Isabelle: Not Only a Proof Assistant

Achim D. Brucker

achim@brucker.ch http://www.brucker.ch/

joint work with Lukas Briigger, Delphine Longuet, Yakoub Nemouchi, Frédéric Tuong, Burkhart Wolff

Proof Assistants and Related Tools - The PART Project
Technical University of Denmark, Kgs. Lyngby, Denmark
September 24, 2015

achim@brucker.ch
http://www.brucker.ch/

Isabelle: Not Only a Proof Assistant

Abstract

The Isabelle homepage describes Isabelle as “a generic proof assistant. It allows mathematical
formulas to be expressed in a formal language and provides tools for proving those formulas in a
logical calculus.” While this, without doubts, what most users of Isabelle are using Isabelle for,
there is much more to discover: Isabelle is also a framework for building formal methods tools.

In this talk, | will report on our experience in using Isabelle for building formal tools for high-level
specifications languages (e.g., OCL, Z) as well as using Isabelle’s core engine for new applications
domains such as generating test cases from high-level specifications.

File Edit View History Bookmarks Tools Help

| 4 1sabete

@ isabelle.intum.de

W
¥

I Home
Overview
Installation
Documentation

Community

Site Mirrors:

Cambridge (uk)
Munich (.de)
Sydney (au)

x|\ &
ve| @ [Q sern + A KB 4v 4 D =b P Pe a
UNIVERSITY OF
Isabelle CAMBRIDGE THTI
‘Computer Laboratory ONCHEN

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving those
formulas in a Iogx:al calculus. lsabelle was orlglnally devek)ped at the University of Cambridge and Technische Universitét Minchen, but now includes
from i and i See the Isabelle overview for a brief introduction.

q Download for a0

‘4@ Linux

£ Yl

Download for Windows - Download for Mac OS X

Some highlights:

+ Improved Isabelle/jEdit Prover IDE: folding / bracket matching for Isar, support for BibTeX files, i
for print (e.g. provers).
* Support for private and qualified name space modifiers.

¢ Structural ¢ ition of nronf methods (meth?- meth?2) in lsar

p iew panel, imp!

Isaballe - lcawaasal

File Edit View History Bookmarks Tools Help

4 Isabelle x| -ﬂ-
@ isabelle intum de ve| # [Qsen + A& B d-v D, =v @ & ¢ d~ =
A\ UNIVERSITY OF LT
A Isabelle W CAMBRIDGE ot
¥ 4 ‘Computer Laboratory it

| %o |sabelle is a generic proof assistant. It allows mathematical formulas to be expressed in

oen @ formal language and provides tools for proving those formulas in a logical calculus.
Isabelle was originally developed at the University of Cambridge and Technische
Universitdt Minchen, but now includes numerous contributions from institutions and i
Decumeindividuals worldwide. See the Isabelle overview for a brief introduction.

Comn

Install

Site Mirrors: %A R o]
Cambridge (uk L[e it APy

Munich (.de]
Sydney (au)

Download for Windows - Download for Mac OS X

Some highlights:

+ Improved Isabelle/jEdit Prover IDE: folding / bracket matching for Isar, support for BibTeX files, impi panel, imp
for print (e.g. provers).
* Support for private and qualified name space modifiers.

¢ Structural comnasition of nranf methods (meth?- meth2) in lsar

Isaballe - lcawaasal x

File Edit View History Bookmarks Tools Help
| % 1sabelle x | 4

@ isabelie.intum.de v C| # |Q search ¥+ A WwH 4~ D =~ @ ea@ v =

UNIVERSITY OF
Isabelle ¥ CAMBRIDGE mm

TEON:

so€
Computer Laboratory ot

MUNCHEN

Site Mirrors:
Cambridge (uk)
Munich (.de)
Sydney (au)

Download for - Download for Mac OS X

Some highlights:

+ Improved Isabelle/jEdit Prover IDE: folding / bracket matching for Isar, support for BibTeX files, impi panel, imp
for print (e.g. provers).
* Support for private and qualified name space modifiers.

¢ Structural ¢ of nronf methods (meth?- meth2) in lsar

File Edit Search Markers Folding View Utilities Macros Plugins Help

DEdME & 9¢ X0Q @@ THEE B & @ &»

art.thy (use/l Q15/sro/HOLfex/s)

text <The square root of any prime number (including 2) is irrational.-

theorem sqrt_prime_irrational:
assumes "prime (p::nat)"
shows "sqrt p ¢ Q"

proof
from <prime p- have p: "l < p" by (simp ad

assume "sqrt p € @
then obtain m n :: nat where

+ prime_nat_def)

L n: 'n 3 0" and sqrt_rat: "|sqrt pi =m / n'f|
L and ged: "ged mono= 1" by (rule Rats_abs_nat_div_natE)
have eg: "m? = p * n2"
proof -
from n and sqrt_rat have 'm = }sqrt p} * n" by simp
& then have "m? = (sgrt p)2 * n2'
L by (auto simp add: power2 eq_square)

¥ auto update | Update Search

proof (prove): depth 2

using this:
sgrt (real p) € @

goal (1 subgeal):
1. (Anm. n # 0 = |sqrt (real p)} = real m / real n — coprime m n — th

Achim D. Brucker Isabelle: Not Only a Proof Assistant

~ | |100% ||

September 24, 2015

UeneuaLINIog

PDIEpIS

sauoay|

This is only the tip of the iceberg

Achim D. Br Isabelle: Not Only a Proof Assistant September 24, 2015

Outline

Isabelle tools on top of Isabelle (Add-on)
m HOL-OCL 1.x

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

UML/OCL in a nutshell

m UML

Visual modeling language
Object-oriented development
Industrial tool support
OMG standard
Many diagram types, e.g.,
activity diagrams
class diagrams

m OCL

Textual extension of the UML
Allows for annotating UML diagrams
In the context of class—-diagrams:

invariants

preconditions

postconditions

Achim D. Brucker Isabelle: Not Only a Proof Assistant

context Account [\
inv: 0 <= id
\\
\
\

Account

balance:Integer
id:Integer

=
2
-

= getlId():Integer

= getBalance():Integer

= deposit(a:Integer):Boolean
= withdraw(a:Integer):Boolean

\
\
\

1.

[2-.*
accounts

context Account::deposit(a:Integer):Boolean

pre: 0 < a

post: balance = balance@pre+a

and id = id@pre

September 24, 2015

Developing formals tools for UML/OCL?

Turning UML/OCL into a formal method

A formal semantics of object-oriented data models (UML)

typed path expressions
inheritance

A formal semantics of object-oriented constraints (OCL)

a logic reasoning over path expressions
large libraries
three-valued logic

And of course, we want a tool (HOL-OCL)

a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

Challenges (for a shallow embedding)

m Challenge 1:
Can we find a injective, type preserving mapping of
an object-oriented language (and datatypes) into HOL
eT — e:nT
(including subtyping)?

m Challenge 2:
Can we support verification in a modular way
(i.e., no replay of proof scripts after extending specifications)?

m Challenge 3:
Can we ensure consistency of our representation?

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
B
= b:Integer
m Advantages: 9

it allows for extending class types (inheritance),

subclasses are type instances of superclasses

it allows for modular proofs, i.e.,

a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.
m However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
B:= B
= b:Integer
m Advantages: 9

it allows for extending class types (inheritance),

subclasses are type instances of superclasses

it allows for modular proofs, i.e.,

a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.
m However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
B := (Orag x0id) B
= b:Int
m Advantages: nteger

it allows for extending class types (inheritance),

subclasses are type instances of superclasses

it allows for modular proofs, i.e.,

a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.
m However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
B := (Orag x0id) X ((Atag xString)) B
= b:Int
m Advantages: nteger

it allows for extending class types (inheritance),

subclasses are type instances of superclasses

it allows for modular proofs, i.e.,

a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.
m However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
B := (Otag x0id) x ((Atag xString) x ((Bg xInteger))) B
= b:Int
m Advantages: nteger

it allows for extending class types (inheritance),

subclasses are type instances of superclasses

it allows for modular proofs, i.e.,

a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.
m However, it has a major disadvantage:

modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Representing class types

0|
—
m The “extensible records” approach /\
We assume a common superclass (0). A
A tag type guarantees uniquenessby (Otq := classO). = s:String
Construct class type as tuple along inheritance hierarchy: Z%
a B := (Og x0id) x ((Atag xString) x ((Bwg x Integer) x a)) B
m Advantages: = bilnteger
it allows for extending class types (inheritance), Z>
subclasses are type instances of superclasses 4

it allows for modular proofs, i.e.,
a statement ¢(x : : (« B)) proven for class B is still valid after extending class B.

m However, it has a major disadvantage:
modular proofs are only supported for one extension per class

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 10

Idea: a general universe type

A universe type representing all classes of a class model
m supports modular proofs with arbitrary extensions
m provides a formalization of a extensible typed object store

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

11

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

g lj Utar = 0 x a}

Achim D. Brucker Isabelle: Not Only a Proof Assistant

September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

[I=F={ll]

Achim D. Brucker

’Ll(()ao) =0xal

Isabelle: Not Only a Proof Assistant

September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

[I=F={ll]

Achim D. Brucker

’LI((’au) =0xal

(ul(aA)l;D) =0 x (A 23 le +ﬁ0)l

Isabelle: Not Only a Proof Assistant

September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

=l

Achim D. Brucker

’LI((’au) =0xal
’l/ll(“A)ﬁD) =0 x (Ax (x‘f +[30)l

ru%ocﬂ,ﬁ”,ﬁ") =0 x (Ax|(Bxaf+p4)y+p°).

Isabelle: Not Only a Proof Assistant September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

Achim D. Brucker

’LI((’au) =0xal

ﬂl(aA,;;D) =0 x (Axaf+p°),

A

ru%ocﬂ,ﬁ”,ﬁ") =0 x (Ax|(Bxaf+p4)y+p°).

Isabelle: Not Only a Proof Assistant

September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

An extensible object store

Achim D. Brucker

’LI((’au) =0xal

ﬂl(aA,;;D) =0 x (Axaf+p°),

A

ru%ocﬂ,ﬁ”,ﬁ") =0 x (Ax|((Bxaf+pY)y+p°).

ﬂ?uﬂ,aC,ﬂn,ﬁA) =0x (Ax (Bxal+(Cxaf+p4), +p°),

Isabelle: Not Only a Proof Assistant

September 24, 2015

12

An extensible object store

’Ll(()au) =0xal

ﬂl(aA,;;D) =0 x (Axaf+p°),

A
’Ll%ay’ﬁu’ﬁA) =0 x(Ax|(Bxab+ph), +p°),

ﬂ?uﬂ,aC,ﬂn,ﬁA) =0x (Ax (Bxal+(Cxaf+p4), +p°),

U(30457046,,30,/3") = U%as,ﬁ",ﬁ") = U(10/‘,6") . U?a")

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

12

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Merging universes

ut A\ U

I3
L
B

2
~
2

Non-conflicting Merges

Achim D. Brucker

Isabelle: Not Only a Proof Assistant

September 24, 2015

13

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Merging universes

Ut

A\ U A
-

2
~
2

Non-conflicting Merges

Achim D. Brucker

Isabelle: Not Only a Proof Assistant

U

U

e
4
& [FE

oA}~ 4
g s

Conflicting Merges

September 24, 2015

13

Operations accessing the object store

m injections
mko 0 = Inlo with type a® 0 — U2,
m projections
getou =u with type U2 — a0
m type casts
Aro) = geto o mka with type o A — (A x o/} 4+ 3°) 0
Ora) = geta o mko with type (A x o/} +8°)0 = * A

All definitions are generated automatically

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

14

“Checking” subtyping

For each UML model, we have to show several properties:

Iy

A

= s:String

7

B

= b:Integer

m subclasses are of the superclasses kind:
isTypeg self

isKind, self
m “re-casting”:
isTypeg self

selfiayg; # 1 ANisTypep (59/flA1[Bl[A])

m monotonicity of invariants, ...

All rules are derived automatically

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

15

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

m HOL-OCL provides:
a formal, machine-checked semantics for OO specifications,
an interactive proof environment for OO specifications.

m HOL-OCL is integrated into a toolchain providing:

extended well-formedness checking,

proof-obligation generation,

methodology support for UML/OCL,

a transformation framework (including PO generation),
code generators,

support for SecureUML.

m HOL-OCL is publicly available:
http://www.brucker.ch/projects/hol-ocl/.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

16

http://www.brucker.ch/projects/hol-ocl/

The HOL-OCL architecture

HOL-OCL User Interface (extended Proof General)
momt || oreoser JE==SUmee=—

Repository WE-Checks PO-Manager

Code-Gen. Model-Trans.

Isabelle/HOL

Standard ML (PolyML, sml/NJ)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

The HOL-OCL user interface

3 Em a.inf ., ethz,ch

@ & ™ = ¥ E =
e Context “Goal n@n @ Tse @ Find Comma
(4] “begingsmall}

st input st ing[style=oc|]{company .ocl }

“end {smal |}

“hegin{figure}
scentering
Sincludegraphics[scale=.6] {company}
Scapt ion{d company Class Diagramm® label {fig:company_classdiag}}
}\end {7 iquredl]
*

load_xmi "company_oc|.xmi"

thm Company. Person. iny. inv_19_def

lemma "k Company . Person. iny self — Company . Person. inv. ime_19 sel £
apply (zimp add: Company.Person. inv_def

Gompany . Persan. inv. inv_19_def)
@*fonlv (auto)t

File Edit Options Buffers Tools Preview LaTeX Command X-Symbol

0% (45.14) SYN-27978 (Isar script [PDFLaTeX/F] MMM X5:holoclfs Scriptingy--—-6:35 2.33

Help

Restart ga Help

Person. inv. imv_19 =
Azelf. % p2 e OclAllInstances
self o {9 pl e 0clallInstances
el e ((pl "7 p2) —

j \<syneothn Conpany . PRFson. . (My_19_0e (5 %< 2ync>s

(Compary Person. lastMame pl “<>° Company Person. lasthame p2))i[

-]
é—— #ESPONSEH A1 {6,1013 {response}—-—-6:35 2.39 Mail

Achim D. Brucker Isabelle: Not Only a Proof Assistant

September 24, 2015

18

The HOL-OCL high-level language

The HOL-OCL proof language is an extension of Isabelle’s Isar language:
m importing UML/OCL:

import model "SimpleChair.zargo" "AbstractSimpleChair.ocl"
include only "AbstractSimpleChair"

m check well-formedness and generate proof obligations for refinement:

analyze consistency [data refinement] "AbstractSimpleChair"

m starting a proof for a generated proof obligation:

po "AbstractSimpleChair.findRole enabled"

® generating code:

generate code "java"

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

19

The encoder

The model encoder is the main interface between su4sml and the Isabelle based part of
HOL-OCL. The encoder

m declarers HOL types for the classifiers of the model,

m encodes

type-casts,
attribute accessors, and
dynamic type and kind tests implicitly declared in the imported data model,

m encodes the OCL specification, i.e.,

class invariants
operation specifications

and combines it with the core data model, and
m proves (automatically) methodology and analysis independent properties of the model.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 20

Isabelle tools on top of Isabelle (Add-on) HOL-OCL 1.x

Tactics (proof procedures)

m OCL, as logic, is quite different from HOL (e.g., three-valuedness)

m Major Isabelle proof procedures, like simp and auto,
cannot handle OCL efficiently.

m HOL-OCL provides several UML/OCL specific proof procedures:

embedding specific tactics (e.g., unfolding a certain level)
a OCL specific context-rewriter
a OCL specific tableaux-prover

These language specific variants increase the degree of proof for OCL.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

21

Proof obligation generator

A framework for proof obligation generation:
m Generates proof obligation in OCL plus minimal meta-language.

® Only minimal meta-language necessary:
Validity: = _, _E_
Meta level quantifiers: 3_. , 3 . _
Meta level logical connectives: _V _, _A_, —

Examples for proof obligations are:
(semantical) model consistency
Liskov’s substitution principle
refinement conditions

Can be easily extended (at runtime).

Builds, together with well-formedness checking, the basis for tool-supported methodologies.

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

Outline

Isabelle tools on top of Isabelle (Add-on)

m HOL-OCL 2.x

HOL-OCL 2.0 (Featherweight OCL)

Output
File Edit Search Markers Folding View Utilities Macros Plugins Help -
= ¥ [- X B Q&:C Al g o (] Auto update | Update | Search - | [1o0% |r)
Bank_Model.thy (~tmp/hol testgen/add-ons/F eatherweight-OCLiexamples/) 1 apply (auto simp: isdef down_cast_typessyings_from OclAny_to *
~ |theory Bank_Model imports "../src/UML_OCL" done
begin . lemma down_cast_kindciient_from OclAny_to_Client :
Class Savings < Account Attributes max : Currency assumes iskin: "~ 7 |= ((X::0clAny) .oclIsKindOf(Client))"
assumes isdef: "7 | (4 (X))"
Association clients Between Bank [l ee *] Role banks shows "7 |- (X .oclAsType(Client)) 2 invalid®
Client [1 es *] Role clients apply (insert not_0clIsKindOf ciient_then_OclAny_0clIsTypeOf_
- . 5 B apply (rule down_cast_typegcizny_from_OclAny_to_Client, simp
Context c: Savings constant "Bank_Model .dot BALANCE" apply (drule not_Oc1IsKindOfg.y_then_OclAny_0OclIsTypeOf_oth
Inv "0.0 <rea1 (c .max)" [xF =

apply (rule down_cast_typegan_from_0clAny_to_Client, simp ¢
apply (drule not_OclIsKindOf uccount_then_OclAny_OclIsTypeOf_
apply (auto simp: isdef down_cast_types,yings_from OclAny_to
Context Bank :: create_client(n:String, a:Integer, bh:Bank) done

Pre "b .clients->forAlls.:(c|c .clientname <> n or ¢ .age &

Post "b .clients->existss.i(c|c .clientname = n and (c .ag (¥ 86 FHHHHHHKKKKARRRHHHHHHR AR NN 1361 + 1 *)

Inv "c .balance <, . (c .max) and 0.0 < .. (c
]

section{* OclAllInstances *} b

(* 2384 generated UML/OCL theorems *) i s

thm UPoctany_dOWNsayings_Cast UPnciany_doWnsccount_€aSt [UPaccoud [9 of 10] Compiling Argument (Argument.hs, _build
["@|generation_syntax [syntax_print, shallow, deep (THEORY Mod({ [15 of 10] Compiling Main (Main.hs, _build/Mair
- Linking Main ...

[Auto update | Update | Search: Proofs for inductive predicate(s) "rep_set_typecyrrent"
« 7X .oclAsType(OclAny) .oclAsType(Savings) = 7X Proving monotonicity ...
« ?X .oclAsType(OclAny) .oclAsType(Account) = ?X Proving the introduction rules ...

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

24

Outline

Isabelle tools on top of Isabelle (Add-on)

m HOL-TestGen

How to ensure system correctness, security, and safety?

(Inductive) Verification Testing
m Formal (mathematical) proof m Execution of test cases
m Can show absence of all m Can show failures on real
. failures relative to specification system Y
m Specification of based on m Only shows failures for the hd
abstractions 9 parts of the system é
m Requires expertise in Formal m Requires less skills in Formal
Methods Methods
m In industry: m In industry:
only for highly critical systems widely used
(regulations, certification) (often > 40% of dev. effort)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 26

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Is testing a “poor man’s verification?”

Or: Why should | test if | did a verification and vice versa?

Program testing can be used to show the presence of bugs,
but never to show their absence!

m Assume you can choose between two aircraft for you next travel:

Aircraft A: Aircraft B:

Fully formally verified

Fully tested

Total number of flights: 0 Total number of flights: 1000

m Which aircraft would you take for your next trip?
m Which aircraft would Dijkstra take?

Isabelle: Not Only a Proof Assistant September 24, 2015

(Dijkstra)

27

What should we do?

Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

Application
Operating System
Hypervisor Observation:
m Both methods have their unique advantages

Server Application Recommendation:
Runtime Container m Use a combination of verification and testing

Operating System Our Vision:

m An integrated approach for test and verification
Backend Systems

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

28

What should we do?

Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

Observation:
m Both methods have their unique advantages

Recommendation:

Server Application

- - m Use a combination of verification and testing
Runtime Container

Operating System

Backend Systems

Our Vision:
® An integrated approach for test and verification

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 28

What should we do?

Vision: Use the Optimal Combination of Verification and Testing in an Integrated Approach

Observation:

m Both methods have their unique advantages
Recommendation:

m Use a combination of verification and testing
Our Vision:

® An integrated approach for test and verification

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 28

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Implementing our vision in Isabelle: HOL-TestGen

File Edit Search Markers Folding View Urilities Macros Plugins Help

O ScenarioLthy (~/ 13-01-01-dag g/dem.. M 2 g (bate H H
et 1 [l were B = F ~“a An interactive model-based test tool
={{(a,b). al€ladrs Filter L Y
. “isnfz m built upon the theorem prover Isabelle/HOL
~ [subsubsection{* Policy Model *} theory 2
abbreviat || &
© [tetinition Tsteicy where H < S m specification language: HOL
R o et Lo Sl S
nirt te Goprty 7 oamett etz @ 1 B unique combination of test and proof
AllowPort tcp (8082::port) subnetl subnet2 @& E::;z:tz: . .)
s wh (o) vt (| IS verification environment
AllowPor C| ::por subnetl subne: lemmas
B e e @1 ety user controllable test-hypotheses
appl 'y .
: verified transformations
~ [subsubsection{* Definition of the testing constraint. *} 5] dez[‘;e
S D) | a2l m supports the complete MBT workflow
100% v [Tracing ¥ Auto update }‘;Aa!e‘
g m basis for domain-specific extensions
m successfully used in large case-studies
©)
'8~ |[Output | rover Session
[26,1(556/2072) (isabelle, sidekick,UTF-3-Isabelle) UCEE/154Mb 09:20

m freely available at:
http://www.brucker.ch/projects/hol-testgen/
Isabelle: Not Only a Proof Assistant September 24, 2015

29

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

The HOL-TestGen architecture

| System Specification | | Test Specification

m Seamless combination of

Specification

1) testing and verification
m Black-box vs. white-box:
7 yoductve | | yerified Mode! Specification-based black-box test as default
Test Data Generation White-box and Grey-box also possible

m Unit vs. sequence testing

Test Script (incl. Test
Oracle) Generation

Unit testing straight forwards

Test Generation Verification and Transformation
sabelle/HOL Sequence testing via monadic construction
v
m Coverage:
Generated Test Script e .
Tes‘”a'”esstj e e [o st Adaer Path Coverage (on the specification) as default
Test Executable
HOL-TestGen m Scalability:
U Verified test transformations can increase testability
System under Scheduler I‘ Scheduler .
Test Control —| Mapping by several orders of magnitude

Execution Enwrunmenl

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015 30

Excursus: test hypothesis - the difference between test and proof

m Idea: We introduce formal test hypothesis “on the fly”
m Technically, test hypothesis are marked using the following predicate:

THYP : bool =-bool
THYP(x) =x

m Two test hypotheses are common:
Regularity hypothesis: captures infinite data structures (splits), e.g., for lists

x=1 x= o] (x = [a,]

P /\ a P /\ abh P THYP(Vx.k < sizex — P x)

P
Uniformity hypothesis: captures test data selection
“Once a system under test behaves correct for one test case, it behaves correct for all test cases”
n) [C17?x; ..; Cm?x] =TS ?x
n+1) THYP((dx.Clx..Cmx —TSx) —(Vx.Cl x... Cm x —TS x))

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

Test case generation: an example

theory TestPrimRec

imports Main

begin Result:

primrec . prog ?x1 [?x1]

x mem [] = False

x mem (y#S) =ify =x
then True
else x mem S

. prog ?x2 [?x2,?b2]
. ?a3#£?x3 =prog ?x3 [?a3,?x3]
. THYP(dx.prog x [x] —prog x [x]

W N =

7. THYP(V S. 3 <size S —x mem S —prog x S)
test_spec:

"X mem S =—prog x S"
apply(gen_testcase)

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Use case: testing firewall policies

source destination protocol

port action

Internet (extern)

Internet dmz udp

/ Internet dmz tcp

ﬁ dmz intranet tcp
AN intranet dmz tcp

R — @ intranet Internet udp

= any any any

m Our goal: Show correctness of the

configuration and
implementation

of active network components
m Today: firewalls are stateless packet filters
m Our approach also supports (not considered in this talk):

network address translation (NAT)
port translation, port forwarding
stateful firewalls

Achim D. Brucker Isabelle: Not Only a Proof Assistant

25 allow

80 allow

25 allow

993 allow

80 allow

any deny
September 24, 2015 33

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

HOL model of a firewall policy

A firewall makes a decision based on single packets.

types («,3) packet
= id x(a::adr) src x(a::adr) dest x/content

Different address and content representations are possible.
A policy is a mapping from packets to decisions (allow, deny, ...):

types a— (= a—fdecision
types (o,) Policy = (a,) packet —unit

Remark: for policies with network address translation:
types («,3) NAT Policy = («,3) packet —(«a,3) packet set
Policy combinators allow for defining policies:

definition
allow all from :: (a::adr) net =(«,3) Policy where
allow_all from src net = {pa. src pa Csrc_net} <4y

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

34

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

The policy

source destination protocol port action
Internet dmz udp 25 allow
Internet dmz tcp 80 allow

dmz intranet tcp 25 allow
intranet dmz tcp 993 allow
intranet Internet udp 80 allow

any any any any deny

definition TestPolicy where

TestPolicy = allow port udp 25 internet dmz ¢
allow port tcp 80 internet dmz &
allow port tcp 25 dmz intranet &
allow port tcp 993 intranet dmz @
allow port udp 80 intranet internet &
Dy

where Dy is the policy that denies all traffic
Isabelle: Not Only a Proof Assistant

September 24, 2015

35

Testing stateless firewalls

m The test specification:

test_spec test: “P x =FUT x = Policy x”’

FUT: Placeholder for Firewall Under Test
Predicate P restricts packets we are interested in, e.g.,
wellformed packets which cross some network boundary

m Core test case generation algorithm:
compute conjunctive-normal form

find satisfying assignments for each clause (partition)

m Generates test data like (simplified):
FUT(1,((8,13,12,10),6,tcp),((172,168,2,1),80,tcp),data)= | (deny()|

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

36

Problems with the direct approach

m The direct approach does not scale:

R1 R2 R3 R4
Networks 3 3 4 3
Rules 12 9 13 13
TC Generation Time (sec) 26382 187 59364 1388
Test Cases 1368 264 1544 470

m Reason:
Large cascades of case distinctions over input and output
— However, many of these case splits are redundant
Many combinations due to subnets
— Pre-partitioning of test space according to subnets

Achim D. Brucker Isabelle: Not Only a Proof Assistant

September 24, 2015

37

Model transformations for TCG

m Idea is fundamental to model-based test case generation. E.g.:

if x < —10 then if x < 0 then P else Q else Q
if x < —10 then P else Q

lead to different test cases

m The following two policies produce a different set of test cases:
AllowAll dmz internet & DenyPort dmz internet 21 & Dy

AllowAll dmz internet & Dy

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

38

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

A typical transformation

m Remove all rules

allowing a port between two networks,
if a former rule already denies all the rules between these two networks

fun removeShadowRules2::
where
removeShadowRules2 ((AllowPortFromTo x y p)#z) =
if (DenyAllFromTo xy) € (set z)
then removeShadowRules2 z
else (AllowPortFromTo x y p)#(removeShadowRules2 z)

| removeShadowRules2 (x#y) = x#(removeShadowRules2 y)
| removeShadowRules2 [] =[]

Achim D. Brucker Isabelle: Not Only a Proof Assistant

September 24, 2015

39

Correctness of the normalisation

m Correctness
of the normalization must hold for arbitrary input policies, satisfying certain preconditions

m As HOL-TestGen is built upon the theorem prover Isabelle/HOL, we can prove formally the
correctness of such normalisations:

theorem C eq normalize:
assumes member DenyAll p
assumes allNetsDistinct p
shows C (list2policy (normalize p)) = C p

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

40

Isabelle tools on top of Isabelle (Add-on) HOL-TestGen

Empirical results

R1 R2 R3 R4

Not Normalized Networks 3 3 4 3
Rules 12 9 13 13

TC Generation Time (sec) 26382 187 59364 1388

Test Cases 1368 264 1544 470

Normalized Rules 14 14 24 26
Normalization (sec) 0.6 0.4 1.1 0.8

TC Generation Time (sec) 0.9 0.6 1.2 0.7

Test Cases 20 20 34 22

The normalization of policies decreases

m the number of test cases and

m the required test case generation time

by several orders of magnitude.

Achim D. Brucker

Isabelle: Not Only a Proof Assistant

September 24, 2015

41

Outline

Conclusion

Conclusion

Conclusion

Modern interactive theorem provers can be used as
frameworks for building formal methods tools.

If you “prototype” formal methods tools, consider
m to reuse the infrastructure of your theorem prover of choice

Isabelle provides a lot of features:
m defining nice syntax for DSLs
m defining new top-level commands
m developing own tactics
m generate code
]

There is another nice example: attend the next talk by Sebastian!
Isabelle: Not Only a Proof Assistant September 24, 2015

43

Thank you for your attention!

Any questions or remarks?

Related Publications |

ﬁ Achim D. Brucker, Lukas Briigger, Paul Kearney, and Burkhart Wolff.
Verified firewall policy transformations for test-case generation.
In Third International Conference on Software Testing, Verification, and Validation (ICST), pages 345-354. IEEE Computer Society, 2010.
http://www.brucker.ch/bibliography/abstract/brucker.ea- firewall-2010.

ﬁ Achim D. Brucker, Lukas Briigger, and Burkhart Wolff.
HOL-TestGen/FW: An environment for specification-based firewall conformance testing.
In Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, International Colloquium on Theoretical Aspects of Computing (ICTAC), number 8049 in Lecture Notes in Computer Science,
pages 112-121. Springer-Verlag, 2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol- testgen- fw-2013.

ﬁ Achim D. Brucker, Lukas Briigger, and Burkhart Wolff.
Formal firewall conformance testing: An application of test and proof techniques.
Software Testing, Verification & Reliability (STVR), 25(1):34-71, 2015.
http://www.brucker.ch/bibliography/abstract/brucker.ea- formal- fw- testing-2014

ﬁ Achim D. Brucker, Delphine Longuet, Frédéric Tuong, and Burkhart Wolff.
On the semantics of object-oriented data structures and path expressions.
In Jordi Cabot, Martin Gogolla, Istvéan Rath, and Edward D. Willink, editors, Proceedings of the MoDELs 2013 OCL Workshop (OCL 2013), volume 1092 of CEUR Workshop Proceedings,
pages 23-32. ceur-ws.org, 2013.
http://www.brucker.ch/bibliography/abstract/brucker.ea-path-expressions-2013.

B Achim D. Brucker, Frank Rittinger, and Burkhart Wolff.
hol-z 2.0: A proof environment for Z-specifications.
Journal of Universal Computer Science, 9(2):152-172, February 2003.
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-z-2003

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

http://www.brucker.ch/bibliography/abstract/brucker.ea-firewall-2010
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-testgen-fw-2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-formal-fw-testing-2014
http://www.brucker.ch/bibliography/abstract/brucker.ea-path-expressions-2013
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-z-2003

Related Publications Il

@ Achim D. Brucker and Burkhart Wolff.
hol-ocl - A Formal Proof Environment for UML/OCL.
In José Fiadeiro and Paola Inverardi, editors, Fundamental Approaches to Software Engineering (FASE), number 4961 in Lecture Notes in Computer Science, pages 97-100.
Springer-Verlag, 2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008.

ﬁ Achim D. Brucker and Burkhart Wolff.
Extensible universes for object-oriented data models.
In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, number 5142 in Lecture Notes in Computer Science, pages 438-462. Springer-Verlag, 2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008

@ Achim D. Brucker and Burkhart Wolff.
Semantics, calculi, and analysis for object-oriented specifications.
Acta Informatica, 46(4):255-284, July 2009
ISSN 0001-5903.
http://www.brucker.ch/bibliography/abstract/brucker.ea- semantics-2009

@ Achim D. Brucker and Burkhart Wolff.

On theorem prover-based testing.

Formal Aspects of Computing, 25(5):683-721, 2013

ISSN 0934-5043

http://www.brucker.ch/bibliography/abstract/brucker.ea- theorem-prover-2012

Achim D. Brucker Isabelle: Not Only a Proof Assistant September 24, 2015

46

http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-extensible-2008
http://www.brucker.ch/bibliography/abstract/brucker.ea-semantics-2009
http://www.brucker.ch/bibliography/abstract/brucker.ea-theorem-prover-2012

	Motivation
	Isabelle tools on top of Isabelle (Add-on)
	HOL-OCL 1.x
	HOL-OCL 2.x
	HOL-TestGen

	Conclusion

