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ABSTRACT Model transformations play a central role in model-driven software development. Hence, logical unsafe model
transformation can result in erroneous systems. Still, most model transformations are written in languages that do not provide
built-in safeness guarantees.
We present a new technique to construct tool support for domain-specific languages (DSLs) inside the interactive theorem
prover environment Isabelle. Our approach is based on modeling the DSL formally in higher-order logic (HOL), modeling the
API of Isabelle inside it, and defining the transformation between these two. Reflection via the powerful code generators yields
code that can be integrated as extension into Isabelle and its user interface. Moreover, we use code generation to produce
tactic code which is bound to appropriate command-level syntax.
Our approach ensures the logical safeness (conservativity) of the theorem prover extension and, thus, provides a certified tool
for the DSL in all aspects: the deductive capacities of theorem prover, code generation, and IDE support. We demonstrate
our approach by extending Isabelle/HOL with support for UML/OCL and, more generally, providing support for a formal
object-oriented modeling method.
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1. Introduction

Model transformations play a central role in model-driven soft-
ware development. Hence, logical unsafe model transformation
can result in erroneous systems. Still, most model transfor-
mations are written in languages that do not provide built-in
safeness guarantees. In contrast, logically safe extensionality
has been a key-feature of interactive theorem proving systems
in the higher-order logic (HOL) family. The main goal of these
systems (inspired by the LCF system) is to achieve correctness
by construction for primitive inferences in a fairly small kernel,
combined with flexible programmability in user space. The
implementation language SML (Paulson 1996) protects the in-
ference kernel by its type discipline, and top-level command
interaction allowing for the development of layers of commands
over this kernel. Extensionality is provided in modern sys-
tems like Coq (Bertot and Castéran 2004) or Isabelle (Nipkow
et al. 2009) by user-friendly high-level languages such as Gal-
lina (Coq 2019) for Coq or Isar (Wenzel 2002) for Isabelle.

Extensionality leverages the scalability of the definitional
principles of the LCF approach, paving the way for specific sup-
port of specification constructs for, e. g., datatypes or recursive
function definitions. Specification constructs, are short-hands
for theory extensions consisting of a collection of constant and
type declarations, definitional axioms, and tactic proofs estab-
lishing proofs for a number of derived rules to reason over this
construct (see Section 2 for more details).

A theory is a pair (Σ, Φ) of a signature Σ and a set of for-
mulas Φ (denoting axioms or theorems), a theory extension
is a map (Σ, Φ) 7→ (Σ ] Σ′, Φ ]Φ′). A theory extension is
conservative iff in the resulting super-theory no new theorems
can be proved about the language of the original theory. As a
consequence, logically consistency (falsehood not derivable) of
the original theory is preserved in the super-theory.

Logically safe extensionality (or synonymous: conservativ-
ity (Melham 1992)) is at the heart of this paper. We argue that in
the context of semantics for domain-specific languages (DSLs),
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conservativity is a more relevant notion than correctness. This
is because the notion of correctness involves the following in-
gredients:

– a translation function T mapping the DSL to some target
language L,

– a common semantic domain D,
– two semantic functions IDSL and IL, and,
– a proof that T preserves the underlying semantics, i.e.,

IL(T(X)) = IDSL(X).

The notion of correctness implies obviously a lot of formal
machinery which is in stark contrast to the simplicity and at-
tractivity of the DSL approach: simply define a new language
with appropriate syntax in terms of a language that one knows,
and that has tool support. However, if the target language L
is a specification language, or even a general logic like HOL,
as in our case, the critical question is whether the result of the
translation T(d) is logically consistent.

Compiling an entire DSL definition into a series of con-
servative specification constructs and deriving the resulting
DSL-specific rules and algebras automatically is a dauntingly
complex task. The main objective of this paper is to present
a technique to reduce this complexity and to demonstrate the
feasibility of this technique on a substantial case study. Instead
of writing a DSL-to-theory compiler in SML, we propose to
write it logically in Isabelle/HOL itself, to use Isabelle’s code
generator to convert it into SML, and to bind the resulting code
to specific command-level syntax of the Isabelle system. The
generated DSL tool reuses the infrastructure of the theorem
prover platform, such as the Prover IDE (PIDE), the code gener-
ator and the documentation generation facilities. Last but not
least, the DSL tool possesses integrated automated and interac-
tive proof support, from which the developer can profit in each
stage of its development process.

In more detail, our technique comprises:

1. An (abstract-syntax) model of the Isabelle API. This model
has been published in (Tuong and Wolff 2015) and can be
reused by developers of other DSL support extensions.

2. An (abstract-syntax) model of UML/OCL. This model has
been published in (Tuong 2016), together with a functional
working example in (Tuong and Wolff 2015).

3. A compiler written in HOL mapping class diagrams to
Isabelle/HOL definitions and Isabelle/Isar proofs.

Thus, similar to specification constructs, a component is built
that derives the lemmas of an “object-oriented datatype theory”
from a class model. Being the basis for more abstract proofs
from the problem domain, they allow for formal code verifi-
cation, refinement and test-generation techniques that UML
models usually lack.

We showcase our technique by building a certified proof
tool for a fragment of UML/OCL that focuses on the contract
language for data invariants and operations.

The rest of the paper is structured as follows: after introduc-
ing the background of our work (Section 2), we present our tool

(Section 3). Then, we discuss the formal semantics (Section 4)
of UML/OCL, followed by our approach to support a DSL as a
certified extension (Section 5). Next, we illustrate the resulting
tool (Section 6) and discuss our lessons learned from following
two different implementation strategies for building a formal
UML/OCL tool based on Isabelle/HOL (Section 7). Finally, we
draw conclusions in Section 8.

2. Background: Isabelle and UML/OCL
In this section, we briefly outline the architecture of Isabelle
as well as the logic HOL (our semantic meta-language). Then
we introduce UML/OCL (the DSL, in our example) as a formal
specification language.

2.1. The Isabelle system architecture
The implementation of our technique has been realized on the Is-
abelle system; to discuss the issues of “certification” and “trust,”
it is helpful to give an overall glimpse on its architecture (see
Fig. 1). The system is built upon an SML (Paulson 1996) in-
terpreter and compiler. SML is a strongly typed language with
a powerful module system. On this layer resides the system-
kernel implementing types and λ-terms, signatures and theories.
The particular type thm consists basically of triples of the form
Γ `θ φ, stating that the Boolean term φ could be derived in
theory θ from the assumptions Γ, i. e., a list of Boolean terms.
The thm type is protected by the SML module system, which
means that only kernel operations from this layer can produce
thm objects; all higher layers providing tactics and packages
reside on these operations of this fairly small kernel. These
characteristics of a small and well protected kernel are com-
mon for the family of LCF-style systems such as Coq, HOL4,
HOL-light, or Isabelle. The package layer provides support for
specification constructs such as constant and type definitions, in-
ductive datatypes, total recursive function definitions etc, which
give sufficient user support for common modeling situations.

2.2. Basic conservative specification constructs
We present two very basic specification constructs to explain
the underlying principles:

1. Constant definitions, written as follows in Isabelle’s input
language Isar:

Isabelle (Isar)
definition c::τ where c = E

Constant definitions can be seen as a kind of macro for the
declaration of a constant symbol c of type τ, and an axiom
c = E (where E is an expression). However, a number of
syntactic checks turn it into a definitional axiom. Most no-
tably: c must not be defined already, c = E must be well
typed, E must not contain free variables, and c must not
occur in E (i.e, no recursion). These syntactic constraints
are mechanically checked. It is not difficult to see that a
definition works like the introduction of an abbreviation
and is thus conservative: in all proofs of the super-theory,
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Fig. 1 The system architecture of Isabelle (left-hand side) and the asynchronous communication between the Isabelle system and
the IDE (right-hand side).

the constant symbol c can be expanded which gives a proof
in the original theory.

2. Type definitions, written as follows:

Isabelle (Isar)
typedef τ = E

Type definitions follow the same idea as constant definition:
a new type is a kind of abbreviation for an old one. Since
for any type τ one can construct a characteristic function
of type τ ⇒ bool, it is straightforward to construct a
typed set theory inside HOL via conservative definitions,
providing the type τ set. Now, a type definition τ = E
constructs an isomorphism between a non-empty subset
of elements characterized by E and the fresh type symbol
τ. This isomorphism is represented via two fresh constant
symbols and two axioms linking them to the subset E.
Isabelle generates a proof obligation requiring that the set
denoted by E is non-empty.

All higher-level specification constructs of Isabelle, such as
datatype definitions, record definitions, or definitions of (well-
founded) recursive functions, are based on these two construc-
tions. Actually, the entire HOL library constructed over the
axiomatized core logic. Consequently, logical consistency of
the entire library boils down to the consistency of the core logic,
which is generally accepted; for example, see (Gordon and
Melham 1993) for a model of the core of HOL in ZFC (van
Heijenoort 2002).

2.3. Isabelle’s HOL library
The HOL library theories comprise a typed set theory; it sup-
ports, e. g., the usual notation {x. P(x)} for set comprehen-
sions or x ∈ S for set membership. We use the datatype spec-
ification construct to define new datatypes such as the option
type, which is similar to the Maybe type in Haskell:

Isabelle (Isar)
datatype
’a option = None | the:Some ’a

This introduces the usual constructors None and Some on
this implicitly declared option type. It defines also the selec-
tor the and derives the lemma the(Some X) = X.

The type of partial functions is ’a ⇒ ’b option, usu-
ally denoted by ’a ⇀ ’b (technically, ’a ⇀ ’b is a type
synonym for ’a ⇒ ’b option). The construct also au-
tomatically generates proofs that establish a number of rules
resulting from these definitions such as the distinctness of Some
and None, the injectivity of Some and an induction principle.

Finally, the Isabelle library comprises conservative theories
for lists, pairs, total and partial functions, and arithmetic.

2.4. A guided tour through UML/OCL
UML (OMG 2011) and its textual extension OCL (OMG 2012)
are one of the few industrially used modeling-languages. While
UML class models mostly declare types and data occurring
in a state (i. e., objects), OCL expressions constrain the set of
states and state transitions. In the following, we will introduce
UML/OCL by a small example of a class model together with
its class invariants and a method contract in OCL. Fig. 2 de-
scribes a set of clients owning bank accounts using a textual
representation that we share with USE (Gogolla et al. 2007).

In our example, each account is either a “current account”
or a “saving account” (specified with the inheritance relation
“_ < _”), and belongs to exactly one bank and one client. The
relation between an Account and a Bank is modeled as an
association with multiplicity constraints that describe, e. g., if
the relation is of type “one-to-one” (and, thus, bijective), “one-
to-many” (and, thus, injective), or “many-to-many.”

For expressing more complex data invariants as well as
operation contracts, the UML can be enriched with the Object
Constraint Language (OCL) (OMG 2012). OCL is a textual
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OCL
Class Bank

Attributes name : String

Class Client
Attributes client: String

age : Integer

Class Account
Attributes id : Integer

balance : Currency

OCL
Class Current < Account

Attributes overdraft : Currency

Association bank Between
Account [1 .. *] Role b_accounts
Bank [1] Role bank

Association owner Between
Account [1 .. *] Role c_accounts
Client [1] Role owner

OCL
Context c: Current Inv "25 <= c.owner.age implies c.overdraft = 250"

Inv "25 > c.owner.age implies c.overdraft = 0"
Context Bank :: create(client:String, age:Integer)
Pre "self.clients->forAll(c | c.client <> client or c.age <> age)"
Post "self.clients->exists(c | c.client = client and c.age = age)"

Fig. 2 A simple class model with OCL constraints capturing a bank account.

language; its core logic is a four-valued logic that contains two
exceptional elements: null and invalid. Here, null is a
non-strict element that represents, similar to the null reference in
object-oriented programming languages, the absence of a value.
In contrast, invalid is a strict exception element representing
undefined behavior such as the result of a division by zero.

In our example, we express the fact that clients of age 25 or
older are allowed an overdraft up to e 250 as an OCL invariant
of the class Current account. Moreover, we describe the
semantics of the constructor the class Bank as a operation
contract, i. e., a pair of pre- and postconditions.

The OCL expression language only appears inside the invari-
ants and the pre- and post conditions. It provides basic opera-
tions such as the logical connectives such as and, implies
as well as the arithmetic operations _ <= _ and finally opera-
tions for sets and sequences of data,e. g., forAll. The OCL
expressions above contain operation symbols that were induced
by the class model above; for example, the operation .owner
is implicitly declared in the association owner and maps to
each object of (sub-)class Account the set of Client’s which
are in the owner-relation to this object; due to the cardinality
constraints this set is known to have exactly one element. Fur-
thermore, the operation .age is implicitly declared in the class
definition Client and projects to a given Client object the
content of the age attribute. The semantics of the operations,
such as .owner and .age, depends on the given class model;
it is the Isabelle theory of these operations that constitutes the
“object-oriented datatype theory” of the above class model.

3. A certified proof tool for OCL

A formal methods tool for the fragment of UML/OCL compris-
ing the contract-language for data invariants and operations and
thus supporting object-oriented data-modeling consists of two
components:

1. a formal semantics of the basic OCL operations (i. e., logic,
arithmetic, collection types); the semantics of the OCL
library is given as shallow embedding into HOL, and

2. a theorem prover extension that accepts a textual repre-
sentation of a class model and converts it into an object-
oriented datatype theory. It should reflect the typing disci-
pline of UML/OCL tightly and be certifying.

The resulting system is integrated into Isabelle, supporting the
usual IDE-like editing, exploration, document and code genera-
tion facilities of the Isabelle system. This is possible due to the
flexibility of Isabelle’s Isar language (Wenzel 2002) and its IDE
Isabelle/jEdit (Wenzel 2020).

The screenshot in Fig. 3 gives a glimpse of the result of
our entire construction: the end-user interface of our tool is
based on the Isabelle/jEdit. The upper part of the window
shows parts of our OCL example and the lower part shows, in
shallow mode, a certified “down-cast”-property of the model.
Fig. 4 shows a human readable certificate that is generated, for
the same property, in deep mode (the whole content is about
7 kLoC). This targets, e. g., developers improving the certificate
generation while inspecting Fig. 5 line by line.

A noticeable characteristic of Isabelle’s IDE layer (Wenzel
2014) is the “continuous build and continuous check” func-
tionality, where “check” means “certification” in our context.
It enables the user to infer, e. g., the type information by just
hovering over sub-expressions in an already checked area, or
to infer in an OCL expression to jump where an operation is
defined in the class model by clicking on it.

We provide several packages supporting various modeling
tasks arising from the specific needs of UML/OCL seen as DSL:

– Class Model Package for declaring a UML data model,
i. e., classes, associations, aggregations, enumerations.

– Invariant & Operation Package for declaring, in the con-
text of an already defined class model, OCL class invariants
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Fig. 3 User interface and shallow mode certification.

Fig. 4 Human readable certificate in deep mode (mostly tar-
geting developers).

and operation contracts.
– Instance Package for declaring class instances (objects).
– State Package for grouping objects in a common state.
– Transition Package for transition properties over a pair of

pre- and post-state.

After defining our data model using the Class Model Pack-
age (recall Fig. 3), we can use the Isar Instance command
provided by the Instance Package for defining objects:

Isabelle (Isar)
Instance
S1::Account = ([max = 2000]::Savings)

This command generates a set of definitions using the appro-
priate definitions in terms of our OCL library:

Isabelle (Isar)
definition
S1Account = mkSavings(mkEXT Savings oid3 None None)

(Some 2000)
definition
S1 = ((λ _. (Some(Some(S1Account)))::Savings)

.oclAsType(Account))

Fig. 5 Saving Fig. 4 and manually loading it in Isabelle/jEdit:
it becomes now certified.

Besides definitions, packages generally also prove various
user-defined properties (lemmas) over the UML/OCL model.
In our example, the Class Model Package already proved that
down-casting an object X from the topmost class OclAny to
Savings does yield an error if X is not a subtype of Account:

Isabelle (Isar)
lemma τ � δ X

=⇒ τ 6� (X::OclAny).oclIsKindOf(Account)

=⇒ τ � X.oclAsType(Savings) , invalid

Here, we write δ X for not X.oclIsUndefined().
On a more pragmatic aspect, the provided packages were im-

plemented with minimal efforts. For instance, in the following
execution trace:

Transition [• • •] σ2

 

State σ1 = [• • •]

Transition σ1 σ2

 

Instance X = • • •

State σ1 = [X]

Transition σ1 σ2

where “• • •” represents a complex expression normally only
understood by Instance. The particularity of our construc-
tion is that “• • •” becomes implicitly supported by State and
Transition, without changing much of their implementations.

Fundamentally, our approach maintains the open and incre-
mental character of Isabelle, particularly adapted to general
users experimenting changing DSL constructs. However, be-
yond acting themselves as users, developers are also typically
involved in extending user tools by new features, to imple-
ment different choices of “semantic deviation points” very com-
mon in the evolution of the UML, or to add generators for a
new family of lemmas derivable from UML/OCL models. To
this end, the meta-model construction described in Section 5
includes two modes specifically tailored for the needs of the
two categories of users; they can be controlled by the generic
command generation_syntax offering the two different
options shallow and deep.
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– In shallow mode, the system uses the Isabelle directly to
encode a given UML/OCL model as well as to prove prop-
erties over this data model (certification). The proof prove
strategies are derived from the model and the implemen-
tation makes use of Isabelle’s code generator. Still, the
trust in the system does not depend on the rather large code
generator implementation: the certification only relies on
the execution on methods of the small kernel of Isabelle,
and, hence, only the kernel needs to be trusted. Also, as the
kernel API is called without further overhead, this shallow
mode is faster than deep mode. Consequently, shallow
mode is the recommended for end-users of our system.

– In deep mode, for each UML/OCL command, an object-
oriented datatype theory is generated (but not evaluated)
using the concrete syntax of Isabelle/Isar. Usually, evaluat-
ing such large theory texts is significantly slower compared
to using the internal API of Isabelle, which works on the
abstract syntax of Isabelle/Isar. Hence, this mode is recom-
mended for developers, who need to go through generated
proof scripts in Isar on a step-wise basis, also to ensure
that all generated specifications are the most faithfully rep-
resenting their initial expectations. Fig. 4 (respectively
Fig. 5) shows a fragment of such a generated proof.

Finally, for obvious consumer protection reasons, the delicate
art of the exercise is to ensure that the loading of the generated
object-oriented datatype theory implemented by developers (in
deep mode) is really conforming to the sequence of functions
later shipped and executed by end-users (in shallow mode).

To this end, we show how our original construction is drasti-
cally isolating the problem: it relies on implementing the two
modes with a shared translation function T, making the differ-
ence in implementation of the two modes happening only after
the execution of T. This approach makes any possible semantic
variations between the two modes transparent on the level of
the end-user DSL. To our knowledge, this technique supporting
a DSL through a unified meta-model used to generate different
presentations that are certified over different ways by the kernel
has never been applied before in any existing proof assistant.
This technique has never been applied to a language whose
semantic interpretation is (deliberately) so versatile as is the
case for UML.

4. Semantics of UML/OCL
Our tool is based on a library defining its core semantic concepts
as a “shallow embedding” and a library of “built-in” OCL opera-
tions (Brucker et al. 2014). In the following we will explain the
core concepts such as the representation of OCL types in HOL
to show how our generated definitions for states and objects
interfere with them.

4.1. Core concepts
In general, a shallow embedding of object languages (such as
OCL) into a meta-language (such as HOL) depends on the use
of higher-order abstract syntax, i. e., binding in object-language
terms is represented by λ-terms. Moreover, the type system of

the object-language should be represented into types of the meta-
language in an injective way, and the semantic representation
of operators should respect this mapping. This way, only well-
typed expressions of the object-language can be represented
in the embedding, which liberates proof rules over the object
language from side conditions referring to “well-typedness” of
expressions, and which liberates the proof system from the need
for type soundness (meta-)proofs. Overall, one can expect a
far more efficient, application-oriented support for the object
language, which is vital for proving or symbolic executions.

Types such as Boolean, Integer, and Set(X) are
mapped to the corresponding (distinct) types ’A Boolean,
’A Integer, and Set’A(X). On the level of operations,
for example, not or and having OCL types Boolean ->
Boolean and (Boolean,Boolean)-> Boolean are de-
fined as follows:

Isabelle (Isar)
definition
not _ :: ’A Boolean → ’A Boolean

_ and _ :: ’A Boolean → ’A Boolean → ’A
Boolean

The OMG standard (OMG 2012) require all OCL types
to possess explicit invalid and null elements (including
the logic type Boolean). To represent this type requirement
uniformly, we introduce the type classes ’α :: tc_null to
requiring the existence of two distinct elements bottom and
null. Using the option type is a straightforward means to
construct types in the class tc_null by “double lifting” basic
types via (’α option) option: any doubly lifted type
is automatically an instance of the type class tc_null. This
construction via type classes is flexible enough for constructions
different from double-lifting, as is needed for sets, for example.

Since any OCL expression of type T may contain accessors
to objects living in a pre-state and a post-state, OCL operations
represent functions depending on a state pair yielding the corre-
sponding type τT in HOL. This motivates the type synonym:

Isabelle (Isar)
type_synonym
V’A(τT) = ’A state → ’A state → τT::tc_null

We use this type synonym for constructing the types for OCL
expressions (we discuss the precise form of ’A state built
over any object universe ’A in the next section). The type ’A
Boolean is an abbreviation for V’A((bool option)
option), similarly ’A Integer is an abbreviation for
V’A((int option) option).

For example, the OCL logical constant true can now be
defined as a function mapping any state transition pair τ to the
(doubly lifted) truth value of HOL:

Isabelle (Isar)
definition
true::V’A(’A Boolean) = λ τ. Some (Some True)

Analogously, we define the polymorphic constant invalid
for all types of class tc_null by the constant function yielding
bottom:

6 Achim D. Brucker et al



Isabelle (Isar)
definition
invalid::V’A(’α::tc_null) = λ τ. bottom

Finally, we introduce a validity notion which is key for se-
mantic invariants, pre- and postconditions. An expression E
of type ′A Boolean is valid for a state-pair τ = (σ, σ′) iff it
evaluates to true:

Isabelle (Isar)
definition

τ � E = (E (τ) = true τ)

This is another way of saying that the transition τ is admitted
by E. Based on validity, the semantics of an invariant can be
given. For example, consider the following invariant (cf. Fig. 2):

OCL
Context c:Account Inv "0 < c.balance"

We represent this invariant in Isabelle/HOL by

Isabelle (Isar)
definition invAccount(c)(τ) =

(τ � 0 < c.balance ∧ τ � 0 < c.balance@pre)

Here c stands for any object of the class Account in
the concrete object universe ABank generated from the given
Bank class. The operation _ .balance is induced from the
class definition and has type VABank(Account) → ABank

Integer; its type injectively represents the corresponding
OCL type allowing type safeness for navigation on objects. The
conjunction reflects the fact that the constraint must hold in
both states. Since the arithmetic operation _ < _ is strict with
respect to invalid (as most OCL operators), it implicitly
follows that c.balance must be defined and represent valid
access to memory in both states; the main justification for the
design decision to have a multi-valued logic for OCL is this
particularly compact possibility to specify the valid parts in
object graphs.

4.2. States and object universes
While generic library operations are defined to work on all
object universes ’A represented by a polymorphic type variable,
our class model package generates a concrete object universe
ABank, instantiating the necessary generic operations (from the
concrete syntax used in Fig. 2 and Fig. 3). In this object universe,
semantic definitions can be given for the implicit operations
mentioned in Section 4. The following elements are generated:

– type definitions for each class, which is a type of object
instances comprising an object-identity; classes are orga-
nized in a non-reflexive partial inheritance relation (e. g.,
Current < Account),

– accessors for each attribute of a class, dereferenced in the
pre-state and in the post-state (e. g., _ .age@pre and
_ .age),

– accessors for each role-end of an association or aggregation
(e. g., _ .owner@pre and _ .owner,

– cast operations _ .oclAsType(C) for each class C
along the inheritance relation _ < _,

– test operations _ .oclIsTypeOf(C) for the actual
type of an object, i. e., the type under which it is dynami-
cally created. As in Java, this type does not change under
casting.

– accessors _ .allInstances() returning the set of all
object instances existing at some time in the state of a
system,

– for each class C, there is a test _ .oclIsKindOf(C)
which tests if the dynamic type of the given object belongs
to one subtype of C,

– and finally a number of lemmas and proofs setting up the
object-oriented datatype theory (Tuong 2016).

These definitions, lemmas and proofs refer to a typed denota-
tional model, the object universe. In the work presented in this
paper, we use a “closed world” version of the universe described
in (Brucker and Wolff 2008a; Brucker 2007). Thus, our class
model package provides, for a given class model, a concrete
type instance for the generic object-universe ’A over which a
state of objects (subsequently described) and all OCL operations
are polymorphically parameterized.

The pivotal concept of state can now be defined as a pair
consisting of a mapping from object identifiers oid to our object
universe ‘A, i. e., the type comprising all formats of object
instances, and a map of associations:

Isabelle (Isar)
record (‘A) state =

heap :: oid ⇀ ‘A
assocs :: oid ⇀ oid list list list

Associations are potentially n-ary relations on objects; the
map of associations encodes this by sorted lists of oids.

The object universe is basically constructed as a sum type
of the possible object instances for a given class diagram; the
main technical difficulty of the construction is that up-and-down
casts must be lossless in object-oriented datatype theories as
discussed in the next section. This is realized by a suitable
encoding of object extensions in each object instance possess-
ing sub-classes; see (Brucker and Wolff 2008a; Longuet et al.
2014) for details of this construction. This extensible approach,
i.e., following (Brucker and Wolff 2008a) has also been used
successfully for modeling large and widely-used data struc-
tures such as the Document Object Model (DOM) used in web
browsers (Brucker and Herzberg 2020).

4.3. Properties of object-oriented datatype theories
As property of the object universe construction we obtain the
following rule schema for all Ci <∗ Cj (i. e., the reflexive
transitive closure of the subclass relation):

((X :: Ci).oclAsType(Cj).oclAsType(Ci)) = X

Meaning that whenever we cast up an object instance and cast
it down again, we get the identity, i. e., casting is lossless. An
instance of this scheme is:

Model Transformation as Conservative Theory-Transformation 7



Isabelle (Isar)
lemma
((X::Savings).oclAsType(Account)

.oclAsType(Savings))=X

where X is a free variable of the static (HOL) type Savings.
The dual “down-up-cast” property is true under the precondition
that the dynamic type test X.oclAsType(Ci) yields true.

Definitions of tests and casts are strict and neutral or idem-
potent on null. For example, our tool proves the instances of
the lemma scheme:

(invalid :: Ci).oclIsTypeOf(Cj) = invalid

(null :: Ci).oclAsType( Cj) = null

(invalid :: Ci).oclAsType( Cj) = invalid

(null :: Ci).oclIsTypeOf(Cj) = true

Besides the lemmas on strictness and null-preservation, the
relative position of Ci and Cj (in Ci.oclIsTypeOf(Cj))
reveals opposite consequences (where we will write δ X for
not X.oclIsUndefined() and, moreover, we will write
υ X for not X.oclIsInvalid()):

1. The type testing from a class Ci to a larger class Cj is
always false. More precisely, for all classes Ci <

+ Cj
or Ci 6<∗ Cj and Ci 6>∗ Cj:

τ |= δ X =⇒
τ |= ((X :: Ci).oclIsTypeOf(Cj)) , false

2. When reversing the inheritance relation between Ci and
Cj, as soon as an object of the large class Ci does belong
to the type of a small class Cj, the casting to Cj fails for
all its sub-classes. For all Ck <

+ Cj <
∗ Ci (or whenever

Ci 6<∗ Cj and Ci 6>∗ Cj):

τ |= δ X =⇒
τ |= (X :: Ci).oclIsTypeOf(Cj) =⇒

τ 6|= υ (X.oclAsType(Ck))

5. Certified model transformation
As mentioned earlier, implementing support for specification
constructs is usually done in the implementation layers of mod-
ern interactive theorem prover environments, so in SML for
Isabelle/HOL (Nipkow et al. 2009) or HOL4 (Slind and Norrish
2008), OCaml for Coq (Bertot and Castéran 2004), or Lisp for
PVS (Owre et al. 1996). Despite notable improvements in pro-
gramming technology, this did not change very much since the
advent of the LCF-style provers in the 1970ies. However, the
approach raises for some time concern with respect to its main-
tainability. There is a growing interest in meta-theoretic prop-
erties of implementations based on tactics such as termination
and completeness. For example, it was observed that LCF-style
component programming “. . . requires intimate knowledge of

the internals of the underlying theorem prover . . . ” and more-
over that “. . . there is no way to check at compile time if the
proofs will really compose . . . ” (Chaieb and Nipkow 2005).

Our model-based approach provides at least a partial answer
to this problem, while remaining a pragmatic compromise: we
use a partial model of the Isabelle API with a partially modeled
semantics. We model the abstract syntax trees (ASTs) of terms,
specification construction operations and tactics (proof con-
struction), which allows us to formally describe the compilation
functions and many well-formedness constraints. In contrast,
the semantics of type inference and the tactic operations on for-
mulas were not part of our Isabelle API model; these operations
were represented as uninterpreted symbols. This does not ex-
clude that a certain number of properties can be proved formally
over the translation function. For example, the proofs over trans-
lation functions permit to formally establish their termination or
compilation completeness results of the form “for well-formed
input, the specification construct implementation will always
produce a syntactic sequence of elementary theory extensions,”
which remains to be validated by the Isabelle kernel.

It is helpful to understand how an interactive prover such as
Isabelle processes specification constructs: a command interpre-
tation can be seen as a transaction of the underlying logical con-
text σ, which contains among many other things the signature
as well as all established theorems of a theory. Such a transac-
tion is then a partial function of type σ ⇀ σ; if the transaction
fails (due to, e. g., type checking), particular Isabelle-specific
error recovery techniques will try to cope with the partially in-
correct theory, and try to find recovery entry points in case of
modifications of the system input by the user.

The translation process covering the different paths and op-
tions is presented in Section 3. Our methodology to construct
DSL specification constructs consists of the following steps:

1. We define the abstract syntax (AST) of its DSL as a collec-
tion of inductive datatypes in HOL; in UML and Model-
driven Architecture (MDA) communities, this is called a
“meta-model” (MDSL) of the DSL.

2. We define a meta-model (MIsaAPI) of the Isabelle kernel
API tailored to our needs, and also conceived to overcome
the aforementioned portability problem.

3. We define by a collection of function definitions the con-
version C mappingMDSL toMIsaAPI. Since C is defined
in HOL, it can be made subject to a formal analysis by
proofs in Isabelle/HOL itself.

4. We provide several setups for Isabelle’s powerful code
generator, most notably:

– Shallow mode: This is SML code that is directly
linked to the internal Isabelle API.

– Deep mode: This is basically a textual pretty-print in
Isabelle/Isar syntax.

For our concrete instance of the meta-modelMDSL, this com-
prises definitions for classes with invariants, associations, ag-
gregations and operation constructs. Additionally, constructs
for defining object models (concrete states) are made available.
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The conversion C comprises both the generation of decla-
rations, definitions in terms of denotational constructions, au-
tomated proofs for side conditions of type definitions and the
generation of tactic support over the resulting theory. Since C
produces a sequence ofMIsaAPI model elements that represent a
composition of more elementary conservative specification con-
structs and proofs, the entire sequence will represent a conserva-
tive theory extension. This sequence can be seen as a certificate
of the theory extension, which still has to be validated by the
Isabelle kernel. Since invariants and operation contracts contain
OCL library operations, the certification process—which in-
cludes type and proof checking—will be executed into a logical
context containing the OCL library described in Section 4.

For the validation of theMIsaAPI-sequence, we proceed in
two different ways: in the deep mode, the generated textual
pretty-print of a theory file is imported by Isabelle, whereas
in shallow mode the generated SML code is directly compiled
by SML compiler and linked to the internal Isabelle API’s. As
it can be expected, the latter process has a substantially better
performance and can be done behind the scenes in Isabelle.
The resulting user experience with respect to IDE support and
reactivity of the generated theory extension is sufficient for
medium-sized models.

5.1. A meta-model for UML/OCL
Following our strategy to represent the models as abstract HOL
entities, our meta-modelMUML is defined via a number of in-
ductive data-type definitions in Isabelle/HOL. Here is a general
overview with the main concepts, i. e., the data model

Isabelle (Isar)
datatype uml_type =
OclAny | String | ... | Sequence uml_type |

...

datatype uml_class =
Class super_class: uml_class

class_name : string
attributes : (string * uml_type) list

| OclAny

as well as the behavioral aspects, i. e., the contracts:
Isabelle (Isar)

datatype uml_opn_contract =
Contract context_class :string

opn_sign :string*(string*uml_type)
list

preconds :(string*string) list
postconds:(string*string) list

As a consequence, a part of our example (Fig. 2) has the
abstract syntax term:

OCL
Class OclAny ’’Bank’’ [(’’name’’,String)]

To completeMUML with the definition of invariants, asso-
ciations and aggregations with their multiplicities we proceed
analogously. Terms for preconditions and postconditions are
still represented as strings, i. e., unvalidated syntactic represen-
tations of OCL formulas.

5.2. A meta-model for the Isabelle/HOL API
TheMIsaAPI meta-model supports the representation of

– types and terms (with syntax-declaration elements),
– elements for tactics and Isar high-level proof methods, and
– a selection of Isabelle commands (e. g., datatype,
lemma, . . . ).

To give the reader an introduction to this API, consider Curry-
style typed λ-terms:

T ::= T T | λ V :: τ. T |V :: τ |C :: τ

where τ are a set of type expressions, V is a set of free variable
symbols and C is a set of constant symbols. The core of the
Isabelle API’s for λ-terms, which serve as a universal represen-
tation device for all formulas in Isabelle’s logics, is a nearly
one-to-one representation of this concept in SML:1

SML
datatype term = Appl of term * term

| Abs of string * typ * term
| Bound of int
| Free of string * typ
| Const of string * typ

Free variables are represented by the constructor Free in the
λ-terms and Isabelle uses de Bruijn indices for bound variables:

λx :: α. x is represented by Abs("x", typα, Bound(0))

The representation of the Isabelle API inside our HOL meta-
model is not completely one-to-one, but still straightforward:

Isabelle (Isar)
datatype
term = apply term (term list)
| lambind string term
| basic string
| type_annotation term typ
| if_then_else cond:term b1:term b2:term
| fun_case (term option)((term × term) list)
| let eqns:((term × term) list) body:term
| term_context (string list) term

The constructor basic unifies constants and variables and
suggests an untyped version; this facilitates practical term
construction, but implies the call of Isabelle’s type inference
whenever a HOL model term is converted into an Isabelle API
term to get inserted into the system. This is an additional logical
safety-check for terms constructed from our meta-model. The
constructor type_annotation stands for a term constrained
by a type written in conceptual notation t :: τ which is a
shortcut for (λx : τ → τ. x)(t), while the other constructors
are common shortcuts for larger HOL terms. For example,
if_then_else cond s t is represented in the Isabelle
API by Appl(Const("If",_), Appl(termcond,
Appl(terms,termt))). The term_context plays a
particular role: it simulates a pre-initialized context (de

1 This presentation is slightly simplified; the real Isabelle λ-terms use addition-
ally an infix-notation for applications and another constructor for a class of
variable symbols relevant for deduction.

Model Transformation as Conservative Theory-Transformation 9



Bruijn variables under “lambda”) and works as an explicit
substitution (Abadi et al. 1991); it is used to convert explicit
free variables in de Bruijn indexes.

The constructors of proofs elements and theories (i. e., global
contexts) are defined analogously:

Isabelle (Isar)
datatype tactic = rule ... | erule ...

| simp ... | simp_only ...

datatype command = datatype ...
| definition string * typ option * string
| lemma name:sting goal:string

proof:(tactic list)
| consts name:string decl:typ
| ...

type_synonym hol_theory =
theory name:string parents:(string list)

body:(command list)

This interface model MIsaAPI is an abstraction of a func-
tional “structure-signature API” used by Isabelle. As the latter
builds the basis for many different variants of commands. The
reader interested in the details to build a more complete set of
supported commands is referred to (Tuong and Wolff 2015).

5.3. Meta-model transformation
The definition of the conversion function is a more or less
straightforward implementation of the coding scheme presented
in Section 4. This conversion is not necessarily final, and might
be adapted depending on the degree of automation initially ex-
pected by end users, e. g., kind of lemmas initially provided for
a typical class model. To give an impression of this style of
modeling (programming), we present a fragment of this compi-
lation function: the part that generates the proof for an instance
of the generic theorem schema:

not (X :: OclAny).OclIsKindOf(Y)and
δ(X) implies δ(Y.OclIsTypeOf(X))

for all X, Y ∈ ′A. Recall that this theorem (which depends on
the structure of the class model ′A) rules out any combinations
of invalid castings for any polymorphic universe.

The following function generates a proof certificate for this
theorem in form of a tactic term and reads as follows:

Isabelle (Isar)
definition
cons l tac = (if l=[] then (_#_) tac else id)

fun auxdepth and auxbreadth where
auxdepth ldepth =

(λ [] ⇒ []
| (class, ldepth)#ldepth ⇒ simp_only class

# auxbreadth class [] ldepth (rev l

breadth)) ldepth
| auxbreadth class tactic ldepth lbreadth =

(λ [] ⇒ tactic
| (class0, class0_path)#lbreadth ⇒

erule (class, map fst ldepth) #

cons lbreadth simp
...

The rest of the construction for C proceeds similarly as shown
above in HOL. It turns out the complete C function can be
formally analyzed inside Isabelle/HOL itself; for example, we
proved for all these functions their terminations, as well as the
well-formed completeness of all class models used.

5.4. Subsequent certification techniques
From the conversion function C mappingMDSL toMIsaAPI,
we obtain two results corresponding to the shallow or deep
mode. They are complementary from a certain perspective:
once a value inMIsaAPI has been computed, that value can be
either immediately executed (bottom of Fig. 6), or converted to
concrete Isar syntax (top of Fig. 6). It is a particular advantage
of our approach that other code generator setups can be easily
added, for example for OCaml, Haskell, or Scala (since these
languages are supported by the code generator.) This may be
of particular interest if external UML/OCL tools are already
available for these languages.

5.4.1. Shallow mode. The principle of compiling a formula
with computational content to code (via code generation), eval-
uating it, and re-introducing the result in derivations over the
formula is called reflection. We use reflection not only to pro-
duce parts of proofs, but to construct (parts of) the entire proof
environment for UML/OCL inside Isabelle/HOL.

There is meanwhile a large body of publications on reflection,
e. g., (Costantini 2002) for a general survey, and (Clavel and
Meseguer 1996) for a universal axiomatizing approach. In
Isabelle, one way to reflect HOL functions is by using the special
command code_reflect. Isabelle’s reflection mechanism
is based on a very versatile code generator (Chaieb and Nipkow
2005; Haftmann and Nipkow 2010). On the basis of the SML
environment extended by this generated code, we provide an
integration of the conversions into the Isabelle/Isar top level to
support the syntax shown in Fig. 6 which makes the resulting
tool accessible to Isabelle users.

5.4.2. Deep mode. The deep mode resembles to shallow
mode, except it uses a different back-end for the validation of
the certificate: in deep mode, the generated model is a pretty-
print of an Isabelle/HOL theory which contains the resulting
definitions of the object-oriented data model and the proofs
for all derived theorems according to the lemma schemes in
Section 4. The deep mode serves two purposes: first, it proves
at times as a valuable tool for debugging, and second, it is a
human readable certificate of the overall theory construction
that may play a role in high-level certification processes, for
example, as in CC EAL 6+ (Common Criteria 2006).

5.5. DSL implementations as model transformations
By using Isabelle/HOL as an “implementation language” for
the model translator, one immediately benefits from verified al-
gorithms for efficient data-structures (e. g., formalized red-black
trees, or algorithms for computing transitive closures). The de-
veloper also profits of the possibility to prove properties over the
generated compilation, albeit this is limited to termination and
completeness proofs modulo validation. This still allows proofs
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(e.g., UML/OCL)

certifying execution

conversion to Isabelle/Isar Isabelle Theory
(Isar format, e.g., 

for inspection)

Isabelle/HOL 
with UML/OCLor

Fig. 6 The implementation of deep in the exportation scenario (top) and shallow in the reflection scenario (bottom).

of properties over syntactic and static sanity of the generated
functions and models (such as: “if no context error in the class
package syntax occurred, it can be assured that all generated
names for accessors were distinct” or slightly more challenging:
“if the class model is well-formed, the generated code will be
well-typed with respect to HOL types.”). In case that future
projects provide a complete model of the type checker and the
core-inference engine of Isabelle, it is even conceivable to ex-
tend our approach by completeness proofs including validation
assuring that the certification will not fail. For other systems
in the LCF-prover family such as HOL4, such model of the de-
ductive kernel are meanwhile available (Fallenstein and Kumar
2015), albeit not (yet) for the Isabelle kernel.

6. Applications scenarios of UML/OCL
In this section, we will show how to apply the generated verified
environment UML/OCL. In theory, UML/OCL is relatively
complete to HOL, i. e., every formula φ that is valid in all
Henkin-style models can also be proved True in UML/OCL,
and the same restrictions to completeness with respect to stan-
dard models hold for OCL as for HOL; the reader interested in
the foundations of HOL is referred to (Andrews 2002). From a
practical point of view, UML/OCL is not equally suited to any
possible application: additional automated proof support will
be necessary, for example, in areas such as refinement proofs
over different class models as discussed in (Brucker and Wolff
2009). The main reason for this is that our semantics of class
models uses object ids, which makes a “reasoning modulo graph
isomorphism” necessary. Without substantial further support,
such proofs tend to get complicated and are nothing for the
faint-hearted. Moreover, simplistic proof strategy consisting
in unfolding all definitions of OCL operators for a given class
model leads to large formulas in which automated reasoning is
restricted to a very low level and therefore doomed to fail.

6.1. Certified code generation and basic animation
Isabelle/HOL contains a powerful code generator that targets
SML, Haskell, OCaml, and Scala. Adequately configured, it
yields fairly efficient code for these languages, a feature that
has been used for the generation of large practical programs,
e. g., (Brunner and Lammich 2018).

Moreover, the code generator is used in efficient proof tactics
for proving formulas by code evaluation, see (Haftmann and
Bulwahn 2020) for details. We used this feature to check ground
formulas in OCL and in concrete data models. We implemented
an Assert command that checks if a given ground-formula can

be reduced to True simply by evaluation; the latter practically
excludes operators that involve underspecified choice (such as
X->any()) or operation constructs for non-deterministically
specified operations. Since many operation contracts contain a
postcondition of the form result = E for some expression
E, that appears relatively often.

With respect to library operations, we used this feature for
a number of semantic test cases or semantic checks for OCL
library operations. The following presents an example of check-
ing corner cases of the OCL Set operations:

Isabelle (Isar)
Assert

τ ` (Set{1,2} , Set{}->includingSet(2)

->includingSet(1))
Assert

τ ` (Set{1,invalid,2} , invalid)

Here, the formulas are not even ground: the variable τ is
just never used in the evaluation because the properties are
state-independent, i. e., universal properties of the OCL library.

We also provide commands for specifying object model, i. e.,
instances of a class model:

Isabelle (Isar)

Instance
c1::Client =
[client_id=101 , name=’’Alice’’, age=25]

and c2::Client =
[client_id=102 , name=’’Bob’’, age=17]

and a1::Account = [id=2100110, balance=500]
and a2::Account = [id=3100500, balance=20]
and a3::Account = [id=5010101, balance=1000]
and b1::Bank = [bank_name=’’Banco Fiasco’’]

Which allows us to define, e. g., an initial system state:

Isabelle (Isar)
State σ1 =
[([c1, c2]::Client),
([a1 with_only balance=600,a2,a3]::Account),
([b1]::Bank)]
[b1 associates_to a1,a2,a3 via manages,
c1 associates_to a1,a2 via owner,
c2 associates_to a3 via owner]

Together with the above mentioned Assert-command, we
can now explore assert on the state σ1 properties such as
Assert(σ1,σ1) ` a1 >= 550 or, similarly, that the class
invariants shown in Fig. 2 hold.
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OCL
Context
Bank::withdraw (c : Client, account_id : Integer, amount:Integer)
Pre def: (δ c) and (δ account_id) and (δ amount)
Pre 1 ≤int amount
Pre (self .managed_accounts)

->existsSet(X | (X .owner)
.
= c and ((X .account_id)

.
= account_id) and (amount ≤int (X .balance)))

Post let A′ = self .managed_accounts
->selectSet(X | (X .owner)

.
= c and ((X .account_id)

.
= account_id))->anySet();

A = self .managed_accounts@pre
->selectSet(X | (X .owner)

.
= c and ((X .account_id)

.
= account_id))->anySet()

in (A′ .balance)
.
= (A .balance -int amount)

Post frame: let A = self .managed_accounts
->selectSet(X | X .owner

.
= c and (X .account_id

.
= account_id))->anySet()

in ((Set{A} ->oclIsModifiedOnly())

Fig. 7 The withdraw operation.

6.2. Establishing relations between invariants
It is possible to formally prove the relations between invari-
ants. If no structural changes of the underlying class model are
involved, or deeper reasoning over quantifiers, proofs can be
fairly easy rewrite proofs based on the derived rules of the OCL
library. For example, from

OCL
τ |= 25 <= c.owner.age

implies c.overdraft = 250

we can prove properties like

OCL
τ |= 25 <= c.owner.age

implies c.overdraft > 200

conclusively for all transitions between valid states.

6.3. Symbolic execution of sequence diagrams
It is possible to enchain also operations and reason over state-
sequence charts. Assume that we extend our model by withdraw
and deposit operations. Fig. 7 shows the withdraw operation
(we omit the dual deposit operation).

Borrowing the concept of the sequencing operator bind from
the state-exception monad well-known in functional program-
ming, we can express the diagram in Fig. 8 together with some
initial constraints as a proof goal (see Fig. 9). The lemma de-
scribes that in any state σ0, both the clients c1 and c2 exist and
have the right account number for their accounts, and precondi-
tion of the withdraw operation is fulfilled. We now can apply
derived symbolic execution rules in this Isar proof:

Isabelle (Isar)

apply(subst get_balance_Symbex, cleanup)
apply(subst get_balance_Symbex, cleanup)
apply(subst withdraw_Symbex, cleanup)
apply(subst deposit_Symbex, cleanup)
apply(subst get_balance_Symbex, cleanup)
apply(subst get_balance_Symbex, cleanup)
apply(subst explicit_assertion, auto)

done

b1 b2

get_balance(c1, iban1, a)

r
get_balance(c2, iban2, a)

r’

withdraw(c1, iban1, a)

deposit(c2, iban2, a)

get_balance(c1, iban1, a)

r’’
get_balance(c2, iban2, a)

r’’’

msc

Fig. 8 Sequence diagram modeling an bank-transfer.

The proof executes the operations stepwise and accumulates
the necessary constraints of these steps as assumptions. This
proof not only shows that the final assertion “no money is lost
in the transaction” is true, but also that the series of transactions
is valid, i. e., each UML/OCL operation is possible in the state
it is executed in, requiring that their preconditions are fulfilled.

7. Lessons learned

In this section, we discuss our experience and lessons learned
in extending interactive theorem provers with support for DSLs.
While our previous versions of HOL-OCL (Brucker and Wolff
2008a,b) are based on the datatype package approach, we use a
reflection-based approach in the implementation presented in
this paper. Thus, we can compare both approaches based on
“first-hand” experiences.
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Isabelle (Isar)
lemma valid_sequence2:

assumes 1 :
∀ σ . (σ0, σ) ` bank .managed_accounts@pre

->existsSet(X|X .owner@pre
.
= c1 and (X .account_id@pre

.
= a1))

and ∀ σ . (σ0, σ) ` bank .managed_accounts@pre
->existsSet(X|X .owner@pre

.
= c2 and (X .account_id@pre

.
= a3))

and 2: A = bank .managed_accounts@pre
->selectSet(X | (X .owner)

.
= c and ((X .account_id)

.
= account_id))->anySet()

and 3 : (σ0, σ) � 0 ≤ A .balance
shows

σ0 `Mon r ::= bank .get_balance(c1 , a1) ;
r’ ::= bank .get_balance(c2 , a3) ;
_ ::= bank .withdraw(c1 , a1, a) ;
_ ::= bank .deposit(c2, a3, a) ;
r’’ ::= bank .get_balance(c1 , a1) ;
r’’’ ::= bank .get_balance(c2 , a3) ;
assertSE (λσ. ((σ,σ) ` (r +int r’

.
= r’’ +int r’’’)))

Fig. 9 Proof goal representing the state chart in Fig. 8.

7.1. Certification and trust
We use HOL theories for generating conservative extensions of
Isabelle/HOL, including new command-level Isar syntax allow-
ing to access this functionality. From a user perspective, the
result is very similar to a traditional datatype package, and we
share the same trust guarantees: while both approaches cannot
formally guarantee, e. g., the termination of “built-in” proof
tactics or the completeness with respect to the DSL, the correct-
ness only relies on the Isabelle kernel. If there are any logical
errors in less trustworthy system parts (e. g., our Isabelle API
binding, the Isabelle code generator), the kernel will reject the
generated proofs. For example, let us assume that our reflection
techniques generates, due to a bug in the code generator, a proof
obligation that does not hold: the generated proof tactic will
not be able to prove the statement, resulting in the top-level Isar
command to fail, or to not terminate.

7.2. Development and maintenance time
The user interface of Isabelle changed a lot in the last two
decades: from an interface that was mostly an SML-API used
in a Read-Eval-Print-Loop (REPL) of the SML system to a
system supporting a rich user interface and structured proofs
that much more resemble the traditional mathematical notations
(see (Wenzel 2002) for a comparison of both proof styles).

While traditionally2 datatype packages are conceptually very
close to the apply-style approach, our reflection-based approach
lifts the development of Isabelle extensions directly to the mod-
ern Isar level. Moving to the Isar level has several advantages
that lower the barrier of developing packages as well as reduce
the development and maintenance efforts:

– package developers do not need to learn a new interface of
Isabelle (namely, the Isabelle’s SML API).

– Isabelle’s SML API is considered, by the Isabelle maintain-
ers, as an “internal” API. Thus, documentation of changes
is not as rich as for the Isar level. Changes of the Isar level

2 This is changing in recent versions of Isabelle, which start to provide a SML
API closer to the Isar level.

Table 1 Performance comparison: shallow vs. deep mode.

#classes #assocs shallow [s] deep [s]

Abstract List 1 0 47.02 53.70

Bank 6 3 119.22 136.90

Clocks Lib 6 0 138.86 158.23

Analysis 3 1 97.93 116.95

Design 3 1 98.32 113.83

Flight 5 3 126.50 149.12

Linked List 2 0 59.21 67.67

are well documented and new Isabelle versions usually
provide easy to follow step-by-step guides to adapt old
theories to the latest version.

– if any generated proofs fail, the deep mode of our approach
generates an actual Isabelle theory file that can be “de-
bugged” interactively.

In contrast, the traditional datatype package requires a high level
of expertise on the internal SML APIs.

7.3. Usability
The user experience follows the overall experience of Isabelle,
including such details as type information when hovering over
terms (recall Fig. 2). The advantages of our current work over
previous versions of HOL-OCL are due to the fact our current
work is based on the latest version of Isabelle: its usability
improvements could also be implemented on top of a traditional
datatype package, as used by HOL-OCL.

Still, it remains to show that the performance of our system
is good enough. Table 1 shows a collection of UML/OCL ex-
amples of “typical” size in terms of classes and associations)
(e. g., the examples shipped as part of USE (Gogolla et al. 2007)
are of similar size). On a modern laptop using common hard-
ware, the datatype package for the UML class models takes
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less than three minutes in general for our examples. While this
is rather long for interactive work, we do not consider this a
show-stopper: during analyzing UML/OCL models, the UML
data model part changes in our experience only rarely while
the actual user-defined OCL need to be updated frequently. To
support this work-flow, our system allows defining OCL con-
straints interactively and encoding a single OCL constraints
usually takes less than a second. Overall, this allows for the
interactive workflow that is typical for modeling and proving
tasks in Isabelle.3

A closer look to the times (recall Table 1) reveals that deep
mode is performing more operations than shallow. Indeed, in
deep mode, generated Isabelle theories are presented using the
concrete syntax of Isabelle: compared to shallow mode (where
we work directly on the abstract syntax), deep requires an addi-
tional parsing step. On the other hand, since shallow requires
itself an additional model transformation step, we conclude that
the computation of the latter is taking less time than the parsing
of the latter’s serialized output.

While Isabelle is already utilizing parallelism features of
modern multi-core processor architectures, most of them are
actually only available in deep mode. In particular, commands
being generated in shallow mode are still processed in Isabelle
as atomic sequential actions. Future versions of Isabelle might
overcome this limitation.4

8. Related work & conclusion
Related work. System components mapping specialized spec-
ification constructs to conservative extension schemes are
known as part of LCF-architectures since the earliest HOL sys-
tems (Gordon and Melham 1993). In most systems, they offer
support for, e. g., inductive datatypes, quotient types, and re-
cursive function definitions. Our work distinguishes itself in
two ways: firstly, we provide support for DSLs, and secondly
by its implementation via meta-model transformation. More-
over, in contrast to a conventional packages targeting functional
programming language support, we have to cope with the in-
tricacies of object-orientation, involving sub-typing, object ids
and referential equality, and the difficulties arising from states
and state transitions.

Reflection as a concept to analyze proofs or proof generating
functions (e. g., decision procedures for particular fragments of
logics) using a second layer of logic, a meta-logic, has been
known for a long time. Notable research ranges from (Harrison
1995) to work on self-formalization of HOL and corresponding
prover implementations (Kumar et al. 2016). Our work distin-
guishes itself from these approaches by modeling partially a
real, sophisticated HOL system like Isabelle on the one hand
and by restricting ourselves to fairly simple, but pragmatically
important properties on the other (e. g., termination of the model

3 HOL-OCL (Brucker and Wolff 2008b) uses a more advanced encoding of
UML data models using an open-world assumptions. This also supports the
step-wise extension of the actual data model and could also be implemented
in a reflection-based approach.

4 We actually developed an experimental modification of Isabelle that shows a
potential for significant performance improvements; see https://gitlab.scss.tcd.
ie/tuongf/isabelle_para/.

transformation or totality of the compilation functions).
UML/OCL also attracts a lot of interest in various tools,

mostly compilers such as Eclipse OCL (http://www.eclipse.org/
modeling/mdt/ocl/). There are also some proof tools; how-
ever, they are mostly based on naive translations of the OCL
syntax to the logic of a home-grown prover, disrespecting the
OMG standard’s many-valued logics as well as the semantics
of library operations. An exception is (Arjona et al. 2014),
which combines a generation of axioms for the object-oriented
datatype theory and SMT solving; we recall that our approach is
strictly definitional. We presented, in this paper, a complete re-
implementation of HOL-OCL (Brucker and Wolff 2008a). Our
re-implementation supports a logically different, more recent
version of OCL, utilizes the improvements of Isabelle’s user
interface, and is built using certified model transformations.

Take home message. We have shown a particular method to
construct a series of theory support components (packages) by
a particular technique rephrasing ideas from model transforma-
tion (in the sense of the MDA/MDE) into the more rigorous
context of theorem proving. The technique has pragmatic as
well as theoretic advantages: pragmatically, users of interac-
tive theorem provers are becoming developers but can stay in
the development framework they are used to, have better de-
bugging facilities for generated tactic code, and can base their
work on better abstractions of internal prover APIs that can
be shared within the community. Theoretically, the approach
does not introduce additional assumptions of trust since gener-
ated definitions and lemmas are finally certified by the original
prover kernel. The approach lays the groundwork for proving
properties over the translation itself: there is a full spectrum of
possibilities ranging from termination and syntactic complete-
ness proofs (e. g., the translation is a total function), down to
semantic properties like “the evaluation of the generated proof
certificates will not fail” or the correctness of the model trans-
formation itself with respect to semantic interpretations of its
input and output.

Availability. The formalized meta-model of the Isabelle API
(Tuong and Wolff 2015) and the resulting formalization of
the OCL library (Brucker et al. 2014), called Featherweight
OCL, are both available as part of the Archive of Formal Proofs
(https://www.isa-afp.org/) under a BSD license (SPDX-License-
Identifier: BSD-3-Clause).
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