A Denotational Semantics of Solidity in
Isabelle/HOL

Diego Marmsoler!| | and Achim D. Brucker!

University of Exeter, Exeter, UK
{d.marmsoler, a.brucker}@exeter.ac.uk

Abstract. Smart contracts are programs, usually automating legal
agreements such as financial transactions. Thus, bugs in smart contracts
can lead to large financial losses. For example, an incorrectly initialized
contract was the root cause of the Parity Wallet bug that made USD
280mil worth of Ether inaccessible. Ether is the cryptocurrency of the
Ethereum blockchain that uses Solidity for expressing smart contracts.
In this paper, we address this problem by presenting an executable de-
notational semantics for Solidity in the interactive theorem prover Is-
abelle/HOL. This formal semantics builds the foundation of an inter-
active program verification environment for Solidity programs and al-
lows for inspecting Solidity programs by (symbolic) execution. We com-
bine the latter with grammar-based fuzzing to ensure that our formal
semantics complies to the Solidity implementation on the Ethereum
Blockchain. Finally, we demonstrate the formal verification of Solidity
programs by two examples: constant folding and memory optimization.

Keywords: Solidity - Denotational Semantics - Isabelle/HOL - Gas Op-
timization.

1 Introduction

An increasing number of businesses are adopting blockchain-based solutions.
Notably, the market value of Bitcoin, most likely the first and most well-known
blockchain-based cryptocurrency, passed USD 1 trillion in February 2021 [IJ.
While Bitcoin might be the most well-known application of a blockchain, it lacks
features that applications outside of cryptocurrencies require and that make
blockchain solutions attractive to businesses.

The Ethereum blockchain [40] is a feature-rich distributed computing plat-
form that provides not only a cryptocurrency, called Ether: Ethereum also pro-
vides an immutable distributed data structure (the blockchain) on which dis-
tributed programs, called smart contracts, can be executed. Essentially, smart
contracts are programs, usually automating legal agreements, e.g., financial
transactions. To support such applications, Ethereum provides a dedicated ac-
count data structure on its blockchain that smart contracts can modify, i.e.,
transferring Ether between accounts. Thus, bugs in smart contracts can lead to

#E R. Calinescu and C. Pasareanu (Eds.): SEFM 2021, LNCS, pp. 1 2021.
© 2021 Springer-Verlag. This is the author’s version of the work. It is posted at
https://www.brucker.ch /bibliography/abstract /marmsoler.ea-solidity-semantics-2021

Y]
%iﬁ by permission of Springer-Verlag for your personal use. BiBTEX, Word, EndNote, RIS

https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021

@InCollection{	 marmsoler.ea:solidity-semantics:2021,
 abstract	= {Smart contracts are programs, usually automating legal agreements such as financial transactions.
		 Thus, bugs in smart contracts can lead to large financial losses. For example, an incorrectly
		 initialized contract was the root cause of the Parity Wallet bug that made USD 280mil worth of Ether
		 inaccessible. Ether is the cryptocurrency of the Ethereum blockchain that uses Solidity for expressing
		 smart contracts.
		
		 In this paper, we address this problem by presenting an executable denotational semantics for Solidity
		 in the interactive theorem prover Isabelle/HOL. This formal semantics builds the foundation of an
		 interactive program verification environment for Solidity programs and allows for inspecting Solidity
		 programs by (symbolic) execution. We combine the latter with grammar-based fuzzing to ensure that our
		 formal semantics complies to the Solidity implementation on the Ethereum Blockchain. Finally, we
		 demonstrate the formal verification of Solidity programs by two examples: constant folding and memory
		 optimization.},
 keywords	= {Solidity, Denotational Semantics, Isabelle/HOL, Gas Optimization},
 url		= {https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021},
 author	= {Diego Marmsoler and Achim D. Brucker},
 booktitle	= {Software Engineering and Formal Methods (SEFM)},
 language	= {USenglish},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 isbn		= {3-540-25109-X},
 editor	= {Radu Calinescu and Corina Pasareanu},
 pdf		= {https://www.brucker.ch/bibliography/download/2021/marmsoler.ea-solidity-semantics-2021.pdf},
 title		= {A Denotational Semantics of {Solidity} in {Isabelle/HOL}},
 classification= {conference},
 areas		= {formal methods, software},
 year		= {2021},
 public	= {yes}
}

BibTeX entry of this paper

 marmsoler.ea:solidity-semantics:2021
 BookSection
 Heidelberg
 Springer-Verlag
 2021
 Software Engineering and Formal Methods (SEFM)
 https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021

 Marmsoler Diego
 Brucker Achim D

 Calinescu Radu
 Pasareanu Corina

 A Denotational Semantics of Solidity in Isabelle/HOL
 Smart contracts are programs, usually automating legal agreements such as financial transactions. Thus, bugs in smart contracts can lead to large financial losses. For example, an incorrectly initialized contract was the root cause of the Parity Wallet bug that made USD 280mil worth of Ether inaccessible. Ether is the cryptocurrency of the Ethereum blockchain that uses Solidity for expressing smart contracts. In this paper, we address this problem by presenting an executable denotational semantics for Solidity in the interactive theorem prover Isabelle/HOL. This formal semantics builds the foundation of an interactive program verification environment for Solidity programs and allows for inspecting Solidity programs by (symbolic) execution. We combine the latter with grammar-based fuzzing to ensure that our formal semantics complies to the Solidity implementation on the Ethereum Blockchain. Finally, we demonstrate the formal verification of Solidity programs by two examples: constant folding and memory optimization.

XML entry of this paper (e.g., for Word 2007 and later)

%0 Book Section
%T A Denotational Semantics of Solidity in Isabelle/HOL
%A Marmsoler, Diego
%A Brucker, Achim D.
%E Calinescu, Radu
%E Pasareanu, Corina
%B Software Engineering and Formal Methods (SEFM)
%S Lecture Notes in Computer Science
%D 2021
%I Springer-Verlag
%C Heidelberg
%@ 3-540-25109-X
%G USenglish
%F marmsoler.ea:solidity-semantics:2021
%X Smart contracts are programs, usually automating legal agreements such as financial transactions. Thus, bugs in smart contracts can lead to large financial losses. For example, an incorrectly initialized contract was the root cause of the Parity Wallet bug that made USD 280mil worth of Ether inaccessible. Ether is the cryptocurrency of the Ethereum blockchain that uses Solidity for expressing smart contracts. In this paper, we address this problem by presenting an executable denotational semantics for Solidity in the interactive theorem prover Isabelle/HOL. This formal semantics builds the foundation of an interactive program verification environment for Solidity programs and allows for inspecting Solidity programs by (symbolic) execution. We combine the latter with grammar-based fuzzing to ensure that our formal semantics complies to the Solidity implementation on the Ethereum Blockchain. Finally, we demonstrate the formal verification of Solidity programs by two examples: constant folding and memory optimization.
%K Solidity, Denotational Semantics, Isabelle/HOL, Gas Optimization
%U https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
%U https://www.brucker.ch/bibliography/download/2021/marmsoler.ea-solidity-semantics-2021.pdf

Endnote entry of this paper

TY - CHAP
AU - Marmsoler, Diego
AU - Brucker, Achim D.
ED - Calinescu, Radu
ED - Pasareanu, Corina
PY - 2021
DA - 2021//
TI - A Denotational Semantics of Solidity in Isabelle/HOL
BT - Software Engineering and Formal Methods (SEFM)
T3 - Lecture Notes in Computer Science
PB - Springer-Verlag
CY - Heidelberg
KW - Solidity, Denotational Semantics, Isabelle/HOL, Gas Optimization
AB - Smart contracts are programs, usually automating legal agreements such as financial transactions. Thus, bugs in smart contracts can lead to large financial losses. For example, an incorrectly initialized contract was the root cause of the Parity Wallet bug that made USD 280mil worth of Ether inaccessible. Ether is the cryptocurrency of the Ethereum blockchain that uses Solidity for expressing smart contracts. In this paper, we address this problem by presenting an executable denotational semantics for Solidity in the interactive theorem prover Isabelle/HOL. This formal semantics builds the foundation of an interactive program verification environment for Solidity programs and allows for inspecting Solidity programs by (symbolic) execution. We combine the latter with grammar-based fuzzing to ensure that our formal semantics complies to the Solidity implementation on the Ethereum Blockchain. Finally, we demonstrate the formal verification of Solidity programs by two examples: constant folding and memory optimization.
SN - 3-540-25109-X
L1 - https://www.brucker.ch/bibliography/download/2021/marmsoler.ea-solidity-semantics-2021.pdf
UR - https://www.brucker.ch/bibliography/abstract/marmsoler.ea-solidity-semantics-2021
LA - USenglish
ID - marmsoler.ea:solidity-semantics:2021
ER -

RIS entry of this paper

https://orcid.org/0000-0003-2859-7673
https://orcid.org/0000-0002-6355-1200

2 D. Marmsoler and A.D. Brucker

large financial losses. For example, an incorrectly initialized contract was the
root, cause of the Parity Wallet bug that froze USD 280mil worth of Ether [32].
This risk of bugs being costly is already a big motivation for using formal verifi-
cation techniques. The fact that smart contracts are deployed on the blockchain
immutably, i.e., they cannot be updated or removed easily, makes it even more
important to “get smart contracts right”, before they are deployed on a blockchain
for the very first time.

For implementing smart contracts, Ethereum provides Solidity [30], a Turing-
complete, statically typed programming language that has been designed to look
familiar to people knowing Java, C, or JavaScript. The following shows a simple
(artificial) function of a smart contract in Solidity for withdrawing Ether:

1 function wd(uint256 n, address payable r) public returns(bool) {
2 if (n < address(this).balance) {

3 r.transfer(n);

4 return true;

5 }

6 return false;

7 3}

The type system provides, e.g., numerous integer types of different sizes (e.g.,
uint256) and the Solidity programs can make use of different types of stores
for data (e.g., storage and memory). While Solidity is designed to be a Turing-
complete language, the gas model ensures termination. The reason for this is that
executing Solidity operations costs gas, a tradeable commodity on the Ethereum
blockchain. Gas does cost Ether and hence, programmers of smart contracts have
an incentive to write highly optimized contracts whose execution consumes as
little gas as possible. For example, the size of the integer types used can impact
the amount of gas required for executing a contract. Similarly, different type
of stores induce different gas costs. Thus, the authors of Solidity contracts try
to optimize the costs of executing a contract. This desire for highly optimized
contracts can conflict with the desire to write correct and secure contracts.

We address the problem of developing smart contracts in Solidity that are
correct: we present an executable denotational semantics for Solidity in the in-
teractive theorem prover Isabelle/HOL [28]. Our contributions are four-fold:

1. A formal semantics of (a subset of) Solidity as conservative embedding into
Isabelle/HOL. We follow the LCF-approach [I5] and do not use any ax-
iomatic definitions and, hence, our semantics is consistent “by construction”.

2. A grammar-based fuzzing framework that can automatically validate our for-
mal semantics against the Ethereum blockchain. Thus, we can provide strong
evidence that our formal semantics complies to the official implementation.

3. We use our formal semantics for building an integrated verification and sym-
bolic execution environment for Solidity programs on top of Isabelle/HOL.
For this, we developed domain-specific automated proof methods.

4. We showcase our verification approach by formally analyzing two optimiza-
tion strategies from which we derive rules that can be used to optimize the
gas consumption of Solidity programs while preserving their semantics.

A Denotational Semantics of Solidity in Isabelle/HOL 3

Our approach combines an expressive logic, i.e., higher-order logic (HOL) within
an interactive theorem prover with a testing framework allowing us to validate
the formalization against the actual implementation. This combination enables
us to quickly analyze the impact of changes to the semantics while ensuring
formal consistency and compliance to the implementation. The ability to quickly
assess changes in Solidity is important, as Solidity is a fast evolving language.
The Solidity manual [30], e.g., states: “When deploying contracts, you should use
the latest released version of Solidity. This is because breaking changes as well
as new features and bug fixes are introduced regularly.”

2 Semantics

In the following, we describe our denotational semantics for a subset of Solidity
v0.5.16 [30]|H The complete semantics is formalized in Isabelle/HOL [28]. The
formalization consists of 1500 lines of Isabelle code.
Our subset supports the following features of Solidity:
— Fized-size integer types of various lengths and corresponding arithmetic with
support for overflows.
— Domain-specific primitives, such as money transfer or balance queries.
— Different types of stores, such as storage, memory, and stack.
Complex data types, such as hash-maps and arrays.
— Assignments with different semantics, depending on the location of the in-
volved data types.
An extendable gas model.
Our formalization is based on higher-order logic using inductive datatypes [7].
To this end, we use bold font for types and italics for type constructors.

2.1 Value types

Solidity supports four different basic data types, called value types:
Types == TBool | TAddr | TSInt Nat | TUInt Nat

TBool denotes boolean values and TAddr denotes addresses. Solidity also sup-
ports signed and unsigned integers from 8 to 256 bits in steps of 8. Thus, T'SInt b
and TUInt b denote signed and unsigned integers of 2° bit size.

In Solidity, raw data is encoded in hexadecimal format, however, to simplify
the computation of locations for reference types (as discussed in more detail in
Sect. , we use strings to model raw data in our model. Thus, type Valuetype
is actually just a synonym for type string and it is used to represent the data of
value types in the store. In addition, we shall write |v]| and [v] to convert the
value v of a basic data type to and from a string representation, respectively.

Converting an integer to a corresponding bit representation can result in an
overflow which needs to be considered. Thus, we define two functions createSInt

! This is the currently supported default version of the Truffle test framework.

4 D. Marmsoler and A.D. Brucker

and createUlnt to convert an arbitrary number to a corresponding signed or
unsigned integer representation of a certain size:

createSInt: Nat x Int — Valuetype

| ((v+2°71) mod 2°) — 2071 | if v>0

teSInt(b,v) =
createSInt(b, v) {Lle((levl)modT)lJ if v<0

where x mod y denotes the non-negative remainder when dividing « by y. The
definition of createUlnt is similar.

Essentially, the functions can be used to create a representation of a given
number which fits into a certain bit size. For example, createSInt(8,200) = “-56”
whereas create UInt(8,200) = “200”.

We can then define functions to lift basic arithmetic and boolean operations
to corresponding operations over signed and unsigned integers of various sizes.
The operation add, for example, can be defined by the following equations using
usual pattern-matching notation:

add: Types x Types x Valuetype x Valuetype — (Valuetype x Types) |
add (TUInt(b;), TUInt(b.),v;,v,.) = createU (mazx(by, by), [vi] + [vr])
add (TSInt(by), TSInt(b,),vi,v,) = createS (maz(by, by), [vi] + [vr])

{createS (b, [ur] + [vr]) if by < by

dd (TUInt(by), TSInt(by), vi, v,
add (TUInt(by), TSInt(b,), v, vr) = § | if b > b,

createS (by, [vi] + [vr]) if by < by
1 it b, >
where createU (b,v) = (createUlnt(b,v), TUInt(b)), and

createS(b,v) = (createSInt(b,v), TSInt(b)).

add (TSInt(by), TUInt(b,.), v, v.) = {

According to the current specification of Solidity, adding two integers of the
same type is always possible but results in a new integer of the size of the larger
one. Adding integers of different type is only possible if the size of the signed
integer is strictly greater than the one of the unsigned one, in which case the
result is always a signed integer with the size of the signed one. Moreover, the
result of adding two numbers might not fit into the corresponding result type
in which case an overflow occurs.

Consider, e.g., the following two additions of an unsigned with a signed in-
teger:

add(TUInt(8), TSInt(16),200”,“32600”) = (“-32736", TSInt(16))
add(TUInt(16), TSInt(16),“100”,32700") = L

In the first case, 32600 + 200 does not fit into the resulting 16-bit signed integer
(which can only store numbers up to 32767) and thus we get an overflow. In
the second case, we try to add two incompatible types which results in an error.
Similar definitions can be provided for the remaining arithmetic and logical
operators.

A Denotational Semantics of Solidity in Isabelle/HOL 5

2.2 Stores and Reference Types

In Solidity, storage cells are addressed by hexadecimal numbers. Again, however,
we use strings to model them to simplify computation of locations for reference
types. Thus, type Loc denotes the type of strings and is used to represent storage
locations. We can then model a general store for values of type v as a parametric
data type:

Store v := (Loc — v) x Nat

It consists of a mapping to assign values to locations and in addition it holds
a pointer to the next free location. We can then define function access(l, s) to
access the value at location ! in store s and function updateStore(l, v, s) to store
value v at location [of store s. The definition of these functions is standard
and thus not discussed further. However, the way Solidity computes storage
locations for reference types is a bit special and thus worth a closer look. To this
end, assume that a storage cell loc contains a reference type, such as a mapping.
Then, the storage cell which contains the value of the entry for key k is computed
by keccak256 (“k” + loc), where keccak256 denotes the Keccak hash function [§]
and + denotes string concatenation.

The main objective of this approach is to obtain a unique storage cell for
every element. The purpose of using the hash value is to deal with a limited
amount of storage cells which are available in practice. In theory, collisions are
possible when using a hash function, however, in practice, such collisions are
very unlikely to happen and thus they may be neglected. Thus, in our model,
the location of the storage cell which holds the value of an element iz of a
reference type which is stored at location loc is obtained by concatenating ix
with loc separated by a dot:

h(loc, ix) = iz +“" + loc

Types of Storage. Solidity has three different stores: stack, memory, and stor-
age. The stack stores the values for variables which can either be concrete values
(for value type variables) or pointers to either memory or storage (for reference
type variables). Thus, a stack can be modelled as a store which can keep three
different types of values:

Stackvalue ::= Value Valuetype | Memptr Loc | Stoptr Loc
Stack ::= Store Stackvalue
Solidity supports two additional stores memory and storage for storing the
value of reference types. While memory supports only arrays, storage also sup-
ports mappings:
MTypes::= MTValue Types | MTArray Nat MTypes
STypes::= ST Value Types | STArray Nat STypes | STMap Types STypes

The internal organization of the two stores differs fundamentally: While memory
uses pointer structures to organize the values of reference types, storage values

6 D. Marmsoler and A.D. Brucker

are accessed directly by computing the corresponding location. Thus we model
memory as a store which can keep two different types of values:

Memoryvalue := Value Valuetype | Pointer Loc

Memory ::= Store Memoryvalue
Storage, on the other hand is modeled as a simple store of value types:
Storage ::= Store Valuetype

Storage access is non-strict, which means that access to an undefined storage cell
returns a default value. To this end, we first define a function wal: Types —
Valuetype which returns a default value for each value type. Now, we can define
a corresponding access function for storage:

accessStorage: Types x Loc x Storage — Valuetype

v, ifvo#£1

‘] where v = access(loc, sto)
wal(t), ifv=_1

accessStorage(t, loc, sto) = {

Copying of Reference Types. Often, we need to copy values from one type
of store to another, i.e., we need different types of copy functions. To specify
them, we use a higher-order function

iter : (Int > a —a) > a—Int > a

such that iter(f, x,v) executes function f on value v and the passes the outcome
on to another execution of f until f was executed x times.

In the following we use iter to define the function to copy from storage to
memory:

cp,,: Loc x Loc x Int x STypes x Storage x Memory — Memory |
eps (s, L, ity s,m) = dter(Ni',m’. eprecs, (h(ls, |i']), h(lm, |i']),t, 5,m"), m, i)

where cprec,, (ls, Ly, STArray (i, t),s,m) =
iter (Ni',m'. cprecy, (h(ls, [7']), h(lm, [']), t, s,m"),m" i)

where m” = updateStore(l,,, Pointer(l,,), m) (1)
cprecs, (s, lm, ST Value(t), s,m) = updateStore(l,,, Value(v), m)

where v = accessStorage(t,ls, s) (2)
cprecs, (Is, Iy, STMap (¢,), s,m) = L (3)

In Solidity, value types are just copied between stores which is reflected by
Eq. . For reference types, however, the situation is different. Mappings can
only be kept in storage and not in memory which is why a mapping is never
copied from storage to memory, and we just return L for this case (Eq.) Ar-
rays, on the other hand, can be kept in both: storage and memory. As mentioned

A Denotational Semantics of Solidity in Isabelle/HOL 7

above, however, the way of storing them differs depending on the type of store:
in storage, we just calculate the location of the elements of an array whereas in
memory arrays are stored using a pointer structure. Thus, when copying arrays
from storage to memory we need to create the corresponding pointer structure
as shown by Eq.

Our model contains similar functions to copy from memory to storage or
storage to storage. Copying from memory to memory is not required since mem-
ory operations do not copy the data structure but rather just the pointer as
discussed in more detail in Sect. . It also contains similar functions to copy
from memory to storage or storage to storage. Copying from memory to mem-
ory is not required since memory operations do not copy the data structure but
rather just the pointer (see Sect. [2.4]).

State. Accounts are associated with an address in hexadecimal format. We
model Address as strings and accounts as mappings from addresses to their
balance:

Accounts ::= Address — Valuetype

A state of a Solidity program consists of the balances of the accounts as well as
the state of the different stores:

State ::= Accounts x Stack x Memory x Storage

In the following we shall use sck(s), mem(s), sto(s), acc(s) to access the
stack, memory, storage, and account of a state s. Moreover, we use upSck(k, s),
upMem(m, s), upSto(t, s), and upAcc(a, s) to change stack, memory, storage, or
account, of a state s to k, m, t, or a, respectively.

2.3 Expressions

Our subset of Solidity supports basic arithmetic and boolean expressions over
signed and unsigned integers of various bit sizes:

B 8116 ... | 256

L Id S | Ref S [E]

E := Address S| Balance S| L L | SInt B Int | Ulnt B Int | True | False
|E==E|E+E|E-E|E<E|-E|EAE|EVE

where S denotes the type of strings, Int the type of integer symbols, and [a] a
list of elements of type a.

Environment. Expressions are always interpreted w.r.t. an environment which
assigns types and values to variables. To this end, we introduce a new type
Identifier (a synonym of type string) for variable names. Variables in Solidity
can either be storage references or stack references which can again be pointers to

8 D. Marmsoler and A.D. Brucker

either storage or memory. In addition, the environment also contains the address
of the currently executing contract:

Type := Value Types | Memory MTypes | Storage STypes
Denvalue ::= Stackloc Loc | Storeloc Loc
Environment := Address x (Identifier — Type x Denvalue)

Lookup functions. To access the value of a reference type we define a function
which looks up the corresponding value in memory:

M: [E] - MTypes — Loc — Environment — State — Loc x MTypes;

! H !
Mt ies = (h(l,v),t") if looszp(x,t,e,s,t ,0)
L otherwise
Mzs]t' U e s if lookup(z,t,e,s,t',v)
Mz#astles = A access(h(l,v), mem(s)) = Pointer(l")

1 otherwise
where lookup(z,t,e,s,t',v) < g, t": t = MTArray(lg,t’)
A Elz]e s = (Value(v), Value(t"))
A less(t”, TUInt(256),v, [lg]) = (“True”, TBool)
Since memory uses pointer structures, we need to access the memory in every
iteration to look up the next location.

Let us assume that t = MTArray(5, MTArray(6, MT Value(TBool))), and the
memory of state s is [“3.2” — Pointer(“5”), “4.5” — Value(“True”)]. Then,

M[[UInt(8,3)]]t “2” e s = (“3.2”, MTArray(6, MTValue(TBool))) (4)
MI[UInt (8, 3), SInt(8,4)]]t “2” e s = (“4.5”, MT Value(TBool)) (5)
M[[UInt(8,5)]]t “2” e s = L (6)
M[[UInt(8,2)]]t “2” e s = L (7)

A similar function to M is defined to look up storage values with two notable
differences:
— Since storage does not support pointer structures, we do not access the store
while iterating through the list of selectors. Thus, the function always returns
a storage location as long as we access indices within the range of the array
(Eq. , for example would return a valid storage location).
— Since storage also supports mappings, the function can be used to look up
also the value for mapping variables.
Using these functions we can then define two additional functions to look up
the value or location of a variable:

R:L — Environment — State — Stackvalue x Type
L: L — Environment — State — LType x Type |
with LType ::= Stackloc Loc | Memloc Loc | Storeloc Loc

A Denotational Semantics of Solidity in Isabelle/HOL 9

The definition of these functions is straightforward using the lookup functions
discussed before and not discussed further here.

Semantics of Expressions. Finally we can define the semantic function for
expressions.

£: E — Environment — State — Stackvalue x Type |

The definition of the function mainly follows traditional denotational semantics
definitions [34135] with the exception that we use the operators introduced in
Sect. 23] to manipulate integers:

E[SInt(b,n)]e s = (Value(createSInt(b,n)), Value(TSInt(b)))

(Value(v), Value(t)) if E[z1]e s = (Value(vy), Value(ty))
A Elxz]e s = (Value(vse), Value(ts))
A add(ty,ta,v1,v2) = (v,t)

L otherwise

Elzy + z2]e s =

2.4 Statements

So far, our subset of Solidity supports variable declarations with optional ini-
tialisation and basic programming language statements:

D =S xTypex E;|
C :=Skip| L=E|C;C|Ite ECC| While E C | Transfer S E |
Block D C

We can then define a semantic function for statements:
C: C — Environment — State — Nat — (State x Nat) |

The definition of it is mostly standard denotational semantics with some excep-
tions discussed in the following.

Gas. One interesting aspect of Solidity is that execution of statements is subject
to fees, i.e., the execution consumes gas: if all gas is consumed, the execution
terminates with an exception. Consequently, Solidity programs always terminate.
The actual gas fees are computed on the level of the Ethereum byte code [39]
and, moreover, are frequently updated. Thus, our Solidity formalization does not
provide a built-in gas model trying to faithfully represent the actual gas model
on the level of Ethereum bytecode: we only assume the existence of a generic
cost function costs: C x Environment x State — N which provides the gas
costs for executing a given statement. A separate gas function for expressions
can be defined and used with the cost function for statements. Moreover, in our

10 D. Marmsoler and A.D. Brucker

subset of Solidity, the while statement is the only program statement that does
not terminate in all states. Therefore, we require:

0 < costs(While(ex, s),e,s) (8)

This requirement is not a limitation, as the actual costs for any execution of
a while loop will be positive [39, Appendix G|. While our cost model can, in
principle, be used for proving upper or lower bounds for the gas consumption of
a given contract, the usefulness of such a statement depends on how faithful the
user-provided cost functions model the actual costs which may also depend on
compiler optimizations.

We can now verify a general statement about the semantics, namely that it
always terminates. Note that we model error states (e.g., failing transfers) using
an explicit error type. This is a standard construction to model partial functions
in HOL, which requires that all functions are total from a “logical perspective.”

Theorem 1. C[c] e s g is always defined.
Proof. The proof is a simple inductive argument over ¢ using Eq. . a

Indeed, Isabelle automatically proves it for us and provides us with corresponding
proof methods to support reasoning over C.

Semantics of Assignments. Another particularity of Solidity is that the se-
mantics of an assignment depends on the type of store to which the involved
variables refer. Let us consider, for example, the case in which the right-hand
side of an assignment evaluates to a value stored in memory:

Clv=z]e s g
(la) if ex(g,x,e,s,p,it) A L[v]e s=(Stackloc(l),Memory(t'))
(2a) if ex(g,z,e,8,p,0t) A L]v]e s=(Stackloc(l),Storage(t’))

A access(l,sck(s))=Stoptr(p’) A ep™(p,p'i,t,mem(s),sto(s))=o0
=14 (3a) if ex(g,x,e,s,p,it) N Lv]e s=(Storeloc(l),t")

A ep(p,lyit,mem(s),sto(s))=o
(4a) if ex(g,z.e,8,p,0,t) N L]v]e s=(Memloc(l),t")

where ex(g,z,e,s,p,i,t)< costs(v=x,e,s)<g
A E[x]e s=(Memptr(p),Memory(MTArray(i,t)))
(la)=(upSck(updateStore(l,Memptr(p),sck(s)),s),costs(v=ux,e,s))
(2a,3a)=(upSto(o,s),costs(v=x,e,s))
(4a)=(upMem(updateStore(l,Pointer(p),mem(s)),s),costs(v=wx,e,s))
In this case, the semantics of the assignment changes, depending on the £-value
of the left-hand side: If it is a pointer to memory (cases (1) and (4)), we just

assign the pointer but if it is a reference to storage (cases (2) and (3)), we copy
the whole structure to memory using the copy functions discussed in Sect. 2.2

A Denotational Semantics of Solidity in Isabelle/HOL 11

Transferring Money. Another aspect which sets Solidity apart from tradi-
tional programming languages is its support for features to transfer funds from
one account to another. To this end, every contract is associated with an account
and Solidity supports a command which can be used to transfer funds from it
to another account:

(1b) if costs(Transfer(a,x),e,s) < g
A Elx]e s = (Value(v), Value(t))

C[Transfer a x]e s g =
I i lesg A transfer(address(e), a,t,v, acc(s)) = ac

where (1b) = (upAcc(ac, s), costs(Transfer(a, x), e, s))

transfer(s, d, v, ac) = {addB(d,t,v, ac’) if subB.(s,t,v, ac) = ac’
1 otherwise

Here, address(e) denotes the address of the contract’s account, and
addB(a,t,v, ac) and subB(a,t,v, ac) are functions to increase and decrease the
balance of an address a of accounts ac by a certain amount v. Note that both
functions use the corresponding add and sub functions for signed and unsigned
integers discussed in Sect. Moreover, subB may also fail if an account has
not enough funds in which case it evaluates to L.

3 Compliance to the Official Solidity Implementation

For ensuring that our formal semantics is a faithful representation of the official
Solidity implementation, we provide a test framework that supports compar-
ing the result of evaluating a Solidity program in our formal semantics to its
execution on the Ethereum blockchain.

We use Isabelle’s code generator to automatically generate a Solidity evalua-
tor from our formal semantics. In our current implementation, we use Haskell as
target platform for the code generator. Moreover, we need to provide a concrete
cost function for computing the gas consumption (recall . In Isabelle,
we can achieve this by instantiating a so-called locale [5] with a trivial imple-
mentation satisfying Eq. .

We then generate Solidity programs using a grammar-based fuzzer and com-
pare the results of executing those programs on both the reference implementa-
tion of Solidity and our evaluator. The test framework is fully automated[Fig. 1|
shows the main steps of our test framework that we discuss in the following in
more detail.

— Generate Random Solidity Code. The test framework generates a ran-
dom Solidity program from a given grammar, using the grammar-based
fuzzer Grammarinator [2I]. To avoid the generation of programs which do
not compile, the grammar needs to be strict to only accept programs which
are type-correct. The grammar is given in the format used by ANTLRA4 [31].

12 D. Marmsoler and A.D. Brucker

|

) ()
Generate Generate Random
Random State) L Solidity Code

\ (h
. Create l Deploy and Execute
[Execute Semantics) L Test Contract Contract
J

Fig. 1. Fuzzy testing Solidity smart contracts.

— Generate Random State. For each generated Solidity program, our test-
ing framework generates a set of random input states. To this end, the script
analyses the generated program and extracts the variables which occur in it.
Based on the type of the variable, the script then generates random values
for each variable.

— Execute Semantics. Before we can compute the output state with our
semantics, we first need to transform the generated Solidity program to the
abstract syntax which is accepted by the semantics. Finally, the abstract
syntax of the program and the generated input state can be passed to the
executable semantics, i.e., the evaluator automatically generated by Isabelle,
to compute a corresponding output state.

— Create Test Contract. The generated Solidity program, together with the
generated input state and the computed output state, is used to create a test
contract for the Truffle testing framework [I1]. Listing shows parts of a
generated contract, consisting of a single function which contains the gener-
ated Solidity program. The extracted storage variables are declared as con-
tract variables whereas the extracted memory/stack variables are declared
locally. Then, the variables are initialized according to the generated input
state whereas the computed output state is used to create corresponding
assertions for the Truffle framework.

— Deploy and Execute Contracts. Finally, the script deploys the test con-
tract to a local instance of the Ganache blockchain [I0] and executes the test
using Truffle [T1]. It then parses the output of the test, reports in in a log
file and starts a new iteration.

3.1 Results

To test our semantics, we run the framework for several days which resulted in
more than 10 000 successful tests. To cross-validate the effectiveness of the testing
framework we also collected coverage information for the semantics using the Hpc
tool [14]. The results are summarized in Fig. |2} Out of 123 definitions, 121 were
executed during the tests. In addition, 186 alternatives (out of 524) and 1592
expressions (out of 2394) were executed. Hpc also generates detailed coverage
reports for every module. When inspecting these reports it turns out that the low
number of covered alternatives is mainly because of missing executions of error

A Denotational Semantics of Solidity in Isabelle/HOL 13

1 contract TestContractO {
2 uint8 v_u8_s8;
3 mapping(uint16 => uint8) v_m_ul6_u8_9; Extracted
4 bool[1][2] a_b_12_s5; Arstorage variables
5 ..
6 function test() public {
7 uint104 v_ul04_m2; Extracted
8 uint104[1] [1] memory a_ul0O4_11_m2; = .
9 o memory/stack variables
10 v_ul04_m2=14622709355569675963178665339646 ; Generated
11 v_m_ul6_u8_9[59381]=79; = .
input state

12
13 int8 counter1=int8(0);
14 while((v_m_u224_s240_1[uint224(444)]==
15 (v_u216_s1-v_ul04_m2)) && counter1<int8(10)){
16 0x£7218C33533a3F22e3296F8b1DC0074B399355Eb Generated
17 .transfer(v_m_ul6_u8_9[uint16(0)]); Fﬁprogram
18 counterl=counterl+int8(1);
19 }
20 ..
21 Assert.equal(v_m_ul6_u8_9[59381]==79, true);
22 Assert.equal(a_ul04_11_m2[0] [0]==
23 8130097819054169632795960896007, true);
24 Assert.equal(FﬁComputed

q
25 0x£7218C33533a3F22¢3296F8b1DCO074B399355Ep | TeSult state
26 .balance==100000000000000000000, true);
27
28 }
29 }

Listing 1.1. Example test contract generated by our testing framework.

cases (e.g. ill-typed programs). This is because the test framework only generates
well-formed Solidity programs and thus the error cases are not executed.

Definitions
Alternatives I Coverage
Total
Expressions
! ! ! J
0 25 50 75 100

Fig. 2. Overall test coverage of semantics.

14 D. Marmsoler and A.D. Brucker

4 Verified Constant Folding

Constant folding is a common type of program optimization technique in which
constant sub-expressions are replaced by their value. For example, the expression
SInt(16,250) + Ulnt(8,500) can be replaced with the expression SInt(16,494)
in every program without affecting its outcome.

When it comes to smart contracts, constant folding is a good candidate for
gas optimization. For example, according to the Remix IDE [29], computing the
original expression costs 20 gas whereas computing the optimized version costs
only 8 gas which leads to a saving of 12 gas just for this simple expression.

We can define a function for constant folding of Solidity expressions as follows:

update: E—E

SInt(b,((v+2"~1) mod 2b) 20-1) if v>0
)

date(SInt(b,v))=
update(SInt(b,v)) {ant(b,2071—((2°7'—v—1) mod 2°)—1) if v<0

(L) if 3by,v1,b2,va. sint(x1,b1,v1,29,b0,02) A v1+v2>0

(2¢) if Fby,v1,ba,v9. sint(xy,b1,v1,22,b2,02) A v1+v2<0
update(z1+x2)=1 (3¢) if Fba<bi,v1,v2. wint(x1,b1,v1,2,b2,v2) A v1+v2>0

(4e) if Fbo<by,vy,vg. wint(xy,b1,v1,22,b2,02) A v14+v2<0

with
sint(x1,b1,01,29,b2,v2) <= update(x1)=SInt(by,v1) N update(xs)=SInt(be,v2)
wint(x1,b1,v1,22,b2,v9)<=update(x1)=5SInt(by,v1) A update(zs)=Ulnt(be,vs)

(lc)=SInt (maz(bl,bg),((Qmam(bl’bQ)_l—i—v) mod Zm“z(bl’l”))—2m“z(b1’b2)_1>
(2¢)
—=STInt (mal,(bl,bz),Zmam(bhln)fli ((2ma1(b1,b2)*1ivil) mod 2maz(b1,b2)) 71)

(30)=Sint (b, (02 mod) 2-1)
(4¢)=SInt (by,2" 7' = ((2" ' —v—1) mod 2"')—1)

where for every case (1¢)—(4c), variables by,v1,ba,v2 denote the unique elements
satisfying the condition required for this case and v=wvi+wvy. The cases for un-
signed integers and the remaining arithmetic and boolean expressions are similar.

The function update can be applied to a Solidity program to replace constant
expressions with their corresponding value reducing the gas cost of executing
the program. For example, update applied to the expression SInt(16,250) +
UInt(8,500) returns the expression Sint(16,494).

Having a formal semantics of Solidity expressions in Isabelle allows us to
mechanically verify the correctness of our update function, i.e., we proved in
Isabelle/Isar [38] that it does not modify the semantics of an expression:

Theorem 2. E[z]e s = E[update(x)]e s

A Denotational Semantics of Solidity in Isabelle/HOL 15
5 Memory Optimization

In the following, we describe a failed verification attempt to demonstrate the
type of problems which can be detected with our approach.

In Solidity, access to storage variables is far more expensive than access to
memory variables. Thus, instead of directly working on a storage variable, a
common pattern is to first copy its content to memory, manipulate the corre-
sponding memory variable, and finally copy the results back to storage. We can
capture this pattern in another optimizer program which automatically replaces
storage variables with corresponding memory variables. To this end, we first
create three functions to update identifiers in £-values, expressions, and state-
ments, respectively. The corresponding function for £-values, for example, looks
as follows:

lupdate: S xS x L — L

lupdate(j, §', Id(i))

_ i) ifi=g
(i) ifi#j

of (', map(eupdate(j,), as)) it i = j
bapdate(s, ', Ref (i 2s)) = { (i, map(eupdate(j,), 2s)) if i #]

where map is a higher-order function which executes another function over a
sequence of values. The functions for expressions and statements are straightfor-
ward and thus not discussed further.

We can now define a function which implements the pattern discussed above:

optimize: S X S x MTypes x C — C
optimize(vg, Vm, MT Value(t), s) = Block (v, Value(t), L(1d(vs))), up(vs, Vm, 5))
optimize(vg, Uy, MTArray(i,t), s) =
Block ((vy, Memory(MTArray(i,t)), L(Id(vs))), up(vs, Um, S))
where up(vs, Vm,s) = supdate(vs, v, s) ; Id(vs) = L(Id(v))

As an example, consider the following contract:

1 contract MyContract {

2 bool[1] sa;

3

4 function myFunction() public { | bool[1] memory x = sa;
5 bool[1] memory ma = [false]; {

6 sa = ma; X = ma;

7 sal[uint8(0)] = true; }7 x[0] = true;

8 + sa = x;

9 } }

Applying function optimize on it would replace the lines 6 and 7 with the
program shown in the connected box. Again, it is important to ensure that

16 D. Marmsoler and A.D. Brucker

optimize does not modify the semantics of programs and again we can formulate
a corresponding correctness criterion in Isabelle.
To formulate the correctness statement, we first need to add two additional
functions:
— Function fresh(i, c) checks if an identifier ¢ is not present in a statement ¢ so
far.
— Function convert(t) converts a memory type to a corresponding storage type.
We can now define correctness of the optimizer program as follows:

fresh(vm,c) A vy #vs A accessEnv(vs, e) = (Storage(convert(t,,)), v)

= C[c]e s = Cloptimize(vpm, vs, tm,c)]e s

where accessEnv(v, e) is used to obtain the type and value of a variable v in an
environment e.

This time, when trying to verify the statement in Isabelle, it turns out that
the statement does not hold in general. In particular, the substitution of refer-
ence type variables is critical. Consider, for example, again contract MyContract
above. In the original program, line 6 copies the complete content of memory
array ma to storage array sa. In line 7, the program then updates the value of
the storage array without modifying ma. Indeed, given a definition of a corre-
sponding environment env and state st, we can easily verify the following lemma
in Isabelle:

Lemma 1. C[P]e s =s" A access(“0.17, mem(s")) = MValue(“False”)

where P is the program consisting of lines 6 and 7 of contract MyContract and
“0.1” is the location of the first element of array ma in memory.

On the other hand, the modified version of the program behaves as follows:
First, it copies the complete content of storage array sa to the newly created
memory array z. Now, however, since z is also a memory array, the semantics of
the assignment x = ma is different from the one in line 6 of the original program.
Instead of copying again the content of the array, this time, the assignment
just copies a pointer to the content of array ma to x. Therefore, the next line
z[0] = true does not only change the value of x[0], but in addition it also
changes the value of ma[0]. Thus, while the value of array sa after execution
is the same for both programs, the optimized program has the additional side
effect of changing also the content of array ma. Indeed, we can easily show the
following lemma in Isabelle:

Lemma 2. C[optimize(sa, z, MTArray(1, MTValue(TBool)), P)]e s = s
A access(“0.17, mem(s')) = (M Value(“True”))

6 Related Work

Early work on formalizing Ethereum smart contracts has focused on the
Ethereum Virtual Machine (EVM) [40]. One of the first examples in this area is
the work of Hirai [20], which provides a formalization of the EVM in Lem [27].

A Denotational Semantics of Solidity in Isabelle/HOL 17

Later on, Hildebrandt et al. provide an alternative formalization using the K-
framework [33] called KEVM [19]. Around the same time, Grischenko et al. [16]
provide a formalization of the EVM in F* [36] and Amani et al. one for the
interactive theorem prover Isabelle/HOL [4]. All the work in this area describes
the formalization of the Ethereum Virtual Machine to support the verification
of contracts at the byte-code level. With our work we focus on the higher level
language Solidity which allows more abstract reasoning.

More recently, also work on formalizing and analyzing smart contracts in
Solidity emerged: Bhargavan et al. [9], for example, describe an approach to map
a Solidity contract to F* where it can then be verified. In addition, Mavridou
et al. [26], provide an approach based on FSolidM [25], in which a Solidity
smart contract is modeled as a state machine to support model checking of
common security properties. TinySol [6] and Featherweight Solidity[12], on the
other hand, are two calculi formalizing some core features of Solidity. Crosara
et al. [13] describe an operational semantics for a subset of Solidity. Moreover,
Ahrendt and Bubel describe SolidiKeY [3], a formalization of a subset of Solidity
in the KeY tool [2] to verify data integrity for smart contracts. In addition,
Zakrzewski [42] describes a big-step semantics of a small subset of Solidity and
Yang and Lei [4I] describe a formalization of a subset of Solidity in Coq [37].

While all these works provide important insights into the formal foundation
of Solidity, most of them are not executable and therefore difficult to evaluate. On
the other hand, we considered it important to have an executable semantics that
can be evaluated against the reference implementation. We share this desire with
Hajdu and Jovanovic [ITJI8|, which provide a formalization of Solidity in terms
of a simple SMT-based intermediate language which they evaluate on a set of
manually developed tests. In addition, Jiao et al. [22]23], provide a formalization
of Solidity in K with a rigorous evaluation using the Solidity compiler test set.Our
work differs from the above works mainly in two main aspects:

1. We provide the first implementation of a semantics for Solidity for the in-
teractive theorem prover Isabelle/HOL.

2. Our approach comes with an integrated fuzzy-testing framework which al-
lows to automatically test the semantics against the reference implementa-
tion every time the semantics is updated.

7 Conclusion

We presented a formal semantics of Solidity, as a conservative extension of Is-
abelle/HOL. Our work includes a test framework for automatically validating
that our semantics describes the behavior of the actual Solidity implementation
faithfully. As a first step of showing the usefulness of our semantics, we demon-
strated the formal analysis of two different optimizations of Solidity programs
that potentially help to make smart contracts more “gas efficient”.

In our current work, we focused on the core of the Solidity language and
the more exotic features such as its memory model and the numerous types of
integers. We plan to extend the formalization with support for missing language

18 D. Marmsoler and A.D. Brucker

features such as function calls. And we also plan to improve and extend the
verification framework, e.g., by providing support for the keywords require and
assert, and a verified verification condition generator. Moreover, we started al-
ready to increase the level of proof automation by developing domain specific
tactics.

Awvailability. Our formalisation, the test framework, and the evaluation results
are available under BSD license (SPDX-License-Identifier: BSD-2-Clause) [24].

Acknowledgements. We would like to thank Tobias Nikpkow for useful dis-
cussions about the compliance testing. Moreover, we would like to thank Silvio
Degenhardt and Nick Papavasileiou for their support with implementing the
semantics.

References

1. The Bitcon market capitalisation., https://coinmarketcap.com/currencies/
bitcoin/| last checked on 2021-05-04.

2. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive software verification—the KeY book, vol. 10001. Springer (2016)

3. Ahrendt, W., Bubel, R.: Functional verification of smart contracts via strong data
integrity. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal
Methods, Verification and Validation: Applications. pp. 9-24. Springer (2020)

4. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: CPP. p. 66-77. CPP 2018, ACM (2018).
https://doi.org/10.1145/3167084

5. Ballarin, C.: Interpretation of locales in isabelle: Theories and proof contexts.
In: Borwein, J.M., Farmer, W.M. (eds.) Mathematical Knowledge Management.
LNCS, vol. 4108, pp. 31-43. Springer (2006). https://doi.org/10.1007/11812289 4

6. Bartoletti, M., Galletta, L., Murgia, M.: A minimal core calculus for Solidity con-
tracts. In: Pérez-Sola, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) Data Privacy Management, Cryptocurrencies and Blockchain Technology.
pp. 233-243. Springer (2019)

7. Berghofer, S., Wenzel, M.: Inductive datatypes in hol — lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C.
(eds.) TPHOLSs. pp. 19-36. Springer (1999)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT. pp. 313-314. Springer (2013)

9. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,
Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-
Béguelin, S.: Formal verification of smart contracts: Short paper. In: Program-
ming Languages and Analysis for Security. p. 91-96. PLAS, ACM (2016).
https://doi.org/10.1145,/2993600.2993611

10. ConsenSys Software Inc.: Ganache. |https://www.trufflesuite.com/docs/ganache/,
Accessed: 2021-05-01

11. ConsenSys Software Inc.: Truffle. https://www.trufflesuite.com /truffle, Accessed:
2021-05-01

https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
https://doi.org/10.1145/3167084
https://doi.org/10.1007/11812289_4
https://doi.org/10.1145/2993600.2993611
https://www.trufflesuite.com/docs/ganache/
https://www.trufflesuite.com/truffle

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A Denotational Semantics of Solidity in Isabelle/HOL 19

Crafa, S., Di Pirro, M., Zucca, E.: Is Solidity solid enough? In: Bracciali, A., Clark,
J., Pintore, F., Rgnne, P.B., Sala, M. (eds.) Financial Cryptography and Data
Security. pp. 138—-153. Springer (2020)

Crosara, M., Centurino, G., Arceri, V.: Towards an Operational Semantics for
Solidity. In: van Rooyen, J., Buro, S., Campion, M., Pasqua, M. (eds.) VALID.
pp- 1-6. TARIA (Nov 2019)

Gill, A.; Runciman, C.: Haskell program coverage. In: Haskell Workshop. p. 1-12.
Haskell 07, ACM (2007). [https://doi.org/10.1145/1291201.1291203

Gordon, M.: From LCF to HOL: a short history. In: Plotkin, G., Stirling, C., Tofte,
M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp.
169-185 (2000)

Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Kiisters, R. (eds.) Prin-
ciples of Security and Trust. pp. 243-269. Springer (2018)

Hajdu, A., Jovanovic, D.: solc-verify: A modular verifier for Solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE. LNCS, vol. 12031, pp.
161-179. Springer (2019). https://doi.org/10.1007/978-3-030-41600-3 11

Hajdu, A., Jovanovic, D.: Smt-friendly formalization of the Solidity memory model.
In: Miiller, P. (ed.) ESOP. LNCS, vol. 12075, pp. 224-250. Springer (2020).
https://doi.org/10.1007/978-3-030-44914-8 9

Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth, D.,
Moore, B., Park, D., Zhang, Y., Stefanescu, A., Rosu, G.: Kevm: A complete
formal semantics of the Ethereum virtual machine. In: CSF. pp. 204-217 (2018).
https://doi.org/10.1109/CSF.2018.00022

Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., Rohloff, K., Bonneau, J., Miller, A., Ryan, P.Y., Teague, V.,
Bracciali, A., Sala, M., Pintore, F., Jakobsson, M. (eds.) Financial Cryptography
and Data Security. pp. 520-535. Springer (2017)

Hodovan, R., Kiss, A., Gyimothy, T.: Grammarinator: A Grammar-Based Open
Source Fuzzer. In: Automating TEST Case Design. p. 45-48. A-TEST 2018, ACM
(2018). https://doi.org/10.1145/3278186.3278193

Jiao, J., Kan, S., Lin, S:W., Sanan, D., Liu, Y., Sun, J.: Semantic understanding
of smart contracts: executable operational semantics of Solidity. In: SP. pp. 1695—
1712. TEEE (2020)

Jiao, J., Lin, S.\W., Sun, J.: A generalized formal semantic framework for smart
contracts. In: Wehrheim, H., Cabot, J. (eds.) FASE. pp. 75-96. Springer (2020)
Marmsoler, D., Brucker, A.D.: A denotational semantics of Solid-
ity in Isabelle/HOL: Implementation and test data (Oct 2021).
https://doi.org/10.5281 /zenodo.5573225

Mavridou, A., Laszka, A.: Tool demonstration: Fsolidm for designing secure
Ethereum smart contracts. In: Bauer, L., Kiisters, R. (eds.) Principles of Secu-
rity and Trust. pp. 270-277. Springer (2018)

Mavridou, A., Laszka, A., Stachtiari, E., Dubey, A.: Verisolid: Correct-by-design
smart contracts for Ethereum. In: Goldberg, 1., Moore, T. (eds.) Financial Cryp-
tography and Data Security. pp. 446-465. Springer (2019)

Mulligan, D.P.; Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: Reusable en-
gineering of real-world semantics. SIGPLAN Not. 49(9), 175-188 (Aug 2014).
https: //doi.org/10.1145,/2692915.2628143

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

https://doi.org/10.1145/1291201.1291203
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1109/CSF.2018.00022
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.5281/zenodo.5573225
https://doi.org/10.1145/2692915.2628143

20

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

D. Marmsoler and A.D. Brucker

Online: Remix — Solidity IDE. https://remix-ide.readthedocs.io/en/latest, Ac-
cessed: 2021-05-01

Online: Solidity documentation. https://docs.soliditylang.org/en/v0.5.16/, Ac-
cessed: 2021-05-01

Parr, T.: Antlr (another tool for language recognition). https://www.antlr.org/
index.html, Accessed: 2021-05-01

Perez, D.,; Livshits, B.: Smart contract vulnerabilities: Vulnerable does not imply
exploited. In: USENIX Security. USENIX Association (Aug 2021)

Rosu, G., Serbanutd, T.F.. An overview of the K semantic framework.
The Journal of Logic and Algebraic Programming 79(6), 397-434 (2010).
https://doi.org/10.1016/j.jlap.2010.03.012

Scott, D.: Outline of a mathematical theory of computation. Oxford University
Computing Laboratory, Programming Research Group Oxford (1970)

Scott, D., Strachey, C.: Toward a mathematical semantics for computer languages,
vol. 1. Oxford University Computing Laboratory, Programming Research Group
Oxford (1971)

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,
Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., Zinzindohoue, J.K.,
Zanella-Béguelin, S.: Dependent types and multi-monadic effects in F*. In: Sym-
posium on Principles of Programming Languages. p. 256-270. POPL ’'16, ACM
(2016). |https://doi.org/10.1145/2837614.2837655

The Coq development team: The Coq proof assistant reference manual. LogiCal
Project (2004), version 8.0

Wenzel, M.: Isabelle/Isar — a generic framework for human-readable proof docu-
ments. From Insight to Proof — Festschrift in Honour of Andrzej Trybulec 10(23),
277-298 (2007)

Wood, G.: Ethereum: A secure decentralised generalised transation ledger (version
2021-04-21). Tech. rep.

Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1-32 (2014)

Yang, Z., Lei, H.: Lolisa: Formal syntax and semantics for a subset of the Solid-
ity programming language in mathematical tool Coq. Mathematical Problems in
Engineering 2020, 6191537 (2020)

Zakrzewski, J.: Towards verification of Ethereum smart contracts. In: Piskac, R.,
Rimmer, P. (eds.) VSTTE. LNCS, vol. 11294, pp. 229-247. Springer (2018).
https://doi.org/10.1007/978-3-030-03592-1 13

https://remix-ide.readthedocs.io/en/latest
https://docs.soliditylang.org/en/v0.5.16/
https://www.antlr.org/index.html
https://www.antlr.org/index.html
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1007/978-3-030-03592-1_13

	A Denotational Semantics of Solidity in Isabelle/HOL
	1 Introduction
	2 Semantics
	2.1 Value types
	2.2 Stores and Reference Types
	2.3 Expressions
	2.4 Statements

	3 Compliance to the Official Solidity Implementation
	3.1 Results

	4 Verified Constant Folding
	5 Memory Optimization
	6 Related Work
	7 Conclusion

