Testing the IPC Protocol
for a Real-Time Operating System

Achim D. Brucker!, Oto Havle?, Yakoub Nemouchi?, and Burkhart Wolff?

L SAP SE, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
achim.brucker@sap.com
2 LRI, Univ Paris Sud, CNRS, Centrale Suplélec, Université Saclay, France
{nemouchi, wolff}@lri.fr
3 SYSGO AG, Am Pfaffenstein 14, 55270 Klein-Winternheim, Germany

oto.havle@sysgo.com

Abstract In this paper, we adapt model-based testing techniques to
concurrent code, namely for test generations of an (industrial) OS kernel
called PikeOS. Since our data-models are complex, the problem is out of
reach of conventional model-checking techniques. Our solution is based
on symbolic execution implemented inside the interactive theorem prov-
ing environment Isabelle/HOL extended by a plugin with test generation
facilities called HOL-TestGen.

As a foundation for our symbolic computing techniques, we refine the
theory of monads to embed interleaving executions with abort, synchro-
nization, and shared memory to a general but still optimized behavioral
test framework.

This framework is instantiated by a model of PikeOS inter-process com-
munication system-calls. Inheriting a micro-architecture going back to
the L4 kernel, the system calls of the IPC-API are internally structured
by atomic actions; according to a security model, these actions can fail
and must produce error-codes. Thus, our tests reveal errors in the en-
forcement of the security model.

Keywords: test program generation, symbolic test case generations,
black box testing, testing operating systems, certification, CC, concur-
rency, interleaving.

1 Introduction

The verification of systems combining soft- and hardware, such as modern avion-
ics systems, asks for combined efforts in test and proof: In the context of cer-
tifications such as EAL5 in Common Criteria [14], the required formal security
models have to be linked to system models via refinement proofs, and system
models to code-level implementations via testing techniques. Tests are required
for methodological reasons (“did we get the system model right? Did we ade-
quately model the system environment?”) as well as economical reasons (state
of the art deductive verification techniques of machine-level code are practically
limited to systems with ca. 10kLOC of size, see [11]).

This paper stands in the context of an EAL5+ certification project [7] of the
commercial PikeOS operating system used in avionics applications; PikeOS [18-
20] is a virtualizing separation kernel in the tradition of L4-microkernels [10].

. Gurfinkel and S. A. Seshia (Eds.): VSTTE 2015, LNCS, pp. 1-20, 2015.

(© 2015 Springer-Verlag. This is the author’s version of the work. It is posted at http:
//www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015 by permission of
Springer-Verlag for your personal use.



http://www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015
http://www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015
http://www.brucker.ch/
http://www.brucker.ch/
http://www.lri.fr/~nemouchi
http://www.lri.fr/~wolff
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
mailto:"Yakoub Nemouchi" <nemouchi@lri.fr>
mailto:"Burkhart Wolff" <wolff@lri.fr>
mailto:"Oto Havle" <oto.havle@sysgo.com>

2 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

Our work complements the testing initiative by a model-based testing technique
linking the formal system model of the PikeOS inter-process communication
against the real system. This is a technical challenge for at least the following
reasons:

— the system model is a transaction machine over a very rich state,

— system calls were implemented by internal, uninterruptible “atomic actions”
reflecting the L4-microkernel concept; atomic actions define the granularity
of our concurrency model, and

— the security model is complex and, in case of aborted system calls, leads to
non-standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical founda-
tions.

— We use symbolic execution techniques to cope with the large state-space;
their inherent drawback to be limited to relatively short execution traces is
outweighed by their expressive power,

— we extend the “monadic test-sequence approach” proposed in [2, 4] to a test-
method for concurrent code. It combines an IO-automata view [13] with
extended finite state machines [9] using abstract states and abstract transi-
tions, and

— we need an adaption of concurrency notions, a “semantic view” on partial-
order reduction and its integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concur-
rent OS-system code, ranging from an abstract system model in Isabelle/HOL
which was not not authored by us, complemented by our embedding of the latter
into our monadic sequence testing framework, our setups for symbolic execution
down to generation of test-drivers and the code instrumentation.

2 Theoretical and Technical Foundations

2.1 HOL-TestGen: From Formal Specifications to Testing

HOL-TestGen [3, 4] is a specification-based test case generation environment

that integrates seamlessly formal verification and testing in a very unique way:

1. it is an extension of Isabelle/HOL [16] and, thus, inherits all its features
(e. g., formal modeling and verification, code generation),

2. its test case generation algorithm is based on the symbolic computation
engine of Isabelle and, thus, can count as highly trustworthy,

3. it generates automatically test hypothesis such as the uniformity hypothesis
and thus establish a formal link between test and proof (see [4] for details).
Besides test data, HOL-TestGen also generates test drivers including the test

oracles for the system under test (SUT) verifying it against the HOL specifica-
tion. Fig. 1 shows on the left the HOL-TestGen architecture, and on the right a
screen shot of its user interface and a test execution. The usual workflow is:

1. we model the SUT using Isabelle/HOL (system specification). This modeling
process can leverage the full power and methodology of Isabelle, for example,



Testing the IPC Protocol for a Real-Time Operating System

r ol

Isabelle201 3-2 - Bank.thy x

System Specification

|| Test Specification File Edit Search Markers Folding View Utilities Macros Plugins Help

Test Script (incl. Test
Oracle) Generation

Test Generation

Specification | 1 Bank.thy (~/projects/hol-testgen/hol-testgen/examples/seq... Ll
13 o [a
) e -
by(insert A, rule B, simp_all del: mbind’_bind) x]
Test Case Generation
Inductive Verified Model text{* balance *} v
Verification Transformation w  |lemna impl_2:
“strong_inpl precond postcond (balance ¢ no) =
Test Data (7. if fle, no) € dom o
then Somel(balance0(nat(the (7 (g, no)))), =) -
alaa ool \

.

uojeIuBWNIOQ

[ Auto update | Update | | Detach | 100%
Verification and Transformation

proof (prove): step

Isabelle/HOL Terminal

T goal (1 subgoal):

v SN Fic it View

Search Terminal Help

tjGenera!edTes!Scriplt 1 -
Test Harness and Test Oracle Test Adapter )
a8l ~| efna ||
J

Test Executable
HOL-TestGen 207.15 (789@¢absieksi

)

Scheduler
Control

System under Scheduler
Test Mappin

Execution Environment

o

Fig. 1. The HOL-TestGen Workflow.

the system specification can build upon the rich library of datatypes provided
by Isabelle or properties of the system specification can be formally proven.
we specify the set of test goals (test specification), again, in Isabelle/HOL.
we use the test case generation implementation of HOL-TestGen to automat-
ically generate abstract test cases (that may still contain, e.g., constraints
of the form 0 < x < 10) from the system specification and test specification.
we use constraint solvers generating test data, i.e., we construct ground
instances for the constraints in the test cases (e.g., we choose x to be 4).
we generate automatically test scripts that execute the SUT as well as vali-
date the test output (by test oracles)

we compile the test script, together with a generic test harness, which con-
trols the test execution and collects statistics about the number of successful
or failed tests, to actually execute the test.

Depending on the SUT, we might need to manually write a small test adapter
that, e. g., converts data types between the representation in the generated test
scripts and the one actually used in the SUT. Moreover, for multi-threaded
implementations, a scheduler mapping has to be provided that maps abstract
threads to the critical infrastructures in the implementation. Usually, the manu-
ally written code is orders or magnitude smaller than the generated code of the

testers and often reusable between different scenarios.

2.2 A Gentle Introduction to Sequence Testing Theory

Sequence testing is a well-established branch of formal testing theory having its
roots in automata theory. The methodological assumptions (sometimes called

testability hypothesis in the literature) are summarized as follows:



4 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

1. The tester can reset the system under test (the SUT) into a known initial
state,

2. the tester can stimulate the SUT only via the operation-calls and input of a
known interface; while the internal state of the SUT is hidden to the tester,
the SUT is assumed to be only controlled by these stimuli, and

3. the SUT behaves deterministic with respect to an observed sequence of input-
output pairs (it is input-output deterministic).

The latter two assumptions assure the reproducibility of test executions. The
latter condition does not imply that the SUT is deterministic: for a given input
t, and in a given state o, SUT may non-deterministically choose between the
successor states o/ and o”/, provided that the pairs (o/,0’) and (0”,¢") are dis-
tinguishable. Thus, a SUT may behave non-deterministically, but must make its
internal decisions observable by appropriate output. In other words, the relation
between a sequence of input-output pairs and the resulting system state must
be a function.

- ()
in"a“ out:1) (in:"a",out:1) ‘(in:”a“,outﬂ )
(in:"a“,omyomiz) (in"a“,out:1) (in:"a“,out:2) (in"b* out: n"b* out:2)
)

(a) I0-Deterministic SUT.  (b) IO-Deterministic SUT. (c) Non-IO-Determin. SUT.

Fig. 2. I0-Determinism and Non-IO-Determinism

There is a substantial body of theoretical work replacing the latter testability
hypothesis by weaker or alternative ones (and avoiding the strict alternates of
input and output, and adding asynchronous communication between tester and
SUT, or adding some notion of time), but most practical approaches do assume
it as we do throughout this paper. Moreover note, that there are approaches
(including our own paper [5]) that allow at least a limited form of access to the
final (internal) state of the SUT.

A sequence of input-output pairs through an automaton A is called a trace,
the set of traces is written Trace(A). The function In returns for each trace
the set of inputs for which A is enabled after this trace; in Fig. 2c¢ for ex-
ample, In [(“a”,1)] is just {“b”}. Dually, Out yields for a trace ¢ and input
t € In(t) the set of outputs for which A is enabled after ¢; in Fig. 2b for exam-
ple, Out([(“a”,1)],“a”) this is just {1, 2}.

Equipped with these notions, it is possible to formalize the intended con-
formance relation between a system specification (given as automaton SPEC
labelled with input-output pairs) and a SUT. The following notions are known
in the literature:

— inclusion conformance [6]: all traces in SPEC must be possible in SUT,



Testing the IPC Protocol for a Real-Time Operating System 5

— deadlock conformance [8]: for all traces t € Traces(SPEC) and b ¢ In(t), b
must be refused by SUT, and

— input/output conformance (I0CO) [21]: for all traces ¢ € Traces(SPEC) and
all ¢ € In(t), the observed output of SUT must be in Out(t,¢).

2.3 Using Monadic Testing Theory

The obvious way to model the state transition relation of an automaton A is by
a relation of the type (o x (v X 0) x o) set; isomorphically, one can also model it
via:

L= (0= (0% 0)set)
or for a case of a deterministic transition function:

t = (0 = (0 x o) option)

In a theoretic framework based on classical higher-order logic (HOL), the dis-
tinction between “deterministic” and “non-deterministic” is actually much more
subtle than one might think: since the transition function can be underspecified
via the Hilbert-choice operator, a transition function can be represented by

step v 0 = {(0,0")| post(c,0,0")}
or:
step v 0 = Some(SOME(o, 0"). post(a,0,0"))

for some post-condition post. While in the former “truly non-deterministic” case
step can and will at run-time choose different results, the latter “underspecified
deterministic” version will decide in a given model (so to speak: the implemen-
tation) always the same way: a choice that is, however, unknown at specification
level and only declaratively described via post. For the system in this paper and
our prior work on a processor model [5], it was possible to opt for an underspec-
ified deterministic stepping function.

We abbreviate functions of type ¢ = (0 x g)set or ¢ = (0o x o) option
MONggg(0,0) or MONgg/(o,0), respectively; thus, the aforementioned state
transition functions of io-automata can be typed by ¢ — MONspg(o,0) for
the general and ¢ — MONgg(0,0) for the deterministic setting. If these func-
tion spaces were extended by the two operations bind and unit satisfying three
algebraic properties, they form the algebraic structure of a monad that is well
known to functional programmers as well as category theorists. Popularized by
[22], monads became a kind of standard means to incorporate stateful compu-
tations into a purely functional world.

Since we have an underspecified deterministic stepping function in our system
model, we will concentrate on the latter monad which is called the state-exception
monad in the literature.

The operations bind (representing sequential composition with value passing)
and unit (representing the embedding of a value into a computation) are defined
for the special-case of the state-exception monad as follows:



6 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

definition bindgg :: "(’0,’0)MONsgg = (0o =(’0?,?0)MONgg) =(’0?,’0)MONg"
where "bindsg £ g = (\o. case f ogof None =-None
| Some (out, ¢’) =g out o’)"

definition unitsg :: "’0 =(’0, 0)MONgz" ("(return _)" 8)
where "unitsg e = (\o. Some(e,o))"

We will write < mq; mo for the sequential composition of two (monad)
computations m; and mso expressed by bindgg mi(\2z.m2). Moreover, we will
write “return” for unitgg.

This definition of bindgg and unitgg satisfy the required monad laws:

bind_left_unit: (x < return c; P x) =P ¢
bind_right_unit: (x <-m; return x) = m
bind_assoc: (y < (x ¢m; kx); hy) = (x «m; (y <k x; h y))

On this basis, the concept of a walid monad execution, written o | m,
can be expressed: an execution of a Boolean (monad) computation m of type
(bool, o) MONgg is valid iff its execution is performed from the initial state o,
no exception occurs and the result of the computation is true. More formally,
o = m holds iff (m o # None A fst(the(m o))), where fst and snd are the usual
first and second projection into a Cartesian product and the the projection in
the Some-variant of the option type.

We define a wvalid test-sequence as a valid monad execution of a particular
format: it consists of a series of monad computations m; ...m, applied to inputs
L1 ...tn and a post-condition P wrapped in a return depending on observed
output. It is formally defined as follows:

o E 01 my t1;...50n & My ty;return(P og -+ 0y)

The notion of a valid test-sequence has two facets: On the one hand, it is
executable, i.e., a program, iff mq,...,m,, P are. Thus, a code-generator can
map a valid test-sequence statement to code, where the m; where mapped to
operations of the SUT interface. On the other hand, valid test-sequences can be
treated by a particular simple family of symbolic executions calculi, characterized
by the schema (for all monadic operations m of a system, which can be seen as
the its step-functions):

(c EreturnP) =P (1a)

Cnto m o= None

(0 = ((s < m;m’ s))) = False

(1b)

Cmto  muo=Some(b o)

(cEs+mum s)= (o' Em'b)

(1c)

This kind of rules is usually specialized for concrete operations m; if they contain
pre-conditions C), (constraints on ¢ and state), this calculus will just accumulate



Testing the IPC Protocol for a Real-Time Operating System 7

those and construct a constraint system to be treated by constraint solvers used
to generate concrete input data in a test.

An Example: MyKeOS. To present the effect of the symbolic rules during
symbolic execution, we present a toy OS-model (our functional PikeOS includ-
ing our symbolic execution process, theories on interleaving, memory and test
scenarios has a length of more than 12000 lines of Isabelle/HOL code; a com-
plete presentation is therefore out of reach). MyKeOS provides only three atomic
actions for allocation and release of a resource (for example a descriptor of a com-
munication channel or a file-descriptor). A status operation returns the number
of allocated resources. All operations are assigned to a thread (designated by
thread_id) belonging to a task (designated by task_id, a Unix/POSIX-like
process); each thread has a thread-local counter in which it stores the number
(the status) of the allocated resources. The input is modeled by the data-type:

datatype in_c = alloc task_id thread_id nat
| release task_id thread_id nat
| status task_id thread_id

datatype out_c = alloc_ok | release_ok | status_ok nat

where out_c captures the return-values. Since alloc and release do not have a
return value, they signalize just the successful termination of their corresponding
system steps. The global table var_tab (corresponding to our symbolic state o) of
thread-local variables is modeled as partial map assigning to each active thread
(characterized by the pair of task and thread id) the current status:

type_synonym thread_local_var_tab = " (task_id xthread_id) —int"

The operation have the precondition that the pair of task and thread id is actu-
ally defined and, moreover, that resources can only be released that have been
allocated; the initial status of each defined thread is set to 0.

Depicted as an extended finite state-machine (EFSM), the operations of our
system model SPEC are specified as shown in Fig. 3. A transcription of an EFSM

event : release(tid,thid,m) event : alloc(tid,thid,m)

guard : (tid,thid)=dom(var_tab), guard : (tid,thid)Sdom(var_tab)
A var_tab[tid,thid]>m send : alloc_ok!

send : release_ok! action : var_tabl[tid,thid]+=m

action : var_tabltid,thid]-=m var_tab

event : status(tid,thid)
guard : (tid,thid)=dom(var_tab)
send : status(n)!

action : n=var_tab[tid,thid]

Fig. 3. SPEC: An Extended Finite State Machine for MyKeOS.

to HOL is straight-forward and omitted here. However, we show a concrete sym-



8 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

bolic execution rule derived from the definitions of the SPEC system transition
function, e. g., the instance for Equation 1c:

(tid, thid) € dom(o) SPEC (alloc tid thid m) o = Some(alloc_ok,c")
(0 = s+ SPEC (alloc tid thid m);m’ s) = (¢' = m’ alloc_ok)

where o = var _tab and o’ = o((tid, thid) := (o (tid, thid) + m)). Thus, this rule
allows for computing o, ¢’ in terms of the free variables var tab, tid, thid and m.
The rules for release and status are similar. For this rule, SPEC (alloc tid thid m)
is the concrete stepping function for the input event alloc tid thid m, and the
corresponding constraint Cspgc of this transition is (tid, thid) € dom(o).

Conformance Relations Revisited. We state a family of test conformance
relations that link the specification and abstract test drivers. The trick is done
by a coupling variable res that transport the result of the symbolic execution of
the specification SPEC to the attended result of the SUT.

o |01 < SPEC ¢1;...;0, < SPEC ¢,;return(res = [01 - - - 0,,])
—
o001+ SUT u15...;0, < SUT 1,;return(res = [o1 -« - 0,])

Successive applications of symbolic execution rules allow to reduce the premise
of this implication to Csprc t1 01 — ... —> CSPEC tn On — T€S = [a1 - Gy
(where the a; are concrete terms instantiating the bound output variables o;),
i.e., the constrained equation res = [aj - - - a,,]. The latter is substituted into the
conclusion of the implication. In our previous example, case-splitting over input-
variables 11, t5 and t3 yields (among other instances) ¢y = alloc t1 thy m, 1o =
release ty the n and 13 = status t3 ths, which allows us to derive automatically
the constraint:

(tl, thl) € dom(a) — (tQ, thg) S dOHl(U/) An < O'/(tg, thg) —
(t3, ths) € dom(c”) — res = [alloc_ ok, release ok, status ok(a”(ts, ths)]

where 0/ = o((t1,thy) := (o(t1,th1)+m))) and 0" = o’/ ((t2, the) := (o (ta, the) —
n).

In general, the constraint Csprc, ¢; 0; can be seen as an symbolic abstract
test execution; instances of it (produced by a constraint solver such as Z3 inte-
grated into Isabelle) will provide concrete input data for the valid test-sequence
statement over SUT, which can therefore be compiled to test driver code. In our
example here, the witness t; = to = t3 = 0, thy = the = thg =5, m = 4 and
n = 2 satisfies the constraint and would produce (predict) the output sequence
res = [alloc_ ok, release ok, status ok 2| for SUT according to SUT. Thus, a
resulting (abstract) test-driver is:

o o1 < SUT ¢1;...;03 < SUT 3
return([alloc_ ok, release ok, status ok 2] = [0y -+ 03])



Testing the IPC Protocol for a Real-Time Operating System 9

This schema of a test-driver synthesis can be refined and optimized. First,
for iterations of stepping functions an 'mbind’ operator can be defined, which
is basically a fold over bindgg. It takes a list of inputs ts = [i1,...,i,], feeds
it subsequently into SPEC and stops when an error occurs. Using mbind, valid
test sequences for a stepping-function (be it from the specification SPEC or the
SUT) evaluating an input sequence ts and satisfying a post-condition P can be
reformulated to:

o = 0s + mbind (s SPEC; return(P o0s)

Second, we can now formally define the concept of a test-conformance notion:

(SPEC C (1nit,CovCrit,consy SUT) =
(Voo € Init. Vi s € CovCrit. Vres.
00 |= 0s <~ mbind vs SPEC; return(conf ts os res)
—
oo |E (08 « mbind ts SUT; return(conf ts os res)))

For example, if we instantiate the conformance predicate conf by:
conf s os res = (length(ts) = length(os) A res = os)

we have a precise characterization of inclusion conformance introduced in the
previous section: We constrain the tests to those test sequences where no ex-
ception occurs in the symbolic execution of the model. Symbolic execution fixes
possible output-sequence (which must be as long as the input sequence since no
exception occurs) in possible symbolic runs with possible inputs, which must be
exactly observed in the run of the SUT in the resulting abstract test-driver.

Using pre-and postcondition predicates, it is straight-forward to characterize
deadlock conformance or IOCO mentioned earlier (recall that our framework
assumes synchronous communication between tester and SUT; so this holds only
for a IOCO-version without quiescence). Further, we can characterize a set of
initial states or express constraints on the set of input-sequences by the coverage
criteria CovCrit, which we will discuss in the sequel.

2.4 Coverage Criteria for Interleaving

In the following, we consider input sequences ts which were built as interleaving
of one or more inputs for different processes; for the sake of simplicity, we will
assume that it is always possible to extract from an input event the thread and
task id it belongs to. It is possible to represent this interleaving, for example, by
the following definition:

fun interleave :: "’a list =’a list =’a list set"
where "interleave [] [1 = {[1}"
|"interleave A [1 = {A}"



10 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

|"interleave [] B = {B}"

|"interleave (a # A) (b # B) =
(\x. a # x) ‘interleave A (b # B) U
(A\x. b # x) ‘interleave (a # A) B"

and by requiring for the input sequence s to belong to the set of interleavings
of two processes P1 and P2: ts €interleave P1 P2.

It is well known that the combinatorial explosion of the interleaving space
represents fundamental problem of concurrent program verification. Testing, un-
derstood as the art of creating finite, well-chosen subspaces for large input-output
spaces, offers solutions based on adapted coverage criteria [17] of these spaces,
which refers to particular instances of CovCrit in the previous section. A well-
defined coverage criterion [1, 23] can reduce a large set of interleavings to a
smaller and manageable one. For example, consider the executions of the two
threads in MyKeOS: T = [alloc 3 1 2, release 3 1 1, status 3 1] and T’ =
[alloc 2 5 3, release 3 1 1, status 2 5]. Since our simplistic MyKeOS has
no shared memory, we simulate the effect by allowing T’ to execute a release-
action on the local memory of task 3, thread 1 by using its identity. In general,
we are interested in all possible values of a shared program variable x at posi-
tion [ after the execution of a process P. To this end we will define two sets of
interleavings under two different known criteria.

— Criterionl: standard interleaving (SIN) the interleaving space of actions
sequences gets a complete coverage iff all feasible interleavings of the actions
of P are covered.

— Criterion2: state variable interleaving (SVI) the interleaving space of
actions sequences gets a complete coverage iff all possible states of x at | in
P are covered.

The number of interleavings increases exponentially with the length of traces
(for bounds of the combinatorial explosion, see [17]). Under SIN we derive 10
possible actions sequences, which is reduced under SVI to 3 sequences (where
one leads to a crash; recall our assumption that the memory is initially 0). Unlike
to SIN, SVI has provided a smaller interleaving set that cover all possible states.
If we consider var_tab[3,1] for x when executing status 3 1, the possible results
may be undefined, O or 1. While SIN has provided a bigger set, that cover all
possible 3 states of x with redundant sequences representing the same value. In
model-checking, this reduction technique is also known as partial order reduction.
It is now part of the beauty of our combined test and proof approach, that we
can actually formally prove that the test-sets resulting from the test-refinements:

SPEC E(Init,SIN,conf) SUT and SPEC E(Init,SVN,conf) SUT
are equivalent for a given SPEC. The core of such an equivalence proof is, of
course, a proof of commutativity of certain step executions, so properties of the

form:

0+ SPEC ;0" + SPEC 1j; M 00’ = o' < SPEC (;;0 <+ SPEC (;;M 00,



Testing the IPC Protocol for a Real-Time Operating System 11

Virtual Machines (Partitions) | |

I PSSW VMIT Input
System |

[ communication A1 | [ Eventapt [ 1rc APl ][ MEM API | PikeOs kemel

| Hardware I

Fig. 4. PikeOS architecture.

which are typically resulting from the fact that these executions depend on
disjoint parts of the state. In MyKeOS, for example, such a property can be
proven automatically for all ¢; = release t th and ¢; = release t' th' with t #
t'Vth # th'; such reordering theorems justify a partial order on inputs to reduce
the test-space. We are implicitly applying the testability hypothesis that SUT
is input-output deterministic; if a input-output sequence is possible in SPEC,
the assumed input-output determinism gives us that repeating the test by an
equivalent one will produce the same result.

3 Application: Testing PikeOS

In the following, we will outline the PikeOS model (the full-blown model de-
veloped as part of the EUROMILS project is about 20kLOC of Isabelle/HOL
code), and demonstrate how the this model is embedded into our monadic testing
theory.

3.1 PikeOS System Architecture

PikeOS is an operating system that supervises and ensures the execution and
separation between software applications running on the top of various hardware
platforms [19]. It stands in the tradition of so-called separation kernels and fol-
lows ideas of the influential L4 kernel project [12]. The PikeOS architecture com-
prises four layers (see Fig. 4). The wvirtual machine initialization table (VMIT)
is a data-base containing the global configuration of the system and its appli-
cation structure. In the VMIT, partitions (virtual machines), tasks (POSIX-like
processes), their threads, their memory-, processor-, and time resources, commu-
nication channels as well as access-control rights on these resources were defined.
Only at boot-time, partitions, processes and threads can be created via PikeOS
System Software (PSSW); at run-time the application structure and its time-
scheduling is fixed: PikeOS has no dynamic process creation. In other words:
based on the VMIT configuration, the PikeOS system software (PSSW) will
generate a set of virtual machines in the Partitions layer during the boot-phase.
In this layer each resource partition is composed from a set of applications, and
can be executed under the predefined policy and use the predefined resources of



12 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

the VMIT. Applications in the resource partitions can also be used for system
calls of PikeOS kernel. In kernel layer, the set of resource partitions is seen as
a set of PikeOS tasks, that contain PikeOS threads and shares kernel resources
(memory, files, processors, communication channels ... ).

The kernel provides a set of APIs used by the threads and tasks. As in
Unix-like systems, special hardware—the MMU—gives application-level tasks
the illusion to live in an own separate memory space: the virtual memory. How-
ever, all threads belonging to a task live in the same memory space, namely the
memory space of the task they belong to. In contrast, system-level tasks can also
access the physical memory and the MMU. Besides memory separation, PikeOS
also offers time-separation and multi-core support.

Our work focuses on a particular part of the kernel layer providing inter-
process communication (IPC), the PikeOS IPC APL

3.2 PikeOS IPC API

The IPC mechanism [19, 20] is the primary means of thread communication in
PikeOS. Historically, its efficient implementation in L4 played a major role in the
micro-kernel renaissance after the early 1990s. Microkernels had received a bad
reputation, as systems built on top were performing poorly, culminating in the
billion-dollar failure of the IBM Workplace OS. A combination of shared memory
techniques—the MMU is configured such that parts of virtual memory space are
actually represented by identical parts of the physical memory—and a radical
redesign of the IPC primitives in L4 resulted in an order-of-magnitude decrease
in IPC cost. Also in PikeOS, IPC message transfer can operate between threads
which may belong to different tasks. However, the kernel controls the scope of
IPC by determining, in each instance, whether the two threads are permitted to
communicate with each other. IPC transfer is based on shared memory, which
requires an agreement between the sender and receiver of an IPC message. If
either the sending or the receiving thread is not ready for message transfer, then
the other partner must wait. Both threads can specify a timeout for the maxi-
mum time they are prepared to wait and have appropriate access-control rights.
Our IPC model includes eight atomic actions, corresponding more-or-less to code
sections in the API system calls p4_ipc_buf_send() and p4_ipc_buf_recv()
protected by a global system lock. If errors in these actions occur—for exam-
ple for lacking access-rights—the system call is aborted, which means that all
atomic actions belonging to the running system call as well as the call of the
communication partner were skipped and execution after the system calls on
both sides is continuing as normal. It is the responsibility of the application to
act appropriately on error-codes reported as a result of a call.

3.3 PikeOS Model Organization

We model the protocol as composition of several operational semantics; this
composition is represented by monad-transformers adding, for example, to the
basic transition semantics the semantics for abort behavior. The execution of



Testing the IPC Protocol for a Real-Time Operating System 13

IPC system calls is supervised by a protocol containing a number of stages
corresponding to atomic actions.

3.4 Embedding the PikeOS Functional Model into the Monadic
Framework

System State. In our model, the system state is an abstraction of the VMIT
(which is immutable) and mutable task specific resources. It is presented by the
(polymorphic) record type:

record (’memory, ’thread_id, ’thread, ’sp_th_th, ’sp_th_res, errors)kstate=

resource 11 ’memory
current_thread :: thread_id
thread_list :: "2thread list"
communication_rights :: ’sp_th_th
access_rights :: ’sp_th_res
error_codes :: ’errors

errors_tab :: ’thread_id — ’errors

Note that the syntax is very close to functional programming languages such as
SML or OCaml or F+#. The parameterization is motivated by the need of having
different abstraction layers throughout the entire theory; thus, for example, the
resource field will be instantiated at different places by abstract shared memory,
physical memory, physical memory and devices, etc.—from the viewpoint of an
operating system, devices are just another implementation of memory. In the
entire theory, these different instantiations of kstate were linked by abstraction
relations establishing formal refinements. Similarly, the field current thread will
be instantiated by the model of the ID of the thread in the execution context and
more refined versions thereof. thread_list represents information on threads and
there executions. The communication _rights field represent the communication
policy defined between the active entities (i.e., threads and tasks). The field
access_rights represent the access policy defined between active entities and
passive entities (i. e., system resources).

For the purpose of test-case generation, we favor instances of kstate which are
as abstract as possible and for which we derived suitable rules for fast symbolic
execution.

Shared Memory Model. Shared memory is the key for the L4-like IPC im-
plementations: while the MMU is usually configured to provide a separation of
memory spaces for different tasks (a separation that does not exist on the level
of physical memory with its physical memory pages, page tables, ...), there is
an important exception: physical pages may be attributed to two different tasks
allowing to transfer memory content directly from one task to another.

We will use an abstract model for memory with a sharing relation between
addresses. The sharing relation is used to model the IPC map operation, which
establishes that memory spaces of different tasks were actually shared, such
that writes in one memory space were directly accessed in the other. Under the
sharing relation, our memory operations respect two properties:



14 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

1. Read memory on shared addresses returns the same value.
2. All shared addresses has the same value after writing.

We will present just the key properties of our shared memory model, where
write is denoted by _ :=$ _ and read by _ $ _:

typedef (a, () memory = "..."
x shares(o) x x shares(o) y =y shares(o) x

x shares(o) y =y €Domain 0 = o0 (x :=$ (¢ $ y)) =0
X €Domain ¢ = o0 $x =2z = o0 x:=$2) =0

z shares(o) x =— o (x :=$ a) $ z = a

—(z shares(o) x) — o (x :=$ a) $ z=0$ z

x shares(o) x? = o (x :=$ y)(x’ :=$ 2) = (6c(x’ :=$ 2))

or, in other words, a memory theory where addresses were considered modulo
sharing.

Atomic Actions. As mentioned earlier, the execution of the system call can be
interrupted or aborted at the border-line of code-segments protected by a lock.
To avoid the complex representation of interruption points, we model the effect
of these lock-protected code-segments as atomic actions. Thus, we will split any
system call into a sequence of atomic actions (the problem of addressing these
code-segments and influencing their execution order in a test is addressed in the
next section). Atomic actions are specified by datatype as follows:

datatype (’ipc_stage,’ipc_dir)actionipc = IPC ’ipc_stage ’ipc_dir
datatype p4_stageipc = PREP | WAIT | BUF | MAP | DONE

datatype (’thread_id ,’adresses) p4_directip. =
SEND "’thread_id" "’thread_id" "’adresses"
| RECV "’thread_id" "’thread_id" "’adresses"

type_synonym
ACTIONip. = (p4_stageipc, (natxnatxnat,nat list)p4_directipc)action;pc

Where ACTION;,. is type abbreviation for IPC actions instantiated by p4_directipc.
The type ACTION;,. models exactly the input events of our monadic testing frame-
work. Thread IDs are triples of natural numbers that specify the resource parti-
tion the thread belongs to as well as the task and the individual id. The stepping
function as a whole is too complex to be presented here; we refrain on the presen-
tation of a portion of an auxilliary function of it that models just the PREP_SEND
stage of the IPC protocol; it must check if the task and thread id of the commu-
nication partner is allowed in the VMIT) if the memory is shared to this partner,
if the sending thread has in fact writing permission to the shared memory, etc.
The VMIT is part of the resource, so the memory configuration, and auxiliary
functions like is_part_mem_th allow for extracting the relevant information from
it. The semantic of the different stages is described using a total functions:



Testing the IPC Protocol for a Real-Time Operating System 15

definition PREP_SEND ::"ACTION;,. statejq= ACTION;,c =ACTION;,. stateiq"
where "PREP_SEND o act =
(case act of (IPC PREP (SEND caller partner msg)) =

if is_part_mem_th (get_thread_by_id’’ partner o) (resource o)

then
if IPC_params_cl (get_thread_by_id’’ partner o)
then ...)

Where PREP_SEND, WAIT_SEND, BUF_SEND, and DONE_SEND define an operational se-
mantic for the stages of the PikeOS IPC protocol.

Traces, Executions and Input Sequences. During our experiments, we
will generate input sequences rather than traces. An input sequence is a list
of a datatype capturing atomic action input syntactically. An execution is the
application of a transition function over a given input sequence. Using mbind,
the execution over a given input sequence is can be immediately constructed.

definition execution = ()\is ioprog o. mbind is ioprog o)

IPC Execution Function. The execution semantic of the IPC protocol is
expressed using a total function:

fun exec_action ::"ACTIONi,. statejg= ACTIONjpc =>ACTION;,. stateiq"
where
PREP_SEND_run:"exec_action o(IPC PREP (SEND caller partner msg)) =
PREP_SEND ¢ (IPC PREP (SEND caller partner msg))"|
C...)

The function is adapted to the monads using the following definition:

definition exec_action_Mon
where "exec_action_Mon = ()act o. Some (error_codes(exec_action cact),
exec_action cgact))"

System calls. As mentioned earlier, PikeOS system calls are seen as sequence
of atomic actions that respect a given ordering. Actually, each system call can
perform a set of operations. PikeOS TPC API provides seven different calls, the
most general one is the call P4 ipc(). Using P4 ipc(), five operations can be
performed:

1. Send a copied message,

2. Receive a copied message,

3. Receive an event (not modeled),

4. Send a mapped message (not used in this paper), and

5. Receive a mapped message (not used in this paper).

The corresponding Isabelle model for the call is:



16 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

datatype (’thread_id, ’msg) P4_IPC_call =
P4_IPC_call ’thread_id ’thread_id ’msg

| P4_IPC_BUF_call ’thread_id ’thread_id ‘msg

| P4_IPC_MAP_call ’thread_id ’thread_id ‘msg
C...)

Communication coverage criterion. An IPC call defines a communication
relation between two threads. In PikeOS, IPC communications can be symmet-
ric, transitive but can not be reflexive (a thread can not send or receive an IPC
message for himself). The transitivity or intransitivity of IPC communications
depends mainly on the defined communication rights table and access rights ta-
ble. In this section, we will define a set of Isabelle rules to derive input sequences
for ipc calls. The derived input sequences express IPC communications between
threads. Other rules, which are almost the same as the ones used for deriving
input sequences, will be defined to derive the possible communications between
threads after the execution of an IPC call. While IPC input sequences will be
used in scenarios for testing information flow policy via IPC error codes, IPC
communications let us to address scenarios on access control policy implemented
via the two tables cited before.

To this end we define a new coverage criterion, i.e., the set of interleavings
that satisfy all these constrains. The definition of the criterion is based on the
functional model of PikeOS IPC (see Sec. 3.2) and our technique to reduce the
set of interleaving if two actions can commute (see Sec. 2.4).

— Criterion3: IPC communications (IPC..,,.) the interleaving space of
input sequences gets a complete coverage iff all IPC communications of a
giwven SUT are covered.

IPC communications are input sequences. An example of a communication de-
rived under IPC,,,,, is:

[IPC PREP (SEND th_id th_id’ msg), IPC PREP (RECV th_id’ th_id msg),
IPC WAIT (SEND th_id th_id’ msg), IPC WAIT (RECV th_id’ th_id msg),
IPC BUF (RECV th_id’ th_id msg), IPC DONE (RECV th_id’ th_id msg),
IPC DONE (SEND th_id th_id’ msg)]"

4 Test Generation

Test scenarios. A test scenario is represented by a test specification and can
have two main schemes: unit test or sequence test. An example of a test scenario
is the the specification TS_simple_example2:

test_spec TS_simple_example2:

is €IPC_communication —

01 E(outs < mbind is(abortiify exec_action_Mon);return(outs = x)
—01 = (outs <mbind is SUT; return(outs = x))

For a o1 definition that contains a suitable VMIT configuration, a possible is
is, e. g.:



Testing the IPC Protocol for a Real-Time Operating System 17

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8]1)]

The sequence is an abstraction of an IPC communication between the thread
with the ID = (0,0,1) and the thread with ID = (0,0,2) via a message
msg = [0,4, 5, 8]. Natural numbers inside the message are abstractions on mem-
ory addresses. The execution semantic of the input sequence is represented by
our execution function exec action Mon. We wrap around our execution func-
tion a monad transformer aborty; s, that express the behavior of an abort. The
equality specify our conformance relation between SUT outputs and the model
outputs. After using our symbolic execution process the out of this test case is:

[NO_ERRORS,

NO_ERRORS,

ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_ WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV]

The error-codes observed in the sequence is related to IPC. The error-codes was
returned in the stage WAIT RECYV. The interpretation of this error-codes is
that the thread has not the rights to communicate with his partner. We can ob-
serve the behavior of our abort operator in this sequence of error-codes; All stages
following WAIT_RECV are purged (not executed), and the same error is returned
instead. We focus on error-codes in our scenarios, since error-codes represent a
potential for undesired information flow: for example, un-masked error-messages
may reveal the structure of tasks and threads of a foreign partition in the system;
a revelation that the operating system as separation kernel should prevent.

Generating Test Drivers. In this section we address the problem to compile
"abstract test-drivers" as described in the previous sections into concrete code
and code instrumentations that actually execute these tests.

HOL-TestGen can generate test scripts (recall Fig. 1) in SML, Haskell, Scala
and F+#. For our application, we generate SML test scripts and use MLton
(www.mlton.org) for building the test executable: MLton 1. provides a foreign
function interface to C and 2. is easily portable to small POSIX system.

In more detail, we generate two SML structures automatically from the Is-
abelle theories. The first structure, called Datatypes, contains the datatypes
that are used by the interface of the SUT. In our example, this includes, e.g.,
IPC_protocol and P4_IPC_call. The second structure, called TestScript, con-
tains a list of all generated test cases as well the test oracle, i.e., the algorithms
necessary to decide if a test result complies to the specification or not.


www.mlton.org

18 A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

In addition, for testing C code, we need to provide a small SML structure (ca.
20 lines of code), called Adapter, that serves two purposes: 1. the configuration of
the foreign function, e. g., the mapping from SML datatypes to C datatypes and
2. the concretization of abstractions to bridge the gap between an abstract test
model and the concrete SUT. The Adapter structure only needs to be updated
after significant changes to either the system specification or the system under
test.

For testing concurrent, i. e., multi-threaded, programs we need to solve a par-
ticular challenge: enforcing certain thread execution orders (a certain scheduling)
during test execution. There are, in principle, three different options available
to control the scheduler during test execution: 1. instrumenting the SUT to
make the thread switching deterministic and controllable, 2. using a determin-
istic scheduler that can be controlled by test driver, or 3. using the features of
debuggers, such as the GNU debugger (gdb), for multi-threaded programs.

In our prototype for POSIX compliant systems, we have chosen the third
option: we execute the SUT within a gdb session and we use the gdb to switch
between the different threads in a controlled way. We rely on two features of gdb
(thus, out approach can be applied to any other debugger with similar features),
namely: 1. the possibility to attach to break points in the object code scripting
code that is executed if a break point is reached and 2. the complete control
of the threading, i.e., gdb allows to switch explicitly between threads while
ensuring that only the currently active thread is executed (using the option
set scheduler-locking on).

This approach has the advantage that we neither need to modify the SUT
nor do we need to develop a custom scheduler. We only need to generate a
configuration for controlling the debugger. The necessary gdb command file is
generated automatically by HOL-Testgen based on a mapping of the abstract
thread switching points to break points in the object code. The break points at
the entry points allows us to control the thread creation, while the remaining
break points allow us to control the switching between threads. Thus, we only
need the SUT compiled in debugging mode and this mapping. In this sense, we
still have a “black-box” testing approach.

Moreover, Using gdb together with taskset, we ensure that all threads are
executed on the same core; in our application, we can accept that the actual
execution in gdb changes the timing behavior. Moreover, we assume a sequential
memory model, so our approach does not cover TLB-related race conditions
occurring in multi-core CPU’s.

5 Conclusion

Related Work. There is a wealth of approaches for tests of behavioral mod-
els; they differ in the underlying modeling technique, the testability and test
hypothesis’, the test conformance relation etc.; in Sec. 2 we mention a few. Un-
fortunately, many works make the underlying testability hypothesis’ not explicit
which makes a direct comparison difficult and somewhat vague. For the space



Testing the IPC Protocol for a Real-Time Operating System 19

of testability assumptions used here (the system is input-output determinis-
tic, is adequately modeled as underspecified deterministic system, synchronous
coupling between tester and SUT suffices), to the best of our knowledge, our
approach is unique in its integrated process from theory, modeling, symbolic
execution down to test-driver generation.

With respect to the test-driver approach, this work undeniably owes a lot
Microsoft’s CHESS project [15], which promoted the idea to actually control the
scheduler of real systems and use partial-order reduction techniques to test sys-
tematically concurrent executions for races in applications of realistic size (e.g.,
IE, Firefox, Apache). For our approach, controlling the scheduler is the key to
justify the presentation of the system as underspecified-deterministic transition
function.

Conclusion and Future Work. We see several conceptual and practical ad-
vantages of a monadic approach to sequence testing:

1. a monadic approach resists the tendency to surrender to finitism and con-
structivism at the first-best opportunity; a tendency that is understandably
wide-spread in model-checking communities,

2. it provides a sensible shift from syntax to semantics: instead of a first-order,
intentional view in nodes and events in automata, the heart of the calculus
is on computations and their compositions,

3. the monadic theory models explicitly the difference between input and out-
put, between data under control of the tester and results under control of
the SUT,

4. the theory lends itself for a theoretical and practical framework of numerous
conformance notions, even non-standard ones, and which gives

5. ways to new calculi of symbolic evaluation enabling symbolic states (via
invariants) and input events (via constraints) as well as a seamless, theoret-
ically founded transition from system models to test-drivers.

We see several directions for future work: On the model level, the formal the-
ory of sequence testing (as given in the HOL-TestGen library theories Monad. thy
and TestRefinements.thy) providing connections between monads, rules for
test-driver optimization, different test refinements, etc., is worth further de-
velopment. On a test-theoretical level, our approach provides the basis for a
comparison on test-methods, in particular ones based on different testability
hypothesis’.

Pragmatically, our test driver setup needs to be modified to be executable on
the PikeOS system level. For this end, we will need to develop a host-target setup
(see Sec. 4). Finally, we are interested in extending our techniques to actually
test information flow properties; since error-codes in applications may reveal
internal information of partitions (as, for example, the number of its tasks and
threads), this seems to be a rewarding target. For this purpose, not only action
sequences need to be generated during the constraint solving process, but also
(abstract) VMITs.



20

A.D. Brucker, O.Havle,Y. Nemouchi, B. Wolff

Acknowledgement. This work was partially supported by the Euro-MILS
project funded by the European Union’s Programme [FP7/2007-2013] under
grant agreement number ICT-318353.

References

[1] P. Ammann, J. Offutt, and W. Xu. Formal methods and testing. Springer, 2008.

[2] A. D. Brucker and B. Wolff. Test-sequence generation with HOL-TestGen with
an application to firewall testing. In Tests and Proofs, LNCS 4454, p. 149-168,
Springer, 2007.

[3] A. D. Brucker and B. Wolff. HOL-TestGen: An interactive test-case generation
framework. In FASE , LNCS 5503, p. 417-420. Springer, 2009.

[4] A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of
Computing, 2012.

[5] A. D. Brucker, A. Feliachi, Y. Nemouchi, and B. Wolff. Test program generation
for a microprocessor. In TAP, LNCS 7942, p. 76-95, 2013.

[6] H. P. de Leon, S. Haar, and D. Longuet. Conformance relations for labeled event
structures. In TAP, LNCS 7305, p. 83-98, Springer 2012.

[7] Euro-Mils. http://www.euromils.eu/

[8] A. Feliachi, M. Gaudel, M. Wenzel, and B. Wolff. The circus testing theory revis-
ited in Isabelle/HOL. In ICFEM, LNCS 8144, p. 131-147, Springer 2013.

[9] A. Gill. Introduction to the theory of finite-state machines. McGraw-Hill, 1962.

[10] H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and J. Wolter. The performance
of microkernel-based systems. In SOSP, 1997.

[11] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. sel4: Formal verification of an OS kernel. In SOSP, p. 207-220. 2009.

[12] Liedtke. on p-kernel construction. SOSP, 29(5):237-250, 1995.

[13] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219-246, 1989.

[14] Common criteria for information technology security evaluation. http://www.
commoncriteriaportal.org/.

[15] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A systematic testing tool for con-
current software. Technical Report MSR-TR-2007-149, Microsoft Research, 2007.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, LNCS 2283. Springer, 2002.

[17] W. J. Shan Lu and Y. Zhou. A study of interleaving coverage criteria. ESEC-FSE
companion, p. 533-536, 2007.

[18] SYSGO. Pikeos. http://www.sysgo.com/products/
pikeos-rtos-and-virtualization-concept/.

[19] SYSGO. PikeOS Fundamentals. SYSGO, 2013.

[20] SYSGO. PikeOS Kernel. SYSGO, 2013.

[21] J. Tretmans. Model based testing with labelled transition systems. LNCS 4949,
p. 1-38, 2008.

[22] P. Wadler. Comprehending monads. Mathematical Structures in Computer Sci-
ence, 2(4):461-493, 1992.

[23] H.Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy.

ACM Computing Surveys (CSUR), 29(4):366-427, 1997.


http://www.euromils.eu/
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

	Testing the IPC Protocol for a Real-Time Operating System 
	1 Introduction
	2 Theoretical and Technical Foundations
	2.1 HOL-TestGen: From Formal Specifications to Testing
	2.2 A Gentle Introduction to Sequence Testing Theory
	2.3 Using Monadic Testing Theory
	2.4 Coverage Criteria for Interleaving

	3 Application: Testing PikeOS
	3.1 PikeOS System Architecture
	3.2 PikeOS IPC API
	3.3 PikeOS Model Organization
	3.4 Embedding the PikeOS Functional Model into the Monadic Framework

	4 Test Generation
	5 Conclusion




@InCollection{	  brucker.ea:ipc-testing:2015,
  abstract	= {In this paper, we adapt model-based testing techniques to
		  concurrent code, namely for test generations of an
		  (industrial) OS kernel called PikeOS\@. Since our
		  data-models are complex, the problem is out of reach of
		  conventional model-checking techniques. Our solution is
		  based on symbolic execution implemented inside the
		  interactive theorem proving environment Isabelle/HOL
		  extended by a plugin with test generation facilities called
		  HOL-TestGen.
		  
		  As a foundation for our symbolic computing techniques, we
		  refine the theory of monads to embed interleaving
		  executions with abort, synchronization, and shared memory
		  to a general but still optimized behavioral test framework.
		  
		  This framework is instantiated by a model of PikeOS
		  inter-process communication system-calls. Inheriting a
		  micro-architecture going back to the L4 kernel, the system
		  calls of the IPC-API are internally structured by atomic
		  actions; according to a security model, these actions can
		  fail and must produce error-codes. Thus, our tests reveal
		  errors in the enforcement of the security model.},
  keywords	= {test program generation, symbolic test case generations,
		  black box testing, testing operating systems,
		  certification, CC, concurrency, interleaving},
  location	= {San Francisco, California, USA},
  author	= {Achim D. Brucker and Oto Havle and Yakoub Nemouchi and
		  Burkhart Wolff},
  title		= {Testing the IPC Protocol for a Real-Time Operating
		  System},
  booktitle	= {Working Conference on Verified Software: Theories, Tools,
		  and Experiments},
  language	= {USenglish},
  publisher	= {Springer-Verlag},
  address	= {Heidelberg},
  series	= {Lecture Notes in Computer Science},
  isbn		= {3-540-14031-X},
  editor	= {Arie Gurfinkel and Sanjit A. Seshia},
  pdf		= {https://www.brucker.ch/bibliography/download/2015/brucker.ea-ipc-testing-2015.pdf},
  issn		= {0302-9743},
  categories	= {holtestgen},
  classification= {conference},
  areas		= {formal methods},
  year		= {2015},
  public	= {yes},
  url		= {https://www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015}
}



%0 Book Section
%T Testing the IPC Protocol for a Real-Time Operating System
%A Brucker, Achim D.
%A Havle, Oto
%A Nemouchi, Yakoub
%A Wolff, Burkhart
%E Gurfinkel, Arie
%E Seshia, Sanjit A.
%B Working Conference on Verified Software: Theories, Tools, and Experiments
%D 2015
%I Springer-Verlag
%C Heidelberg
%@ 3-540-14031-X
%G USenglish
%F brucker.ea:ipc-testing:2015
%X In this paper, we adapt model-based testing techniques to concurrent code, namely for test generations of an (industrial) OS kernel called PikeOS\@. Since our data-models are complex, the problem is out of reach of conventional model-checking techniques. Our solution is based on symbolic execution implemented inside the interactive theorem proving environment Isabelle/HOL extended by a plugin with test generation facilities called HOL-TestGen. As a foundation for our symbolic computing techniques, we refine the theory of monads to embed interleaving executions with abort, synchronization, and shared memory to a general but still optimized behavioral test framework. This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inheriting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally structured by atomic actions; according to a security model, these actions can fail and must produce error-codes. Thus, our tests reveal errors in the enforcement of the security model.
%K test program generation, symbolic test case generations, black box testing, testing operating systems, certification, CC, concurrency, interleaving
%U https://www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015
%U https://www.brucker.ch/bibliography/download/2015/brucker.ea-ipc-testing-2015.pdf




TY  - CHAP
AU  - Brucker, Achim D.
AU  - Havle, Oto
AU  - Nemouchi, Yakoub
AU  - Wolff, Burkhart
ED  - Gurfinkel, Arie
ED  - Seshia, Sanjit A.
PY  - 2015//
TI  - Testing the IPC Protocol for a Real-Time Operating System
BT  - Working Conference on Verified Software: Theories, Tools, and Experiments
T3  - Lecture Notes in Computer Science
PB  - Springer-Verlag
CY  - Heidelberg
KW  - test program generation, symbolic test case generations, black box testing, testing operating systems, certification, CC, concurrency, interleaving
N2  - In this paper, we adapt model-based testing techniques to concurrent code, namely for test generations of an (industrial) OS kernel called PikeOS\@. Since our data-models are complex, the problem is out of reach of conventional model-checking techniques. Our solution is based on symbolic execution implemented inside the interactive theorem proving environment Isabelle/HOL extended by a plugin with test generation facilities called HOL-TestGen. As a foundation for our symbolic computing techniques, we refine the theory of monads to embed interleaving executions with abort, synchronization, and shared memory to a general but still optimized behavioral test framework. This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inheriting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally structured by atomic actions; according to a security model, these actions can fail and must produce error-codes. Thus, our tests reveal errors in the enforcement of the security model.
SN  - 3-540-14031-X
UR  - https://www.brucker.ch/bibliography/abstract/brucker.ea-ipc-testing-2015
L1  - https://www.brucker.ch/bibliography/download/2015/brucker.ea-ipc-testing-2015.pdf
ID  - brucker.ea:ipc-testing:2015
ER  - 



 
 
 brucker.ea:ipc-testing:2015
 BookSection
 Heidelberg
 Springer-Verlag
 2015
 Working Conference on Verified Software: Theories, Tools, and Experiments
 
  
  Brucker Achim D
  Havle Oto
  Nemouchi Yakoub
  Wolff Burkhart

  
  Gurfinkel Arie
  Seshia Sanjit A


 Testing the IPC Protocol for a Real-Time Operating System
 In this paper, we adapt model-based testing techniques to concurrent code, namely for test generations of an (industrial) OS kernel called PikeOS\@. Since our data-models are complex, the problem is out of reach of conventional model-checking techniques. Our solution is based on symbolic execution implemented inside the interactive theorem proving environment Isabelle/HOL extended by a plugin with test generation facilities called HOL-TestGen. As a foundation for our symbolic computing techniques, we refine the theory of monads to embed interleaving executions with abort, synchronization, and shared memory to a general but still optimized behavioral test framework. This framework is instantiated by a model of PikeOS inter-process communication system-calls. Inheriting a micro-architecture going back to the L4 kernel, the system calls of the IPC-API are internally structured by atomic actions; according to a security model, these actions can fail and must produce error-codes. Thus, our tests reveal errors in the enforcement of the security model.



