assumes S-all-def : (7 :: A st) EI S
shows 357. (\a (-:"A st). a) ‘ [[Rep-Set-0 (S 7)]] = (\a (=:"A st). |a]) * S’
{proof)

lemma invalid-set-OclNot-defined [simp,code-unfold):6 (invalid::("A, az:null) Set) = false
(proof)

lemma null-set-OclNot-defined [simp,code-unfold]:d(null::("A,'a::null) Set) = false

(proof)

lemma invalid-set-valid [simp,code-unfold):v(invalid::("A,'a::null) Set) = false

(proof)

lemma null-set-valid [simp,code-unfold]:v(null::("A, a::null) Set) = true

(proof)

.. which means that we can have a type (1,(",("A) Integer) Set) Set corresponding
exactly to Set(Set(Integer)) in OCL notation. Note that the parameter 2 still refers to
the object universe; making the OCL semantics entirely parametric in the object universe
makes it possible to study (and prove) its properties independently from a concrete class
diagram.

4.3.3. Constants on Sets

definition mtSet::("A, 'a::null) Set (Set{})
where Set{} = (A 7. Abs-Set-0 |[{}::'a set]])

69

lemma mtSet-defined|[simp,code-unfold]:5(Set{}) = true
(proof)

lemma mtSet-valid[simp,code-unfold]:v(Set{}) = true
(proof)

lemma mtSet-rep-set: [[Rep-Set-0 (Set{} 7)]] = {}
(proof)

lemma [simp,code-unfold]: const Set{}
(proof)

Note that the collection types in OCL allow for null to be included; however, there is
the null-collection into which inclusion yields invalid.

4.4. Complex Types: The Set-Collection Type (Il) Library

This part provides a collection of operators for the Set type.

4.4.1. Computational Operations on Set
Definition

definition Ocllncluding :: [("A,'a:null) Set,("A,'a) val] = ("A,'«) Set

where Ocllncludingzy = (A 7.4 () T=true T A (v y) T =true T
then Abs-Set-0 || [[Rep-Set-0 (z 7)]] U{y 7} |]
else L)

notation Ocllncluding (-—>including’(-’))

syntax
-OclFinset :: args => ("U,’a::null) Set (Set{(-)})
translations
Set{x, xs} == CONST OclIncluding (Set{zs}) z
Set{z} == CONST Oclincluding (Set{}) z

definition OclEzcluding :: [("A,’a:null) Set,("A,'a) val] = ("A,'a) Set

where OclEzxcludingxy = (A 7. if (0) 7 =true T A (v y) T = true 7
then Abs-Set-0 || [[Rep-Set-0 (z 7)1 — {y 7} |]
else 1)

notation OclEzcluding (-—>excluding’(-"))

definition OclIncludes : [("A, a::inull) Set,("A,’a) val] = A Boolean
where Oclincludes zxy = (A 7. if ()7 =truet A (v y) T =truet

then ||(y 7) € [[Rep-Set-0 (z 7)]]]
else L)
notation Ocllncludes (-—>includes’(-"))

definition OclEzcludes :: [("A,'az:null) Set,("U,’a) val] = A Boolean
where OclEzxcludes x y = (not(Ocllncludes z y))

70

notation OclEzcludes (-—>excludes’(-"))

The case of the size definition is somewhat special, we admit explicitly in Featherweight
OCL the possibility of infinite sets. For the size definition, this requires an extra condition
that assures that the cardinality of the set is actually a defined integer.

definition OclSize :: (", ’c::null)Set = A Integer
where OclSize x = (A 7. if (§) 7 = true 7 A finite([[Rep-Set-0 (z 7)]])
then || int(card [[Rep-Set-0 (z 7)1]) ||
else 1)
notation
OclSize (-—>size'("))

The following definition follows the requirement of the standard to treat null as neutral
element of sets. It is a well-documented exception from the general strictness rule and
the rule that the distinguished argument self should be non-null.

definition OcllsEmpty :: (", ’a::null) Set = " Boolean
where OcllsEmpty x = ((v z and not (6 z)) or ((OclSize) = 0))
notation OcllsEmpty (-—>isEmpty’(’))

definition OciNotEmpty :: (", a:null) Set = A Boolean
where OclNotEmpty x = not(OcllsEmpty)
notation OclNotEmpty (-—>notEmpty’(’))

definition OclANY :: [("U, az:null) Set] = ("A,'a) val
where OclANY z = (\7.4f (vz)T=truer
then if (0 z and OclNotEmpty x) T = true T
then SOME y. y € [[Rep-Set-0 (z 7)]]
else null T
else 1)
notation OclANY (-—>any’("))

The definition of OclForall mimics the one of op and: OclForall is not a strict operation.

definition OclForall :: [("A,'a::null)Set,("A,'a)val=-("A) Boolean] = A Boolean
where OclForall SP = (A 7.4f (0 §) 7 = true 7
then if (3z€[[Rep-Set-0 (S 7)]]. P(\ -.) 7 = false T)
then false T
else if (Fz€[[Rep-Set-0 (S 7)]]. P\ - z) 7= L 7)
then L 1
else if (3ze€[[Rep-Set-0 (S 7)]]. P(\ -.) 7 = null T)
then null T
else true T
else 1)
syntax
-OclForall :: [("A,'az:null) Set,id,("A)Boolean] = "A Boolean ((-)—>forAll'(-]-"))
translations
X—>forAll(z | P) == CONST OclForall X (%z. P)

Like OclForall, OclExists is also not strict.

71

definition OclExists :: [("A, a:null) Set,("A,'a)val=("A) Boolean] = 2 Boolean
where OclEzists S P = not(OclForall S (A X. not (P X))

syntax

-OclEzist =2 [("A, a:null) Set,id,("A) Boolean] = A Boolean ((-)—>exists'(-|-))
translations

X —>ezists(z | P) == CONST OclEzists X (%z. P)

definition Ocllterate :: [("U, a::null) Set,("A,'B::null)val,
("2,) val=("A,'B)val=("A,’B)val] = ("A,'B)val
where Ocllterate S A F = (A 7.4f (6 S) 7 =true 7 A (v A) 7 = true 7 A finite[[Rep-Set-0

(5 1l
then (Finite-Set.fold (F) (A) ((Aa 7. a) ‘ [[Rep-Set-0 (S 7)1]))T

else 1)
syntax
-Ocllterate :: [(",’a::inull) Set, idt, idt, ‘o, 'B] => ("A,"y)val
(- —=>iterate'(-;-=- | -"))
translations

X —>iterate(a; x = A | P) == CONST Ocllterate X A (%a. (% z. P))

definition OclSelect :: [("U, c::null) Set, (", 'a)val=("A) Boolean] = ("A,’a)Set
where OclSelect S P = (A1. if (6 S) 7 = true 7
then if (3z€[[Rep-Set-0 (S 7)]]. P\ - z) 7= 1L7)
then L
else Abs-Set-0 ||[{z€[[Rep-Set-0 (S 7)]]. P (\-.) 7 # false 7}]]
else 1)
syntax
-OclSelect :: [("A, c::null) Set,id,("A) Boolean] = A Boolean ((-)—>select’(-|-"))
translations
X —>select(z | P) == CONST OclSelect X (% x. P)

definition OclReject :: [("A, a::null) Set, (A, ') val=-("A) Boolean] = (", 'a::null) Set
where OclReject S P = OclSelect S (not o P)
syntax

-OclReject :: [("A,ac:null) Set,id,("A) Boolean] = "A Boolean ((-)—>reject’(-|-"))
translations

X —>reject(z | P) == CONST OclReject X (% x. P)

Definition (futur operators)

consts
OclCount o (U acinull) Set,("U,'«) Set] = A Integer
OclSum o (A anull) Set = A Integer

OclIncludesAll :: [("A,'az:null) Set,("A,’a) Set] = A Boolean
OclExcludesAll :: [("A,'a::null) Set,("A,'a) Set] = A Boolean
OclComplement :: ("A,’az:null) Set = ("AU,'a) Set

OclUnion a (A ainull) Set, (A, '«) Set] = (A, 'a) Set
OclIntersection:: [("A, az:null) Set,("A,'a) Set] = ("A,'a) Set

72

notation
OclCount (-—>count’(-"))

notation

OclSum (-—>sum’("))
notation

OclIncludesAll (-—>includesAll'(-"))
notation

OclExcludesAll (-—>excludesAll'(-"))
notation

OclComplement (-—>complement’("))
notation

OclUnion (-—>union'(-"))
notation

OclIntersection(-—>intersection’(-"))

4.4.2. Validity and Definedness Properties
Oclincluding

lemma Oclincluding-defined-args-valid:
ET)=f5>(X—>mcludin9($))) = ((r E@ X)) A (7 E(v 2)))
proo

lemma OclIncluding-valid-args-valid:
(= v —>including(2) = (- =0 X) A (7)
proo,

lemma OclIncluding-defined-args-valid'[simp,code-unfold]:
§(X —>including(z)) = ((0 X) and (v z))

{proof)

lemma OclIncluding-valid-args-valid''[simp,code-unfold):
v(X —>including(z)) = ((6 X) and (v z))

(proof)

OclExcluding

lemma OclEzcluding-defined-args-valid:
(= 5K —>eacluding(2)) = (7 16 30) A (7 0)
proo,

lemma OclExcluding-valid-args-valid:
(= (X coludng(2) = (7 6 X)) 7 0)
Proo

lemma OclEzcluding-valid-args-valid'[simp,code-unfold):

73

§(X —>excluding(z)) = ((§ X) and (v z))
(proof)

lemma OclExcluding-valid-args-valid"[simp,code-unfold):
v(X—=>excluding(z)) = ((§ X) and (v z))
(proof)

Oclincludes

lemma Oclincludes-defined-args-valid:
ET):f5>(Xf>includes(a:))) =((r E(6 X)) A (1 E(v 1))
proo

lemma OclIncludes-valid-args-valid:
ET)=fz;(X—>z'ncludes(m))) =((r E(6 X)) A (1 E(v 1))
proo,

lemma OclIncludes-valid-args-valid'[simp,code-unfold):
§(X—>includes(z)) = ((6 X) and (v x))

{proof)

lemma OclIncludes-valid-args-valid'[simp,code-unfold]:
v(X —>includes(z)) = ((§ X) and (v z))

(proof)

OclExcludes

lemma OclEzcludes-defined-args-valid:
ET)=f5>(X—>ea:cludes(a:))) =((r E(6 X)) A (7 E(v 1))
proo

lemma OclExcludes-valid-args-valid:
ET)=f1;(X—>excludes(:v))) = ((r E(6 X)) A (7 E(v 1))
proo,

lemma OclEzcludes-valid-args-valid'[simp,code-unfold]:
§(X —>excludes(z)) = ((6 X) and (v z))
(proof)

lemma OclExcludes-valid-args-valid’'[simp,code-unfold]:
v(X —>ezxcludes(z)) = ((6 X) and (v z))
(proof)

OclSize

lemma OclSize-defined-args-valid: 7 = § (X—>size()) =706 X
(proof)

lemma OclSize-infinite:

74

assumes non-finite:r = not(§(S—>size()))
?hows> (1 E not(6(S))) V = finite [[Rep-Set-0 (S 7)7]
proof

lemma 7 = 0 X = - finite [[Rep-Set-0 (X 7)]] = -7 E § (X —>size())
(proof)

lemma size-defined:

assumes X-finite: \7. finite [[Rep-Set-0 (X 7)]]
shows § (X —>size()) =6 X

(proof)

lemma size-defined”:

assumes X-finite: finite [[Rep-Set-0 (X 7)]]
shows (7 = 0 (X—>size())) = (7 = 0 X)
(proof)

OclisEmpty
lemma OcllsEmpty-defined-args-valid:m = 6 (X—>isEmpty()) = 7= v X
(proof)

lemma 7 = ¢ (null—>isEmpty())
(proof)

lemma OcllsEmpty-infinite: 7 E 6 X = — finite [[Rep-Set-0 (X 7)|]] = -7 E §

(X —>isEmpty())
(proof)

OcINotEmpty

lemma OclNotEmpty-defined-args-valid:T = § (X—>notEmpty()) = 7= v X
(proof)

lemma 7 = § (null—>notEmpty())
(proof)

lemma OcINotEmpty-infinite: 7 = § X = - finite [[Rep-Set-0 (X 7)]] = -7 E §
(X —>notEmpty())
{proof)

lemma OclNotEmpty-has-elt : 7 = § X =
T | X—>notEmpty() =
Jde. e € [[Rep-Set-0 (X 7)]]
(proof)

OclANY

lemma OclANY-defined-args-valid: 7 = § (X—>any()) = 7= X
(proof)

75

lemmarkEJd X = 7= X—>isEmpty() = -7 = 0 (X—>any())
(proof)

lemma OclANY-valid-args-valid:
(1 E v(X=>any())) = (7 F v X)
(proof)

lemma OclANY-valid-args-valid"'[simp,code-unfold):

o(X—>any()) = (v X)

(proof)

4.4.3. Execution with Invalid or Null or Infinite Set as Argument
Oclincluding

lemma OclIncluding-invalid[simp,code-unfold): (invalid—>including(z)) = invalid

(proof)

lemma OclIncluding-invalid-args|simp,code-unfold]:(X —>including(invalid)) = invalid

(proof)

lemma OclIncluding-null[simp,code-unfold]:(null—>including(x)) = invalid
(proof)

OclExcluding

lemma OclExcluding-invalid[simp,code-unfold):(invalid—> excluding(z)) = invalid

(proof)

lemma OclEzcluding-invalid-args[simp,code-unfold):(X —>excluding (invalid)) = invalid

(proof)

lemma OclEzcluding-null[simp,code-unfold]:(null—>excluding(z)) = invalid
(proof)

Oclincludes

lemma OclIncludes-invalid|simp,code-unfold]:(invalid—>includes(x)) = invalid

(proof)

lemma OclIncludes-invalid-args|simp,code-unfold]:(X —>includes(invalid)) = invalid

(proof)

lemma OclIncludes-null[simp,code-unfold):(null—>1includes(z)) = invalid
(proof)

OclExcludes

lemma OclExcludes-invalid[simp,code-unfold]:(invalid—> excludes(z)) = invalid

76

(proof)

lemma OclExcludes-invalid-args[simp,code-unfold]:(X —> excludes(invalid)) = invalid

(proof)

lemma OclExcludes-null[simp,code-unfold]:(null—>excludes(z)) = invalid
(proof)
OclSize

lemma OclSize-invalid[simp,code-unfold]:(invalid—>size()) = invalid

(proof)

lemma OclSize-null[simp,code-unfold):(null—>size()) = invalid
(proof)
OclIsEmpty

lemma OclIsEmpty-invalid|simp,code-unfold]:(invalid—>isEmpty()) = invalid
(proof)

lemma OclIsEmpty-null[simp,code-unfold):(null—>isEmpty()) = true
(proof)

OcINotEmpty

lemma OclNotEmpty-invalid[simp,code-unfold):(invalid—>notEmpty()) = invalid
(proof)

lemma OclNotEmpty-null[simp,code-unfold]:(null—>notEmpty()) = false
(proof)

OclANY

lemma OclANY-invalid[simp,code-unfold]:(invalid—>any()) = invalid
(proof)

lemma OclANY-null[simp,code-unfold]:(null—>any()) = null
(proof)

OclForall

lemma OclForall-invalid[simp,code-unfold]:invalid—>forAll(a| P a) = invalid
(proof)

lemma OclForall-null[simp,code-unfold]:null—>forAll(a | P a) = invalid

(proof)

OclExists

lemma OclExists-invalid[simp,code-unfold):invalid—>ezists(a| P a) = invalid

7

(proof)

lemma OclExists-null[simp,code-unfold]:null—>ezists(a | P a) = invalid

(proof)

Ocliterate
lemma Ocllterate-invalid[simp,code-unfold]:invalid—>iterate(a; x = A | P a x) = invalid

(proof)

lemma Ocllterate-null[simp,code-unfold):null—>iterate(a; x = A | P a x) = invalid
(proof)

lemma Ocllterate-invalid-args[simp,code-unfold]:S—>iterate(a; x = invalid | P a x) = invalid
(proof)

An open question is this ...

lemma S—>iterate(a; x = null | P a z) = invalid
(proof)

lemma Ocllterate-infinite:
assumes non-finite: T = not(6(S—>size()))
shows (Ocllterate S A F') 7 = invalid T

(proof)

OclSelect

lemma OclSelect-invalid|simp,code-unfold]:invalid—>select(a | P a) = invalid
(proof)

lemma OclSelect-null[simp,code-unfold]:null—>select(a | P a) = invalid

(proof)

OclReject

lemma OclReject-invalid[simp,code-unfold]:invalid—>reject(a | P a) = invalid

(proof)

lemma OclReject-null[simp,code-unfold):null—>reject(a | P a) = invalid
(proof)

4.4.4. Context Passing

lemma cp-Oclincluding:
(X—>including(z)) 7 = (A - X 7)—>including(\ -. 7)) T
(proof)

lemma cp-OclExcluding:

78

(X—>ezcluding(z)) 7 = ((\ -- X 7)—>excluding(\ -. 7)) T
(proof)

lemma cp-Ocllncludes:
(X—>includes(z)) 7 = (A -- X 7)—>includes(\ -. x 7)) T
(proof)

lemma cp-Oclincludes1:
(X—>includes(z)) 7 = (X —>includes(\ -. z 7)) T
(proof)

lemma cp-OclEzcludes:
(X—>excludes(z)) 7 = (A - X 7)—>excludes(\ -. 7)) T
(proof)

lemma cp-OclSize: X —>size() 7 = (M- X 7)—>size()) T
(proof)

lemma cp-OclIsEmpty: X —>isEmpty() 7 = ((A\-. X 7)—>isEmpty()) T
(proof)

lemma cp-OclNotEmpty: X —>notEmpty() 7 = (A-. X 7)—>notEmpty()) 7
{proof)

lemma cp-OclANY: X—>any() 7 = ((\-- X 7)—>any()) 7
{proof)

lemma cp-OclForall:
(S—>forAll(z | Pz)) 7= ((\- S 7)=—>forAll(x | P (A -. 2 7)) T
(proof)

lemma cp-OclForalll [simp,introl]:
ep S = cp A\X. (S X)—>forAll(z | P z)))
(proof)

lemma
ep WX Stz. P(\r.2) XSt) = ep § = cp \X. (S X)—>forAll(z|P z X))
(proof)

lemma

cp S =

(A z. ep(Pz) =

ep(AX. (S X)—>forAll(z | Pz X)))
(proof)

lemma cp-OclEzists:

79

(S—>exists(x | Px)) 7= ((\- S 7)—>exists(x | P (N - 27))T
(proof)

lemma cp-OclEzists1 [simp,introl]:
ep S = cp AX. ((S X)—>exists(z | P xz)))
(proof)

lemma cp-Ocllterate: (X —>iterate(a; z = A | Paz)) 7=
(X - X 7)—>iterate(a; x = A| Pax)) T
(proof)

lemma cp-OclSelect: (X—>select(a | P a)) 7 =
(X - X 7)=>select(a | Pa)) T
(proof)

lemma cp-OclReject: (X —>reject(a | P a)) 7 =
(X -~ X 7)—>reject(a | P a)) T
(proof)

lemmas cp-intro’/[intro!,simp,code-unfold] =
cp-intro’
cp-OclIncluding [THEN ollI[THEN ollI[THEN alll[THEN cpI2]], of OclIncluding]]
cp-OclExcluding [THEN ollI[THEN ollI[THEN ollI[THEN cpI2]], of OclEzxcluding])
cp-OclIncludes [THEN ollI[THEN ollI[THEN allI[THEN cpl2]], of OclIncludes]]
cp-OclExcludes [THEN ollI[THEN ollI[THEN allI[THEN cpl2]], of OclEzcludes]]
cp-OclSize [THEN alll[THEN alll[THEN cpll1], of OclSize]]
cp-OcllsEmpty [THEN ollI[THEN ollI[THEN cpll], of OcllsEmpty]]
cp-OciNotEmpty [THEN alll[THEN alll[THEN cpll], of OclNotEmpty]]
cp-OclANY [THEN ollI[THEN ollI[THEN cpll], of OclANY]]

4.4.5. Const

lemma const-Ocllncluding|simp,code-unfold] :
assumes const-r : const
and const-S : const S
shows const (S—>including(x))

(proof)

4.5. Fundamental Predicates on Set: Strict Equality
4.5.1. Definition

After the part of foundational operations on sets, we detail here equality on sets. Strong
equality is inherited from the OCL core, but we have to consider the case of the strict

equality. We decide to overload strict equality in the same way we do for other value’s
in OCL:

defs StrictRefEqget :

80

(z:("W, aznull)Set) =y = 7.4f wa)T=trueT A (vy) T =true

then (z = y)T
else invalid T

One might object here that for the case of objects, this is an empty definition. The
answer is no, we will restrain later on states and objects such that any object has its
oid stored inside the object (so the ref, under which an object can be referenced in
the store will represented in the object itself). For such well-formed stores that satisfy
this invariant (the WFF-invariant), the referential equality and the strong equality—and
therefore the strict equality on sets in the sense above—coincides.

4.5.2. Logic and Algebraic Layer on Set
Reflexivity
To become operational, we derive:

lemma StrictRefEqg..-refl[simp,code-unfold]:
((: (", az:null) Set) = z) = (if (v z) then true else invalid endif)
(proof)

Symmetry

lemma StrictRefEqgqq-sym:
((z:("A, az:null) Set) = y) = (y = z)
(proof)

Execution with Invalid or Null as Argument

lemma StrictRefEqs.i-strictl [simp,code-unfold]: ((z::("A, 'c::null)Set) = invalid)= invalid

(proof)

lemma StrictRefEqg.i-strict2[simp,code-unfold]: (invalid = (y:("A, 'a::null)Set))= invalid

(proof)

lemma StrictRefEqg.¢-strictEq-valid-args-valid:

(1 =6 ((z:("W aznull) Set) = y)) = ((7 = (v 2)) A (T E v y))
(proof)

Behavior vs StrongEq

lemma StrictRefEqg.¢-vs-StrongEq:

TEvr=71Fvy= (1 (((z=("A aznull)Set) = y) = (z =

(proof)

Context Passing

lemma cp-StrictRefEqges:((X:: (" 'aznull)Set) = V) 7= (- X 7) =

(proof)

N Y7)T

81

Const

lemma const-StrictRefEqges :
assumes const (X = (-,-:null) Set)
assumes const X’
shows const (X = X)

{(proof)

4.6. Execution on Set’s Operators (with mtSet and recursive
case as arguments)

4.6.1. Oclincluding

lemma Oclincluding-finite-rep-set :
assumes X-def : 7 =0 X
and z-val : T E v x
shows finite [[Rep-Set-0 (X —>including(z) 7)|] = finite [[Rep-Set-0 (X 7)]]
(proof)

lemma OclIncluding-rep-set:
assumes S-def: 7 = § S

shows [[Rep-Set-0 (S—>including(\-. ||z]|]) 7)]] = insert ||z]] [[Rep-Set-0 (S 7)7]
(proof)

lemma Oclincluding-notempty-rep-set:
assumes X-def: 7 E§ X
and a-val: T E v a
shows [[Rep-Set-0 (X —>including(a) 7)]] # {}
(proof)

lemma Oclincluding-includes:
assumes 7 = X —>includes(z)

shows X —>including(z) 7= X 7
(proof)

4.6.2. OclExcluding

lemma OclExcluding-charn0[simp]:
assumes val-z:7 | (v)
shows 7 = ((Set{}—>excluding(z)) = Set{})

(proof)

lemma OclEzcluding-charn0-ezec[simp,code-unfold):
(Set{}—>excluding(z)) = (if (v x) then Set{} else invalid endif)
(proof)

lemma OclEzcluding-charni:
assumes def-X:7 = (6 X)

82

and wval-z:T E (v 2)

and wval-y:T = (v y)

and neq :7 |= not(z £ y)

shows 7 = (X —>including(z))—> excluding(y)) £ (X —>excluding(y))—>including(z))
(proof)

lemma OclEzcluding-charn2:
assumes def-X:7 = (6 X)
and wval-z:m E (v 2)

shows 7 | (X —>including(z))—>excluding(z)) £ (X —>excluding(z)))
(proof)

One would like a generic theorem of the form:

lemma OclExcluding _charn_exec:
7 (X—>including(x:: (", a::null)val) —>excluding(y)) =
(if 6 X then if x =y
then X—>excluding(y)
else X—>excluding(y)—>including(x)
endif
else invalid endif)”

Unfortunately, this does not hold in general, since referential equality is an overloaded
concept and has to be defined for each type individually. Consequently, it is only valid
for concrete type instances for Boolean, Integer, and Sets thereof...

The computational law OclEzcluding-charn-exec becomes generic since it uses strict
equality which in itself is generic. It is possible to prove the following generic theorem
and instantiate it later (using properties that link the polymorphic logical strong equality
with the concrete instance of strict quality).

lemma OclEzcluding-charn-exec:
assumes strict!: (x = invalid) = invalid
and strict2: (invalid = y) = invalid
and StrictRefEq-valid-args-valid: N\ (z:("A, a::null)val) y 7.
(rEd(r=y) = (k@) A Euvy)
and ¢p-StrictRefEq: \ (X::("Aaznull)val) Y 7. (X =Y) 7= X17) =\ Y 7)) 7
and StrictRefEq-vs-StrongEq: N\ (z:("A, a::null)val) y 7.
TEvs=rT1kEvy= (TE(z=y) = (@ 2y)
shows (X —>including(z::("A, a::null)val) —> excluding(y)) =
(if 6 Xthenifz =y
then X —> excluding(y)
else X —>excluding(y)—>including(x)
endif
else invalid endif)
(proof)

schematic-lemma OclEzcluding-charn-ezecnieger|[simp,code-unfold]: ?X

(proof)

83

schematic-lemma OclEzcluding-charn-execpoolcan|simp,code-unfold]: X

(proof)

schematic-lemma OclExcluding-charn-execg.i[simp,code-unfold]: ?X
(proof)

lemma OclEzcluding-finite-rep-set :
assumes X-def : 7 =0 X
and z-val : T E vz
shows finite [[Rep-Set-0 (X —>excluding(z) 7)]] = finite [[Rep-Set-0 (X 7)]]
(proof)

lemma OclEzcluding-rep-set:

assumes S-def: T =6 S

<sh0fY&>fs [[Rep-Set-0 (S—>excluding(\-. [|z]]) 7)]] = [[Rep-Set-0 (S 7)11 — {l|l=]]}
Proo

4.6.3. Oclincludes

lemma OclIncludes-charn0[simp]:
assumes val-z:7 = (v x)
shows T = not(Set{}—>includes(x))

(proof)

lemma OclIncludes-charn0’[simp,code-unfold):
Set{}—>includes(x) = (if v z then false else invalid endif)

(proof)

lemma OclIncludes-charnl:

assumes def-X:7 | (6 X)

assumes val-z:7 = (v x)

shows T | (X—=>including(z)—>includes(z))

(proof)

lemma Ocllncludes-charn?:

assumes def-X:7 = (0 X)

and wval-z:T E (v 2)

and wval-y:T = (v y)

and neq :7 |= not(z £ y)

shows 7 E (X —>including(z)—>includes(y)) £ (X —>includes(y))
(proof)

Here is again a generic theorem similar as above.

lemma Oclincludes-ezecute-generic:

84

assumes strict!: (x = invalid) = invalid
and strict2: (invalid = y) = invalid
and ¢p-StrictRefEq: \ (X:("A, aznull)val) Y 7. (X =Y)7r=((A--X7) =\ Y 7)) 7T
and StrictRefEq-vs-StrongEq: N\ (z::("A, a::null)val) y 7.

TEvr=rEvy= (TE(z=y) 2 (z£y)

[I>

shows

(X —>including(z:(", a::null)val) —>includes(y)) =

(if 6 X then if z = y then true else X —>includes(y) endif else invalid endif)
(proof)

schematic-lemma OclIncludes-ezecuteryieger[simp,code-unfold]: ?X

(proof)

schematic-lemma OclIncludes-ezecute gooiean|simp,code-unfold]: ?X

(proof)

schematic-lemma Oclincludes-ezecute gt |[simp,code-unfold]: X
(proof)

lemma Oclincludes-including-generic :
assumes OclIncludes-ezecute-generic [simp] : NX z y.
(X —>including(z::("A, a::null)val)—>includes(y)) =
(if 6 X then if z = y then true else X —>includes(y) endif else invalid endif)
and StrictRefEq-strict” : Nz y. § ((z:("A, a::null)val) = y) = (v(z) and v(y))
and a-val : T E v a
and z-val : T E v x
and S-incl : 7 = (S)—>includes((z:: (", a::null)val))
shows 7 = S—>including((a:("U, a::null)val)) —>includes(x)
(proof)

lemmas Oclincludes-includingrnicger =
OclIncludes-including-generic[OF Ocllncludes-executerpieger StrictRefEqrnieger-strict’’]

4.6.4. OclExcludes
4.6.5. OclSize

lemma [simp,code-unfold]: Set{} —>size() = 0

(proof)

lemma OclSize-including-exec[simp,code-unfold):
(X —>including(z)) —>size()) = (if § X and v z then
X —>size() ‘+ if X —>includes(z) then 0 else 1 endif
else
invalid

endif)

85

(proof)

4.6.6. OclisEmpty

lemma [simp,code-unfold]: Set{}—>isEmpty() = true
(proof)

lemma OcllIsEmpty-including [simp]:
assumes X-def: 7 E§ X
and X-finite: finite [[Rep-Set-0 (X 7)]]
and a-val: T E v a
shows X —>including(a)—>isEmpty() T = false T
(proof)

4.6.7. OcINotEmpty

lemma [simp,code-unfold)]: Set{}—>notEmpty() = false
(proof)

lemma OclNotEmpty-including [simp,code-unfold):
assumes X-def: 7 = § X

and X-finite: finite || Rep-Set-0 (X 7)]]

and awval: T E v a
shows X —>including(a)—>notEmpty() 7 = true 7

{proof)

4.6.8. OclANY

lemma [simp,code-unfold]: Set{}—>any() = null
(proof)

lemma OclANY-singleton-exec|[simp,code-unfold):
(Set{}—>including(a))—>any() = a
(proof)

4.6.9. OclForall

lemma OclForall-mtSet-exec[simp,code-unfold] :
((Set{})—>forAll(z| P(z))) = true
(proof)

lemma OclForall-including-ezec|simp,code-unfold] :

assumes cp0 : cp P

shows ((S—>including(x))—>forAll(z | P(z))) = (if 6 Sand v z
then P x and (S—>forAll(z | P(z)))
else invalid

endif)
(proof)

86

4.6.10. OclExists

lemma OclExists-mtSet-exec|[simp,code-unfold] :
((Set{})—>ezists(z | P(z))) = false
(proof)

lemma OclExists-including-exec[simp,code-unfold] :

assumes cp: cp P

shows ((S—>including(x))—>exists(z | P(z))) = (if 6 Sand v x
then P x or (S—>exists(z | P(z)))
else invalid
endif)

{proof)

4.6.11. Ocllterate

lemma Ocllterate-empty|simp,code-unfold]: ((Set{})—>iterate(a; x = A| Paz)) = A
(proof)

In particular, this does hold for A = null.

lemma Ocllterate-including:

assumes S-finite: T |= 6(S—>size())

and F-valid-arg: (v A) 7= (v (Fad))T
and F-commute: comp-fun-commute F

and F-cp: Nezyr. Feyr=F\-z7)yr

shows ((S—>including(a))—>iterate(a; x = A| Faz))T=
((S—>excluding(a))—>iterate(a; t = Fa A | Fax)) T

(proof)

4.6.12. OclSelect

lemma OclSelect-mtSet-exec|simp,code-unfold]: OclSelect mtSet P = mtSet
{proof)

definition OclSelect-body :: - = - = - = (A, ’a option option) Set
= (AP z acc. if P x = false then acc else acc—>including(x) endif)

lemma OclSelect-including-exec[simp,code-unfold]:

assumes P-cp : ¢cp P

shows OclSelect (X —>including(y)) P = OclSelect-body P y (OclSelect (X —>excluding(y))
P)

(is - = Zselect)

(proof)

4.6.13. OclReject

lemma OclReject-mitSet-exec[simp,code-unfold]: OclReject mtSet P = mtSet
{proof)

lemma OclReject-including-exec|simp,code-unfold):

87

assumes P-cp : cp P

shows OclReject (X —>including(y)) P = OclSelect-body (not o P) y (OclReject
(X —>ezcluding(y)) P)
(proof)

4.7. Execution on Set’s Operators (higher composition)

4.7.1. Oclincludes

lemma OclIncludes-any[simp,code-unfold):
X —>includes(X —>any()) = (if § X then
if 6 (X—>size()) then not(X —>isEmpty())
else X —>includes(null) endif
else invalid endif)

(proof)

4.7.2. OclSize

lemma [simp,code-unfold]: § (Set{} —>size()) = true
(proof)

lemma [simp,code-unfold]: § (X —>including(x)) —>size()) = (6(X —>size()) and v(z))
(proof)

lemma [simp,code-unfold]: 6 ((X —>excluding(z)) —>size()) = (6(X —>size()) and v(z))
(proof)

lemma [simp]:

assumes X-finite: \7. finite [[Rep-Set-0 (X 7)]]

shows § ((X —>including(z)) —>size()) = (6(X) and v(z))
(proof)

4.7.3. OclForall

lemma OclForall-rep-set-false:
assumes 7 = § X
shows (OclForall X P 7 = false 7) = (3 € [[Rep-Set-0 (X 7)]]. P (\7. z) T = false T)

(proof)

lemma OclForall-rep-set-true:
assumes 7 = 0 X
shows (7 = OclForall X P) = (Vz € [[Rep-Set-0 (X 7)]]. 7 E P (\7. 1))

(proof)

lemma OclForall-includes :
assumes z-def : 7 E 6 x
and y-def : T Edy
shows (7 = OclForall z (OclIncludes y)) = ([[Rep-Set-0 (z 7)]] C [[Rep-Set-0 (y 7)1])

88

{proof)

lemma OclForall-not-includes :

assumes z-def : 7 =0 x
and y-def : 7T =4y
shows (OclForall z (Ocllncludes y) T = false 7) = (— [[Rep-Set-0 (z 7)]] C [[Rep-Set-0 (y

1)
(proof)

lemma OclForall-iterate:

assumes S-finite: finite [[Rep-Set-0 (S 7)1]
shows S—>forAll(z | P x) T = (S—>iterate(x; acc = true | acc and P z)) T

(proof)

lemma OclForall-cong:

assumes Az. z € [[Rep-Set-0 (X 7)]] = 7E=P (\r.z) = 717F Q (\7. 2)
assumes P: 7 = OclForall X P

shows 7 |= OclForall X Q
(proof)

lemma OclForall-cong:
assumes Az. z € [[Rep-Set-0 (X 7)]] = 7EP Or.2) =717 Q (\.2) = 7R

(\T. x)
assumes P: 7 |= OclForall X P

assumes Q: 7 = OclForall X Q
shows 7 |= OclForall X R

(proof)

4.7.4. Strict Equality

lemma StrictRefEqg.¢-defined :
assumes z-def: T |E 0 ©
assumes y-def: 7T EJ y
shows ((z::("A,'az:null)Set) = y) 7 =
(z—>forAll(z| y—>includes(z)) and (y—>forAll(z| x—>includes(z)))) T

(proof)

lemma StrictRefEqg.i-exec[simp,code-unfold) :
((z:("A, aznull) Set) = y)
(if 6 x then (if 6y
then ((z—>forAll(z| y—>includes(z)) and (y—>forAll(z| z—>includes(z)))))

else if vy
then false (x z'—>includes = null *)

else inwvalid
endif

endif)
else if vz (x null = 297 %)
then if v y then not(d y) else invalid endif

else invalid

89

endif
endif)

(proof)

lemma StrictRefEqse-L-substl : cp P =T EFEvs=7TFvy=7TkEFvPr=7TFv
Py—=

7 E (z:(U acnull)Set) = y = 7 = (P o (", a:null)Set) = Py
{proof)

lemma OclIncluding-cong’ :
shows7Eds =1 Fit=17Fv=

7 = ((s:("A, aznull)Set) = t) = 7 = (s—>including(z) = (t—>including(z)))
(proof)

lemma Oclincluding-cong : A(s:("A,/a:null)Set) tzy r. 1=t =717 vy =
TEs=t= 2=y =7 s—>including(z) = (t—>including(y))

{proof)

lemma const-StrictRefEqget-including : const a = const S = const X —
const (X = S—>including(a))
(proof)

4.8. Test Statements

lemma syntaz-test: Set{2,1} = (Set{}—>including(1)—>including(2))
(proof)

Here is an example of a nested collection. Note that we have to use the abstract null
(since we did not (yet) define a concrete constant null for the non-existing Sets) :

lemma semantic-test2:

assumes H:(Set{2} = null) = (false::("A) Boolean)
shows (7:("A)st) = (Set{Set{2},null}—>includes(null))
(proof)

lemma short-cut’[simp,code-unfold): (8 = 6) = false

(proof)
lemma short-cut'[simp,code-unfold]: (2 = 1) = false
(proof)
lemma short-cut'"’[simp,code-unfold]: (1 = 2) = false
(proof)

Elementary computations on Sets.

declare OclSelect-body-def [simp]

value - (7 = v(invalid::("A, a::null) Set))
value 7 | v(null: (", a:null) Set)

90

value - (7 = d(null::("A, a::null) Set))

value 7 | v(Set{})

value 7 | v(Set{Set{2},null})
value 7 | §(Set{Set{2},null})
value 7 = (Set{2,1}—>includes(1))
value - (7 = (Set{2}—>includes(1)))

(Set{2,1}—>includes(null)))
(Set{2,null}—>includes(null))
(Set{null,2}—>includes(null))

value - (7
value 7
value 7

value 71 | ((Set{})—>forAll(z |0 ‘< z))
value 7 E ((Set{2,1})—>forAll(z | 0 ‘< z))
value - (7 (Set{2,1})—>exists(z | z ‘< 0)))

value - (7 (Set{2,null})—>forAll(z | 0 ‘< z)))
value 7 | ((Set{2,null})—>ezists(z | 0 ‘< z))

(Set{null::'a Boolean} = Set{}))
(Set{null::'a Integer} = Set{}))

=
l:
':
= (
~(E
value — (7 | §(Set{2,null})—>forAll(z | 0 ‘< 2))
G E
=«
value - (7
value — (7 |
= (Set{A- [l=]]} = Set{x-. [[=]]}))
= (Set{\-. |z]} = Set{\-. |z]}))

value (7
value (7

lemma - (7 = (Set{true} = Set{false})) (proof)

lemma — (7 = (Set{true,true} = Set{false})) (proof)

lemma — (7 | (Set{2} = Set{1})) (proof)

lemma 7 & (Set{2,null,2} = Set{null,2}) (proof)

lemma 7 = (Set{1,null,2} <> Set{null,2}) (proof)

lemma 7 | (Set{Set{2,null}} = Set{Set{null,2}}) (proof)
lemma 7 | (Set{Set{2,null}} <> Set{Set{null,2},null}) (proof)
lemma 7 | (Set{null}—>select(z | not z) = Set{null}) (proof)
lemma 7 |= (Set{null}—>reject(z | not) = Set{null}) (proof)

lemma const (Set{Set{2,null}, invalid}) (proof)

end

91

5. Formalization Ill: State Operations and
Objects

theory OCL-state
imports OCL-lib
begin

5.1. Introduction: States over Typed Object Universes

In the following, we will refine the concepts of a user-defined data-model (implied by a
class-diagram) as well as the notion of state used in the previous section to much more
detail. Surprisingly, even without a concrete notion of an objects and a universe of object
representation, the generic infrastructure of state-related operations is fairly rich.

5.1.1. Recall: The Generic Structure of States

Recall the foundational concept of an object id (oid), which is just some infinite set.
type-synonym oid = nat

Further, recall that states are pair of a partial map from oid’s to elements of an
object universe Rl—the heap—and a map to relations of objects. The relations were
encoded as lists of pairs to leave the possibility to have Bags, OrderedSets or Sequences
as association ends.

This leads to the definitions:

record ("2A)state =

heap : 7oid — A7
assocsg :: "oid — (oid xoid) list”
assocsg :: "oid — (oid xoid xoid) list”

type-synonym ('A)st = 7’2 state x’2 state”

Now we refine our state-interface. In certain contexts, we will require that the elements
of the object universe have a particular structure; more precisely, we will require that
there is a function that reconstructs the oid of an object in the state (we will settle the
question how to define this function later).

class object = fixes oid-of :: 'a = oid

93

Thus, if needed, we can constrain the object universe to objects by adding the following
type class constraint:

typ A :: object
The major instance needed are instances constructed over options: once an object,
options of objects are also objects.

instantiation option :: (object)object

begin
definition oid-of-option-def: oid-of x = oid-of (the x)
instance (proof)

end

5.2. Fundamental Predicates on Object: Strict Equality
Definition

Generic referential equality - to be used for instantiations with concrete object types ...

definition StrictRefEqopject = (", a::{object,null})val = ("A,’a)val = ("A)Boolean
where StrictRefEqobject T Y
=A7.if () T=trueT A (vy) T =true T
then if c 7 = null V y 7 = null
then ||z 7 = null ANy 7 = null]]

else || (oid-of (z 7)) = (oid-of (y 7)) ||
else invalid T
5.2.1. Logic and Algebraic Layer on Object
Validity and Definedness Properties

We derive the usual laws on definedness for (generic) object equality:

lemma StrictRefEqoyject-defargs:
T |= (StrictRefEqopject © (y::("A, a::{null,object})val))= (7 =(v z)) A (7 E(v y))
(proof)

Symmetry

lemma StrictRefEqoyject-sym :
assumes z-val : T E vz
shows 7 (= StrictRefEqobject © %

(proof)

Execution with Invalid or Null as Argument

lemma StrictRefEqosject-strictl [simp,code-unfold) :
(StrictRefEqopject © invalid) = invalid
{proof)

lemma StrictRefEqopject-strict2[simp,code-unfold]

94

(StrictRefEqovpject invalid x) = invalid
(proof)

Context Passing

lemma cp-StrictRefEqopject:
(StrictRefEqopject ¢y T) = (StrictRefEqopject (M- ¢ 7) (M- y 7)) T
(proof)

lemmas cp-intro’/[intro!,simp,code-unfold] =
cp-intro”’
cp-StrictRefEqopject| THEN alll[THEN alll[THEN alll[THEN cpl2]],
of StrictRefEqopject)]

Behavior vs StrongEq

It remains to clarify the role of the state invariant inv, (o) mentioned above that states
the condition that there is a “one-to-one” correspondence between object representations
and oid’s: Void € dom o. oid = OidOf "o (0id)". This condition is also mentioned in [33]
Annex A] and goes back to Richters [35]; however, we state this condition as an invariant
on states rather than a global axiom. It can, therefore, not be taken for granted that an
oid makes sense both in pre- and post-states of OCL expressions.

We capture this invariant in the predicate WFF :

definition WFF :: ("U::object)st = bool
where WFF 7 = ((V z € ran(heap(fst 7)). [heap(fst) (oid-of)] = z) A
(V z € ran(heap(snd 7)). [heap(snd T) (oid-of z)] = z))

It turns out that WFF is a key-concept for linking strict referential equality to logical
equality: in well-formed states (i.e. those states where the self (oid-of) field contains the
pointer to which the object is associated to in the state), referential equality coincides
with logical equality.

We turn now to the generic definition of referential equality on objects: Equality on
objects in a state is reduced to equality on the references to these objects. As in HOL-
OCL [6, 8], we will store the reference of an object inside the object in a (ghost) field.
By establishing certain invariants (“consistent state”), it can be assured that there is a
“one-to-one-correspondence” of objects to their references—and therefore the definition
below behaves as we expect.

Generic Referential Equality enjoys the usual properties: (quasi) reflexivity, symme-
try, transitivity, substitutivity for defined values. For type-technical reasons, for each
concrete object type, the equality = is defined by generic referential equality.

theorem StrictRefEqopject-vs-StrongEg:
assumes WFF: WFF 1

and valid-z: 7 E(v x)

and valid-y: 7 E=(v y)

and z-present-pre: x T € ran (heap(fst 7))

95

and y-present-pre: y T € ran (heap(fst 7))
and a-present-post:x T € ran (heap(snd 7))
and y-present-post:y T € ran (heap(snd 7))

shows (7 |= (StrictRefEqobject T y)) = (T | (z £ ¥))
(proof)

theorem StrictRefEqopject-vs-StrongEq”:

assumes WFF: WFF 1

and valid-z: 7 E(v (x 2 (A::object,’a::{null,object })val))

and valid-y: 7 =(v y)

and oid-preserve: Nz. © € ran (heap(fst 7)) V z € ran (heap(snd 7)) =

Hzx # 1 = oid-of (Hz) = zdofx

and xzy-together: © 7 € H ‘ ran (heap(fst 7)) Ay 7 € H ‘ran (heap(fst 7)) V

z 7 € H “ran (heap(snd 7)) Ay € H “ran (heap(snd 7))

shows (7 = (StrictRefEqobject T y)) = (T E (z £ y))
(proof)

So, if two object descriptions live in the same state (both pre or post), the referential
equality on objects implies in a WFF state the logical equality.

5.3. Operations on Object

5.3.1. Initial States (for testing and code generation)

definition ¢ :: ("A)st

where To = ((heap=Map.empty, assocso= Map.emply, assocss= Map.empty)),
(heap=Map.empty, assocso= Map.emply, assocss= Map.empty)))

5.3.2. OclAllinstances

To denote OCL types occurring in OCL expressions syntactically—as, for example, as
“argument” of oc1AllInstances()—we use the inverses of the injection functions into
the object universes; we show that this is a sufficient “characterization.”

definition OclAllInstances-generic :: (("A::object) st = AU state) = ("A::object — 'a) =
("A, ‘a option option) Set
where OclAllInstances-generic fst-snd H =
(AT. Abs-Set-0 || Some * ((H ‘ ran (heap (fst-snd 7))) — { None }) ||)

lemma OclAlllnstances-generic-defined: 7 |= 6 (OclAlllnstances-generic pre-post H)

{proof)

lemma OclAllInstances-generic-init-empty:

assumes [simpl: Az. pre-post (z, z) = z

shows 7 = OclAllInstances-generic pre-post H = Set{}
(proof)

96

lemma represented-generic-objects-nonnull:
assumes A: 7 = ((OclAllInstances-generic pre-post (H::("U::object — 'a))) —>includes(x))
shows T = not(x £ null)

(proof)

lemma represented-generic-objects-defined:
assumes A: 7 |= ((OclAllInstances-generic pre-post (H::("U::o0bject — 'a))) —>includes(z))
shows T = § (OclAllInstances-generic pre-post H) N 7 = 0 «

(proof)
One way to establish the actual presence of an object representation in a state is:

lemma represented-generic-objects-in-state:
assumes A: 7 |= (OclAllInstances-generic pre-post H)—>includes(z)
shows z 7 € (Some o H) ‘ran (heap(pre-post 7))

(proof)

lemma state-update-vs-alllnstances-generic-empty:
assumes [simp]: Aa. pre-post (mk a) = a

shows (mk (heap=empty, assocsa=A, assocs3=B|)) | OclAlllnstances-generic pre-post Type

= Set{}
(proof)

Here comes a couple of operational rules that allow to infer the value of oclAlllnstances
from the context 7. These rules are a special-case in the sense that they are the only rules
that relate statements with different 7’s. For that reason, new concepts like “constant

contexts P” are necessary (for which we do not elaborate an own theory for reasons

of

space limitations; in examples, we will prove resulting constraints straight forward by

hand).

lemma state-update-vs-alllnstances-generic-including':
assumes [simp]: Na. pre-post (mk a) = a
assumes Az. 0’ 0id = Some x = z = Object
and Type Object # None
shows (OclAllInstances-generic pre-post Type)
(mk (heap=c'(0id— Object), assocsa=A, assocs3=B)))

(
(
(proof)

(OclAllInstances-generic pre-post Type)—>including(\ -. || drop (Type Object) |]))
mk (heap=0c' assocso=A, assocss=B)))

lemma state-update-vs-alllnstances-generic-including:
assumes [simp|: Aa. pre-post (mk a) = a
assumes A\z. o’ oid = Some © = z = Object
and Type Object # None
shows (OclAlllnstances-generic pre-post Type)
(mk (heap=c'(0id— Object), assocsa=A, assocs3=B)))

97

((\-- (OclAllInstances-generic pre-post Type)
(mk (heap=c', assocsa=A, assocsz3=DB|)))—>including(\ -. || drop (Type Object)

1)
(mk (heap=c'(0id— Object), assocsa=A, assocsz=B)))
{proof)

lemma state-update-vs-alllnstances-generic-noincluding’:

assumes [simp|: Aa. pre-post (mk a) = a

assumes A\z. o’ 0id = Some © = z = Object

and Type Object = None
shows (OclAllInstances-generic pre-post Type)

(mk (heap=c'(oid— Object), assocsa=A, assocsz=DB)))
(OclAllInstances-generic pre-post Type)
(mk (heap=c’', assocsa=A, assocs3=DB)))

(proof)

theorem state-update-vs-alllnstances-generic-ntc:

assumes [simp|: Aa. pre-post (mk a) = a

assumes oid-def: oid¢dom o’

and non-type-conform: Type Object = None

and cp-ctzt: cp P

and const-ctzt: AX. const X = const (P X)

shows (mk (heap=0c'(0id— Object),assocsa=A,assocss=B|) = P (OclAlllnstances-generic

pre-post Type)) =

(mk (heap=0c’', assocsa=A, assocs3=DB)) E P (OclAlllnstances-generic pre-post
Type))
(is (77 = P 20) = (77 = P %))
(proof)

theorem state-update-vs-alllnstances-generic-tc:
assumes [simp]: Aa. pre-post (mk a) = a
assumes oid-def: oid¢dom o’

and type-conform: Type Object # None

and cp-ctxt: cp P

and const-ctzt: AX. const X = const (P X)

shows (mk (heap=c'(0id— Object),assocsa=A,assocs3=B|) = P (OclAlllnstances-generic
pre-post Type)) =
(mk (heap=0c’', assocsa=A, assocss=DB)) = P ((OclAllInstances-generic pre-post
Type)
—>including(\ -. | (Type Object)])))
(is (77 = P #g) = (#7/ = P %)
(proof)

declare OclAllInstances-generic-def [simp]

98

OclAlllnstances (@post)

definition OclAllInstances-at-post :: ("A :: object — 'a) = (A, '« option option) Set
(- .alllnstances’("))
where OclAllinstances-at-post = OclAlllnstances-generic snd

lemma OclAllInstances-at-post-defined: 7 |= 6 (H .alllnstances())
(proof)

lemma 7 = H .alllnstances() = Set{}
(proof)

lemma represented-at-post-objects-nonnull:
assumes A: 7 | (((H:("A::0bject — '«)).alllnstances()) —>includes(z))
shows 7 = not(z £ null)

(proof)

lemma represented-at-post-objects-defined:
assumes A: 7 = (((H:("A::o0bject — 'a)).alllnstances()) —>includes(x))
shows T =6 (H .alllnstances()) N7 = d x

(proof)
One way to establish the actual presence of an object representation in a state is:

lemma
assumes A: 7 = H .alllnstances()—>includes(z)
shows x 7 € (Some o H) ‘ ran (heap(snd 7))

(proof)

lemma state-update-vs-alllnstances-at-post-empty:
shows (o, (heap=empty, assocsa=A, assocs3=B)|)) = Type .alllnstances() = Set{}

(proof)

Here comes a couple of operational rules that allow to infer the value of oclAlllnstances
from the context 7. These rules are a special-case in the sense that they are the only rules
that relate statements with different 7’s. For that reason, new concepts like “constant
contexts P” are necessary (for which we do not elaborate an own theory for reasons of
space limitations; in examples, we will prove resulting constraints straight forward by
hand).

lemma state-update-vs-alllnstances-at-post-including':
assumes Az. o’ oid = Some x = z = Object
and Type Object # None
shows (Type .alllnstances())
(o, (heap=0c'(0id— Object), assocsa=A, assocss=B)))
((Type .allInstances())—>including(\ -. || drop (Type Object) |]))
(o, (heap=c',assocsa=A, assocss=DB)))

(proof)

99

lemma state-update-vs-alllnstances-at-post-including:
assumes Az. o’ 0id = Some x = z = Object
and Type Object # None
shows (Type .alllnstances())
(o, (heap=0c'(0id— Object), assocsa=A, assocs3=B)))
((\-- (Type .alllnstances())
(o, (heap=0', assocsa=A, assocss=BY])))—>including(x -. || drop (Type Object)

1)
(o, (heap=0c'(0id— Object), assocsa=A, assocs3=B)))
(proof)

lemma state-update-vs-alllnstances-at-post-noincluding:
assumes A\z. o’ oid = Some x = z = Object
and Type Object = None
shows (Type .alllnstances())
(o, (heap=0c'(0id— Object), assocsa=A, assocss=DB)))

(Type .alllnstances())
(o, (heap=c’, assocss=A, assocs3=B]))

(proof)

theorem state-update-vs-alllnstances-at-post-ntc:

assumes oid-def: oid¢dom o’

and non-type-conform: Type Object = None

and cp-ctzt: cp P

and const-ctzt: AX. const X = const (P X)

shows ((o, (heap=0c'(0id— Object),assocsa=A,assocss=B|)) = (P(Type .alllnstances()))) =
((o, (heap=c’', assocsa=A, assocs3=B))) E (P(Type .alllnstances())))

(proof)

theorem state-update-vs-alllnstances-at-post-tc:

assumes oid-def: oid¢dom o’

and type-conform: Type Object # None

and cp-ctxt: cp P

and const-ctat: AX. const X = const (P X)

shows ((o, (heap=0c'(0id— Object),assocsa=A,assocs3=B))) = (P(Type .alllnstances()))) =
((o, (heap=c’', assocsa=A, assocs3=B))) E (P((Type .alllnstances())

—>including(\ -. | (Type Object)]))))
(proof)

OclAllInstances (@pre)

definition OclAllInstances-at-pre :: ("A :: object — 'a) = (", '« option option) Set
(- .alllnstances@pre’(’))

100

where OclAllInstances-at-pre = OclAllInstances-generic fst

lemma OclAllInstances-at-pre-defined: 7 |= § (H .alllnstancesQpre())
(proof)

lemma 7o = H .alllnstancesQpre() = Set{}
(proof)

lemma represented-at-pre-objects-nonnull:
assumes A: 7 |= (((H:("U::object — 'a)).alllnstances@pre()) —>includes(z))
shows 7 = not(z = null)

(proof)

lemma represented-at-pre-objects-defined:
assumes A: 7 |= (((H:("U::object — '«)).alllnstances@pre()) —>includes(z))
shows T E § (H .alllnstances@pre()) A7 E § «

(proof)
One way to establish the actual presence of an object representation in a state is:

lemma
assumes A: 7 = H .alllnstancesQpre()—>includes(x)
shows z 7 € (Some o H) ‘ran (heap(fst 7))

(proof)

lemma state-update-vs-alllnstances-at-pre-empty:
shows ((heap=empty, assocsa=A, assocs3=B)|), o) = Type .alllnstancesQ@pre() = Set{}
(proof)

Here comes a couple of operational rules that allow to infer the value of
oclAllInstances@pre from the context 7. These rules are a special-case in the sense that
they are the only rules that relate statements with different 7’s. For that reason, new
concepts like “constant contexts P” are necessary (for which we do not elaborate an own
theory for reasons of space limitations; in examples, we will prove resulting constraints
straight forward by hand).

lemma state-update-vs-alllnstances-at-pre-including’:
assumes Az. o’ 0id = Some x = z = Object
and Type Object # None
shows (Type .alllnstances@pre())
((heap=c'(0id— Object), assocsa=A, assocs3=DB)), o)

EEType .alllnstancesQpre())—>including(X -. || drop (Type Object) |]))

|heap=c',assocsa=A, assocs3=B|), o)

lemma state-update-vs-alllnstances-at-pre-including:
assumes Az. o’ oid = Some x = z = Object

101

and Type Object # None
shows (Type .alllnstancesQpre())
((heap=0c'(0id—> Object), assocsa=A, assocss=BY), o)
(M- (Type .alllnstances@pre())
((heap=c', assocsa=A, assocss=B|), 0))—>including(\ -. || drop (Type Object)

1)
((heap=c'(0id— Object), assocsa=A, assocsz3=DB)), o)
(proof)

lemma state-update-vs-alllnstances-at-pre-noincluding’:
assumes Az. 0’ oid = Some x = z = Object
and Type Object = None
shows (Type .alllnstances@pre())

((heap=c'(0id— Object), assocsa=A, assocs3=DB)), o)
(Type .alllnstances@pre())
((heap=0c', assocsa=A, assocss=DB)), o)

(proof)

theorem state-update-vs-alllnstances-at-pre-nic:

assumes oid-def: oid¢dom o’

and non-type-conform: Type Object = None

and cp-ctxt: cp P

and const-ctzt: AX. const X = const (P X)

shows (((heap=0'(0id— Object),assocsa=A,assocss=B), o) = (P(Type .alllnstancesQpre())))
(((heap=0c', assocsa=A, assocss=B)), o) E (P(Type .alllnstancesQpre())))

(proof)

theorem state-update-vs-alllnstances-at-pre-tc:

assumes oid-def: oid¢dom o’

and type-conform: Type Object # None

and cp-ctrt: cp P

and const-ctat: AX. const X = const (P X)

shows (((heap=0c'(0id— Object),assocsa=A,assocss=B), o) = (P(Type .alllnstancesQpre())))
(((heap=0c', assocsa=A, assocsz3=DB|), o) E (P((Type .alllnstancesQpre())

—>including(\ -. |(Type Object)]))))
(proof)

@post or @pre

theorem StrictRefEqop;ect-vs-StrongEq'":

assumes WFF: WEFF T

and valid-z: 7 E(v (x 2 ("A::object,’az:object option option)val))
and valid-y: 7 E=(v y)

102

and oid-preserve: Nz. z € ran (heap(fst 7)) V = € ran (heap(snd 7)) =
oid-of (H x) = oid-of x
and zy-together: 7 = ((H .alllnstances()—>includes(xz) and H .allInstances()—>includes(y))
or
(H .allInstancesQpre()—>includes(x) and H .alllnstancesQpre()—>includes(y)))

shows (7 |= (StrictRefEqobject T y)) = (T E (z £ y))
(proof)

5.3.3. OcllsNew, OclisDeleted, OcllsMaintained, OcllsAbsent

definition OcllsNew:: (U, ‘a:{null,object})val = ("A)Boolean ((-).oclIsNew'(’))
where X .oclIsNew() = (A7 . if (6 X) 7 = true 7
then ||oid-of (X 7) ¢ dom(heap(fst 7)) A
oid-of (X 7) € dom(heap(snd 7))]|
else invalid T)

The following predicates — which are not part of the OCL standard descriptions —
complete the goal of ocllsNew by describing where an object belongs.

definition OcllsDeleted:: ("U, 'a::{null,object})val = ("A)Boolean ((-).ocllsDeleted’("))
where X .ocllsDeleted() = (A7 . if (6 X) 7 = true 7
then || oid-of (X 7) € dom(heap(fst 7)) A
oid-of (X 7) ¢ dom(heap(snd 7))]|
else invalid T)

definition OcllsMaintained:: ("A, 'az:{null,object})val = ("A)Boolean((-).ocllsMaintained'(”))
where X .ocllsMaintained() = (A7 . if (6 X) 7 = true 7
then | |oid-of (X 7) € dom(heap(fst 7)) A
oid-of (X 7) € dom(heap(snd 7))] |

else invalid T)

definition OcllsAbsent:: (", 'a::{null,object})val = ("A)Boolean ((-).ocllsAbsent’("))
where X .ocllsAbsent() = (A7 . if (§ X) 7 = true T
then ||oid-of (X 7) ¢ dom(heap(fst 7)) A
oid-of (X 7) ¢ dom(heap(snd 7))]|

else invalid T)

lemma state-split : 7 =0 X =
7 | (X .ocllsNew()) V 7 = (X .oclIsDeleted()) V
7 E (X .ocllsMaintained()) V 7 = (X .ocllsAbsent())

(proof)

lemma notNew-vs-others : 7 |= 6 X =
(=7 & (X .oclIsNew())) = (1 = (X .ocllsDeleted()) V
7 | (X .ocllsMaintained()) V 7 = (X .ocllsAbsent()))

(proof)

103

5.3.4. OclisModifiedOnly
Definition

The following predicate—which is not part of the OCL standard—provides a simple, but
powerful means to describe framing conditions. For any formal approach, be it animation
of OCL contracts, test-case generation or die-hard theorem proving, the specification of
the part of a system transition that does not change is of primordial importance. The
following operator establishes the equality between old and new objects in the state
(provided that they exist in both states), with the exception of those objects.

definition OcllsModifiedOnly ::("A::0bject,’a::{ null,object})Set = A Boolean
(-—>oclIsModifiedOnly ("))
where X —>ocllsModifiedOnly() = (A(o,0).
let X' = (oid-of ¢ [[Rep-Set-0(X (o,0"))1]);
S = ((dom (heap o) N dom (heap o)) — X
inif (0 X) (0,0") = true (o,0") A (Vz€[[Rep-Set-0(X (o,0")]]. # null)
then [|V z € S. (heap o) © = (heap o') z|]
else invalid (o,0"))

Execution with Invalid or Null or Null Element as Argument

lemma invalid—> oclIsModifiedOnly() = invalid
(proof)

lemma null—>ocllsModifiedOnly() = invalid
(proof)

lemma
assumes X-null : 7 = X —>includes(null)
shows 7 = X —>ocllsModifiedOnly() = invalid

(proof)

Context Passing

lemma cp-OcllsModifiedOnly : X —>ocllsModifiedOnly() 7 = (A-. X 7)—>ocllsModifiedOnly()

T

(proof)

5.3.5. OclSelf

The following predicate—which is not part of the OCL standard—explicitly retrieves in
the pre or post state the original OCL expression given as argument.
definition [simp]: OclSelf © H fst-snd = (A7 . if (0) T = true T
then if oid-of (z 7) € dom(heap(fst 7)) A oid-of (z 7) € dom(heap (snd 7))
then H [(heap(fst-snd 7))(oid-of (z 7))]
else invalid T
else invalid T)

definition OclSelf-at-pre :: ("A::0bject,’a::{null,object})val =

104

(A= "a) =
("A::object,'ac::{null,object })val ((-)@Qpre(-))
where © Qpre H = OclSelf x H fst

definition OclSelf-at-post :: ("A::object,’a::{null,object})val =
(A = 'a) =
("A::object,'a::{null,object })val ((-)@Qpost(-))
where z Qpost H = OclSelf © H snd

5.3.6. Framing Theorem

lemma all-oid-diff:

assumes def-z : T E 0 x

assumes def-X : 7 E§ X

assumes def-X': A\z. z € [[Rep-Set-0 (X 7)]] = = # null

defines P = (\a. not (StrictRefEqopject © a))
shows (7 = X—>forAll(a| P a)) = (oid-of (z T) ¢ oid-of ‘ [[Rep-Set-0 (X 7)]])
(proof)

theorem framing:
assumes modifiesclause:T = (X —>excluding(z))—>ocllsModifiedOnly()
and oid-is-typerepr : T |= X —>forAll(a| not (StrictRefEqopject T a))
shows 7 = (z @Qpre P & (z Qpost P))

{proof)

As corollary, the framing property can be expressed with only the strong equality as
comparison operator.

theorem framing':
assumes wff : WFF 1
assumes modifiesclause:T = (X —>excluding(z))—> ocllsModifiedOnly ()
and oid-is-typerepr : T |= X —>forAll(a| not (z £ a))
and oid-preserve: Nz. © € ran (heap(fst 7)) V © € ran (heap(snd 7)) =
oid-of (H z) = oid-of x
and xy-together:
T = X—>forAll(y | (H .alllnstances()—>includes(z) and H .alllnstances()—>includes(y)) or
(H .alllnstances@Qpre()—>includes(z) and H .alllnstances@pre()—>includes(y)))
shows 7 |= (z Qpre P £ (z Qpost P))

(proof)

5.3.7. Miscellaneous

lemma pre-post-new: 7 = (z .ocllsNew()) = — (7 = v(z Qpre H1)) A = (7 |E v(z Qpost
(proof)

lemma pre-post-old: 7 |= (z .ocllsDeleted()) = — (7 = v(z Qpre HI1)) A = (7 |E v(z Qpost
(proof)

105

lemma pre-post-absent: T |= (z .ocllsAbsent()) = — (7 = v(z Qpre H1)) A = (17 = v(z Qpost

(proof)

lemma pre-post-maintained: (r = v(zx Qpre H1) V 7 E v(z Qpost H2)) = 7 E (=
.ocllsMaintained))
{proof)

lemma pre-post-maintained:
7 = (z .oclIsMaintained()) = (7 = v(z Qpre (Some o H1)) A 7 = v(xz Qpost (Some o H2)))
(proof)

lemma framing-same-state: (o, o) = (z Qpre H & (z Qpost H))
(proof)

end

theory OCL-tools
imports OCL-core
begin

end

theory OCL-main
imports OCL-lib OCL-state OCL-tools
begin

end

106

Part Il

Examples

107

6. The Employee Analysis Model

6.1. The Employee Analysis Model (UML)

theory
Employee-AnalysisModel-UMLPart
imports
../ OCL-main
begin

6.1.1. Introduction

For certain concepts like classes and class-types, only a generic definition for its resulting
semantics can be given. Generic means, there is a function outside HOL that “compiles”
a concrete, closed-world class diagram into a “theory” of this data model, consisting of
a bunch of definitions for classes, accessors, method, casts, and tests for actual types, as
well as proofs for the fundamental properties of these operations in this concrete data
model.

Such generic function or “compiler” can be implemented in Isabelle on the ML level.
This has been done, for a semantics following the open-world assumption, for UML
2.0 in [4, [7]. In this paper, we follow another approach for UML 2.4: we define the
concepts of the compilation informally, and present a concrete example which is verified
in Isabelle/HOL.

Outlining the Example

We are presenting here an “analysis-model” of the (slightly modified) example Figure 7.3,
page 20 of the OCL standard [33]. Here, analysis model means that associations were
really represented as relation on objects on the state—as is intended by the standard—

rather by pointers between objects as is done in our “design model” (see[Section 7.1)). To
be precise, this theory contains the formalization of the data-part covered by the UML

class model (see [Figure 6.1):

This means that the association (attached to the association class EmployeeRanking)
with the association ends boss and employees is implemented by the attribute boss and
the operation employees (to be discussed in the OCL part captured by the subsequent
theory).

109

OclAny

f

Person

boss
0..1

salary : Integer

Figure 6.1.: A simple UML class model drawn from Figure 7.3, page 20 of [33].

6.1.2. Example Data-Universe and its Infrastructure
Ideally, the following is generated automatically from a UML class model.

Our data universe consists in the concrete class diagram just of node’s, and implicitly
of the class object. Each class implies the existence of a class type defined for the
corresponding object representations as follows:

datatype typePerson = mkPerson oid
it option

datatype typeociAny = kaclAny oid
(int option) option
Now, we construct a concrete “universe of OclAny types” by injection into a sum type
containing the class types. This type of OclAny will be used as instance for all respective
type-variables.

datat}’pe A = inperson typeperson | Z.nOclAny typeOclAny

Having fixed the object universe, we can introduce type synonyms that exactly corre-
spond to OCL types. Again, we exploit that our representation of OCL is a “shallow em-
bedding” with a one-to-one correspondance of OCL-types to types of the meta-language
HOL.

type-synonym Boolean = %A Boolean

type-synonym Integer = 2 Integer

type-synonym Void = A Void

type-synonym OclAny = (A, typeociany option option) val
type-synonym Person = (A, typeperson option option) val

type-synonym Set-Integer = (2, int option option) Set
type-synonym Set-Person = (U, typeperson 0ption option) Set

Just a little check:
typ Boolean

To reuse key-elements of the library like referential equality, we have to show that the

110

object universe belongs to the type class “oclany,” i. e., each class type has to provide a
function oid-of yielding the object id (oid) of the object.

instantiation typeperson :: object

begin
definition oid-of-typeperson-def: oid-of x = (case & of mkperson 0id - = 0id)
instance (proof)

end

instantiation typeociany :: object

begin
definition oid-of-typeociany-def: oid-of © = (case & of mkoeciany 0id - = oid)
instance (proof)

end

instantiation 2 :: object
begin
definition oid-of-A-def: oid-of z = (case z of
MPperson PErson = oid-of person
| inociany oclany = oid-of oclany)
instance (proof)
end

6.1.3. Instantiation of the Generic Strict Equality

We instantiate the referential equality on Person and OclAny

defs(overloaded) StrictRefEqopject-person : (x::Person) =y = StrictRefEqovject T Y
defs(overloaded) StrictRefEqobject-0Ociany : (2:0clAny) =y = StrictRefEqopject T Y

lemmas

cp-StrictRefEqopject[of x::Person y::Person T,

simplified StrictRefEqobject-Person|symmetric]]
ep-intro(9) [of P::Person = PersonQ)::Person = Person,

simplified StrictRefEqobject-Person|symmetric] |
StrictRefEqobjecct-def [of x::Person y::Person,

simplified StrictRefEqobject-Person|symmetric]]
StrictRefEqoyject-defargs [of - x::Person y::Person,

simplified StrictRefEqobject-Person|symmetric]]
StrictRefEqouject-strictl

[of z::Person,

simplified StrictRefEqobject-Person|symmetric]]
StrictRefEqoyject-strict2

[of z::Person,

simplified StrictRefEqobject-Person|symmetric]]

For each Class C, we will have a casting operation .oclAsType(C), a test on the actual
type .oclIsType0f (C) as well as its relaxed form .oclIsKindOf(C') (corresponding
exactly to Java’s instanceof-operator.

Thus, since we have two class-types in our concrete class hierarchy, we have two op-

111

erations to declare and to provide two overloading definitions for the two static types.

6.1.4. OclAsType
Definition

consts OclAsTypeociany =+ 'a = OclAny ((-) .oclAsType'(OclAny’))
consts OclAsTypeperson : ' = Person ((-) .oclAsType'(Person’))

definition OclAsTypeociany-A = (Au. [case u of iNociany ¢ = a
| inPeT'son (mkPerson oid CL) = kaclAny oid I_aJJ)

lemma OclAsTypeociany-2A-some: OclAsTypeociany-2A © # None
(proof)

defs (overloaded) OclAsTypeo i any-OclAny:
(X::0clAny) .oclAsType(OclAny) = X

defs (overloaded) OclAsTypeociany-Person:
(X::Person) .oclAsType(OclAny) =
(\7. case X T of
1 = invalid T
| | L] = null T

| Hmkperson oid a JJ = H_ (kaclAny oid LCLJ) JJ)

definition OclAsTypeperson-A = (\u. case u of Nperson P = |
| inOclAny (kaclAny oid Laj) = I_mkPerson oid CLJ
| - = None)

defs (overloaded) OclAsTypeperson-OclAny:
(X::OclAny) .oclAsType(Person) =
(\7. case X T of
L = dnvalid 7
| | L] = null T
| LLlmkociany 0id L || = invalid 7 (% down—-cast exception)
| LLmkociany oid [a] || = [[mkperson oid a]])

defs (overloaded) OclAsTypeperson-Person:
(X::Person) .oclAsType(Person) = X

lemmas [simp] =
OclAsTypeoci Any-OclAny
OclAsType person-Person

Context Passing

lemma ¢p-OclAsTypeociany-Person-Person: ¢p P = c¢p(AX. (P (X::Person):Person)
.oclAsType(OclAny))
(proof)

112

lemma cp-OclAsTypeociany-OclAny-OclAny: cp P = cp(AX. (P (X::0clAny)::OclAny)
.oclAsType(OclAny))

(proof)

lemma c¢p-OclAsTypeperson-Person-Person: ¢p P = cp(A\X. (P (X::Person)::Person)
.oclAsType(Person))

{proof)

lemma cp-OclAsTypeperson-OclAny-OclAny: ¢p P = cp(A\X. (P (X::0cldny)::OclAny)
.oclAsType(Person))

(proof)

lemma ¢p-OclAsTypeociany-Person-OclAny: ¢p P = cp(A\X. (P (X::Person):OclAny)
.oclAsType(OclAny))

(proof)
lemma c¢p-OclAsTypeociany-OclAny-Person: ¢cp P = cp(AX. (P (X::OclAny)::Person)

.oclAsType(OclAny))

(proof)
lemma ¢p-OclAsTypeperson-Person-OclAny: ¢p P = c¢p(A\X. (P (X::Person):OclAny)

.oclAsType(Person))

(proof)
lemma ¢p-OclAsTypeperson-OclAny-Person: c¢p P = cp(A\X. (P (X::OclAny)::Person)

.oclAsType(Person))
(proof)

lemmas [simp] =
cp-OclAsTypeo i any-Person-Person
cp-OclAsTypeo ci any-OclAny-OclAny
cp-OclAsType person-Person-Person
cp-OclAsType person-0clAny-OclAny

cp-OclAsTypeociany-Person-OclAny
cp-OclAsTypeoci any-OclAny-Person
cp-OclAsType person-Person-OclAny
cp-OclAsType person-OclAny-Person

Execution with Invalid or Null as Argument

lemma OclAsTypeociany-OclAny-strict : (invalid:: OclAny) .oclAsType(OclAny) = invalid
(proof)

lemma OclAsTypeociany-OclAny-nullstrict : (null:: OclAny) .oclAsType(OclAny) = null
(proof)

lemma OclAsTypeo i any-Person-strict[simp] : (invalid:: Person) .oclAsType(OclAny) = invalid
(proof)

lemma OclAsTypeociany-Person-nullstrict[simp)] : (null:: Person) .oclAsType(OclAny) = null
(proof)

lemma OclAsType person-OclAny-strict[simp] : (invalid:: OclAny) .oclAsType(Person) = invalid

113

(proof)

lemma OclAsType person-OclAny-nullstrict[simp] : (null::OclAny) .oclAsType(Person) = null
(proof)

lemma OclAsType person-Person-strict : (invalid:: Person) .oclAsType(Person) = invalid

(proof)

lemma OclAsTypeperson-Person-nullstrict : (null:: Person) .oclAsType(Person) = null

(proof)

6.1.5. OclisTypeOf
Definition

consts OclIsTypeOf ociany = '@ = Boolean ((-).oclls TypeOf '(OclAny"))
consts OcllsTypeOf person ‘o = Boolean ((-).ocllsTypeOf '(Person’))

defs (overloaded) OclIsTypeOf ociany-OclAny:
(X::OclAny) .ocllsTypeOf (OclAny) =
(\7. case X T of
1 = invalid T
| | L] = true 7 (* invalid 29 x)
| [Ilmkociany oid L || = true T
| [|mkociany oid |-] || = false T)

defs (overloaded) OclIsTypeOf ociany-Person:
(X::Person) .ocllsTypeOf (OclAny) =
(\7. case X T of
1 = invalid T
| |L] = true 7 (% invalid 22 x)

| [L - 1] = false T)

defs (overloaded) OclIsTypeOf person-OclAny:
(X::OclAny) .ocllsTypeOf (Person) =
(\7. case X T of
1 = invalid T
| |L] = true T
| [Imkociany 0id L || = false T
| [lmkociany 0id |-] || = true 7)

defs (overloaded) OcllsTypeOf person-Person:
(X::Person) .ocllsTypeOf (Person) =
(AT. case X T of
1 = invalid T
| - = true 1)

114

Context Passing

lemma

ep(OX.(P(X:

(proof)

lemma

ep(Z\X.(P(X::

(proof)
lemma

ep(ZX.(P(X:

(proof)

lemma

ep(AX.(P(X::

(proof)

lemma

ep(AX.(P(X:

(proof)
lemma

ep(ZNX.(P(X::

(proof)

lemma

ep(ZNX.(P(X:

(proof)
lemma

ep(ZNX.(P(X::

(proof)

cp-OcllsTypeOf o ci Any-Person-Person:

:Person):: Person).oclls Type Of (OclAny))

cp-OcllsType Of 0.1 Any-OclAny-OclAny:

OclAny):: OclAny).oclls TypeOf (OclAny))

cp-0clls TypeOf person-Person-Person:

:Person):: Person).oclls Type Of (Person))

ep-OcllsTypeOf person-OclAny-OclAny:

OclAny)::OclAny).oclls Type Of (Person))

cp-0cllsType Of 0 ci any-Person-OclAny:
:Person):: OclAny).oclls Type Of (OclAny))

cp-0cllsTypeOf 0.1 Any-OclAny-Person:

OclAny):: Person).oclls Type Of (OclAny))

cp-OcllsTypeOf person-Person-OclAny:

:Person):: OclAny).oclls TypeOf (Person))

cp-Oclls TypeOf person-OclAny-Person:
OclAny):: Person).oclls TypeOf (Person))

lemmas [simp] =
cp-O0cllsTypeOf 0 ci Any-Person-Person
cp-0clls TypeOf o ci Any-OclAny-OclAny
cp-Ocls TypeOf person-Person-Person
cp-0cllsTypeOf person-OclAny-OclAny

cp-0cllsTypeOf o ci any-Person-OclAny
cp-OcllsTypeOf 0ci Any-OclAny-Person
cp-Oclls TypeOf person-Person-OclAny
Cp'OClISTyPEOfPerson‘OClAny_Person

Execution with Invalid or Null as Argument

lemma OcllsTypeOf 01 any-OclAny-strictl [simp):
(inwalid:: OclAny) .oclls TypeOf (OclAny) = invalid

(proof)

lemma OcllsTypeOf o ci Any-OclAny-strict2]simp]:
(null:: OclAny) .oclls TypeOf (OclAny) = true

(proof)

lemma Oclls TypeOf ¢ 1 Any-Person-strict1 [simp]:
(inwvalid:: Person) .ocllsTypeOf (OclAny) = invalid

cp

cp

cp

cp

cp

cp

cp

cp

115

(proof)

lemma Oclls TypeOf o1 Any-Person-strict2[simp:
(null:: Person) .ocllsTypeOf (OclAny) = true

(proof)

lemma OclIsTypeOf person-OclAny-strict1 [simp]:
(invalid:: OclAny) .oclls TypeOf (Person) = invalid

(proof)

lemma OcllsTypeOf person-OclAny-strict2[simp]:
(null:: OclAny) .oclIsTypeOf (Person) = true

(proof)

lemma OcllsTypeOf person-Person-strictl [simp]:
(invalid:: Person) .oclls TypeOf (Person) = invalid

(proof)

lemma OcllsTypeOf person-Person-strict2[simp]:
(null::Person) .oclls TypeOf (Person) = true

(proof)

Up Down Casting

lemma actual Type-larger-static Type:

assumes isdef: 7 = (§ X)

shows 7 = (X::Person) .oclls TypeOf (OclAny) £ false
(proof)

lemma down-cast-type:

assumes isOclAny: 7 = (X::OclAny) .ocllsTypeOf (OclAny)
and non-null: 7 | (6§ X)

shows 7 | (X .oclAs Type(Person)) £ invalid

(proof)

lemma down-cast-type”:

assumes isOclAny: 7 = (X::OclAny) .ocllsTypeOf (OclAny)
and non-null: 7 = (6 X)

shows 7 | not (v (X .oclAsType(Person)))

(proof)

lemma up-down-cast :
assumes isdef: 7 = (§ X)
shows 7 = ((X::Person) .oclAsType(OclAny) .oclAsType(Person) = X)

(proof)

lemma up-down-cast-Person-OclAny-Person [simp]:
shows ((X::Person) .oclAsType(OclAny) .oclAsType(Person) = X)

{proof)

lemma up-down-cast-Person-OclAny-Person’: assumes 7 = v X
shows 7 = (((X :: Person) .oclAsType(OclAny) .oclAsType(Person)) =

{proof)

116

X)

lemma up-down-cast-Person-OclAny-Person’": assumes 7 = v (X :: Person)

shows 7 &= (X .ocllsTypeOf (Person) implies (X .oclAsType(OclAny) .oclAsType(Person)) =
X)

(proof)

6.1.6. OcllsKindOf
Definition

consts OclIsKindOf ociany ‘o = Boolean ((-).oclIsKindOf'(OclAny"))
consts OcllsKindOf person i 'a = Boolean ((-).ocllsKindOf'(Person'))

defs (overloaded) OclIsKindOf ociAny-OclAny:
(X::0clAny) .ocllsKindOf (OclAny) =
(AT. case X T of
1 = invalid 7
| - = true 1)

defs (overloaded) OclIsKindOf ociany-Person:
(X::Person) .ocllsKindOf (OclAny) =
(\7. case X T of
1 = invalid T
| -= true 7)

defs (overloaded) OclIsKindOf person-OclAny:
(X::0clAny) .ocllsKindOf (Person) =
(\7. case X T of
1 = invalid T
| | L] = true T
| [[mkociany otd L || = false T
| [Imkociany 0id |-] || = true 7)

defs (overloaded) OclIsKindOf person-Person:
(X::Person) .oclIsKindOf (Person) =
(\7. case X T of
1 = invalid T

| - = true 1)
Context Passing
lemma cp-OcllsKindOf o ci any-Person-Person: cp P =
cp(Z\X .(P(X::Person)::Person).ocllsKindOf (OclAny))
(proof)
lemma cp-OcllsKindOf o ci any-OclAny-OclAny: cp P =
ep(ANX . (P(X::OclAny):: OclAny).ocllsKindOf (OclAny))
(proof)
lemma cp-OclUsKindOf person-Person-Person: cp P —
cp(Z\X .(P(X::Person):: Person).ocllsKindOf (Person))
(proof)

117

lemma cp-OclIsKindOf person-OclAny-OclAny: cp P =
ep(ZNX .(P(X::OclAny)::OclAny).ocllsKindOf (Person))

(proof)

lemma cp-OcllsKindOf o ci any-Person-OclAny: cp P ==
ep(Z\X .(P(X::Person):: OclAny).oclIsKindOf (OclAny))

(proof)

lemma cp-OcllsKindOf o c1 Any-OclAny-Person: cp P ==
ep(ZNX .(P(X::OclAny)::Person).oclIsKindOf (OclAny))

(proof)

lemma cp-OclIsKindOf person-Person-OclAny: cp P =
cp(AX .(P(X::Person)::OclAny).ocllsKindOf (Person))

(proof)

lemma cp-OcllsKindOf person-OclAny-Person: cp P —
cp(ZNX . (P(X::OclAny):: Person).ocllsKindOf (Person))

(proof)

lemmas [simp] =
cp-OcllsKindOf oci any-Person-Person
cp-OclIsKindOf o ci Any-OclAny-OclAny
cp-OclIsKindOf person-Person-Person
cp-OclsKindOf person-OclAny-OclAny

cp-OcllsKindOf o ci any-Person-OclAny
cp-OcllsKindOf o ci any-OclAny-Person
cp-0clsKindOf person-Person-OclAny
cp-OclsKindOf person-OclAny-Person

Execution with Invalid or Null as Argument

lemma OclIsKindOf ociany-OclAny-strict [simp] : (invalid:: OclAny) .ocllsKindOf (OclAny) =
invalid

(proof)

lemma OclIsKindOf oci any-OclAny-strict2[simp] : (null::OclAny) .ocllsKindOf (OclAny) =
true

(proof)

lemma OclIsKindOf gciany-Person-strict1 [simp] : (invalid::Person) .ocllsKindOf (OclAny) =
invalid
(proof)

lemma OclIsKindOf oci any-Person-strict2[simp] : (null:: Person) .ocllsKindOf (OclAny) = true
(proof)

lemma OclIsKindOf person-OclAny-strictl [simp]: (invalid::OclAny) .oclIsKindOf (Person) =

mvalid

(proof)

118

lemma OclIsKindOf person-OclAny-strict2[simp]: (null:: OclAny) .oclIsKindOf (Person) = true
(proof)

lemma OcllsKindOf person-Person-strictl [simp]: (invalid::Person) .ocllsKindOf (Person) =
nvalid
(proof)

lemma OclIsKindOf person-Person-strict2[simp): (null:: Person) .ocllsKindOf (Person) = true
(proof)

Up Down Casting

lemma actualKind-larger-staticKind:
assumes isdef: 7 = (§ X)
shows 7 = (X::Person) .ocllsKindOf (OclAny) £ true

(proof)

lemma down-cast-kind:

assumes isOclAny: = 7 = (X::OclAny) .ocllsKindOf (Person)
and non-null: T E (6§ X)

shows 7 | (X .oclAsType(Person)) = invalid

(proof)

6.1.7. OclAlllnstances

To denote OCL-types occuring in OCL expressions syntactically—as, for example, as
“argument” of oclAlllnstances ()—we use the inverses of the injection functions into the
object universes; we show that this is sufficient “characterization.”

definition Person = OclAsTypeperson-2A
definition OclAny = OclAsTypeociany-2U
lemmas [simp] = Person-def OclAny-def

lemma OclAllinstances-genericociany-evec: OclAllnstances-generic pre-post OclAny =
(AT. Abs-Set-0 || Some © OclAny ‘ ran (heap (pre-post 7)) ||)

(proof)

lemma OclAllInstances-at-postociany-exec: OclAny .alllnstances() =
(\T. Abs-Set-0 || Some ¢ OclAny ‘ ran (heap (snd 7)) ||
(proof)

lemma OclAllInstances-at-preociany-exec: OclAny .alllnstancesQpre() =
(AT. Abs-Set-0 || Some ¢ OclAny ‘ ran (heap (fst 7)) |])

(proof)

OclisTypeOf

lemma OclAny-alllnstances-generic-oclls TypeOf ociany1:
assumes [simp]: Az. pre-post (z, x) =z

119

shows 7. (1 E ((OclAllInstances-generic pre-post OclAny)—>forAll(X|X
.oclIsTypeOf (OclAny))))

{proof)

lemma OclAny-alllnstances-at-post-ocllsTypeOf 0 ciany1:
7. (r E (Ocldny .alllnstances()—>forAll(X|X .ocllsTypeOf (OclAny))))
(proof)

lemma OclAny-alllnstances-at-pre-oclls TypeOf ociany1:
ar. (t = (OcAny .alllnstancesQ@Qpre()—>forAll(X|X .ocllsTypeOf (OclAny))))
(proof)

lemma OclAny-alllnstances-generic-oclls TypeOf ociany2:

assumes [simp]: Az. pre-post (z,) =z

shows 3J7. (1 [not ((OclAliInstances-generic pre-post OclAny)—>forAll(X|X
.oclIsTypeOf (OclAny))))

(proof)

lemma OclAny-alllnstances-at-post-oclls TypeOf 0.1 any 2:
7. (7 = not (OclAny .alllnstances()—> forAll(X|X .ocllsTypeOf (OclAny))))

(proof)

lemma OclAny-alllnstances-at-pre-oclls TypeOf ociany2:
7. (1 E not (OclAny .alllnstances@pre()—>forAll(X|X .oclls TypeOf (OclAny))))
(proof)

lemma Person-alllnstances-generic-oclls TypeOf person:
7 E ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsTypeOf (Person)))

(proof)

lemma Person-alllnstances-at-post-oclls TypeOf person:
T |= (Person .allInstances()—>forAll(X|X .ocllsTypeOf (Person)))
(proof)

lemma Person-alllnstances-at-pre-oclls TypeOf person:
T = (Person .allInstancesQpre()—>forAll(X|X .ocllsTypeOf (Person)))

(proof)

OclIsKindOf

lemma OclAny-alllnstances-generic-oclIsKindOf o ciany:
7 E ((OclAllInstances-generic pre-post OclAny)—>forAll(X|X .ocllsKindOf (OclAny)))

(proof)

lemma OclAny-alllnstances-at-post-ocllsKindOf o ciany:
7 | (OclAny .alllnstances()—> forAll(X|X .oclIsKindOf (OclAny)))
(proof)

lemma OclAny-alllnstances-at-pre-oclIsKindOf oci any:

120

7 E (OclAny .alllnstancesQpre()—>forAll(X|X .oclIsKindOf (OclAny)))
(proof)

lemma Person-alllnstances-generic-oclIsKindOf ociany:
T = ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsKindOf(OclAny)))

{proof)

lemma Person-alllnstances-at-post-ocllsKindOf ociany:
T | (Person .allInstances()—>forAll(X|X .oclIsKindOf (OclAny)))

(proof)

lemma Person-alllnstances-at-pre-ocllsKindOf o ciany:
T | (Person .allInstancesQpre()—>forAll(X|X .oclIsKindOf (OclAny)))

(proof)

lemma Person-alllnstances-generic-oclIsKindOf person:
7 = ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsKindOf (Person)))

(proof)

lemma Person-alllnstances-at-post-ocllsKindOf person:
T |= (Person .allInstances()—>forAll(X|X .oclIsKindOf (Person)))

(proof)

lemma Person-alllnstances-at-pre-oclUsKindOf person:
T | (Person .allInstancesQpre()—>forAll(X|X .oclIsKindOf (Person)))

(proof)
6.1.8. The Accessors (any, boss, salary)

Should be generated entirely from a class-diagram.

Definition (of the association Employee-Boss)

We start with a oid for the association; this oid can be used in presence of associa-
tion classes to represent the association inside an object, pretty much similar to the
Employee_DesignModel_ UMLPart, where we stored an oid inside the class as “pointer.”

definition o0idpe,son BOSS ::0id where oidperson BOSS = 10

From there on, we can already define an empty state which must contain for
0id person BOSS the empty relation (encoded as association list, since there are asso-

ciations with a Sequence-like structure).

definition eval-extract :: ("U,('a::0bject) option option) val
= (oid = ("A,’c::null) val)
= (U, cinull) val
where eval-extract X f = (\ 7. case X 7 of
L = dnvalid T (% exception propagation)
| | L | = dnvalid T (x dereferencing null pointer x)

121

| [L obj |} = [(oid-of obj) T)

definition chooses-1 = fst
definition chooses-2 = snd
definition chooses-1 = fst
definition chooses-2 = fst o snd
definition chooses-3 = snd o snd

definition deref-assocss :: (U state x A state = A state)
= (0id x oid = oid X o0id)
= oid
= (oid list = oid = ("A,’f)val)
= oid
= (", frnull)val
where deref-assocss pre-post to-from assoc-oid f oid =
(\7. case (assocsa (pre-post T)) assoc-oid of
| S | = f (map (choosez-2 o to-from)
(filter (X p. choosea-1(to-from p)=oid) S))
oid T
| - = invalid T)

The pre-post-parameter is configured with fst or snd, the to-from-parameter either
with the identity id or the following combinator switch:

definition switchy-1 = id
definition switchy-2 = (\(z,y). (y,2))

definition switchs-1 = id

definition switchs-2 = (\(z,y,2). (z,2,y))
definition switchs-38 = (\(z,y,2). (y,2,2))
definition switchs-4 = (\(z,y,2). (y,2,2))
definition switchsz-5 = (\(z,y,2). (2,2,y))
definition switchs-6 = (\(z,y,2). (2,y,z))

definition select-object :: (("A, 'b::null)val)

= (("A,b)val = (A, c)val = (A, 'b)val)

= (("A, b)val = (A, 'd)val)

= (0id = (", ci:null)val)

= oid list

= oid

= (", 'd)val
where select-object mt incl smash deref | oid = smash(foldl incl mt (map deref 1))
(x smash returns null with mt in input (in this case, object contains null pointer))

The continuation f is usually instantiated with a smashing function which is either
the identity id or, for 0..1 cardinalities of associations, the OclANY -selector which
also handles the null-cases appropriately. A standard use-case for this combinator is for
example:

term (select-object mtSet OclIncluding OcIANY f 1 oid)::("A, 'a::null)val

122

definition deref-oidperson :: (A state x 2 state = A state)
= (typeperson = (A, 'ciinull)val)
= oid
= (A, ‘cunull)val
where deref-0idperson fst-snd f oid = (\7. case (heap (fst-snd 7)) oid of
|_ inPerson Obj J = fObj T
| - = invalid T)

definition deref-0idociany 2 (A state x A state = A state)
= (typeociany = (A, 'cinull)val)
= oid
= (A, ‘cunull)val
where deref-0idociany fst-snd f oid = (\7. case (heap (fst-snd 7)) oid of
|_ Z"rLOclAny Ob] J = fOb] T
| - = invalid T)

pointer undefined in state or not referencing a type conform object representation

definition selectociany ANY f = (X X. case X of
(mkociany - L) = null

| (mkociany - Lany]) = f (Az - [[2]]) any)

definition selectperson BOSS [= select-object miSet Ocllncluding OclANY (f (\z -. ||z]]))

definition selectpersonSALARY f = (A X. case X of
(mkperson - L) = null

| (mkPerson - Lsalaryj) = f (/\IL' o LLxJJ) salary)

definition deref-assocsaBOSS fst-snd f = (A mkperson 0id - =
deref-assocsy fst-snd switchg-1 0idpersonBOSS f oid)

definition in-pre-state = fst
definition in-post-state = snd

definition reconst-basetype = (\ convert x. convert)

definition dotocianyANY = OclAny = - ((1(-).any) 50)
where (X).any = eval-extract X
(deref-0idociany in-post-state
(SEZeCtOclAnyANy

reconst-basetype))

definition dotpeysonBOSS :: Person = Person ((1(-).boss) 50)
where (X).boss = eval-extract X
(deref-0id person in-post-state

123

(deref-assocsaBOSS in-post-state

(selectperson BOSS
(deref-0id person in-post-state))))

definition dotpersonSALARY :: Person = Integer ((1(-).salary) 50)
where (X).salary = eval-extract X
(deref-0id person in-post-state
(select personSALARY

reconst-basetype))

definition dotocianyANY-at-pre :: OclAny = - ((1(-).any@Qpre) 50)
where (X).anyQpre = eval-extract X
(deref-0idociany in-pre-state
(SelecioclAny.ANy

reconst-basetype))

definition dotpc,s0n BOSS-at-pre:: Person = Person ((1(-).boss@Qpre) 50)
where (X).bossQpre = eval-extract X
(deref-0id person in-pre-state
(deref-assocsoBOSS in-pre-state
(select personBOSS
(deref-0idperson in-pre-state))))

definition dotpersonSALARY-at-pre:: Person = Integer ((1(-).salary@pre) 50)
where (X).salaryQpre = eval-extract X
(deref-0id person in-pre-state
(select personSALARY

reconst-basetype))

lemmas [simp] =
dOtOclAny-ANy‘def
dot person BOSS-def
dotpersonSALARY-def
dotociAny AN YV-at-pre-def
dot personBOSS-at-pre-def
dotpersonSALARY-at-pre-def

Context Passing

lemmas [simp| = eval-extract-def

lemma cp-dotociany ANY: ((X).any) 7 = ((A\-. X 7).any) T (proof)
lemma cp-dotpersonBOSS: ((X).boss) 7 = ((A-. X 7).boss) T {proof)
lemma cp-dotpersonSALARY: ((X).salary) 7 = ((A-. X 7).salary) T (proof)

lemma cp-dotociany AN Y-at-pre: ((X).anyQpre) 7 = ((\-. X 7).anyQpre) 7 (proof)

lemma cp-dotpersonBOSS-at-pre: ((X).boss@Qpre) 7 = ((A-. X 7).bossQpre) T (proof)
lemma cp-dotpersonSALARY-at-pre: ((X).salaryQpre) 7 = ((A-. X 7).salaryQpre) 7 (proof)

124

lemmas cp-dotociany ANY-I [simp, introl]=
ep-dotoei any ANV THEN alll[THEN alll],
of N\X - X \-71.7, THEN cpll]
lemmas cp-dotociany AN Y-at-pre-I [simp, intro!]|=
cp-dotoci any ANY-at-pre[THEN alll[THEN alll],
of A\X - X \-71.7, THEN cpll]

lemmas cp-dotperson BOSS-I [simp, introl]=
cp-dot person BOSS[THEN allI[THEN alll],
of N\X - X \-7.7, THEN cpl1]
lemmas c¢p-dot person BOSS-at-pre-1 [simp, intro!]|=
cp-dot personBOSS-at-pre[THEN allI[THEN alll],
of N\X - X \-71.7, THEN cpll]

lemmas cp-dotpersonSALARY-I [simp, introl]=
ep-dot personSALARY|THEN alll[THEN alil],
of A\X - X \-71.7, THEN cpll]
lemmas cp-dotperson SALARY-at-pre-1 [simp, introl]|=
cp-dotpersonSALARY-at-pre] THEN alll[THEN alll],
of N\X - X \-7.7, THEN cpl1]

Execution with Invalid or Null as Argument

lemma dotoeiany AN Y-nullstrict [simp]: (null).any = invalid

(proof)

lemma dotoeiany AN Y-at-pre-nullstrict [simp] : (null).any@pre = invalid

(proof)

lemma dotociany AN Y-strict [simp] : (invalid).any = invalid

(proof)
lemma dotociany AN YV-at-pre-strict [simp) : (invalid).any@pre = invalid

(proof)

lemma dotpe,son BOSS-nullstrict [simp]: (null).boss = invalid

(proof)

lemma dotpeyrsonBOSS-at-pre-nullstrict [simp] : (null).boss@Qpre = invalid

(proof)

lemma dotpeyrsonBOSS-strict [simp] : (invalid).boss = invalid

(proof)

lemma dotpe,son BOSS-at-pre-strict [simp)] : (invalid).boss@pre = invalid

(proof)

lemma dotpe,sonSALARY-nullstrict [simp]: (null).salary = invalid

(proof)
lemma dotpersonSALARY-at-pre-nullstrict [simp] : (null).salary@pre = invalid

{proof)
lemma dotpersonSALARY-strict [simp] : (invalid).salary = invalid

(proof)

125

pl:Person boss| p2:Person
salary = 1000 salary = 1200

p6:Person boss| p4:Person | boss| p5:Person
salary = 2300 salary = 2600 salary = 3500

lemma dotpersonSALARY-at-pre-strict [simp)] : (invalid).salary@pre = invalid

(proof)

6.1.9. A Little Infra-structure on Example States

(a)

boss \|,

pl:Person | boss| p2:Person
salary = 1300 salary = 1800
boss\,]

p6:Person | boss| p7:Person
salary = 2500 salary = 3200[

(b)

Figure 6.2.: (a) pre-state o1 and (b) post-state o7.

The example we are defining in this section comes from the figure [6.2

definition OclInt1000 (1000) where OclInt1000 = (

definition OclInt1200 (1200) where Oclint1200 =
definition OclInt1300 (1300) where Oclint1300 =
definition OclInt1800 (1800) where OclInt1800
definition OclInt2600 (2600) where OclInt2600
definition OclInt2900 (2900) where OclInt2900
definition OclInt3200 (3200) where OclInt3200 =
definition OclInt3500 (3500) where OclInt3500 =
definition 0id0 = 0

definition oid! = 1

definition 0id2 = 2

definition 0id3 = 3

definition oid} = /

definition oid5 = 5

definition oid6 = 6

definition 0id7 = 7

definition 0id8 = 8

definition personl = mkperson 0id0 | 1300 |
definition person2 = mkperson 0idl | 1800 |

definition persond
definition person4
definition persond
definition person6
definition person7 =
definition person8
definition person9

definition

126

mkPe'rson
mkPerson
mkPerson
mkPerson
mkOel Any 0id6 [3200)
mkociAny 01d7 None
mkperson 0id8 | 0]

0id2 None

0id3 2900 |
oid4 | 3500 |
oid5 [2500]

P

A
A
A
A
A
A
A
A

p3:Person

salary = null

p4:Person

salary = 2900

o1 = (| heap = empty(0id0 — inperson (Mkperson 01d0 [1000]))

(0id1 = nperson (Mkperson 0idl | 1200]))
(x0id2x)
(0id8 = Mperson (Mkperson 01d3 | 2600]))
(0id4 — nperson persond)
(0id5 = nperson (Mkperson 01d5 | 2500]))
(x0id6x)
(x0id7*)
(0id8 — nperson persony),

assocsy = empty(0id person BOSS — [(0id0,0id1),(0id3,0id4),(0id5 ,0id3)]),

assocss = empty |

definition
01" = (| heap = empty(0id0 — nperson personl)

(0idl — inperson person?)
(0id2 — inperson persond)
(0id3 = inperson peTsons)
(x0id4 *)
(0id5 — Mperson persont)
(0id6 — inociany personT)
(01d7 — nociany person8)

(0id8 — nperson persond),

assocss = empty(0idpersonBOSS

[(0id0,0id1),(0id1,0id1),(0id5,0id6),(0id6 ,0id6)]),

assocss = empty |
definition o9 = (heap = empty, assocsa = emply, assocss = empty |)
lemma basic-T-wff: WFF (01,01
(proof)

lemma [simp,code-unfold]: dom (heap o1) = {0id0,0id1,(x,0id2x)0id3 ,0id4 ,0id5 (*,0id6 ,0id7T*),0id8 }
(proof)

lemma [simp,code-unfold]: dom (heap o1') = {0id0,0id1,0id2,0id3,(*,0id4 *)0id5 ,0id6 ,0id7,0id8 }
(proof)

definition X personl i+ Person = X\ - .|| personl ||
definition X pe;on2 1 Person = X - .|| person2 ||
definition X p.,s0n3 2 Person = \ - .|| persond ||
definition X p.,son4 :: Person = \ - .|| persond ||
definition X pe,sond 2 Person = X\ - .|| persond ||
definition X person6 2 Person = \ - .|| person6 ||
definition X person7 i+ OclAny = X - .|| person7 ||
definition X pepson8 2 OclAny =) - .|| person8 ||
definition X p.y50n9 i+ Person = \ - .|| person9 ||

lemma [code-unfold]: ((z::Person) = y) = StrictRefEqopject © y (proof)

127

lemma [code-unfold]: ((z::OclAny) = y) = StrictRefEqovject « y (proof)

lemmas [simp,code-unfold] =
OclAsTypeoci any-OclAny
OclAsTypeo i any-Person
OclAsTypeperson-OclAny
OclAsType person-Person

OclIsTypeOf o ct any-OclAny
OcllsTypeOf o ctany-Person
OcllsTypeOf person-OclAny
OcllsTypeOf person-Person

OclIsKindOf o ¢t any-OclAny
OclIsKindOf oci Any-Person
OclIsKindOf person-OclAny
OclIsKindOf person-Person

value Aspre (Spre,o1’) = (X personl .salary <> 1000)
value Aspre (Spre.o1’) = (Xpersonl .salary = 1300)

value A\ Spost- (01,8post) = (Xpersonl .salary@pre = 1000)
value A\ Spost- (01,8post) = (X personl .salary@pre <> 1300)
lemma (c1,01") E (X personl -oclIsMaintained())

(proof)

lemma Aspre Spost- (SpresSpost) E - (X personl -0clAsType(OclAny) .oclAsType(Person))
= XPersonZ)

(proof)

value Aspre Spost- (SpresSpost) = (X personl .ocllsTypeOf (Person))

value Aspre Spost- (SpresSpost) = M0t (X persond .0cllsTypeOf (OclAny))

value Aspre Spost- (SpresSpost) = (X personl -ocllsKindOf (Person))

value Aspre Spost- (+) E (X personl! .ocllsKindOf (OclAny))

value Aspre Spost- (SpresSpost) = 108 (X persond .0clAsType(OclAny) .oclls Type Of (OclAny))

SpresSpos

value Aspre . (Spre,o1’) E (Xperson? .salary = 1800)
value A\ Spost- (01,8post) = (X person? .salary@pre = 1200)
lemma (o1,01)) E (X person? -ocllsMaintained())
(proof)

value Aspre . (Spreso1’) E (X persond .salary = null)
value A\ spost- (01,8post) = 10t (V(X persond -salary@pre))
lemma (01,01") E (X persond -oclIsNew())

(proof)

128

lemma (01,01 E (X persond -ocllsMaintained())

(proof)

value Asprc . (Spre,01’) E not(v(X persond .salary))

value A\ Spost- (01,8post) = (X persond -salary@pre = 3500)
lemma (01,01 E (X persond -ocllsDeleted())

(proof)

lemma (01,01 E (X persont .ocllsMaintained())
(proof)

value Aspre Spost- (SpresSpost) = V(X person .0clAsType(Person))
lemma Aspre Spost- (SpresSpost) = ((X person -oclAsType(Person) .oclAsType(OclAny)
.oclAsType(Person))
= (X person? -0clAsType(Person)))
(proof)
lemma (01,01") E (X person? -oclIsNew())
(proof)

value /\spre Spost- (spreaspost) |: (XPeTson8 <> XPerson7)

value Aspre Spost- (SpresSpost) = not(V(X person8 -0clAsType(Person)))
value Aspre Spost- (SpresSpost) = (X person8 -ocllsTypeOf (OclAny))
value Aspre Spost- () E not(Xperson8 -ocllsTypeOf (Person))
value Aspre Spost- (SpresSpost) = 10t(X person8 .oclIsKindOf (Person))
()

value Aspre Spost- (SpresSpost) = (X person8 -ocllsKindOf (OclAny))

Spreaspost

lemma o-modifiedonly: (o1,01") |E (Set{ X person! -0clAsType(OclAny)
y Xperson? .oclAsType(OclAny)
(#, X persond .oclAsType(OclAny)x)
y X persond -oclAsType(OclAny)
(%, X Persond -0clAsType(OclAny)x*)
, Xpersonb -0clAsType(OclAny)
(%, X person? -0clAsType(OclAny)x)
(%, X person8 -0clAsType(OclAny)x*)
(%, X persond .oclAsType(OclAny))}—>ocllsModifiedOnly())
(proof)

lemma (01,01") E (X person9d @Qpre (A\z. | OclAsTypeperson-2 z])) £ Xperson9)
(proof)

129

lemma (01,01") = (X persond @post (\z. | OclAsTypeperson-A])) = X person9)
(proof)

lemma (01,01") = (X person9 -0clAsType(OclAny)) @pre (\z. | OclAsTypeociany-2A ©])) £
(X Person9 .oclAsType(OclAny)) Qpost (\z. | OclAsTypeociany-2 z])))

(proof)

lemma perm-o1’: o1’ = (| heap = empty
(0id8 — nperson person9)
(01d7 — nociAny person8)
(01d6 — nociany personT)
(0id5 — inperson persont)
(x0id4)
(0id8 — nperson persons)
(0id2 — nperson persond)
(0idl — inperson person?)
(0id0 — inperson personl)
, a880CSo = assocsy o1’
, assocsz = assocsz o1’)

(proof)
declare const-ss [simp]

lemma Ao;.
(01,01") E (Person .alllnstances() = Set{ Xpersonl, Xperson2, Xpersond; X Persond (%,
XPerson5*); XPerson6»
X person -0clAsType(Person)(*, X person8%), X persond })

(proof)

lemma Ao;.
(01,01") E (OclAny .alllnstances() = Set{ Xpersonl .oclAsType(OclAny), X person?
.oclAsType(OclAny),
X persond -oclAsType(OclAny), X persond -oclAsType(OclAny)
(%, X persond*), X personb .0clAsType(OclAny),
XPerson7y XPe7‘son87 Xpersond -OClASType(OCZAny) })

{proof)

end

6.2. The Employee Analysis Model (OCL)

theory
Employee-AnalysisModel-OCLPart
imports
Employee-AnalysisModel-UML Part
begin

130

6.2.1. Standard State Infrastructure

Ideally, these definitions are automatically generated from the class model.

6.2.2. Invariant

These recursive predicates can be defined conservatively by greatest fix-point
constructions—automatically. See [4], [6] for details. For the purpose of this example, we
state them as axioms here.

axiomatization inv-Person :: Person = Boolean
where A : (7 E (§ self)) —
(7 | inv-Person(self)) =
((t = (self .boss = null)) V
(7 & (self .boss <> null) A (7 |= ((self .salary) ‘< (self .boss .salary))) A
(1 & (inv-Person(self .boss)))))

axiomatization inv-Person-at-pre :: Person = Boolean
where B : (7 = (6 self)) —
(1 = inv-Person-at-pre(self)) =
((1 & (self .boss@pre = null)) V
(7 E (self .boss@Qpre <> null) A
(7 = (self .bossQpre .salary@pre ‘< self .salary@pre)) A
(7 = (inv-Person-at-pre(self .boss@Qpre)))))

A very first attempt to characterize the axiomatization by an inductive definition -
this can not be the last word since too weak (should be equality!)

coinductive inv :: Person = (2)st = bool where

(1 = (6 self)) = ((7 = (self .boss = null)) V
(1 | (self .boss <> null) A (7 |= (self .boss .salary ‘< self .salary)) A

((inv(self .boss))T)))

= (inw self T)

6.2.3. The Contract of a Recursive Query

The original specification of a recursive query :

context Person::contents():Set(Integer)

post: result = if self.boss = null
then Set{i}
else self.boss.contents()->including (i)
endif

consts dot-contents :: Person = Set-Integer ((1(-).contents’(’)) 50)

axiomatization where dot-contents-def:
(7 = ((self).contents() = result)) =

(if (& self) T = true T

then ((7 [true) A

131

(7 |= (result = if (self .boss = null)
then (Set{self .salary})
else (self .boss .contents()—>including(self .salary))

endif)))

else T |= result £ invalid)

consts dot-contents-AT-pre :: Person = Set-Integer ((1(-).contentsQpre’(”)) 50)

axiomatization where dot-contents-AT-pre-def:
(7 = (self).contentsQpre() = result) =
(if (9 self) T = true T
then 7 |= true A (x pre x)
7 = (result = if (self).bossQpre = null (x post *)
then Set{(self).salary@Qpre}
else (self).bossQpre .contentsQpre()—>including(self .salary@pre)
endif)
else T |= result = invalid)

These @pre variants on methods are only available on queries, i. e., operations without
side-effect.

6.2.4. The Contract of a Method
The specification in high-level OCL input syntax reads as follows:

context Person::insert(x:Integer)
post: contents ():Set(Integer)
contents () = contents@pre()->including(x)

consts dot-insert :: Person = Integer = Void ((1(-).insert’(-")) 50)

axiomatization where dot-insert-def:
(1 = ((self).insert(z) & result)) =
(if (0 self) T =true T A (v)T =true T
then T = true A
7 = ((self).contents() = (self).contentsQpre()—>including(x))
else 7 |= ((self).insert(z) £ invalid))

end

132

7. The Employee Design Model

7.1. The Employee Design Model (UML)

theory
Employee-DesignModel-UMLPart
imports
../ OCL-main
begin

7.1.1. Introduction

For certain concepts like classes and class-types, only a generic definition for its resulting
semantics can be given. Generic means, there is a function outside HOL that “compiles”
a concrete, closed-world class diagram into a “theory” of this data model, consisting of
a bunch of definitions for classes, accessors, method, casts, and tests for actual types, as
well as proofs for the fundamental properties of these operations in this concrete data
model.

Such generic function or “compiler” can be implemented in Isabelle on the ML level.
This has been done, for a semantics following the open-world assumption, for UML
2.0 in [4, [7]. In this paper, we follow another approach for UML 2.4: we define the
concepts of the compilation informally, and present a concrete example which is verified
in Isabelle/HOL.

Outlining the Example

We are presenting here a “design-model” of the (slightly modified) example Figure 7.3,
page 20 of the OCL standard [33]. To be precise, this theory contains the formalization

of the data-part covered by the UML class model (see [Figure 7.1)):

This means that the association (attached to the association class EmployeeRanking)
with the association ends boss and employees is implemented by the attribute boss and
the operation employees (to be discussed in the OCL part captured by the subsequent
theory).

7.1.2. Example Data-Universe and its Infrastructure

Ideally, the following is generated automatically from a UML class model.

133

OclAny

f

Person

boss
0..1

salary : Integer

Figure 7.1.: A simple UML class model drawn from Figure 7.3, page 20 of [33].

Our data universe consists in the concrete class diagram just of node’s, and implicitly
of the class object. Each class implies the existence of a class type defined for the
corresponding object representations as follows:

datatype typeperson = Mkperson 0d
it option
oid option

datatype typeociAny = kaclAny oid
(int option x oid option) option

Now, we construct a concrete “universe of OclAny types” by injection into a sum type
containing the class types. This type of OclAny will be used as instance for all respective
type-variables.

datatype A = inperson tYypeperson | inOclAny typeOclAny

Having fixed the object universe, we can introduce type synonyms that exactly corre-
spond to OCL types. Again, we exploit that our representation of OCL is a “shallow em-
bedding” with a one-to-one correspondance of OCL-types to types of the meta-language
HOL.

type-synonym Boolean = 2 Boolean

type-synonym Integer = %A Integer

type-synonym Void = 2A Voud

type-synonym OclAny = (A, typeociany option option) val
type-synonym Person = (2, typeperson option option) val

type-synonym Set-Integer = (2, int option option) Set
type-synonym Set-Person = (2, typeperson 0ption option) Set

Just a little check:
typ Boolean

To reuse key-elements of the library like referential equality, we have to show that the
object universe belongs to the type class “oclany,” i. e., each class type has to provide a
function oid-of yielding the object id (oid) of the object.

134

instantiation typeperson 1 object

begin
definition oid-of-typeperson-def: oid-of x = (case x of mkperson 0id - - = 0id)
instance (proof)

end

instantiation typeociany :: object

begin
definition oid-of-typeociany-def: oid-of © = (case x of mkociany 0id - = oid)
instance (proof)

end

instantiation 2 :: object
begin
definition oid-of-2(-def: oid-of z = (case z of
Mperson person = oid-of person
| inociany oclany = oid-of oclany)
instance (proof)
end

7.1.3. Instantiation of the Generic Strict Equality
We instantiate the referential equality on Person and OclAny

defs(overloaded) StrictRefEqobject-Person : (z::Person) =y = StrictRefEqopject T Y
defs(overloaded) StrictRefEqovject-0ciany : (¢::0clAny) =y = StrictRefEqopject T Y

lemmas

cp-StrictRefEqopject[of x::Person y::Person T,

simplified StrictRefEqobject-Person|symmetric]]
ep-intro(9) [of P::Person = PersonQ)::Person = Person,

simplified StrictRefEqobject-Person|symmetric] |
StrictRefEqoyject-def [of z::Person y::Person,

simplified StrictRefEqobject-Person|symmetric]]
StrictRefEqopject-defargs [of - x::Person y::Person,

simplified StrictRefEqobject-Person|symmetric]]
StrictRefEqouject-strict]

[of x::Person,

simplified StrictRefEqobject-Person[symmetric]]
StrictRefEqoyject-strict2

[of z::Person,

simplified StrictRefEqobject-Person|symmetric]]

For each Class C, we will have a casting operation .oclAsType(C), a test on the actual
type .oclIsType0f (C) as well as its relaxed form .oclIsKindOf(C') (corresponding
exactly to Java’s instanceof-operator.

Thus, since we have two class-types in our concrete class hierarchy, we have two op-
erations to declare and to provide two overloading definitions for the two static types.

135

7.1.4. OclAsType
Definition

consts OclAsTypeociany =+ 'a = OclAny ((-) .oclAsType'(OclAny’))
consts OclAsTypeperson : ' = Person ((-) .oclAsType'(Person’))

definition OclAsTypeociany-A = (Au. [case u of Nociany ¢ = a
| inperson (Mkperson 0id a b) = mkociAny 0td [(a,b)]])

lemma OclAsTypeociany-2A-some: OclAsTypeociany-2A © # None
(proof)

defs (overloaded) OclAsTypeo i any-OclAny:
(X::OclAny) .oclAsType(OclAny) = X

defs (overloaded) OclAsTypeociany-Person:
(X::Person) .oclAsType(OclAny) =
(\7. case X T of
1 = invalid T
| | L] = null T

| Hmkperson oid a b H = H_ (kaclAny oid L(avb)J) “)

definition OclAsTypeperson-A = (\u. case u of nperson P = |p]
| 7;nOClA”y (kaclAny oid L(a7b)J) = _mkPerson oid a bJ
| - = None)

defs (overloaded) OclAsTypeperson-OclAny:
(X::0clAny) .oclAsType(Person) =
(\7. case X T of
1 = invalid T
| | L] = null T
| LLlmkociany 0id L || = invalid T (% down—-cast exception)
| LLmkociany oid [(a,0)] 1] = |[mkperson 0id a'b |])

defs (overloaded) OclAsTypeperson-Person:
(X::Person) .oclAsType(Person) = X

lemmas [simp] =
OclAsTypeoci any-OclAny
OclAsType person-Person

Context Passing

lemma cp-OclAsTypeociany-Person-Person: ¢p P = c¢p(\X. (P (X::Person):Person)
.0clAsType(OclAny))

(proof)

lemma cp-OclAsTypeociany-OclAny-OclAny: ¢p P = cp(AX. (P (X:OclAny)::OclAny)
.oclAsType(OclAny))

136

(proof)
lemma cp-OclAsTypeperson-Person-Person: ¢p P = c¢p(A\X. (P (X::Person)::Person)

.oclAsType(Person))

(proof)
lemma cp-OclAsTypeperson-OclAny-OclAny: cp P — cp(A\X. (P (X::0clAny)::OclAny)

.oclAsType(Person))
(proof)

lemma ¢p-OclAsTypeociany-Person-OclAny: ¢p P = cp(AX. (P (X::Person):OclAny)
.oclAsType(OclAny))

(proof)

lemma cp-OclAsTypeociany-OclAny-Person: cp P = c¢p(A\X. (P (X::OclAny)::Person)
.oclAsType(OclAny))

(proof)
lemma ¢p-OclAsTypeperson-Person-OclAny: c¢p P = cp(A\X. (P (X::Person):OclAny)

.oclAsType(Person))

(proof)
lemma ¢p-OclAsTypeperson-OclAny-Person: ¢p P — cp(A\X. (P (X::OclAny)::Person)

.oclAsType(Person))
(proof)

lemmas [simp] =
cp-OclAsTypeo i any-Person-Person
cp-OclAsTypeoci any-OclAny-OclAny
cp-OclAsType peyrson-Person-Person
ep-OclAsType person-0OclAny-OclAny

cp-OclAsTypeoci any-Person-OclAny
cp-OclAsTypeoci any-OclAny-Person
cp-OclAsType peyrson-Person-OclAny
ep-OclAsType person-OclAny-Person

Execution with Invalid or Null as Argument

lemma OclAsTypeociany-OclAny-strict : (invalid:: OclAny) .oclAsType(OclAny) = invalid
(proof)

lemma OclAsTypeociany-OclAny-nullstrict : (null:: OclAny) .oclAsType(OclAny) = null
(proof)

lemma OclAsTypeoci any-Person-strict[simp)] : (invalid:: Person) .oclAsType(OclAny) = invalid
(proof)

lemma OclAsTypeociany-Person-nullstrict[simp] : (null:: Person) .oclAsType(OclAny) = null
(proof)

lemma OclAsType person-OclAny-strict[simp] : (invalid:: OclAny) .oclAsType(Person) = invalid
(proof)

137

lemma OclAsType person-OclAny-nullstrict[simp] : (null::OclAny) .oclAsType(Person) = null
(proof)

lemma OclAsTypeperson-Person-strict : (invalid:: Person) .oclAsType(Person) = invalid
(proof)
lemma OclAsType person-Person-nullstrict : (null:: Person) .oclAsType(Person) = null

(proof)

7.1.5. OclisTypeOf
Definition

consts OcllsTypeOf ociany ‘o = Boolean ((-).oclsTypeOf '(OclAny’))
consts OcllsTypeOf person ‘o = Boolean ((-).ocllsTypeOf'(Person’))

defs (overloaded) OclIsTypeOf ociAny-OclAny:
(X::OclAny) .ocllsTypeOf (OclAny) =
(\7. case X T of
1 = invalid T
| | L] = true 7 (* invalid 29 x)
| [[mkociany oid L || = true T
| [Imkociany oid |-| || = false T)

defs (overloaded) OclIsTypeOf ociany-Person:
(X::Person) .oclls TypeOf (OclAny) =
(\7. case X T of
1 = invalid T
| |L] = true 7 (% invalid 22 x)

| [L- 1) = false T)

defs (overloaded) OclIsTypeOf person-OclAny:
(X::OclAny) .oclls TypeOf (Person) =
(\7. case X T of
1 = invalid T
| |L] = true T
| [lmkociany otd L || = false T
| [Ilmkociany 0id |-] || = true 7)

defs (overloaded) OcllsTypeOf person-Person:
(X::Person) .ocllsTypeOf (Person) =
(\7. case X T of
1 = invalid 7
| - = true)

Context Passing

lemma cp-OcllsTypeOf o ci Any-Person-Person: cp P =
cp(Z\X .(P(X::Person)::Person).oclls TypeOf (OclAny))
(proof)

138

lemma

ep(ZNX.(P(X::

(proof)

lemma

ep(ZNX.(P(X:

(proof)

lemma

ep(ZNX.(P(X::

(proof)

lemma

ep(ZX.(P(X:

(proof)

lemma

ep(AX.(P(X::

(proof)

lemma

cp(A\X.(P(X:

(proof)

lemma

ep(OX.(P(X::

(proof)

cp-0cllsTypeOf 01 Any-OclAny-OclAny:

OclAny)::OclAny).oclls Type Of (OclAny))

cp-Oclls TypeOf person-Person-Person:

:Person):: Person).oclls Type Of (Person))

cp-0clls TypeOf person-OclAny-OclAny:

OclAny):: OclAny).oclls TypeOf (Person))

cp-0cllsTypeOf 0. ci aAny-Person-OclAny:
:Person):: OclAny).oclls Type Of (OclAny))

cp-0clls Type Of 0 ci Any-OclAny-Person:

OclAny)::Person).oclls Type Of (OclAny))

cp-Oclls TypeOf person-Person-OclAny:

:Person):: OclAny).oclls Type Of (Person))

cp-0clls TypeOf person-OclAny-Person:
OclAny):: Person).oclls Type Of (Person))

lemmas [simp] =
cp-Oclls TypeOf 0 ci any-Person-Person
cp-Oclls TypeOf o ci any-OclAny-OclAny
cp-0clls TypeOf person-Person-Person
ep-OcllsTypeOf person-OclAny-OclAny

cp-O0clls TypeOf o ci Any-Person-OclAny
cp-Oclls TypeOf o et any-OclAny-Person
cp-OcllsTypeOf person-Person-OclAny
cp-OcllsTypeOf person-OclAny-Person

Execution with Invalid or Null as Argument

lemma OclIsTypeOf o ci Any-OclAny-strictl [simp]:
(invalid:: OclAny) .ocllsTypeOf (OclAny) = invalid

(proof)

lemma OcllsTypeOf 01 any-OclAny-strict2[simp):
(null:: OclAny) .ocllsTypeOf (OclAny) = true

(proof)

lemma OcllsTypeOf o1 Any-Person-strict1 [simp]:
(inwvalid:: Person) .oclls TypeOf (OclAny) = invalid

(proof)

lemma OcllsTypeOf i Any-Person-strict2[simp:
(null:: Person) .oclls TypeOf (OclAny) = true

(proof)

cp

cp

cp

cp

cp

cp

cp

139

lemma OcllsTypeOf person-OclAny-strict1 [simp]:
(invalid:: OclAny) .oclls TypeOf (Person) = invalid

(proof)

lemma OclIsTypeOf person-OclAny-strict2[simp]:
(null:: OclAny) .ocllsTypeOf (Person) = true

(proof)

lemma OcllsTypeOf person-Person-strictl [simp]:
(inwalid::Person) .oclls TypeOf (Person) = invalid

(proof)

lemma OcllsTypeOf person-Person-strict2[simp]:
(null::Person) .oclls TypeOf (Person) = true

(proof)

Up Down Casting

lemma actualType-larger-static Type:
assumes isdef: 7 = (§ X)
shows 7 |= (X::Person) .oclls TypeOf (OclAny) = false

(proof)

lemma down-cast-type:

assumes isOclAny: 7 = (X::OclAny) .oclls TypeOf (OclAny)
and non-null: 7 E (6§ X)

shows 7 | (X .oclAsType(Person)) = invalid

(proof)

lemma down-cast-type:

assumes isOclAny: 7 = (X::OclAny) .oclls TypeOf (OclAny)
and non-null: T E (6§ X)

shows T |= not (v (X .oclAsType(Person)))

(proof)

lemma up-down-cast :
assumes isdef: 7 = (§ X)
shows 7 = ((X::Person) .oclAsType(OclAny) .oclAsType(Person) £ X)

(proof)

lemma up-down-cast-Person-OclAny-Person [simp]:
shows ((X::Person) .oclAsType(OclAny) .oclAsType(Person) = X)

(proof)

lemma up-down-cast-Person-OclAny-Person’: assumes 7 = v X
shows 7 = (((X :: Person) .oclAsType(OclAny) .oclAsType(Person)) = X)

{proof)

lemma up-down-cast-Person-OclAny-Person’": assumes 7 = v (X :: Person)
shows 7 = (X .ocllsTypeOf (Person) implies (X .oclAsType(OclAny) .oclAsType(Person)) =
X)

140

{proof)

7.1.6. OcllsKindOf

Definition

consts OclIsKindOf ociany ‘o = Boolean ((-).oclIsKindOf'(OclAny"))
consts OclIsKindOf person ‘o = Boolean ((-).oclIsKindOf'(Person’))

defs (overloaded) OclIsKindOf ociany-OclAny:
(X::0clAny) .ocllsKindOf (OclAny) =
(\7. case X T of
1L = invalid T
| - = true 1)

defs (overloaded) OclIsKindOf ociany-Person:
(X::Person) .ocllsKindOf (OclAny) =
(\7. case X T of
1 = invalid T
| == true 7)

defs (overloaded) OclIsKindOf person-OclAny:
(X::OclAny) .ocllsKindOf (Person) =
(\7. case X T of
1 = invalid T
| |L] = true T
| [Ilmkociany 0id L || = false T
L

kaclAny oid I_-J “ = true 7')

defs (overloaded) OclIsKindOf person-Person:
(X::Person) .ocllsKindOf (Person) =
(AT. case X T of
1 = invalid T
| - = true 1)

Context Passing

lemma cp-OcllsKindOf oci Any-Person-Person:
cp(AX .(P(X::Person)::Person).ocllsKindOf (OclAny))
(proof)

lemma cp-OclIsKindOf o ci any-OclAny-OclAny:
ep(ZX .(P(X::OclAny):: OclAny).ocllsKind Of (OclAny))
(proof)

lemma cp-OclsKindOf person-Person-Person:

cp(ZNX .(P(X::Person)::Person).oclIsKindOf (Person))
(proof)

lemma cp-OclIsKindOf person-OclAny-OclAny:

ep(ZX .(P(X::OclAny):: OclAny).ocllsKindOf (Person))
(proof)

cp

cp

cp

cp

141

lemma cp-0cllsKindOf o ci any-Person-OclAny: cp P =
ep(Z\X .(P(X::Person):: OclAny).ocllsKindOf (OclAny))

(proof)

lemma cp-0cllsKindOf 0 ci Any-OclAny-Person: cp P ==
ep(ANX . (P(X::OclAny):: Person).oclsKindOf (OclAny))

(proof)

lemma cp-OclUsKindOf person-Person-OclAny: cp P =
cp(AX .(P(X::Person)::OclAny).ocllsKindOf (Person))

(proof)

lemma cp-OclUsKindOf person-OclAny-Person: cp P =
cp(ZNX . (P(X::OclAny):: Person).oclsKindOf (Person))

(proof)

lemmas [simp] =
cp-OcllsKindOf oci any-Person-Person
cp-OcllsKindOf o ci Any-OclAny-OclAny
cp-OclsKindOf person-Person-Person
cp-OclUsKindOf person-OclAny-OclAny

cp-OcllsKindOf o ci any-Person-OclAny
cp-OclIsKindOf o ci any-OclAny-Person
cp-OclsKindOf person-Person-OclAny
cp-OclUsKindOf person-OclAny-Person

Execution with Invalid or Null as Argument

lemma OclIsKindOf ¢ci any-OclAny-strict1 [simp] : (invalid:: OclAny) .ocllsKindOf (OclAny) =
invalid
(proof)

lemma OclIsKindOf oci any-OclAny-strict2[simp] : (null::OclAny) .ocllsKindOf (OclAny) =
true

(proof)

lemma OclIsKindOf ociany-Person-strict [simp] : (invalid::Person) .ocllsKindOf (OclAny) =
invalid

(proof)

lemma OclIsKindOf 0ci any-Person-strict2[simp] : (null:: Person) .oclsKindOf (OclAny) = true
(proof)

lemma OclIsKindOf person-OclAny-strict! [simp]: (invalid:: OclAny) .ocllsKindOf (Person) =
invalid

(proof)

lemma OclIsKindOf person-OclAny-strict2[simp]: (null:: OclAny) .oclIsKindOf (Person) = true
(proof)

lemma OclIsKindOf person-Person-strict! [simp): (invalid::Person) .ocllsKindOf (Person) =

142

mvalid

(proof)

lemma OclIsKindOf person-Person-strict2[simp): (null:: Person) .oclIsKindOf (Person) = true
(proof)

Up Down Casting

lemma actualKind-larger-staticKind:
assumes isdef: 7 = (§ X)
shows 7 = (X::Person) .ocllsKindOf (OclAny) = true

(proof)

lemma down-cast-kind:

assumes isOclAny: = 7 = (X::OclAny) .ocllsKindOf (Person)
and non-null: 7 E (6§ X)

shows 7 | (X .oclAsType(Person)) = invalid

(proof)

7.1.7. OclAllinstances

To denote OCL-types occuring in OCL expressions syntactically—as, for example, as
“argument” of oclAlllnstances ()—we use the inverses of the injection functions into the
object universes; we show that this is sufficient “characterization.”

definition Person = OclAsTypeperson-2U
definition OclAny = OclAsTypeociany-A
lemmas [simp] = Person-def OclAny-def

lemma OclAlllnstances-genericociany-exec: OclAlllnstances-generic pre-post OclAny =
(AT. Abs-Set-0 || Some ¢ OclAny ‘ ran (heap (pre-post 7)) ||)

(proof)

lemma OclAllInstances-at-postociany-exec: OclAny .alllnstances() =
(AT. Abs-Set-0 || Some © OclAny ‘ ran (heap (snd 7)) ||

(proof)

lemma OclAllInstances-at-preociany-exec: OclAny .alllnstancesQpre() =
(AT. Abs-Set-0 || Some ¢ OclAny ¢ ran (heap (fst 7)) |])

(proof)

OclIsTypeOf

lemma OclAny-alllnstances-generic-oclls TypeOf ociany1:
assumes [simp|: A\z. pre-post (z, z) = x

shows 37. (1 E ((OclAllInstances-generic pre-post OclAny)—>forAll(X|X
.oclIsTypeOf (OclAny))))
{proof)

lemma OclAny-alllnstances-at-post-oclsTypeOf 0 ciany1:

143

7. (r E (Ocldny .alllnstances()—>forAll(X|X .ocllsTypeOf (OclAny))))
(proof)

lemma OclAny-alllnstances-at-pre-oclls TypeOf ociany1:
dr. (t = (OcAny .alllnstancesQ@Qpre()—>forAll(X|X .ocllsTypeOf (OclAny))))
(proof)

lemma OclAny-alllnstances-generic-oclls TypeOf ociany2:

assumes [simp|: A\z. pre-post (z, z) = x

shows 3J7. (1 [not ((OclAlinstances-generic pre-post OclAny)—>forAll(X|X
.oclIsTypeOf (OclAny))))

(proof)

lemma OclAny-alllnstances-at-post-oclls TypeOf 0. ci any 2:
7. (7 = not (OclAny .alllnstances()—> forAll(X|X .ocllsTypeOf (OclAny))))
(proof)

lemma OclAny-allinstances-at-pre-oclsTypeOf ociAny2:
37. (1t E not (OclAny .alllnstances@pre()—> forAll(X|X .ocllsTypeOf (OclAny))))

(proof)

lemma Person-alllnstances-generic-oclls TypeOf person:
7 E ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsTypeOf (Person)))

(proof)

lemma Person-alllnstances-at-post-oclls TypeOf person:
7 | (Person .alllnstances()—> forAll(X|X .ocllsTypeOf (Person)))
{proof)

lemma Person-alllnstances-at-pre-oclls TypeOf person:
T |= (Person .allInstancesQpre()—>forAll(X|X .ocllsTypeOf (Person)))

(proof)

OclIsKindOf

lemma OclAny-alllnstances-generic-oclIsKindOf ociany:
7 E ((OclAllInstances-generic pre-post OclAny)—>forAll(X|X .ocllsKindOf (OclAny)))

{proof)

lemma OclAny-alllnstances-at-post-ocllsKindOf o ciany:
T | (OclAny .alllnstances()—> forAll(X|X .oclIsKindOf (OclAny)))
(proof)

lemma OclAny-alllnstances-at-pre-oclIsKindOf oci any:
T = (OclAny .allInstancesQpre()—>forAll(X|X .oclIsKindOf (OclAny)))
(proof)

lemma Person-alllnstances-generic-oclIsKindOf ociany:
T | ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsKindOf (OclAny)))

144

{proof)

lemma Person-alllnstances-at-post-ocllsKindOf ociany:
T | (Person .allInstances()—>forAll(X|X .oclIsKindOf (OclAny)))

(proof)

lemma Person-alllnstances-at-pre-ocllsKindOf o ciany:
T | (Person .allInstances@Qpre()—>forAll(X|X .oclIsKindOf (OclAny)))
(proof)

lemma Person-alllnstances-generic-oclIsKindOf person:
7 E ((OclAllInstances-generic pre-post Person)—>forAll(X|X .ocllsKindOf (Person)))

(proof)

lemma Person-alllnstances-at-post-ocllsKindOf person:
T |= (Person .allInstances()—>forAll(X|X .oclIsKindOf (Person)))

(proof)

lemma Person-alllnstances-at-pre-oclsKindOf person:
T | (Person .allInstancesQpre()—>forAll(X|X .oclIsKindOf (Person)))

(proof)
7.1.8. The Accessors (any, boss, salary)

Should be generated entirely from a class-diagram.

Definition

definition eval-extract :: ("A,('a::0bject) option option) val
= (oid = ("A,’c::null) val)
= (", c:null) val
where eval-extract X f = (A 7. case X 7 of
1 = dnvalid T (% exception propagation)
| | L | = invalid T (x dereferencing null pointer x)
| LL ot 1] = f (oid-of obj) 7)

definition deref-oidperson 1 (A state x A state = A state)
= (typeperson = (A, 'ciinull)val)
= oid
= (A, ‘cunull)val
where deref-0idperson fst-snd f oid = (\7. case (heap (fst-snd 7)) oid of
L Z.nPerson Obj J = fOb] T
| - = invalid T)

definition deref-0idociany 2 (2 state x A state = A state)

145

= (typeociany = (A, 'cinull)val)
= oid
= (A, ‘cunull)val
where deref-0idociany fst-snd f oid = (\7. case (heap (fst-snd T)) oid of
| inOciAny 0bj | = fobj T
| - = invalid T)

pointer undefined in state or not referencing a type conform object representation

definition selectociany ANY f = (X X. case X of
(kaclAny - L) = null

| (mkociany - Lany]) = f (\z - ||z]]) any)

definition selectperson BOSS f = (A X. case X of
(mkperson - - L) = null (x object contains null pointer x)

| (mkperson - - |boss]) = f (\z - ||z]]) boss)

definition selectpersonSALARY f = (A X. case X of
(mkperson - L -) = null
| (mkperson - |salary] =) = f (\x - ||z]]) salary)

definition in-pre-state = fst
definition in-post-state = snd

definition reconst-basetype = (\ convert x. convert)

definition dotociany ANY 1 OclAny = - ((1(-).any) 50)
where (X).any = eval-extract X
(deref-0idociany in-post-state
(selectociany ANY

reconst-basetype))

definition dotpe,sonBOSS :: Person = Person ((1(-).boss) 50)
where (X).boss = eval-extract X
(deref-0id person in-post-state
(select personBOSS
(deref-0id person in-post-state)))

definition dotpersonSALARY :: Person = Integer ((1(-).salary) 50)
where (X).salary = eval-extract X
(deref-0id person in-post-state
(selectpersonSALARY
reconst-basetype))

definition dotocianyANY-at-pre :: OclAny = - ((1(-).any@pre) 50)

where (X).anyQpre = eval-extract X
(deref-0idociany in-pre-state

146

(selectociany ANY

reconst-basetype))

definition dotpc,sonBOSS-at-pre:: Person = Person ((1(-).boss@pre) 50)
where (X).bossQpre = eval-extract X
(deref-0id person tn-pre-state
(select person BOSS
(deref-0id person in-pre-state)))

definition dotpersonSALARY-at-pre:: Person = Integer ((1(-).salary@pre) 50)
where (X).salaryQpre = eval-extract X
(deref-0id person in-pre-state
(select personSALARY
reconst-basetype))

lemmas [simp] =
dOtOclAnyANy'def
dotperson BOSS-def
dotpersonSALARY-def
dOtOclAnyANy—at—pre—def
dotperson BOSS -at-pre-def
dOtPersonSAﬁARy-at-p’l"e-def

Context Passing

lemmas [simp] = eval-extract-def

lemma cp-dotociany ANY: ((X).any) 7 = ((\-. X 7).any) 7 (proof)
lemma cp-dotpersonBOSS: ((X).boss) 7 = ((A\-- X 7).boss) T (proof)
lemma cp-dotpersonSALARY: ((X).salary) 7 = ((\-- X 7).salary) T (proof)

lemma cp-dotociany AN Y-at-pre: ((X).anyQpre) 7 = ((A-- X 7).anyQpre) T (proof)
lemma cp-dotpersonBOSS-at-pre: ((X).bossQpre) 7 = ((A-. X 7).bossQpre) T (proof)
lemma cp-dotpersonSALARY-at-pre: ((X).salary@pre) 7 = ((A-. X 7).salary@pre) T (proof)

lemmas cp-dotociany ANY-I [simp, introl]=
ep-dotoeiany AN V| THEN alil[THEN alll],
of N\X - X \-71.7, THEN cpll]
lemmas cp-dotociany AN Y-at-pre-I [simp, intro!]=
cp-dotoci any ANY-at-pre|[THEN alll[THEN alll],
of N\X - X \-71.7, THEN cpll]

lemmas cp-dotperson BOSS-I [simp, introl]=
cp-dotpersonBOSS[THEN ollI[THEN alll],
of N\X - X \-7.7, THEN cpl1]
lemmas c¢p-dot person BOSS-at-pre-1 [simp, intro!]|=
cp-dot personBOSS-at-pre[THEN allI[THEN alll],
of A\X - X \-71.7, THEN cpll]

147

lemmas cp-dotperson SALARY-I [simp, introl]|=
cp-dotpersonSALARY[THEN alll[THEN alll],
of N\X - X \-71.7, THEN cpll]
lemmas cp-dotpersonSALARY-at-pre-1 [simp, intro!|=
cp-dotpersonSALARY-at-pre[THEN olll[THEN alll],
of A\X - X \-71.7, THEN cpll]

Execution with Invalid or Null as Argument

lemma dotociany AN Y-nullstrict [simp]: (null).any = invalid

(proof)
lemma dotoclAnyANy-at—pre-nullstrict [simp] : (null).any@pre = invalid

(proof)

lemma dotociany AN Y-strict [simp] : (invalid).any = invalid

(proof)

lemma dotociany AN YV-at-pre-strict [simp] : (invalid).anyQ@pre = invalid
(proof)

lemma dotpeysonBOSS-nullstrict [simp]: (null).boss = invalid

(proof)
lemma dotpeysonBOSS-at-pre-nullstrict [simp] : (null).boss@Qpre = invalid

(proof)

lemma dotpersonBOSS-strict [simp] : (invalid).boss = invalid

(proof)

lemma dotpe,son BOSS-at-pre-strict [simp)] : (invalid).boss@pre = invalid
(proof)

lemma dotpersonSALARY -nullstrict [simp]: (null).salary = invalid

(proof)
lemma dotpe,sonSALARY-at-pre-nullstrict [simp] : (null).salary@pre = invalid

(proof)
lemma dotpersonSALARY-strict [simp] : (invalid).salary = invalid

(proof)
lemma dotpe,son SALARY-at-pre-strict [simp] : (invalid).salary@pre = invalid

(proof)

7.1.9. A Little Infra-structure on Example States
The example we are defining in this section comes from the figure

definition OclInt1000 (1000) where Oclint1000 = (X - . || 1000]])
definition OclInt1200 (1200) where Oclint1200 = (X - . || 1200]])
definition OclInt1300 (1300) where OclInt1300 = () - . [[1300]])
definition OclInt1800 (1800) where OclInt1800 = () - . [|[1800]])
definition OclInt2600 (2600) where OclInt2600 = (X - . || 2600]])
definition OclInt2900 (2900) where OclInt2900 = (X - . || 2900]])
definition OclInt3200 (3200) where OclInt3200 = (X - . || 3200]])
definition OclInt3500 (3500) where Oclnt3500 = () - . |[3500]))

148

boss \|,

pl:Person boss| p2:Person pl:Person boss| p2:Person p3:Person
salary = 1000 salary = 1200 salary = 1300 salary = 1800[salary = null
boss \|
p6:Person boss| p4:Person | boss| p5:Person p6:Person boss| p7:Person p4:Person
salary = 2300 salary = 2600 salary = 3500 salary = 2500 salary = 3200[salary = 2900
(a) (b)
Figure 7.2.: (a) pre-state o1 and (b) post-state o7.
definition o0id0 = 0
definition oidl = 1
definition 0id2 = 2
definition 0id3 = 3
definition oid} = 4
definition oid5 = 5
definition oid6 = 6
definition o0id7 = 7
definition 0id§ = 8

definition personl
definition person2
definition personsd
definition person4
definition persond
definition persont6
definition person?
definition person8
definition person9

definition

o1 = (| heap = empty(0id0 — inperson (Mkperson 01d0 [1000] |oidl|))
(0id1 = nperson (Mkperson 0id1 |1200] None))

definition

mkPe'rson
mkPerson
mkperson
mkPerson
mkPerson
mkPerson
kaclAny
kaclAny
mk person

(x0id2x)

(x0id6x)
(x0id7*)

assocsy =
assocsy =

empty,
empty |

0id0 |1300) | oid1 |
oidl [1800] |oid1 |
0id2 None None

0id3 | 2900] None

0id4 | 3500] None
0id5 2500 |o0id6 |
0id6 | (|5200], | 0id6)]
0id7 None

0id8 | 0] None

(0id8 — mperson (Mkperson 01d3 |2600] |0id4 |))
(0id4 — nperson persond)
(0id5 = nperson (Mkperson 0id5 |2300] |0id3]))

(0id8 — nperson persony),

o1’ = (heap = empty(0id0 — inperson persond)

149

0id] — Nperson person2)
0id2 — Mperson Personsy)
0id3 — M person PETSONS)

01d6 — NociAny personT)
01d7 — NOclAny PETSONS)
0id8 — Mperson persony),
assocsy = empty,
assocss = empty |

(
(
(
(Old5 = MPperson personé’)
(
(
(

definition oy = (| heap = empty, assocss = empty, assocss = empty |)

lemma basic-T-wff: WFF(o1,01)
(proof)

lemma [simp,code-unfold]: dom (heap o1) = {0id0,0id1,(x,0id2x)0id3,0id4 ,0id5 (*,0id6 ,0id7T*),0id8 }
(proof)

lemma [simp,code-unfold]: dom (heap o1') = {0id0,0id1,0id2,01d3,(*,0id} *)0id5 ,01d6 ,0id7,0id8 }
(proof)

definition X po,son |
definition X p.,son 1
definition X po,gon3 :: Person =)\ - .|
definition X person4 2 Person = X\ - .|
1
1

1 :: Person =)\ -
2
3
4
definition X p.,s0nd @ Person =)\ -
6
7
8
9

it Person =)\ -

personl	
person?2	
person3	
[persons |

| persons ||

definition X person6 2 Person = X - .|| person6 ||
definition X pepson7 2 OclAny =)\ - .|| person7 ||
definition X person8 2 OclAny =)\ - .|| person8 ||

definition X pe;s50n9 i+ Person = \ - .|| person9 ||

lemma [code-unfold]: ((z::Person) = y) = StrictRefEqopject * Y (proof)
lemma [code-unfold]: ((z::OclAny) = y) = StrictRefEqopject =y (proof)

lemmas [simp,code-unfold] =
OclAsTypeoci any-OclAny
OclAsTypeoci any-Person
OclAsTypeperson-OclAny
OclAsType person-Person

OcllsTypeOf o ct any-OclAny
OclIsTypeOf o ctany-Person
OcllsTypeOf person-OclAny
OcllsTypeOf person-Person

OclIsKindOf o c1 any-OclAny
OclIsKindOf ociany-Person

150

OclIsKindOf person-OclAny
OcllsKindOf person-Person

value Aspre Spre,01
value Aspre Spres01’
value A\ spost- (01,Spost
value A\

value Aspre
value Aspre
value Aspre
value Aspre
value (o1,01")

(
(
(
Spost- (Ul7spost
(A
(
(
(

T T

NS

value A\ spost- (01,8post) =
value A\ sposie (01,8p0st)
value \ spost- (01,5post) =
value (01,01")
value A\ sposte (01,5p0st)
value A\ Spost- (01,8post) =
lemma (01,01") =
(proof)

lemma Aspre Spost- (SpresSpost) E
= XPersonl)

{(proof)

value /\spre 5post~ spre7spost
value Aspre Spost-
value Aspre Spost-
value Aspre Spost-

SpresSpost

()
value /\Spre Spost- (spreaspost)
()
()

SpresSpost
(preaspost)

value Aspre (8pre,01’)
value A\ spost- (01,8post) =
value Aspre (8pre.o1’) E
value (01,01") =
value (01,01") E
value A\ Spost- (01,5post) =
value A\ Spost- (01,8post) =
value (01,01")
value A\ Spost. (01,8post) =
value /\ Spost- (Ulvspo t) ':
lemma (01,01") E
(proof)

value Aspre
value A

(Spre.01’)
(Ulvspost) =

Spost-

=
=
-

(X personl .salary <> 1000)
(Xpersonl! .salary = 1300)

(X personl .salary@pre = 1000)
(X personl -salary@pre <> 1300)
(X personl boss <> Xpersonl)

(X personl .boss .salary = 1800)

(X personl .boss .boss <> Xpersonl)
(Xpersonl .boss .boss = X person?)

(X personl -bossQpre .salary = 1800)
(X personl -boss@pre .salary@pre = 1200)
(X personl -boss@pre .salary@pre <> 1800)
(XPerson-Z 'bOSS@pre = XPersong)
(Xpersonl -boss@Qpre .boss = X person?2)
(X personl -boss@Qpre .boss@pre = null)
not(V(X personl bossQpre .bossQpre .boss@pre))

(X personl .oclIsMaintained())

((X personl -oclAsType(OclAny) .oclAsType(Person))

(X personl .ocllsTypeOf (Person))
not(X person! -ocllsTypeOf (OclAny))
(Xpersonl .ocllsKindOf (Person))
(X personl .ocllsKindOf (OclAny))
not(X personl -0clAsType(OclAny) .oclls TypeOf (OclAny))

-

(XPeTson2 .SGZG,T:U = 1800)
(X person? -salary@pre = 1200)
(XPersong .boss = XPe’r‘sonQ)

(X person? .boss .salary@pre = 1200)
(X person? -boss .boss@pre = null)
(X person? -bossQpre = null)
(X person? -bossQpre <> X person?)
(X person? -boss@pre <> (X person? -boss))
t(V(X person?2 .bossQpre .boss))
t(v(X person? .bossQpre .salary@pre))
(X person? -ocllsMaintained())

no
no

(X persond -salary = null)
not(V(X persond -salary@pre))

151

value Aspre
value Aspre
value A\
lemma

(proof)

Spost-

value A\
value
value A
lemma

(proof)

Spost-

3post~

value Aspre

value \ spost.
value Aspre
lemma

(proof)

value Aspre

value A\ spost-
value
value A\ spost.
value A\ spost-
lemma
(proof)

value Aspre Spost

value A\ spost.

lemma Aspre Spost-

(proof)

lemma
(proof)

value Aspre
value Aspre
value Aspre
value Aspre
value Aspre

152

Spost-
Spost-
5post-
5post~
spost~

(spre,01’) E (Xpersond -boss = null)
($pre,01”) |E not(V(X persond -boss .salary))
(01,5post) = 10t (V(X persond -bossQpre))

(01,01) B (Xpersond .oclIsNew())

(017Spost) ': (XPerson4 .boss@pre = XPe'r‘son5)
(01,01") E not(v(X persond -bossQpre .salary))

(01,8post) = (X persond -bossQpre .salary@pre = 3500)
(o1,01") E (X persond -ocllsMaintained())
(Spre,01”) = not(V(X persond .salary))
(01,8post) = (X persond -salary@pre = 3500)
($pre,01”) E not(V(X persond b0ss))
(01,01 E (X persond -ocllsDeleted())
($pre,01”) |E not(V(X persont .boss .salary@pre))
(01,8post) = (X person -boss@pre = Xpersond)
(o1,01") (X person -boss@pre .salary = 2900)
(01,8post) = (X personl -bossQpre .salary@pre = 2600)
(01,8post) = (X personl .bossQpre .bossQpre = X person?)

t
(01,01 E (X persont .ocllsMaintained())

(Spre,Spost) = V(X person -0clAsType(Person))
(01,8post) = n0t(V(X person? .0clAsType(Person) .bossQpre))
(Spre,Spost) = (X person? -oclAsType(Person) .oclAsType(OclAny)
.oclAsType(Person))
= (X person? -0clAsType(Person)))

(01,01) E (X person? -oclIsNew())

(spreaspost) ': (XPeTson8 <> XPeTson7)

(Spre,Spost) = not(V(X person8 -oclAsType(Person)))
(Spreaspost) ': (XPersong ocl[sTypeOf(OclAny))
(Spre,Spost) = not(X person8 .ocllsTypeOf (Person))
(SpresSpost) E - not(X persond -ocllsKindOf (Person))

value Aspre Spost- (SpresSpost) = (X person8 -ocllsKindOf (OclAny))

lemma o-modifiedonly: (01,01") |E (Set{ X person! -oclAsType(OclAny)
y Xperson? .oclAsType(OclAny)
(#, X persond .oclAsType(OclAny)x)
y X persond -oclAsType(OclAny)
(%, X persond -0clAsType(OclAny)x)
, Xpersonb -0clAsType(OclAny)
(%, X person? -0clAsType(OclAny)x)
(%, X person8 -0clAsType(OclAny)x*)
(%, X persond .oclAsType(OclAny)«)}—>ocllsModifiedOnly())
(proof)

lemma (01,01") E (X person9d @Qpre (\z. | OclAsTypeperson-2 z])) £ Xperson9)
(proof)

lemma (01,01") = (X persond @Qpost (\z. | OclAsTypeperson-A 7)) = X person9)
(proof)

lemma (01,01") = (X person9d -0clAsType(OclAny)) Qpre (\z. | OclAsTypeociany-2A z])) £
(X person9d .oclAsType(OclAny)) Qpost (\z. | OclAsTypeociany-2A z])))
(proof)

lemma perm-o1’: o1’ = (| heap = empty

(0id8 — nperson person9)
(01d7 — nociAny person8)
(0id6 +— inociany personT)
(0id5 — inperson persont)
(x
(0id8 — Mperson persond
(0id2 — inperson persond
(0idl — nperson person?
(0id0 — nperson personl
, a8s0cSy = assocsy o1’
, assocss = assocss o1’)

)
)
)
)

(proof)
declare const-ss [simp]

lemma Ao;.
(01,01") = (Person .alllnstances() = Set{ X personl, XpPerson2; X Persond, X Persond (%,
XPerson5*)7 XPerson6»
XPerson7 -OClASType(PWSOn)(*, XPersong*)y XPersong })
(proof)

lemma Ao;.

(01,01") = (OclAny .alllnstances() = Set{ Xpersonl .0clAsType(OclAny), X person?
.oclAsType(OclAny),

153

X persond -oclAsType(OclAny), X persond -oclAsType(OclAny)
(*, X persond*), X personb .0clAsType(OclAny),
Xperson?, Xperson8, X persond -oclAsType(OclAny) })
(proof)

end

7.2. The Employee Design Model (OCL)

theory
Employee-DesignModel-OCLPart
imports
Employee-DesignModel-UMLPart
begin

7.2.1. Standard State Infrastructure

Ideally, these definitions are automatically generated from the class model.

7.2.2. Invariant

These recursive predicates can be defined conservatively by greatest fix-point
constructions—automatically. See [4], [6] for details. For the purpose of this example, we
state them as axioms here.

axiomatization inv-Person :: Person = Boolean
where A : (7 | (d self)) —
(7 | inv-Person(self)) =
(1 E (self .boss = null)) V
(7 | (self .boss <> null) A (1 |= ((self .salary) ‘< (self .boss .salary))) A
(7 = (inv-Person(self .boss)))))

axiomatization inv-Person-at-pre :: Person = Boolean
where B : (1 = (§ self)) —
(7 | inv-Person-at-pre(self)) =
((1 = (self .boss@pre = null)) V
(7 = (self .boss@Qpre <> null) A
(1 |= (self .boss@pre .salary@pre ‘< self .salary@pre)) A
(1 = (inv-Person-at-pre(self .boss@pre)))))

A very first attempt to characterize the axiomatization by an inductive definition -
this can not be the last word since too weak (should be equality!)

coinductive inv :: Person = (2)st = bool where

(1 | (6 self)) = ((7 & (self .boss = null)) V
(1 = (self .boss <> null) A (7 |E (self .boss .salary ‘< self .salary)) A

154

((inv(self .boss))T)))

= (inv self 1)

7.2.3. The Contract of a Recursive Query

The original specification of a recursive query :

context Person::contents():Set(Integer)

post: result = if self.boss = null
then Set{i}
else self.boss.contents()->including(i)
endif

consts dot-contents :: Person = Set-Integer ((1(-).contents’(’)) 50)

axiomatization where dot-contents-def:
(7 = ((self).contents() = result)) =
(if (6 self) T = true T
then ((7 [true) A
(1 = (result = if (self .boss = null)
then (Set{self .salary})
else (self .boss .contents()—>including(self .salary))

endif)))

else T |= result £ invalid)

consts dot-contents-AT-pre :: Person = Set-Integer ((1(-).contents@Qpre’(’)) 50)

axiomatization where dot-contents-AT-pre-def:

(7 = (self).contentsQpre() = result) =

(if (& self) T = true T

then 7 |= true A (x pre x)
7 | (result = if (self).bossQpre = null (* post *)

then Set{(self).salaryQpre}
else (self).boss@Qpre .contentsQpre()—>including(self .salary@pre)
endif)

else T |= result £ invalid)

These @pre variants on methods are only available on queries, i. e., operations without
side-effect.

7.2.4. The Contract of a Method
The specification in high-level OCL input syntax reads as follows:

context Person::insert(x:Integer)
post: contents ():Set(Integer)
contents () = contents@pre()->including(x)

consts dot-insert :: Person = Integer = Void ((1(-).insert’(-")) 50)

155

axiomatization where dot-insert-def:
(1 = ((self).insert(z) £ result)) =
(if (0 self) T =true T A (v)T ="true T
then T = true A
7 = ((self).contents() £ (self).contentsQpre()—>including(z))
else 7 |= ((self).insert(z) £ invalid))

end

156

Part 1V.

Conclusion

157

8. Conclusion

8.1. Lessons Learned and Contributions

We provided a typed and type-safe shallow embedding of the core of UML [31] 132]
and OCL [33]. Shallow embedding means that types of OCL were injectively, i.e.,
mapped by the embedding one-to-one to types in Isabelle/HOL [27]. We followed the
usual methodology to build up the theory uniquely by conservative extensions of all
operators in a denotational style and to derive logical and algebraic (execution) rules
from them; thus, we can guarantee the logical consistency of the library and instances
of the class model construction, i.e., closed-world object-oriented datatype theories, as
long as it follows the described methodologyE] Moreover, all derived execution rules
are by construction type-safe (which would be an issue, if we had chosen to use an
object universe construction in Zermelo-Fraenkel set theory as an alternative approach
to subtyping.). In more detail, our theory gives answers and concrete solutions to a
number of open major issues for the UML/OCL standardization:

1. the role of the two exception elements invalid and null, the former usually assum-
ing strict evaluation while the latter ruled by non-strict evaluation.

2. the functioning of the resulting four-valued logic, together with safe rules (for
example foundation9 — foundationl2 in that allow a reduction to
two-valued reasoning as required for many automated provers. The resulting logic
still enjoys the rules of a strong Kleene Logic in the spirit of the Amsterdam
Manifesto [19].

3. the complicated life resulting from the two necessary equalities: the standard’s
“strict weak referential equality” as default (written - =_ throughout this docu-
ment) and the strong equality (written _ =_), which follows the logical Leibniz
principle that “equals can be replaced by equals.” Which is not necessarily the
case if invalid or objects of different states are involved.

4. a type-safe representation of objects and a clarification of the old idea of a one-to-
one correspondence between object representations and object-id’s, which became
a state invariant.

5. a simple concept of state-framing via the novel operator _->oclIsModifiedOnly ()
and its consequences for strong and weak equality.

'Our two examples of Employee_DesignModel (see [Chapter 7)) sketch how this construction can be
captured by an automated process.

159

6. a semantic view on subtyping clarifying the role of static and dynamic type (aka
apparent and actual type in Java terminology), and its consequences for casts,
dynamic type-tests, and static types.

7. a semantic view on path expressions, that clarify the role of invalid and null as
well as the tricky issues related to de-referentiation in pre- and post state.

8. an optional extension of the OCL semantics by infinite sets that provide means
to represent “the set of potential objects or values” to state properties over them
(this will be an important feature if OCL is intended to become a full-blown code
annotation language in the spirit of JML [25] for semi-automated code verification,
and has been considered desirable in the Aachen Meeting [15]).

Moreover, we managed to make our theory in large parts executable, which allowed us
to include mechanically checked value-statements that capture numerous corner-cases
relevant for OCL implementors. Among many minor issues, we thus pin-pointed the
behavior of null in collections as well as in casts and the desired isKind0f-semantics of
allInstances().

8.2. Lessons Learned

While our paper and pencil arguments, given in [I3], turned out to be essentially correct,
there had also been a lesson to be learned: If the logic is not defined as a Kleene-
Logic, having a structure similar to a complete partial order (CPO), reasoning becomes
complicated: several important algebraic laws break down which makes reasoning in
OCL inherent messy and a semantically clean compilation of OCL formulae to a two-
valued presentation, that is amenable to animators like KodKod [36] or SMT-solvers
like Z3 [20] completely impractical. Concretely, if the expression not(null) is defined
invalid (as is the case in the present standard [33]), than standard involution does not
hold, i.e., not(not(A)) = A does not hold universally. Similarly, if null and null is
invalid, then not even idempotence X and X = X holds. We strongly argue in favor
of a lattice-like organization, where null represents “more information” than invalid
and the logical operators are monotone with respect to this semantical “information
ordering.”

A similar experience with prior paper and pencil arguments was our investigation of
the object-oriented data-models, in particular path-expressions [16]. The final presenta-
tion is again essentially correct, but the technical details concerning exception handling
lead finally to a continuation-passing style of the (in future generated) definitions for
accessors, casts and tests. Apparently, OCL semantics (as many other “real” program-
ming and specification languages) is meanwhile too complex to be treated by informal
arguments solely.

Featherweight OCL makes several minor deviations from the standard and showed
how the previous constructions can be made correct and consistent, and the DNF-
normalization as well as d-closure laws (necessary for a transition into a two-valued

160

presentation of OCL specifications ready for interpretation in SMT solvers (see [14] for
details)) are valid in Featherweight OCL.

8.3. Conclusion and Future Work

Featherweight OCL concentrates on formalizing the semantics of a core subset of OCL in
general and in particular on formalizing the consequences of a four-valued logic (i. e., OCL
versions that support, besides the truth values true and false also the two exception
values invalid and null).

In the following, we outline the necessary steps for turning Featherweight OCL into a
fully fledged tool for OCL, e. g., similar to HOL-OCL as well as for supporting test case
generation similar to HOL-TestGen [9]. There are essentially five extensions necessary:

e extension of the library to support all OCL data types, e.g., OrderedSet (T) or
Sequence(T). This formalization of the OCL standard library can be used for
checking the consistency of the formal semantics (known as “Annex A”) with the
informal and semi-formal requirements in the normative part of the OCL standard.

e development of a compiler that compiles a textual or CASE tool representation
(e.g., using XMI or the textual syntax of the USE tool [35]) of class models. Such
compiler could also generate the necessary casts when converting standard OCL
to Featherweight OCL as well as providing “normalizations” such as converting
multiplicities of class attributes to into OCL class invariants.

e a setup for translating Featherweight OCL into a two-valued representation as de-
scribed in [I4]. As, in real-world scenarios, large parts of UML/OCL specifications
are defined (e. g., from the default multiplicity 1 of an attributes x, we can directly
infer that for all valid states x is neither invalid nor null), such a translation
enables an efficient test case generation approach.

e a setup in Featherweight OCL of the Nitpick animator [3]. It remains to be shown
that the standard, Kodkod [36] based animator in Isabelle can give a similar quality
of animation as the OCLexec Tool [24]

e a code-generator setup for Featherweight OCL for Isabelle’s code generator. For
example, the Isabelle code generator supports the generation of F#, which would
allow to use OCL specifications for testing arbitrary .net-based applications.

The first two extensions are sufficient to provide a formal proof environment for OCL
2.5 similar to HOL-OCL while the remaining extensions are geared towards increasing
the degree of proof automation and usability as well as providing a tool-supported test
methodology for UML/OCL.

Our work shows that developing a machine-checked formal semantics of recent OCL
standards still reveals significant inconsistencies—even though this type of research is
not new. In fact, we started our work already with the 1.x series of OCL. The reasons
for this ongoing consistency problems of OCL standard are manifold. For example, the

161

consequences of adding an additional exception value to OCL 2.2 are widespread across
the whole language and many of them are also quite subtle. Here, a machine-checked
formal semantics is of great value, as one is forced to formalize all details and subtleties.
Moreover, the standardization process of the OMG, in which standards (e. g., the UML
infrastructure and the OCL standard) that need to be aligned closely are developed quite
independently, are prone to ad-hoc changes that attempt to align these standards. And,
even worse, updating a standard document by voting on the acceptance (or rejection) of
isolated text changes does not help either. Here, a tool for the editor of the standard that
helps to check the consistency of the whole standard after each and every modifications
can be of great value as well.

162

Bibliography

[1]

P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Kluwer Academic Publishers, Dordrecht, 2nd edition, 2002. ISBN
1-402-00763-9.

C. Barrett and C. Tinelli. Cvc3. In W. Damm and H. Hermanns, editors, CAV,
volume 4590 of Lecture Notes in Computer Science, pages 298-302. Springer-Verlag,
2007. ISBN 978-3-540-73367-6. doi: 10.1007/978-3-540-73368-3_34.

J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-
order logic based on a relational model finder. In M. Kaufmann and L. C. Paulson,
editors, ITP, volume 6172 of Lecture Notes in Computer Science, pages 131-146.
Springer-Verlag, 2010. ISBN 978-3-642-14051-8. doi: 10.1007/978-3-642-14052-5_
11.

A. D. Brucker. An Interactive Proof Environment for Object-oriented Specifications.
PhD thesis, ETH Zurich, Mar. 2007. URL http://www.brucker.ch/bibliography/
abstract /brucker-interactive-2007. ETH Dissertation No. 17097.

A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics in Isabelle/HOL.
In V. A. Carreno, C. A. Mufioz, and S. Tahar, editors, Theorem Proving in
Higher Order Logics (TPHOLs), number 2410 in Lecture Notes in Computer
Science, pages 99-114. Springer-Verlag, Heidelberg, 2002. ISBN 3-540-44039-
9. doi: 10.1007/3-540-45685-6_8. URL http://www.brucker.ch/bibliography/
abstract /brucker.ea-proposal-2002.

A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report 525,
ETH Zurich, 2006. URL http://www.brucker.ch/bibliography /abstract /brucker.
ea-hol-ocl-book-2006.

A. D. Brucker and B. Wolff. An extensible encoding of object-oriented data models
in hol. Journal of Automated Reasoning, 41:219-249, 2008. ISSN 0168-7433. doi:
10.1007/s10817-008-9108-3. URL http://www.brucker.ch/bibliography /abstract/
brucker.ea-extensible-2008-b.

A. D. Brucker and B. Wolff. HOL-OCL — A Formal Proof Environment for
UML/OCL. In J. Fiadeiro and P. Inverardi, editors, Fundamental Approaches
to Software Engineering (FASE0S8), number 4961 in Lecture Notes in Computer
Science, pages 97-100. Springer-Verlag, Heidelberg, 2008. doi: 10.1007/
978-3-540-78743-3_8. URL http://www.brucker.ch/bibliography /abstract/brucker.
ea-hol-ocl-2008.

163

http://dx.doi.org/10.1007/978-3-540-73368-3_34
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://www.brucker.ch/bibliography/abstract/brucker-interactive-2007
http://dx.doi.org/10.1007/3-540-45685-6_8
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-proposal-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-book-2006
http://dx.doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/s10817-008-9108-3
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008-b
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008-b
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://dx.doi.org/10.1007/978-3-540-78743-3_8
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008

[9]

[13]

[14]

[15]

164

A. D. Brucker and B. Wolff. HOL-TestGen: An interactive test-case gen-
eration framework. In M. Chechik and M. Wirsing, editors, Fundamental
Approaches to Software Engineering (FASE09), number 5503 in Lecture Notes in
Computer Science, pages 417-420. Springer-Verlag, Heidelberg, 2009. doi: 10.
1007/978-3-642-00593-0_28. URL http://www.brucker.ch /bibliography /abstract /
brucker.ea-hol-testgen-2009.

A. D. Brucker and B. Wolff. Semantics, calculi, and analysis for object-oriented
specifications. Acta Informatica, 46(4):255-284, July 2009. ISSN 0001-5903. doi:
10.1007/s00236-009-0093-8. URL http://www.brucker.ch /bibliography /abstract /
brucker.ea-semantics-2009.

A. D. Brucker, J. Doser, and B. Wolff. Semantic issues of OCL: Past, present, and
future. FElectronic Communications of the EASST, 5, 2006. ISSN 1863-2122. URL
http://www.brucker.ch/bibliography /abstract /brucker.ea-semantic-2006-b.

A. D. Brucker, J. Doser, and B. Wolff. A model transformation semantics and
analysis methodology for SecureUML. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS 2006: Model Driven Engineering Languages
and Systems, number 4199 in Lecture Notes in Computer Science, pages 306—
320. Springer-Verlag, Heidelberg, 2006. |doi: 10.1007/11880240_22. URL http:
/ /www.brucker.ch/bibliography /abstract /brucker.ea-transformation-2006. An ex-
tended version of this paper is available as ETH Technical Report, no. 524.

A. D. Brucker, M. P. Krieger, and B. Wolff. Extending OCL with null-references.
In S. Gosh, editor, Models in Software Engineering, number 6002 in Lecture
Notes in Computer Science, pages 261-275. Springer-Verlag, Heidelberg, 2009.
doi: 10.1007/978-3-642-12261-3_25. URL http://www.brucker.ch/bibliography/
abstract /brucker.ea-ocl-null-2009. Selected best papers from all satellite events of
the MoDELS 2009 conference.

A. D. Brucker, M. P. Krieger, D. Longuet, and B. Wolff. A specification-based
test case generation method for UML/OCL. In J. Dingel and A. Solberg, editors,
MoDELS Workshops, number 6627 in Lecture Notes in Computer Science, pages
334-348. Springer-Verlag, Heidelberg, 2010. ISBN 978-3-642-21209-3. doi: 10.
1007/978-3-642-21210-9_33. URL http://www.brucker.ch /bibliography /abstract /
brucker.ea-ocl-testing-2010. Selected best papers from all satellite events of the
MoDELS 2010 conference. Workshop on OCL and Textual Modelling.

A. D. Brucker, D. Chiorean, T. Clark, B. Demuth, M. Gogolla, D. Plotnikov,
B. Rumpe, E. D. Willink, and B. Wolff. Report on the Aachen OCL meeting. In
J. Cabot, M. Gogolla, I. Rath, and E. Willink, editors, Proceedings of the MODELS
2013 OCL Workshop (OCL 2013), volume 1092 of CEUR Workshop Proceedings,
pages 103-111. CEUR-WS.org, 2013. URL http://www.brucker.ch/bibliography/
abstract /brucker.ea-summary-aachen-2013.

http://dx.doi.org/10.1007/978-3-642-00593-0_28
http://dx.doi.org/10.1007/978-3-642-00593-0_28
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-2009
http://dx.doi.org/10.1007/s00236-009-0093-8
http://dx.doi.org/10.1007/s00236-009-0093-8
http://www.brucker.ch/bibliography/abstract/brucker.ea-semantics-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-semantics-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-semantic-2006-b
http://dx.doi.org/10.1007/11880240_22
http://www.brucker.ch/bibliography/abstract/brucker.ea-transformation-2006
http://www.brucker.ch/bibliography/abstract/brucker.ea-transformation-2006
http://dx.doi.org/10.1007/978-3-642-12261-3_25
http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-null-2009
http://dx.doi.org/10.1007/978-3-642-21210-9_33
http://dx.doi.org/10.1007/978-3-642-21210-9_33
http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-testing-2010
http://www.brucker.ch/bibliography/abstract/brucker.ea-ocl-testing-2010
http://www.brucker.ch/bibliography/abstract/brucker.ea-summary-aachen-2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-summary-aachen-2013

[16]

[21]

[22]

[23]

[24]

A. D. Brucker, D. Longuet, F. Tuong, and B. Wolff. On the semantics of object-
oriented data structures and path expressions. In OCL@MoDELS, pages 23-32,
2013.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56-68, June 1940.

T. Clark and J. Warmer, editors. Object Modeling with the OCL: The Rationale
behind the Object Constraint Language, volume 2263 of Lecture Notes in Computer
Science, Heidelberg, 2002. Springer-Verlag. ISBN 3-540-43169-1.

S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The am-
sterdam manifesto on OCL. In Clark and Warmer [I§], pages 115-149. ISBN
3-540-43169-1.

L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes in Computer Science,
pages 337-340, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-78799-0. doi:
10.1007/978-3-540-78800-3_24.

M. Gogolla and M. Richters. Expressing UML class diagrams properties with OCL.
In Clark and Warmer [I§], pages 85-114. ISBN 3-540-43169-1.

A. Hamie, F. Civello, J. Howse, S. Kent, and R. Mitchell. Reflections on the
Object Constraint Language. In J. Bézivin and P.-A. Muller, editors, The Unified
Modeling Language. « UML»’98: Beyond the Notation, volume 1618 of Lecture Notes
in Computer Science, pages 162-172, Heidelberg, 1998. Springer-Verlag. ISBN 3-
540-66252-9. [doi: 10.1007/b72309.

P. Kosiuczenko. Specification of invariability in OCL. In O. Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, editors, Model Driven Engineering Languages and
Systems (MoDELS), volume 4199 of Lecture Notes in Computer Science, pages
676691, Heidelberg, 2006. Springer-Verlag. ISBN 978-3-540-45772-5. doi: 10.1007/
11880240_47.

M. P. Krieger, A. Knapp, and B. Wolff. Generative programming and compo-
nent engineering. In E. Visser and J. Jarvi, editors, International Conference on
Generative Programming and Component Engineering (GPCE 2010), pages 53—62.
ACM, Oct. 2010. ISBN 978-1-4503-0154-1.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Miiller,
J. Kiniry, and P. Chalin. JML reference manual (revision 1.2), Feb. 2007. Available
from http://www.jmlspecs.org,.

L. Mandel and M. V. Cengarle. On the expressive power of OCL. In J. M.
Wing, J. Woodcock, and J. Davies, editors, World Congress on Formal Methods
in the Development of Computing Systems (FM), volume 1708 of Lecture Notes in

165

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/b72309
http://dx.doi.org/10.1007/11880240_47
http://dx.doi.org/10.1007/11880240_47
http://www.jmlspecs.org

[29]

[30]

[31]

[32]

[37]

166

Computer Science, pages 854-874, Heidelberg, 1999. Springer-Verlag. ISBN 3-540-
66587-0.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 2002. |doi: 10.1007/3-540-45949-9.

Object Management Group. Object constraint language specification (version 1.1),
Sept. 1997. Available as OMG document lad/97-08-08.

Object Management Group. UML 2.0 OCL specification, Oct. 2003. Available as
OMG document ptc/03-10-14.

Object Management Group. UML 2.0 OCL specification, Apr. 2006. Available as
OMG document formal/06-05-01.

Object Management Group. UML 2.4.1: Infrastructure specification, Aug. 2011.
Available as OMG document formal/2011-08-05.

Object Management Group. UML 2.4.1: Superstructure specification, Aug. 2011.
Available as OMG document formal/2011-08-06.

Object Management Group. UML 2.3.1 OCL specification, Feb. 2012. Available as
OMG document formal/2012-01-01.

A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, CADE, volume
1632 of Lecture Notes in Computer Science, pages 292—-296. Springer-Verlag, 1999.
ISBN 3-540-66222-7. doi: 10.1007/3-540-48660-7_26.

M. Richters. A Precise Approach to Validating UML Models and OCL Constraints.
PhD thesis, Universitdt Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14,
2002.

E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg
and M. Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science,
pages 632—647, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71208-4. doi:
10.1007/978-3-540-71209-1_49.

M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar frame-
work. In K. Schneider and J. Brandt, editors, TPHOLs 2007, number 4732 in
Lecture Notes in Computer Science, pages 352-367. Springer-Verlag, Heidelberg,
2007. doi: 10.1007/978-3-540-74591-4_26..

M. M. Wenzel. Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, TU Miinchen, Miinchen, Feb. 2002. URL http://
tumb]1.biblio.tu-muenchen.de/publ/diss/in /2002 /wenzel.html.

http://dx.doi.org/10.1007/3-540-45949-9
http://www.omg.org/cgi-bin/doc?ad/97-08-08
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/06-05-01
http://www.omg.org/cgi-bin/doc?formal/2011-08-05
http://www.omg.org/cgi-bin/doc?formal/2011-08-06
http://www.omg.org/cgi-bin/doc?formal/2012-01-01
http://dx.doi.org/10.1007/3-540-48660-7_26
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-540-74591-4_26
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	Introduction
	Motivation
	Background
	A Guided Tour Through UML/OCL
	Formal Foundation
	Isabelle
	Higher-order Logic (HOL)

	Featherweight OCL: Design Goals
	The Theory Organization
	Denotational Semantics
	Logical Layer
	Algebraic Layer

	Object-oriented Datatype Theories
	Object Universes
	Accessors on Objects and Associations
	Other Operations on States

	A Machine-checked Annex A

	A Proposal for Formal Semantics of OCL 2.5
	Formalization I: Core Definitions
	Preliminaries
	Notations for the Option Type
	Minimal Notions of State and State Transitions
	Prerequisite: An Abstract Interface for OCL Types
	Accommodation of Basic Types to the Abstract Interface
	The Semantic Space of OCL Types: Valuations

	Definition of the Boolean Type
	Basic Constants
	Validity and Definedness

	The Equalities of OCL
	Definition
	Fundamental Predicates on Strong Equality

	Logical Connectives and their Universal Properties
	A Standard Logical Calculus for OCL
	Global vs. Local Judgements
	Local Validity and Meta-logic
	Local Judgements and Strong Equality
	Laws to Establish Definedness (-closure)

	Miscellaneous
	OCL's if then else endif
	A Side-calculus for (Boolean) Constant Terms

	Formalization II: Library Definitions
	Basic Types: Void and Integer
	The Construction of the Void Type
	The Construction of the Integer Type
	Validity and Definedness Properties
	Arithmetical Operations on Integer

	Fundamental Predicates on Basic Types: Strict Equality
	Definition
	Logic and Algebraic Layer on Basic Types
	Test Statements on Basic Types.

	Complex Types: The Set-Collection Type (I) Core
	The Construction of the Set Type
	Validity and Definedness Properties
	Constants on Sets

	Complex Types: The Set-Collection Type (II) Library
	Computational Operations on Set
	Validity and Definedness Properties
	Execution with Invalid or Null or Infinite Set as Argument
	Context Passing
	Const

	Fundamental Predicates on Set: Strict Equality
	Definition
	Logic and Algebraic Layer on Set

	Execution on Set's Operators (with mtSet and recursive case as arguments)
	OclIncluding
	OclExcluding
	OclIncludes
	OclExcludes
	OclSize
	OclIsEmpty
	OclNotEmpty
	OclANY
	OclForall
	OclExists
	OclIterate
	OclSelect
	OclReject

	Execution on Set's Operators (higher composition)
	OclIncludes
	OclSize
	OclForall
	Strict Equality

	Test Statements

	Formalization III: State Operations and Objects
	Introduction: States over Typed Object Universes
	Recall: The Generic Structure of States

	Fundamental Predicates on Object: Strict Equality
	Logic and Algebraic Layer on Object

	Operations on Object
	Initial States (for testing and code generation)
	OclAllInstances
	OclIsNew, OclIsDeleted, OclIsMaintained, OclIsAbsent
	OclIsModifiedOnly
	OclSelf
	Framing Theorem
	Miscellaneous

	Examples
	The Employee Analysis Model
	The Employee Analysis Model (UML)
	Introduction
	Example Data-Universe and its Infrastructure
	Instantiation of the Generic Strict Equality
	OclAsType
	OclIsTypeOf
	OclIsKindOf
	OclAllInstances
	The Accessors (any, boss, salary)
	A Little Infra-structure on Example States

	The Employee Analysis Model (OCL)
	Standard State Infrastructure
	Invariant
	The Contract of a Recursive Query
	The Contract of a Method

	The Employee Design Model
	The Employee Design Model (UML)
	Introduction
	Example Data-Universe and its Infrastructure
	Instantiation of the Generic Strict Equality
	OclAsType
	OclIsTypeOf
	OclIsKindOf
	OclAllInstances
	The Accessors (any, boss, salary)
	A Little Infra-structure on Example States

	The Employee Design Model (OCL)
	Standard State Infrastructure
	Invariant
	The Contract of a Recursive Query
	The Contract of a Method

	Conclusion
	Conclusion
	Lessons Learned and Contributions
	Lessons Learned
	Conclusion and Future Work

