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Abstract. Neural networks are being used successfully to solve classific-
ation problems, e.g., for detecting objects in images. It is well known that
neural networks are susceptible if small changes applied to their input
result in misclassification. Situations in which such a slight input change,
often hardly noticeable by a human expert, results in a misclassification
are called adversarial examples. If such inputs are used for adversarial
attacks, they can be life-threatening if, for example, they occur in image
classification systems used in autonomous cars or medical diagnosis.
Systems employing neural networks, e.g., for safety or security-critical
functionality, are a particular challenge for formal verification, which
usually expects a formal specification (e.g., given as source code in a pro-
gramming language for which a formal semantics exists). Such a formal
specification does, per se, not exist for neural networks.

In this paper, we address this challenge by presenting a formal embedding
of feedforward neural networks into Isabelle/HOL and discussing desir-
able properties for neural networks in critical applications. Our Isabelle-
based prototype can import neural networks trained in TensorFlow, and
we demonstrate our approach using a neural network trained for the
classification of digits on a dot-matrix display.
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1 Introduction

Deep learning, i.e., machine learning using neural networks is used successfully
in many application areas, e.g., image classification (|24, |37, [11]). While systems
using neural networks are also used in safety-critical areas (e.g., for the recog-
nition of street signs in semi-autonomous cars [11]), the use of neural networks
in high-assurance systems is limited due to the lack of formal verification tech-
niques that satisfy the stringent requirements of industrial certification standards
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such as BS EN 50128 [10] (safety) or Common Criteria |[14] (security) that are
required for such applications.

The formal specification and verification techniques that such standards re-
quire usually rely on the existence of an implementation (e.g., source code) whose
compliance to a specification can be verified (e.g., following an approach similar
to [23]). For systems based on neural networks, such an implementation that
precisely describes, in a human-readable form, the system’s behaviour does not
exist. The only artefact that exists is a neural network trained on a set of training
data, which is expected to behave correctly for all possible inputs.

Formal verification is an approach that can make a statement for all possible
inputs. In this paper, we present an approach based on the interactive theorem
prover Isabelle/HOL for the formal verification of neural networks. Using an
expressive formalism, such as higher-order logic, allows for expressing complex
properties that a neural network needs to satisfy. On the one hand, the fact
that Isabelle is an interactive theorem prover enables the user to explore the
properties of the network and, therefore, deepen the understanding of the neural
network being analysed. On the other hand, Isabelle is a framework that allows
us to provide highly automated functionality for both, encoding a specific neural
network, and for proving properties over it.

In more detail, our contributions are three-fold:

1. a formal embedding of feedforward neural networks into Isabelle/HOL,

2. a verification environment supporting the verification of neural networks
trained using TensorFlow, and

3. an application of our framework to a case study.

The rest of the paper is structured as follows: first, we introduce the back-
ground of our work and a small running example . Next, we
introduce our formal model of feedforward neural networks in Isabelle/HOL in
and discuss the desirable properties of classification networks in
In we briefly explain our implementation in Isabelle/HOL before we

briefly discuss a case study for classifying dot-matrix digits (Sect. 7). Finally, we
discuss related work (Sect. 8) and draw conclusions (Sect. 9)).
2 Isabelle and Higher-Order Logic (HOL)

In this section, we introduce two aspects of Isabelle/HOL; its logic (HOL) and
its implementation architecture.

2.1 Isabelle/HOL

Isabelle 28] is a well-known interactive theorem prover that has been used suc-
cessfully in large-scale verification projects (e.g., [23] presents the verification of
an operating system kernel using Isabelle/HOL). The formal language of Isabelle
is Higher-order logic (HOL) [12], which is a classical logic based on a simple type
system. It provides the usual logical connectives like =~ _, _ A _, _ V _, _ —>

_ as well as the object-logical quantifiers V x. P x and 3 x. P x. In contrast
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to first-order logic, quantifiers may range over arbitrary types, including total
functions f::a = [ (where o and f are polymorphic type variables).

Isabelle/HOL offers support for extending theories in a logically safe way: A
theory-extension is conservative if the extended theory is consistent, provided
that the original theory was consistent. Conservative extensions can be constant
definitions, type definitions, datatype definitions, primitive recursive definitions
and well-founded recursive definitions.

2.2 Isabelle as Formal Methods Framework

Isabelle is not only an interactive theorem prover; it also provides an extensible
framework for developing formal method tools [39]. shows an overview of
the Isabelle architecture. For our work, it is noteworthy that new components can

Editor Front-End

(e.g., JEdit, VSCode, Eclipse)
| PIDE m
Components Integrators cvCa
(e.g., datatype, record) (e.g., sledgehammer)
Proof Methods/Tactics Document Generator PDF/LaTeX
(e.g., simp, fast, metis) —
Kernel
g G, (0, ) Code Generator ATML
Nano-Kernel Project & Dependency <
(e.g., context) Management Haskell
]
bell L[ Scala

Fig. 1: The system architecture of Isabelle.

be implemented in Isabelle/ML, i.e., Isabelle’s SML programming interface.
In a logically safe way, we use this interface to provide an import mechanism
for importing neural networks and implementing domain-specific proof methods.
Furthermore, use the code generator to efficiently evaluate neural networks, i.e.,
compute predictions for concrete inputs.

3 Running Example: Classifying Lines in a Grid

In the following, we introduce neural networks for (image) classification by using
a simple line classification problem: given a 2 x 2 pixel greyscale image, the neural
network should decide if the image contains a horizontal line (e.g., [Fig. 2al),
vertical line (e.g., , or no line .

Traditionally, textbooks (e.g., ) define a feedforward neural network as
directed weighted acyclic graphs. The nodes are called neurons, and the incoming
edges are called inputs. For a given neuron k£ with m inputs zj, to xj and

m—1)



4 A.D. Brucker and A. Stell

M=l =R u= R

) horizontal line ) vertical line no line ) misclassification

Fig. 2: Example input images to our classification problem.

the respective weights wy, to wy,, , the neuron computes the output

yk =@ | B+ wkax, (1)
=0

where ¢ is the activation function and g the bias for the neuron k. The values
for the weights and biases are determined during the training (learning) phase,
which we omit due to space reasons. In our work, we assume that the given
neural network is already trained, e.g., using the widely used machine learning
framework TensorFlow [1].

illustrates the architecture of our neural network: The neural network
for our example classification problem has four inputs (one for each pixel of the
image), expecting an input value between 0.0 (white) and 1.0 (black). It also

7

Fig. 3: Neural network for classifying lines in 2 x 2 pixel greyscale images.

has three outputs, one for each possible class (a horizontal line, a vertical line,
or no line). The neurons (nodes) can be naturally categorised into layers, i.e.,
the input layer consisting out of the input nodes and the output layer consisting
out of the output nodes. Moreover, our neural network has one hidden layer
with 16 neurons. The input layer and the hidden layer use a linear activation
function (i.e., ¢(x) = x) for all neurons, and the hidden layer uses the binary
step function (i.e., ¢(x) = 0 for x < 0 and ¢(z) = 1 otherwise). In our example,
there is an edge between each neuron from the previous layer to the next layer,
often called a dense layer. Machine learning approaches using neural networks
with one or more hidden layers are called deep learning.
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In our example, we used the Python API for TensorFlow [1] to train our
neural network. We obtained a neural network that reliably classifies black lines
in a given 2 x 2 image with 100% accuracy. While this sounds great, the neural
network is not very resilient to changes to its input values. Consider, for example,
a human expert would likely classify this image as “no line”. Nevertheless,
our neural network classifies this as a horizontal line, even though the upper right
pixel is only light grey with a numerical value of 0.05, much closer to white than
black. Such a misclassification is usually called an adversarial ezample. If such
a network is used in safety or security-critical applications, e.g., for classifying
street signs, such misclassifications can be life-threatening.

4 Modelling Neural Networks in Isabelle

Our Isabelle/HOL formalisation contains several models, i.e., one based on mod-
elling neural networks as graphs (i.e., “textbook-style”) and one modelling neural
networks as layers (i.e., “TensorFlow-style”). Due to space reasons, we will focus
in this paper, on the latter.

4.1 Data Modelling

We use locales (i.e., Isabelle’s mechanism for parametric theories) to capture
fundamental concepts that are shared between different models of neural net-
works. We start by defining a locale neural_network_sequential_layers to
describe the common concepts of all neural network models that use layers are
core building blocks. For our representation to be a well-formed sequential model,
we require that the first layer is an input layer and the last layer is an output
layer:

locale neural_network_sequential_layers = Isabelle (Isar)

fixes N::<(('a::{monoid_add,times}, 'b) neural_network_seq_layers)

assumes head_is_In: <(isIn (hd (layers N))»
and last_is_Out: (isOut (last (layers N)))
and (list_all isInternal ((tl o butlast) (layers N))»

begin end

For this encoding of a neural network, we mostly follow TensorFlow’s Se-
quential model [1] and represent our network as a list of layers with an abstract
table of activation functions, allowing for extensible and customisable functional-
ity. The record ('a, 'b) neural_network_seq_layers represents our network
where 'a is an abstract value representing the type of our weights and bias, and
'b is our activation function.

record ('a, 'b) neural_network_seq_layers = Isabelle (Isar)

layers :: <(('a, 'b) layer 1list)
activation_tab :: ('b = (('a list = 'a list) option))
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Included in our formalisation are definitions for all TensorFlow [1] activation
functions, and for those which use e”, we also provide an approximation using the
Taylor series of the exponential function, which has been shown to outperform
the original in certain situations [4]. In our running example (recall , the
activation functions used during training include binary step in the hidden layer
and linear in the output layer.

definition Isabelle (Isar)

(identity = (Av. v))
definition binary_step :: ('a::{zero, ord, one, zero} = 'a) where
(binary_step = (A v. if v < 0 then O else 1))

As we are using a representation of a network as a list of layers, we also
support different layer types and their computations. Currently, our sequential
layers model supports five layer types Input, Output, Dense, Activation, and,
as we allow for the abstraction of activation functions, we can define arbitrary
'b in the networks activation_tab, allowing for custom activation functions.
Therefore, we do not need to model TensorFlow’s Lambda layer explicitly (which
is TensorFlow’s mechanism for supporting custom activation functions).

datatype ('a, 'b) layer = In (InOutRecord) Isabelle (Isar)

| Out (InOutRecord)
| Dense (('a,'b) LayerRecord)
| Activation (('b) ActivationRecord)

These layer types differ in how they are connected to the next layer in the
network, thus changing the calculation during training and prediction. The Dense
layer is the most powerful layer type in the sense that it connects all outputs of
the previous layer with all inputs. Hence, other layer types (e.g., TensorFlow’s
Activation layer, which applies an activation function to each output of the
previous layer) can be expressed in terms of a Dense layer with certain weights
set to the constant 0 to “disable” certain edges.

Each ('a, 'b) LayerRecord contains the activation, weights and bias in
our network (¢, f and w respectively), while our ('b) ActivationRecord only
contains our abstracted activation function.

record InOutRecord = Isabelle (Isar)

name:: String.literal
units:: nat
record ('b) ActivationRecord = InOutRecord +
@ = 'b
record ('a, 'b) LayerRecord = (('b) ActivationRecord) +
B i ('a list)
w :: ('a list list)
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4.2 Encoding our Running Example

Using the above definitions, we can now show the specialisation of our form-
alisation by explaining the representation of our network discussed in
in Isabelle/HOL. We represent this example by first defining the types of our
concrete network, as the encoding of the grid uses an array of NumPy [19] 64-bit
floats, the 'a in our record ('a, 'b) neural_network_seq_layers is instanti-
ated as a real and the 'b, is of the datatype activationgi, (a datatype that
allows for the mapping of the abstraction of multi-class activation functions onto
its Isabelle/HOL definition).

Next, we have the layers; the input layer is a densely connected layer that
passes each input into each neuron in the first hidden layer.

dense_input = (| name = STR ''dense_input'', units = 4 | Isabelle (Isar)

The hidden layer in the network is a dense layer with 16 units, the learned
weights and bias referenced in this layer refer to the connections that exist
between this and the previous input layer.

Isabelle (Isar)

dense = ([ name = STR ''dense'', units = 16,
¢ = mBinaryStep, f = [6 / 10, ..., - 145 / 10],
w=[[1, ..., 11 ..., [8, ..., 8]][)

The next layer is the final calculation layer in our network and passes the
results onto our final output layer, which outputs the prediction of the network.

dense_1 = (| name = STR ''dense_1'', units = 3, Isabelle (Isar)

¢ = mIdentity, 8 = [1, 0, 0],
w = [[0, 0, 0], ...,[0, 0, 0]])
OUTPUT = (| name = STR ''OUTPUT'', units = SD

Using the above layer and the activation function definitions; our final neural
network for the classification of horizontal and vertical lines can be defined as
follows:

NeuralNet = (| layers = [dense_input, Layers.dense, Isabelle (Isar)

dense_1, OUTPUT], activation_tab = grid.¢_grid)|)

4.3 Evaluating Neural Networks

What remains is the evaluation of the network, usually called “prediction”. To
be able to verify that a network’s behaviour falls within our desirable properties
(Sect. B)), we need to be able to efficiently evaluate its prediction for a given
input. As the calculation performed depends on the layer of the network that
we are currently evaluating, we calculate the output based on the layer type and
fold this over the network.
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The input and output layers of our network pass the inputs directly onto
the next layer without any calculation performed; this can be seen in the first
two cases of the predictiayer function. The dense layer of the network is where
[Equation T]is calculated, case three in predictiayer, where first the input weights
are transposed (in_weights), then zipped with their input value (in_w_pairs),
before calculating the weighted sum (wsums), adding the bias (wsum_bias), and
finally applying the activation function on the result, producing the output for
a single dense layer. To calculate the prediction of the network given a set of
inputs we then fold predicti,ger over the network from left to right (foldl) in
prediCtseq_layer

It is within this function that we also specify some pre-conditions for the
network to be of a valid structure. For example, the length of the input vector
must be equal to the number of units in that layer (length vs = 1), for the
activation, input, and output layers; if this is not the case, then we return the
None option type, indicating that an error has occurred in prediction.

fun predictiayer::(('a, 'b) neural network_seq_layers Isabelle (Isar)

= ('a list) option = ('a, 'b) layer = ('a list) option) where
(predictiayer N (Some vs) (In (name = _, units = 1|)
(if length vs = 1 then Some vs else None))
(Some vs) (Out (name = _, units = 1[)
(if length vs = 1 then Some vs else None))
(Some vs) (Dense pl) = (let
in_weights = convert_weights (w pl);
in_w_pairs = map (A e. zip vs e) in_weights;
wsums map (A vs'. > (x,y)¢vs'. x*y) in_w_pairs;
wsum_bias = map (A (s,b). s+b) (zip wsums (8 pl))
in (case activation_tab N (¢ pl) of
None = None
| Some f = Some (f wsum_bias))))
| <predictiayer N (Some vs) (Activation pl) =
(if length vs = units pl then (case activation_tab N (¢ pl) of
None = None
| Some f = Some (f vs))
else None))

| (predictiayer N
N

| (predictiayer

| (predictiager _ None _ = None)

definition
(predictgeq 1ayer N xs = foldl (predictiayer N) (Some xs) (layers N)»

Although this model of a neural network differs from the textbook definition
of a network represented as a weighted and directed graph [3], this encoding
follows closely that of TensorFlow [1] where their sequential model consists of an
ordered list of layers, in which the activation is consistent within a single layer,
and has added support for various layer types. As well as this, our sequential
layers model resembles the original vector representation of Rumelhart et al. [32].
However, modelling a network as a list of layers means that it is not appropriate
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for networks with multiple inputs and outputs, as well as those that have layer
sharing and multiple branches. In order to model these networks, we have also
developed a formalisation that utilises graph theory and encodes a network as
a weighted and directed acyclic graph, allowing the specification of arbitrary
connections between layers, including a non-linear topology, it is however, less
computationally efficient.

4.4 Compliance of our Formalisation to TensorFlow

To ensure that our formalisation is a faithful representation of the neural net-
works that we defined in TensorFlow, we provide a framework that supports the
import of trained TensorFlow networks and their test data. We can then use this
to evaluate our Isabelle network and validate that the output is the same, hence
providing confidence that our formalisation is accurate.

Similar to what we will discuss in we can import text files containing
NumPy [19] arrays of our test inputs, expectations and predictions from our
trained TensorFlow network.

import_data_file inputs Isabelle (Isar)

We can now prove that our formally encoded neural network computes the
same prediction (within an error interval) as TensorFlow. To express this re-
quirement, we first define check_result_list_interval for checking that two
lists are approximatively equal (we need the error interval due to possible round-
ing errors in IEEE754 arithmetic in python compared to mathematical reals in
Isabelle).

fun check_result_list_interval where Isabelle (Isar)

(check_result_list_interval None None = True)
| (check_result_list_interval (Some xs) (Some ys)
= fold (A) (map2 (A x y. x € set_of y) xs ys) True)
| (check_result_list_interval _ _ = False)
notation check_result_list_interval (((_)/ =1 (1)) [60, 60] 60)

Using check_result_list_interval, we now define the property that the
(symbolically) computed predictions of a neural network meet our expectations:

definition Isabelle (Isar)

ensure_testdata_interval :: (real list list
= (real list = real list option)
= real interval list list = bool) where
(ensure_testdata_interval inputs P outputs = foldl (A) True
(map (A e. let a = (P (fst e)) in let b = Some (snd e) in (a =1 b))
(zip inputs outputs))’
notation ensure_testdata_interval (F\; {())} () {()} [3, 90, 3] 60)

For our example, we can now prove the following lemma:
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lemma grid_meets_predictions: Isabelle (Isar)

(ki {inputs} (predictseq iayer NeuralNet) {i_of 0.000001 predictions})
by(simp add: ensure_testdata_interval_def upper_Interval lower_Interval
predictions_def i_of_def inputs_def in_set_interval)

Where i_of 0.000001 predictions computes intervals with the expected
predictions as midpoints, i.e., given an expectation p, our lemma shows that the
actual prediction p’ of our formal neural network is satisfies [p — p’| < 0.000001.

This lemma is proven by unfolding all definitions using Isabelle’s simplifier,
which corresponds to a symbolic execution of the prediction function. Hence, we
can be sure that our formal model behaves identically to the model executed on
TensorFlow on a concrete set of input data.

Many classification networks use the maximum output as the result, without
normalisation (e.g., to values between 0 and 1). In such cases, a weaker form of
ensuring compliance to predictions might be used that only checks that checks
for the maximum output of each given input:

definition Isabelle (Isar)

ensure_td_max :: (real list list = (real list = real list option)
= real list list = bool) where
(ensure_td_max inputs P outputs
= foldl (A) True
(map (A e. case P (fst e) of
None = False
| Some p = map_option fst (pos_of_max p)
= map_option fst (pos_of_max (snd e)))
(zip inputs outputs))’
notation ensure_td_max (F {())} (L) {(L} [3, 90, 3] 60)

We will see an application of this check in

5 Properties of Classification Networks

In contrast to traditional program verification, for neural networks, there has yet
to be an established notion of safety or correctness of a trained neural network.
Recently there has been more of a discussion in this area of different types
of properties that should hold for arbitrary networks [33] (discussed in more
detail in . However, for our example, we focus on looking at input-output
relations and notions of robustness within neighbourhoods of the input.

For example, Pulina et al. [30] consider a network safe, if given every possible
input, its output is guaranteed to range within specific bounds. This is motivated
by an application in which, e.g., a neural network ‘computes’ dosages of a drug.
In this case, there are certain maximums (or minimums) that are considered
to be not safe. This is a property we can easily express in our framework as
constraints of the range of computing predictions of a given network.
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For pure classification networks, which is our focus in this paper, one is
usually only interested in the maximum value of the classification outputs (and
only to a lesser extent to its actual value). Often, classification networks use
activation functions (such as softmax) that normalise the outputs, or argmax
that only outputs the maximum classifier. For our running example, we can
easily prove:

lemma Isabelle (Isar)

(ran (predictgeq 1ayer NeuralNet xs) C {[0, 0, 1],[0, 1, O],[1, O, 01}

Where ran is the range operator of HOL. While not a safety property in the
traditional sense, this lemma shows that the output of the classification is never
ambiguous (i.e., two or more classification output having the value 1).

In a more generalised form, Kurd et al. [25] define safety as a clearly defined
input-output-relation, i.e., satisfying a given function (or, in our notation, a
higher-order predicate) that is tested on known and unknown inputs. Moreover,
the behaviour should be repeatable and predictable, it should also tolerate faults
in inputs (e.g., where inputs lie outside a specified set of inputs), and no hazard-
ous outputs (e.g., no output outside the range of the target function) should be
predicted. Very similar is the idea of Huang et al. [20], who define safety as the
requirement that small changes to an input should not change the classification.
For our running example, we can express such a verification goal as follows:

lemma (x3 € {0.96..1.00} A x2 € {0.96..1.00} Isabelle (Isar)

A x1 € {0.00..0.04} A x0 € {0.00..0.04}
— predicCtseq 1ayer NeuralNet [x3, x2, x1, x0] = Some [0, 1, O]

This lemma, which we have proven in Isabelle/HOL (including the corres-
ponding lemmata for the other output classes of our example), states that the
classification of the upper horizontal line is resilient to small changes in the grey-
scale values of the pixels (e.g., caused by dust turning white into a greyish colour
or a very bright light that might turn black into a dark grey). While looks good
“on paper”, it is actually showing the opposite. Already small changes in the
colour values that are unlikely to be detected by the naked eye, can result in a
misclassification (recall [Fig. 2d).

The last example also shows that we will need to develop domain-specific
failure models (e.g., modelling the impact of non-optimal camera angles or light
conditions), which can then form the basis for deriving safety properties for ap-
plications that rely on neural networks. Broadly speaking, this is also suggested
by Katz et al. [21] that, in a case study for aircraft avoidance detection, use
a notation of unnecessary turning advisories to show that the trained neural
network does not omit them.

In addition, there are further properties that we formalised and that can
increase the confidence in the predictions of a neural network by reducing the
likelihood of ambiguous classification results. This includes, e.g., the requirement
that for a given input, the classification outputs have at least a given minimum
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distance (e.g., avoiding situations where all classification outputs show nearly
identical values):

definition Isabelle (Isar)

ensure_delta_min :: (real = (real list = real list option) = bool’
where (ensure_delta_min 6 P = (V xs € ran P. § < Opin XS))
notation ensure_delta_min ((_) F () [61, 90] 60)

6 Implementation
We implemented our approach in Isabelle/HOL, i.e., we made use of the ability

of Isabelle to extend it with new datatype packages and proofs (see for an
overview of the extended architecture). In particular, we developed a datatype

Editor Front-End
(e.g., JEdit, VSCode, Eclipse)
] PIDE Fa—
I
Datatype Packag! T Integrators [ cvca |
(Tensorflow Import) s (e.g., sledgehammer)
Domain-Specific Proof PDF/LaTeX
Proof Methods/Tactics |methods/Tactics| e e (e
Trained Neural Network Kernel
(e.g., using TensorFlow) (), o, (e, G Code Generator HTML
Nano-Kernel Project & Dependency |<
e (e.g., context) Management Haskell
Expectati EECICICHN
Xpectations
e { Scala |

Fig. 4: The system architecture of our architecture, adding a datatype package
and custom proof methods to Isabelle/HOL.

package that can import trained neural networks using the JSON —based
format used by TensorFlowJS :

import_TensorFlow grid file model.json as seq_layer Isabelle (Isar)

Our new Isabelle/Isar command import_TensorFlow encodes the neural
network model stored in the file model. j sorﬂ as sequence of layers (seq_layer),
i.e., the formal encoding described in (our datatype package also supports
alternative formal encoding, e.g., one that models neural networks as directed
graphs). Our datatype package also proves that the imported model complies
with the requirements of our formal model (technically, this is done by an auto-
mated instantiation proof for the locale neural_network_sequential_layers)

1 TensorFlowJS stores the structure of the machine learning model in a JSON —
based format that refers to a binary file containing the weights and biases. Our
import mechanism fully supports this format, i.e., also importing the weights and
biases from the external file.
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as well as proves various auxiliary properties (e.g., conversion between different
representations) that can be useful during interactive verification.

Our datatype package also supports the automatic import of test data or pre-
diction computed by, e.g., TensorFlow [1], using the data format of NumPy [19]:

import_data_file predictions.txt predictions |t (Isar)

This command imports the prediction data, i.e., input data and expected
outputs, into Isabelle and binds it to the logical constant predictions. This
data can later be used in a formal proof that the imported model has a certain
accuracy on this data set.

Finally, we started to develop domain-specific proof tactics or methods using
Eisbach [26], e.g., for the selective unfolding of generated definitions or providing
optimised configurations for the symbolic evaluation of the prediction function
for neural networks.

Overall, our prototype enables a workflow in which one trains a neural net-
work using, e.g., the Python API for TensorFlow and exports the model and
the training and prediction data. This data can then be used to prove that
the formal model is semantically equivalent to the original model. Alongside
this, we also have an external tool that can convert networks saved in ONNX
(https://onnx.ai/) format, providing they have an architecture that our form-
alisation supports, into the JSON representation we currently require.

Our formalisation comprises over 5300 lines of formal definitions and generic
proofs in Isabelle/HOL. The implementation of the datatype package adds an-
other 1000 lines of Isabelle/ML code (not including the JSON-parser and the
basic datatype package for JSON, both provided by [§]).

7 Classifying Digits of a 5 X 7 Matrix Display
In this section, we briefly discuss a larger case of a neural network for the clas-

sification of digits on a dot-matrix display (see [Fig. 5a). As for our running
example, we used the Python API of TensorFlow [1] for training the network.

(a) (b) (c)
Fig. 5: The Digit 5 on a 5 x 7 Matrix Display.

Our network has 35 (= 5 - 7) neurons in the input layer and 10 neurons in
the output layer. While our running example (recall [Sect. 3)) ensures that the
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output values are between 0 and 1, our neural network for the digit classification

has a “non-normalised” output, performing a maximum classification.
Consequently, to convince ourselves that the formal representation of our

classification network complies with the TensorFlow representation, we prove:

lemma digits_meets_expectations_max_classifier: Isabelle (Isar)

(F {inputs} (predictseq iayer digits.NeuralNet) {expectations})

Where digit.NeuralNet is the formal representation of our neural network,
inputs is a list of input values and expectations the corresponding expecta-
tions (classification). Recalling we note that this lemma uses the higher-
order predicate ensure_td_max (F {_} _ {_}), which does not require that the
predictions lie within a specific interval. Instead, it requires that the maximum
classifier of the actual and expected predictions are the same.

Furthermore, we show that an arbitrary one-pixel failure (e.g., a dead pixel
or, a pixel that constantly is switched on, or any value in-between) does not
change the classification. This is formally expressed as follows:

lemma assumes xs: (xs = [x34,x33, ..., x0D Isabelle (Isar)

and limits: (set xs C {0..1} (* grey scale pizels *)
and h: (hamming (digits!5) xs < 1)
shows (classify_as xs 5)

Here we make use of an auxiliary predicate for capturing the fact that the
network did classify the input as a certain digit:

definition classify_as::(real list = nat = bool) where Isabelle (Isar)

(classify_as xs n = (Option.bind (predictseq iayer digits.NeuralNet xs)
pos_of_max = Some n))

We model 1-pixel changes by requiring that the Hamming distance repres-
entation of the digit 5 (digits!5) is at most one. Thus, we have a formal proof
that our neural network classifies any image that deviates from an ideal five only
by one pixel, reliably as five. Consider, for example, for which a human
could already be uncertain if the image shows a five or a six, even though only
one pixel has been changed.

8 Related Work

Using Isabelle/HOL for AI verification. To the best of our knowledge, there are
no examples of formalising neural networks in an Interactive Theorem Prover,
and very few examples of formalising machine learning. In Isabelle/HOL the
closest related work is by Bentkamp et al [6] which formalises the expressiveness
of deep learning. Based on the theoretical work by Cohen et al. [13], verifies
the superiority of deep learning over shallow learning. Abdulaziz et al [2] have



Verifying Feedforward Neural Networks for Classification in Isabelle/HOL 15

formally verified the AI planning problem using a SAT encoder, with the formal-
isation showing that the SAT-based planner Madagascar [31] falsely claims that
problems have no solutions of certain lengths.

Neural network verification. Many traditional approaches to formal methods and
safety verification are insufficient in the case of neural networks as there is no
complete specification for their behaviour. Approaches are generally categorised
into exact verifiers and incomplete but more efficient verification techniques. On
the latter, which solves a relaxed problem that is more computationally efficient,
methods include abstract interpretation [27], linear relaxations|38] and duality
[15]. Using abstraction, infinite behaviours can be approximated using a finite
representation by abstract transformers that are used to capture approximations
of network layer computations. The problem then becomes reducing these over-
approximations to more precisely capture the behaviour without introducing
computational complexity. Most examples still work on ReL.U networks [34],
however, there has been some recent progress in developing abstract transformers
for softmax and other difficult activations [7].

Among the complete verification techniques, most utilise SAT/SMT solvers,
or Mixed Integer Linear Programming (MILP). Approaches include those that
take advantage of piecewise linear activation functions, which are more man-
ageable for network verification. Work includes that by Szegedy et al [36], who
ensure that networks assign correct scores to the output advisories in various
input domains. Planet [17], which presents an approach using SAT solving com-
bined with linear programming to cut out significant areas of the search space
during verification. Similarly, Reluplex, [21], is able to prove many robustness
properties of larger-scale neural networks with ReLU activation functions and
has recently been expanded into Marabou, [22], for arbitrary piecewise linear
activation functions.

While these approaches lead to shorter verification times, the problem of
complete verification of non-linear activation functions remains limited to smal-
ler networks, and while approaches using approximation methods that allow for
these activation functions are sound, they remain incomplete. By using an in-
teractive theorem prover, as opposed to SMT/SAT solvers, we are able to make
use of higher-order logic to define, reason over, and verify our new datatypes
and definitions by building on mathematical axioms, whilst still maintaining
flexibility and efficiency.

Properties. While the properties we discuss and verify are mostly concerned with
the input-output relations, there is a general lack of a widely accepted formal
specification when concerned with neural networks. Most frequently, the desired
behaviours discussed include predictability of the behaviour and tolerance to
faulty input [25], looking at improving the stability of the classification [20],
or a general idea of robustness around a specific input region, where manipu-
lations applied does not cause misclassifications. However, more recently, other
properties have been discussed, such as semantic invariance [18|, fairness [5],
or distributional assumptions [33]. While these are all relevant and important
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properties for a network to fulfil, they currently have a less precise formal spe-
cification and so currently have limited application in formal methods, yet are
interesting avenues for future research.

9 Conclusion and Future Work

We presented a formalisation of feedforward neural networks in Isabelle/HOL.
To the best of our knowledge, this is the first formalisation of neural networks
in an interactive theorem prover. We also made use of the framework aspect of
Isabelle to provide an import mechanism automating our encoding for neural
networks stored in a widely used exchange format.

Still, we see our work only as the beginning of a journey towards formally
verified safety and correctness guarantees for critical systems employing ML/AI-
based components. On a general level, there is further work required to improve
the understanding of what it means that a neural network is safe (and secure),
and how to convert this into a formal specification. This discourse will, hopefully,
result in further properties that can be used in formal verification, and that will
allow a comparison amongst various formal approaches for the verification of
neural networks.

More specific to our approach, we plan to extend the types of layers and archi-
tectures that are directly supported, which, together with developing domain-
specific proof tactics, should increase the degree of proof automation signific-
antly. Modelling additional representations (e.g., a model based on Tensor op-
erations) is another line of future work, alongside developing built-in support
for ONNX networks. This will allow us to use our framework to formally show
the semantic equivalence of these models. This will allow us to develop verified
transformations that can be used to optimise neural networks for, e.g., making
them easier to formally analyse or for improving their runtime performance.

Availability. The formalisation and case studies are available to view on Zen-
odo [9]. The materials inculde both the Isabelle/HOL implementation and the
detailed documentation generated by Isabelle.
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