Incorporating Data into EFSM Inference

Michael Foster! ', Achim D. Brucker? ', Ramsay G. Taylor' =,

Siobhan North! ™, and John Derrick!

! Department of Computer Science, The University of Sheffield
Regent Court, Sheffield, S1 4DP, UK
{jmafosterl, r.g.taylor, s.north, j.derrick}@sheffield.ac.uk
2 Department of Computer Science, University of Exeter, Exeter, UK
a.brucker@exeter.ac.uk

Abstract. Models are an important way of understanding software sys-
tems. If they do not already exist, then we need to infer them from
system behaviour. Most current approaches infer classical FSM models
that do not consider data, thus limiting applicability. EFSMs provide a
way to concisely model systems with an internal state but existing in-
ference techniques either do not infer models which allow outputs to be
computed from inputs, or rely heavily on comprehensive white-box traces
that reveal the internal program state, which are often unavailable.

In this paper, we present an approach for inferring EFSM models, includ-
ing functions that modify the internal state. Our technique uses black-
box traces which only contain information visible to an external observer
of the system. We implemented our approach as a prototype.
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1 Introduction

Accurate system models are applicable to a broad range of software engineering
tasks. They can be used to automate the process of model-based testing [7,15],
to detect cyber attacks [16], and to aid the process of requirements capture [4].
Despite their utility, system models can be neglected during development, if they
are built at all. It is therefore desirable to reverse engineer models from existing
systems. One way to do this is to record executions of the system and use these
traces to infer a model.

There is abundant work on the inference of finite state machine (FSM) mod-
els from traces [2,10,18], much of which falls into the family of state merging
algorithms. These begin by constructing the most specific automaton which ac-
cepts all of the observed traces, and iteratively consolidate the model by merging
states in the FSM which are believed to represent the same program state. The
resulting model, as well as being smaller than the original, is often more general.
It is able to predict how the system might behave when faced with previously
unseen traces. This is a key feature of model inference and differentiates it from
automaton minimisation.
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Classical FSMs cannot handle data so they struggle to represent systems
that exhibit data-dependent behaviour, for example a vending machine which
dispenses drinks selected by users. Here, the input of the select action determines
the output of dispense. A classical FSM model of the system would require a
separate path for each available drink, so would likely be rather large. Extended
Finite State Machines (EFSMs) provide a richer model, featuring a persistent
data state, which could be used to store the selected drink, but existing EFSM
inference techniques [12,19] do not infer how the data state is used, nor can they
capture the causal effect of input on output.

This paper presents a technique to infer EFSM models from system traces
which explicitly capture this causal relationship. The main contributions are:

1. A technique which uses black-box traces (instead of the more commonly used
white-box traces) to infer EFSM models which capture the causal relation-
ship between inputs and outputs.

2. A prototype tool which implements this technique.

The rest of this paper is structured as follows. Section 2 introduces a mo-
tivating example and explains how state merging algorithms work. Section 3
presents our EFSM inference technique. Section 4 discusses how we introduce
data registers to capture the causal relationship between input and output. Sec-
tion 5 details how we implemented our technique as a prototype inference tool.
Section 6 evaluates our technique with reference to the scenario presented in
Section 2. Section 7 concludes the paper and discusses possible future works.

2 Background

Reverse engineering models from traces is an inference process which aims to
make statements about the overall behaviour of a system by generalising from
observations. Consider a simple vending machine which produces traces like those
in Figure 1. Users first select a drink by providing its name as an input. The coin
operation allows users to pay for their drink by inserting coins of a given value,
displaying as output the total value inserted so far. Once sufficient payment has
been inserted, the vend operation is triggered to dispense the drink.

In Figure 1, we use the notation methodName(i1, iz, ...)/[01, 02, ...] such that
coin(50)/[50] represents the event coin being called with a single input of 50 and
producing a single output of 50. We delimit events with arrows and omit the
outputs from events like select(‘coke’) which do not produce any.

select(‘coke’) — coin(50)/[50] — coin(50)/[100] — vend()/[*coke’]
select(‘pepsi’) — coin(50)/[50] — coin(50)/[100] — vend()/[‘pepsi’]
select(‘coke’) — coin(100)/[100] — vend()/[‘coke’]

Fig. 1: Exemplary traces of the vending machine.
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To infer a classical FSM model from the traces in Figure 1, we must either
remove the data entirely or encode it within the actions by folding input and
output values into the transition labels. Taking the latter approach, we represent
an event label(i1)/[o1] as the atomic action label i1 o;. The inference process
begins by building an automaton which accepts exactly the observed traces. This
is usually a tree-shaped automaton called a prefix tree acceptor (PTA), where
traces with common prefixes share a common path through the model up to the
point of divergence. Figure 2 shows a PTA representing the traces in Figure 1.

) 0 coin_ 50 100 vend _coke
oke @ U

;
celect “;/<:O
m 7 g5
—> - 00‘100 vend _coke
@ (a2 (a0
coin_50_50

Selecy > as s q10
~Pepsy N coin_50 100 Z/ vend _pepsi

Fig. 2: A classical FSM PTA built from the traces in Figure 1, in which transition
input and output data has been encoded into the transition labels.

We condense the PTA by merging states which we believe represent the same
program state, based on the commonality of their outgoing transitions. In Fig-
ure 2, for example, g3 and g5 both have an outgoing vend _coke transition. The
result of merging these two states has two nondeterministic outgoing vend _coke
transitions. This does not make sense as we merged g3 and g5 because we believe
their respective outgoing transitions represent the same behaviour, meaning that
their destination states should represent the same program state. We merge these
states (qq and gg) so the two vend _coke transitions are no longer distinct. In
this way, branches of a PTA are zipped together as we merge successive states.

When the model becomes deterministic again, we search for another pair of
states, that might represent the same program state, to merge. This continues
until no more pairs of states are believed to represent the same program state.
An optimal FSM model which could be inferred from the traces in Figure 1 is
shown in Figure 3. This is more concise than the PTA in Figure 2 but is still
relatively large and cannot predict the behaviour of the system for unseen inputs.

coin__ 50 50 yon\ coin_ 50 100
Q1 — qs3 — qa
(&) 7 cope

coin__ 100 100

peps”

(oo 4
(42 95 de nd _
O coin_50_50 “_/ coin_50_ 100 ve

Fig. 3: A classical FSM representation of a simple drinks machine in which tran-
sition input and output data has been encoded in the transition labels.
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We cannot expect to infer models of unobserved behaviour but it is not
unreasonable to want to predict the outcome of applying the same action with
different data. Classical FSM models cannot separate these, so the transitions
select _coke and select _pepsi are different behaviours rather than two instances
of select with different inputs. This means that small changes in behaviour, like
adding additional drinks, have a disproportionate effect on model complexity.
EFSMs are a promising solution to this problem. Numerous definitions exist in
the literature [3,6,11] but all make use of similar features: parametrised guarded
inputs, a persistent data state, and output expressed in terms of input. These
features make EFSM models more expressive but also much harder to infer.

Previous work on EFSM inference [12,19] focusses on establishing concise
transition guards which aggregate observed data values into a single transition.
While this is a valuable contribution, the models inferred by these techniques
fail to capture the fact that input determines subsequent output.

Ezample 1. For the traces in Figure 1, existing EFSM inference methods might
produce a model similar to Figure 4. It is much smaller than the classical FSM in
Figure 3, as we are now able to separate action from data. Here, we have a guard
on the select transition which requires the first input, i1, to be either ‘coke’ or
‘pepsi’. This is mirrored by the output, o1, of vend. All observed inputs and
outputs of coin were greater than or equal to 50 so the guard reflects this.

coin(iy > 50,01 > 50)

Q select(iy € {‘coke’, ‘pepsi’}) Q vend (o1 € {‘coke’, ‘pepsi’})
—( 90 @ q2
() (=)

Fig.4: An EFSM as might be inferred by existing methods. Here, transitions
take the form label(gy, go, . ..) in which inputs are denoted i,, and outputs oy,.

This model summarises the observed values but fails to show how output is
computed from input — it is not computational. We know that the output of
the vend transition is either ‘coke’ or ‘pepsi’ but cannot tell which we will get,
much less that it is determined by the input to select. Inputs and outputs are
both just treated as variables here so there is no explicit link between them. [

The EFSMs inferred by [12] and [19] use the program variables present in
the traces but do not infer how individual transitions update variables. An ideal
EFSM model of the traces in Figure 1 is shown in Figure 5, in which transitions
are written label : arity[guards]/outputs[updates]. Here, we use a register, r1, to
record the selected drink, and another, ro, to keep track of the money inserted.
This allows us to compute the outputs of vend and coin. Techniques such as [17]
attempt to infer fully computational models like this but rely on white-box
traces to expose the values of internal variables. Since white-box traces are often
unavailable, we would ideally like to use black-box traces, which only contain
information available to an external observer of the system.
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coin : 1/01 =12 +i1[re := ra + i1]

select : 1/[r1 :=11,72 := 0] Q vend : 0/01 := 11
-® ; ®

N
Fig.5: The ideal EFSM model of the drinks machine.

3 Extending the Inference Process

In this section, we present our technique to infer EFSM models from traces.
While there are many different EFSM representations in the literature, [3,11] we
use the one we defined in previous work [6].

Definition 1. An EFSM is a tuple, (S, so,T) where S is a finite non-empty
set of states, sy € S is the initial state, and T is the transition matrix T :
(S x8) = P(LxNxGxF xU) with rows representing origin states and
columns representing destination states. In T, L is a set of transition labels. N
gives the transition arity (the number of input parameters), which may be zero.
G is a set of Boolean guard functions G : (I x R) — B. F is a set of output
functions F': (I x R) — O. U is a set of update functions U : (I x R) — R.

InG, F, and U, I is a tuple [i1,12,...,im] of values representing the inputs
of a transition, which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1,7r2,...], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [01,02,. .., 0]
of values, which may be empty, representing the outputs of a transition.

Syntactic sugar allows transitions from state S, to state S, to take the form

Sm label:arity[gi,....gn]/ f1s- o fn U1, un] Sn
The first part of the transition is an atomic label naming the event. This is
followed by a colon and the arity of the transition. Guard expressions g1, ..., gn
are enclosed in square brackets. Next comes a slash, after which f1,..., f, define
the outputs. Finally, update expressions uq, ..., u,, enclosed in square brackets,
define the posterior data state. There should be at most one update function per
register per transition to maintain consistency. For transitions without guards,
outputs, or updates, the corresponding components are omitted.

Our inference process follows the same basic structure as classical FSM in-
ference algorithms — we build a PTA and then iteratively merge states to form
a smaller model. Our technique differs from classical FSM inference in two ways.
Firstly, because of the more complex EFSM transitions, attempts to resolve
the nondeterminism introduced by merging states might fail, meaning that two
states which initially seemed compatible cannot actually be merged. This is not
the case in classical FSM inference. We tackle this in Subsection 3.2. Secondly,
the nondeterminism introduced by merging states cannot be resolved by simply
merging destination states. We address this in Subsection 3.3.
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3.1 PTA Construction

The first step is to construct a PTA from the observed traces in the same way
as for classical FSM inference. Beginning with the empty EFSM, we iteratively
attempt to walk each observed trace in the machine. When we reach a point
where there is no available transition, we add one. While classical FSMs use an
atomic label, EFSMs deal with data so we add guards to test for the observed
input values, and outputs which produce the observed values. For example, the
event coin(50)/[50] causes the transition coin : 1[i; = 50]/01 := 50 to be added
to the machine. The event label is coin. It takes one input, which must be equal
to the observed input value of 50, and produces the literal output 50.

3.2 Merging States

Like in classical FSM inference, we use a predefined metric to order potential
state merges by how strongly we believe that two states represent the same pro-
gram state. The INFERENCESTEP function in Algorithm 1 merges the first (high-
est scoring) pair in the list of potential merges and calls RESOLVENONDETER-
MINISM (detailed in the Subsection 3.3) to resolve any resulting nondeterminism.
If this succeeds, the merging process begins again with a new list of potential
merges, continuing until no more states can be merged. If RESOLVENONDETER-
MINISM fails, this indicates that our belief of the two states representing the same
program state was false, as we were unable to merge their respective behaviours.
We then successively attempt to merge lower scoring state pairs until either one
is successful or we run out of possibilities, at which point inference terminates.

Algorithm 1 The top level inference process.

1: function LEARN(I, scoringMetric)

2: return INFER(MAKEPTA (1), scoringMetric)
3: function INFER(efsm, scoringMetric)

4 switch INFERENCESTEP(efsm, SCOREMERGES(efsm, scoringMetric)) do
5: case None

6: return efsm

7 case Some new

8 return INFER(new, scoringMetric)

9: function INFERENCESTEP(e, merges)

10: switch merges do

11: case ||

12: return None

13: case ((s1, s2)##t)

14: €/ = MERGESTATES(s1, $2, €)

15: switch RESOLVENONDETERMINISM(NONDETPAIRS(€'), e, ¢e’) do
16: case Some new

17: return Some new

18: case None

19: return INFERENCESTEP (e, t)
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3.3 Resolving Nondeterminism by Merging Transitions

Classical FSM inference merges duplicate behaviours into a single transition
by merging their destination states. Since FSM transitions with the same origin
state are only nondeterministic if their labels are equal, there is no need to explic-
itly merge transitions. This happens “for free” when we merge their destination
states. The two transitions then have the same label, origin, and destination so
they are no longer distinct. With EFSMs, transitions which express the same
behaviour may not be identical. Thus the merging of transitions becomes an
explicit step in the algorithm. There is also the possibility that two nondeter-
ministic transitions cannot be merged, which does not occur in classical FSM
inference. For example, in Figure 6b, if 1 holds value ‘coke’, there is no ob-
servable difference between the behaviour of the two vend transitions and they
can be merged. If r; holds any value other than ‘coke’, there is an observable
difference in behaviour and the transitions cannot be merged.

Algorithm 2 Resolving nondeterminism.

1: function RESOLVENONDETERMINISM([], _, new)
2: if DETERMINISTIC(new) then
3: return Some new
4: else
5: return None
6: function RESOLVENONDETERMINISM(((from, (d1,d2), (t1,t2))#ss), old, new)
T destMerge < MERGESTATES(d1, d2, new)
8: switch MERGETRANSITIONS(old, destMerge, t1,t2) do
9: case None
10: RESOLVENONDETERMINISM(ss, old, new)
11: case Some merged
12: newPairs < NONDETPAIRS(merged)
13: switch RESOLVENONDETERMINISM(newPairs, old, merged) do
14: case Some new’
15: return Some new’
16: case None
17: RESOLVENONDETERMINISM(ss, old, new)
18: function MERGETRANSITIONS(old, destMerge, t1,t2)
19: if DIRECTLYSUBSUMES(0ld, destMerge, ORIGIN(t1, old), t2,t1) then
20: return Some REPLACETRANSITION(destMerge, t1,t2)
21: else if DIRECTLYSUBSUMES(old, destMerge, ORIGIN(t2, old), t1,t2) then
22: return Some REPLACETRANSITION(destMerge, ta,t1)
23: else
24: return None
25: function DIRECTLYSUBSUMES(e1, €2, 1, S2, 2, t1)
26: return (Vp.ACCEPTSTRACE(e1,p) A GETSUsTO(s1,e1,p) =
ACCEPTSTRACE(e2, p) A GETSUsTO(s2, e2,p) =

SUBSUMES(t2, ANTERIORCONTEXT (€2, p), t1))
A (Jc.SUBSUMES(t2, ¢, t1))
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The RESOLVENONDETERMINISM function takes a list of nondeterministic
transition pairs and merges the destination states of the first pair. It then calls
MERGETRANSITIONS to merge the transitions themselves. If this is successful,
RESOLVENONDETERMINISM recurses until all nondeterminism has been resolved.
If the transition merge fails, nondeterminism might be resolved by merging a dif-
ferent transition pair. Successive attempts are made until either one is successful
or there are no more potential merges. In the latter case, RESOLVENONDETER-
MINISM fails, indicating that the original state pair should not have been merged.

When merging EFSM transitions, one must account for the behaviour of the
other. This is conceptualised, for guarded transitions, as subsumption in [12]
and extended to transitions with data updates in [6] which introduces contexts
to record constraints on the values of inputs and registers during the execution
of an EFSM, for example that a register holds a particular value. The idea
of subsumption in context formalises the intuition that, in certain contexts, a
transition to reproduces the behaviour of ¢; and updates the data state in a
manner consistent with ¢; meaning that ¢ can be used in place of ¢; with no
observable difference in behaviour. For state s in an EFSM e, we say that a
context ¢ is obtainable if there exists a trace which is accepted by e, leaving it
in state s, and produces ¢ when executed.

Example 2. Consider the EFSM fragments in Figure 6. Let us call transitions
qa — q» and q. — qq in Figure 6a t; and t; respectively. Say that the inference
process merges states g, and g. to form the model in Figure 6b. This results in
nondeterminism between ¢t; and t2 which we would like to resolve.

vend : 0/o1 := ‘coke’ ¢ coke’
(. o vend : o ‘___
c 4qd /o1 =
O vend : 0/o1 =1 O— o1 1 @
(a) Fragment of M; before merging ¢q, (b) Fragment after merging g, and ge.
and ¢c.

vend : 0/o1 := ‘coke’
vend : 0/01 := 11
vend : 0/o1 : =11

(c) Fragment after merging ¢, and ¢, (d) Fragment after merging the two
to form M. transitions.

Fig. 6: The evolution of an EFSM fragment during the merging process.

We merged states g, and ¢, because we believe that their respective outgoing
transitions express the same behaviour. This means that their respective desti-
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nation states should represent the same program state, so we merge ¢, with ¢4
to form My, shown in Figure 6¢. We then ask if one transition accounts for the
behaviour of the other such that they can be merged. This means that in every
situation where we could have taken t; in My, we should now be able to take
to in My with no observable difference in behaviour, or vice versa. If r; holds
value ‘coke’, then t5 accounts for the behaviour of ¢;. O

In Example 2, it is unlikely that r; will always hold the value ‘coke’ in state
Gac but we only need to to account for the behaviour of ¢; in situations where it
could be taken in M;. This means that traces which got us to ¢, in M; must,
when run in M, produce contexts in which ¢, subsumes t1, i.e. contexts in which
ry = ‘coke’. If this is the case, we say that to directly subsumes t1. This is not
presented in [6] and is expressed as the first conjunct of the DIRECTLYSUBSUMES
function in Algorithm 2. The second conjunct says that there must exist a context
in which ¢5 subsumes ¢1, which accounts for models with unreachable states, from
which any transition would otherwise directly subsume any other transition.

The MERGETRANSITIONS function can only merge transitions where one di-
rectly subsumes the other. If this is not the case, then neither can be used in
place of the other without risking some observable difference in the behaviour of
the model. In this case, MERGETRANSITIONS fails, returning None.

4 Introducing Registers

The technique in Section 3 allows us to infer deterministic EFSM models from
traces by merging transitions where one subsumes the other, but we cannot yet
fully capture the causal relationship between input and output. To achieve this,
we must infer the use of internal variables which store information about the
current state for later use. This section explains how we do this.

Ezxample 3. The EFSM in Figure 7 is the best model of the traces in Figure 1
that our technique can infer so far. It is, essentially, an EFSM version of Figure 3.
While this is a more accurate view of the system — transitions are now expressed
as events with parameters rather than atomic actions — it is no more expressive.

qu )_vend . 0/o,

= o

coin : 1[iy = 100] /0y := 100

y 2 /5\

.7/6])52)] @ coin : 1[iy = 50]/01 := 50 \q/ coin : 1[iy = 50]/01 := 100
Fig. 7: An EFSM model inferred from the traces in Figure 1.

The model contains two pairs of identical coin transitions which we could

merge by zipping the path ¢1 — ¢35 — q4 — ¢7 with ¢o — ¢5 — ¢¢ — q7 as
discussed in Section 2. We cannot do this, though, as it requires the transitions
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vend : 0/o1 := ‘coke’ and vend : 0/o; := ‘pepsi’, which have different literal
outputs, to be merged. Since there is always an observable difference in their
behaviour, neither vend transition directly subsumes the other so they cannot
be merged. This means we cannot condense Figure 7 any further.

Looking at the bigger picture, the two vend transitions do actually exhibit
the same behaviour. Both produce, as output, the input of the initial select
transition. If we could abstract away the concrete inputs and outputs, we could
infer a smaller and more general model of the system. O

To this end, we allow the MERGETRANSITIONS function to attempt to in-
troduce internal variables if neither transition directly subsumes the other. The
aim here is not to create a “one size fits all” magic oracle, rather to provide a
number of smaller heuristics, each of which focusses on a particular data usage
pattern. We pass a list of heuristics to MERGETRANSITIONS as an additional ar-
gument, each of which either successfully returns an EFSM, or fails. If no direct
subsumption occurs between two transitions, the heuristics are applied in the
supplied order until either one of them succeeds or there are no more left to
apply. This approach makes the tool extensible and gives users a degree of con-
trol over the characteristics of the final model as they can choose to provide or
withhold particular heuristics. If neither transition directly subsumes the other
and none of the heuristics are successful, the transition merge fails.

The fact that a heuristic successfully produces an EFSM does not guarantee
the model to be acceptable. For example, the heuristic which always returns the
empty EFSM resolves any nondeterminism (since a model with no transitions
is trivially deterministic) but is clearly unacceptable. We must therefore be sus-
picious of solutions offered by heuristics if we want our inference process, as a
whole, to always return an acceptable model of the original traces.

This leads to the question how to define whether or not a model is acceptable.
Clearly a minimum requirement for models inferred from traces is that they
reproduce all of the observed behaviour. Since the original set of traces is finite,
we can simply run each one through the model and compare the output to the
original. We run this sanity check after each state-merge to ensure that the
model still reflects the observed behaviour. If this is not the case, the model is
discarded as if the state merge had failed. The remainder of this section details
some heuristics which are relevant to our running drinks machine example.

4.1 The Store and Reuse Heuristic

An obvious candidate for generalisation is the “store and reuse” pattern. This
manifests itself in Example 3 when the input of select is subsequently used as the
output of vend. Recognising this usage pattern allows us to introduce a storage
register to abstract away concrete data values and replace two transitions whose
outputs differ with a single transition that outputs the content of the register.
The first step is to find intratrace matches — instances of data reuse within
traces. We walk each trace in the current EFSM, recording when the output of a
transition matches the input of an earlier transition, to obtain a set of matches
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for each trace in the form {((transition, inputIndex), (transition, outputindex))}.
We then look to see if any of the matches concern the transitions we are try-
ing to merge. If so, we attempt to generalise these transitions. This consists
of introducing a fresh register to act as storage, adding an update to this reg-
ister, and dropping the restriction on the relevant input value. The value of
this register then becomes the output of the second transition. For example, we
generalise the pair ((select : 1[iy = ‘coke’],1), (vend : 0/o; = ‘coke’,1)) to
((select : 1/[r1 :=11],1), (vend : 0/o1 :=71,1)), where r1 does not already occur
in the EFSM.

When multiple transition pairs generalise to the same thing, between multi-
ple traces, we call this an intertrace match. Finding intertrace matches indicates
that the same kind of behaviour occurs across multiple traces, potentially with
different data values. This provides evidence in favour of generalising and merg-
ing transitions in the model.

4.2 The Increment and Reset Heuristic

Another usage pattern is “increment and reset”. In our drinks machine example,
the coin action outputs the sum of the previous coin inputs. This allows cus-
tomers to use multiple coins to pay for their drink and to observe the total value
they have inserted so far. Correctly identifying this usage pattern is not an easy
problem to solve, but a naive heuristic is not difficult to implement.

The idea here is that if we want to merge two transitions with identical input
values and different numeric outputs, for example coin : 1[i; = 50]/0;1 := 50 and
coin : 1[i1 = 50]/01 := 100, then the behaviour must depend on the value of
an internal variable. We implement a heuristic which, when faced with such a
merge, drops the input guard and adds an update to a fresh register, in this case
summing the current register value with the input. For this to work, we must
ensure that the register is initialised before our modified transitions are taken.
To do this, we augment transitions incident to the origin state with an update
function which sets the relevant register to zero. This is the “reset” part of the
heuristic which ensures that the register is defined before it is used. A similar
principle can be applied to other numeric functions such as subtraction.

4.3 The Same Register Use Heuristic

Heuristics operate on a per-merge basis so it is possible that multiple registers
may be introduced to serve the same purpose at different points during the
inference process. It is therefore important to recognise this and consolidate
register usage to allow transitions which implement the same behaviour with
different registers to be merged.

Consider, for example, the transitions coin : 1/01 := 1 + i1[r1 := r1 + i1]
and coin : 1/01 := ro + i1[re := 1o + i1]. Both transitions use a single register
and are identical up to the name of this register so it is possible that r; and ro
are just two different names for the same register. We therefore try to “merge”
the two registers by renaming r; to ro, or vice versa.
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5 Implementation

The next task is to code up our technique into an executable program. Unfor-
tunately, some parts of our technique, most notably the DIRECTLYSUBSUMES
function, cannot be effectively computed. This section details how we tackled
this to produce a prototype inference tool using Isabelle/HOL [14] (henceforth
referred to as just “Isabelle”), a proof assistant and programming environment.

Isabelle allows datatypes and functions to be specified using a Haskell-style
syntax, so we can use Isabelle to write programs and to prove that these programs
satisfy certain properties. From previous work [6], we already had a formalisa-
tion of EFSMs in Isabelle with various proofs. We used this as a starting point
for our implementation to avoid the duplication of work. A strength of using
Isabelle for implementation is that functions can be expressed at a high level of
abstraction, meaning that our Isabelle code is almost identical to the pseudocode
in Algorithms 1 and 2.

Since Isabelle code is not directly executable, the built-in code generator
[8] can be used to automatically convert Isabelle functions and datatypes to
runnable code in a number of conventional programming languages. The code is
not particularly well optimised but, assuming correctness of the code generator,
properties which hold for the Isabelle formalisation also hold for the generated
code. Once we had encoded our technique in Isabelle, we used the code generator
to automatically create an executable Scala implementation. This, along with
our formalisation, is available at https://github.com/acal3jmf/efsm-inference.

Of course, the code generator cannot generate code for non-computable func-
tions like DIRECTLYSUBSUMES. This leaves us with gaps in our implementation
which must be implemented manually. For these, the code_printing statement
provides the ability to replace functions with custom implementations in the tar-
get language. Surprisingly, we were only faced with two problematic functions.

The first of these, NONDETPAIRS, provides details of nondeterministic transi-
tions in an EFSM. For each state, it checks if there is a choice between any pair
of outgoing transitions. This involves checking if the conjunction of their guards
is satisfiable. We leveraged an existing SMT solver, Z3 [13], to do this for us by
converting the guards to an appropriate format at runtime.

Coping with the non-executability of DIRECTLYSUBSUMES was more challeng-
ing. This function checks subsumption for all traces which get us to a particular
state. The problem here is that there could be an infinite number of traces so we
cannot use exhaustive search. Direct subsumption can be proven by induction
over traces, on a case by case basis, but this is laborious. We cannot reasonably
ask users to do this each time the inference process needs to know whether one
transition directly subsumes another.

The solution to this lies in the fact that the inference process only encounters
transitions from the original PTA and those introduced by the heuristics. If we
can use Isabelle to prove direct subsumption for the various different families of
transitions the inference process will come across, then the task of checking direct
subsumption at runtime becomes a pattern matching exercise. For example, if
we merge two states with a pair of identical outgoing transitions, we need to
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check if a transition directly subsumes itself. Clearly every transition is able to
account for its own behaviour, so it does not make sense to check this on a per-
merge basis. We proved the general case in Isabelle so that at runtime we can
simply check to see if the two transitions we are attempting to merge are equal.
If they are, then we have direct subsumption. We applied this approach to the
other patterns that occur when using the heuristics detailed in Section 4.

Different Literal Outputs. If two transitions have outputs which always
differ, for example vend : 0/[o1 := ‘coke’] and vend : 0/[o; := ‘pepsi’], then
there is always an observable difference in behaviour. Along similar lines, tran-
sitions which produce different numbers of outputs are always distinguishable.
In both of these cases neither transition directly subsumes the other.

Drop Guard Add Update. The “store and reuse” heuristic exchanges a
concrete-value guard on an input for an assignment to a fresh storage register.
For a pair of transitions, in which one has been generalised and the other has not,
for example select : 1/[ry := i1] and select : 1[i; := ‘coke’], if we can ascertain
that the relevant register (in this case r1) is undefined in the origin state, then
the general transition directly subsumes the specific one.

Register Output. The “store and reuse” heuristic also replaces a literal
output with the content of a register. For a generalised transition to subsume an
ungeneralised one, it suffices to show that the relevant register holds the original
output value in all relevant contexts which can be obtained in the origin state.

Increment and Reset. The pattern introduced by the “increment and reset”
heuristic are more subtle. This heuristic drops a literal guard and introduces an
update which mutates the datastate. We end up testing whether a transition of
the form coin : 1/01 := r9 + i1[re := ra + i1] subsumes a transition of the form
coin : 1[iy = n]/o1 := m. Neither transition can account for the behaviour of the
other here as only one transition changes the data state. The updates are not
consistent with each other. This means that the increment and reset heuristic
only tends to be successful towards the end of the inference process when it is
able to replace many transitions of the form coin : 1[iy = n]/o1 := m at once.

Having proved direct subsumption for the various transition families, our
executable DIRECTLY SUBSUMES function simply steps through the cases until one
matches. If none of the cases match, we have no choice but to ask the user but, for
the heuristics detailed in this paper, this is not required. If additional heuristics
were used that introduced new kinds of transitions to the model, further cases
might be required to avoid queries to the user but, depending on the difficulty
of the proofs, this would not be particularly arduous.

5.1 Checking Context Properties

In some of the patterns above, we require obtainable contexts to satisfy certain
properties. Even though these are much simpler properties than subsumption,
we still cannot exhaustively search all traces, nor can we expect a user to provide
an inductive proof for each instance. Instead, we use SAL?, a model checker with

3 http://sal.csl.sri.com/
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a similar representation to our own EFSM model. This allows us to automati-
cally verify simple properties like “register r is always undefined in state s” in
milliseconds. We do sacrifice some of the safety of an inductive proof, but doing
so enables us to completely automate the process. Model checkers only work
with finite datatypes, so we can only check a finite subset of all possible inputs.
The larger this subset, the more confident we can be of the validity of a merge,
but we must balance this with performance. If we are able to check traces over
a suitable subset of inputs, then we can be reasonably confident that transition
merges made as a result of this are safe.

6 Evaluation

When presented with the traces in Figure 1, our technique infers the machine
in Figure 5 which we described as “ideal” in Section 2. There are many different
metrics which could be used to assess this model including size and complexity,
predictive power, observance of original behaviour, and correct classification of
legal and illegal behaviours. This section provides evaluation and discussion of
both the model and the inference process with reference to these metrics.

A common evaluation metric of classical FSM inference techniques [10,18] is
the classification of legal and illegal behaviour. This is not suited to techniques
that work only with observations of system behaviour which are, by definition,
legal behaviours. It is unreasonable to evaluate such techniques with respect to
illegal behaviour as examples of this are not available to the inference process.

The main aim of an automated inference is to create models that are easy to
understand. This makes smaller models with fewer transitions more desirable.
The model in Figure 5 is both small and simple as it has only three states and
three transitions. The original PTA has ten of each. Our model is also smaller
than the classical FSM in Figure 3 which has seven states and nine transitions.

Inferred models should, of course, exhibit all of the originally observed be-
haviour. This holds for our technique by definition since, at each stage of infer-
ence, the new machine is checked to ensure that it accepts all of the originally
observed traces. The model in Figure 5 accepts all of the traces in Figure 1 and
produces all of the originally observed outputs.

An important difference between inference and minimisation is that inference
aims to generalise from the observed behaviour. The model we inferred exhibits
the same top-level behaviour no matter what drink the user selects or what
values of coins the user pays for their drink with. While this inevitably leads to
models which over generalise the observed behaviour, it enables us to predict
how the system might behave when faced with unseen inputs.

An advantage of our model over the one in Figure 4 is that our model is able
to compute outputs from inputs. For any sequence of inputs to coin, we are able
to predict the value of the output rather than simply placing constraints on it.
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7 Conclusions and Future Works

This work presents a technique to infer EFSM models from black-box system
traces. Building on [6] we have now shown how to infer computational EFSM
models from traces by using heuristics which recognise data usage patterns.
We defined direct subsumption and used it to help us merge transitions. We
formalised our technique in Isabelle/HOL and exported it to executable Scala
code using Isabelle’s built-in code generator where possible.

Most modern inference techniques fit into two categories. Active techniques
such as [1,5,9] make use of an oracle, usually the end-user, to guide the inference
by classifying traces as either possible or impossible. Assuming the availability
of such an oracle, active techniques produce good quality models but are quite
labour intensive. By contrast, passive methods such as [2,10,18] sacrifice the
oracle in favour of complete automation. These techniques infer models from
traces of the system under inference so, unlike active methods, they often do not
have access to examples of impossible system behaviour in the form of negative
traces which the system, by definition, is unable to produce.

Classical FSM models use atomic transitions which cannot separate actions
from data. They must encode data within the control flow, so struggle with sys-
tems that exhibit data-dependent behaviour. EFSM models feature parametrised
inputs, guarded transitions, and a persistent data state so are much better
suited to modelling data-dependent behaviour. Existing EFSM inference tech-
niques [11,19] focus on inferring transition guards but do not infer models which
capture the causal relationship between input and output. Attempts have been
made to infer computational models [17], but these rely on white-box traces to
expose the inner system state. Such traces are often unavailable so the infer-
ence of computational EFSM models from black-box traces is a key challenge in
EFSM inference. This work presents such a technique.

Future work includes the implementation of further heuristics, such as one to
recognise boundary conditions which separate behaviour. Additionally, the tool
needs to be run on larger case studies to investigate how well it scales.
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