Spivey’s BirthdayBook Example in HOL-Z

February 1, 2007

Contents

1. **The Specification**
 1.1 Basic Datatypes and State Schemas ... 2
 1.2 Operations ... 2
 1.3 Strengthening the Specification ... 2
 1.4 Implementing the Birthday Book ... 3
 1.5 Specification .. 3
 1.6 Stating Conjectures .. 3
 1.7 Conclusion ... 4

2. **Import, Inspection, and Basic Analysis of the Specification**
 2.1 Loading a ZETA-unit and the Consequences 4
 2.2 Analysis I: Proving Conjectures ... 5
 2.3 Analysis II: Checking Consistency ... 5

3. **Analysis by Functional Refinement**
 3.1 Setting up the functional refinement ... 7
 3.2 Proof of Functionality of the Abstraction Relation 7
 3.3 Proofs of the Init-Condition of the Refinement 8
 3.4 Proof of the First Operation-Refinement-Condition 9
 3.5 Proof of the Second Operation-Refinement-Condition 10
 3.6 Global Checks .. 13

4. **Analysis by Data (Relational) Refinement**
 4.1 Setting up the Relational Refinement 14
 4.2 Proofs of the Init-Condition of the Refinement 15
 4.3 Proof of the First Operation-Refinement-Condition 15
 4.4 Proof of the Second Operation-Refinement-Condition 16
 4.5 Global Checks ... 19

5. **Root Theory importing both Refinement Approaches**
 .. 19
1 The Specification

This document contains specification and analysis of Spivey’s classical BirthdayBook example. It is intended to demonstrate the use of the ZETA-frontend to write and typecheck specifications in Z, and the Isabelle backend that allows for stating and proving proof obligations over this specification.

1.1 Basic Datatypes and State Schemas

section BBSpec

\[\text{NAME}, \text{DATE}]\]

\[
\begin{array}{l}
\text{BirthdayBook} \\
\text{known : } \exists \ \text{NAME} \\
\text{birthday : } \text{NAME} \rightarrow \text{DATE} \\
\text{known = } \text{dom} \ \text{birthday}
\end{array}
\]

1.2 Operations

\[
\text{InitBirthdayBook} == [\text{BirthdayBook} \mid \text{known} = \emptyset]
\]

\[
\begin{array}{l}
\text{AddBirthday} \\
\Delta \text{BirthdayBook} \text{ name} \? : \text{NAME}; \text{date} \? : \text{DATE} \\
\text{name} \? \notin \text{known} \\
\text{birthday'} = \text{birthday} \cup \{\text{name} \? \mapsto \text{date} \? \}
\end{array}
\]

\[
\begin{array}{l}
\text{FindBirthday} \\
\Xi \text{BirthdayBook} \text{ name} \? : \text{NAME}; \text{date} \!: \text{DATE} \\
\text{name} \? \in \text{known} \\
\text{date} \! = \text{birthday}(\text{name} \?)
\end{array}
\]

\[
\begin{array}{l}
\text{Remind} \\
\Xi \text{BirthdayBook} \text{ today} \? : \text{DATE}; \text{cards} \!: \exists \ \text{NAME} \\
\text{cards} \! = \{n : \text{NAME} \mid n \in \text{known}; \text{birthday}(n) = \text{today} \? \}
\end{array}
\]

1.3 Strengthening the Specification

\[
\text{REPORT ::= ok} \mid \text{already} _\text{known} \mid \text{not} _\text{known}
\]

\[
\begin{array}{l}
\text{Success} \\
\text{result} \!: \text{REPORT} \\
\text{result} \! = \text{ok}
\end{array}
\]
AlreadyKnown
ΞBirthdayBook
name? : NAME
result! : REPORT

name? ∈ known
result! = already_known

RAAddBirthday == (AddBirthday ∧ Success) ∨ AlreadyKnown

1.4 Implementing the Birthday Book

BirthdayBook1
names : N ➔ NAME
dates : N ➔ DATE
hwm : N

∀i,j : 1..hwm • i ≠ j ⇒ names(i) ≠ names(j)

InitBirthdayBook1 == [BirthdayBook1 | hwm = 0]

Abs
BirthdayBook
BirthdayBook1

known = {i : 1..hwm • names(i)}
∀i : 1..hwm • birthday(names(i)) = dates(i)

AddBirthday1
∆BirthdayBook1
name? : NAME
date? : DATE

∀i : 1..hwm • name? ≠ names(i)
hwm' = hwm + 1
names' = names ⊕ {hwm' ➔ name?}
dates' = dates ⊕ {hwm' ➔ date?}

1.5 Specification

1.6 Stating Conjectures

At times, the designer of a specification might want to state a certain property that he has in mind when writing the specification document. Such properties can be stated as
conjecture. ZETA can type-check them and export them to HOL-Z; the latter will consider a conjecture as definition of an internal constant symbol. For proving the conjecture, one states a lemma in the analysis that this internal constant symbol is actually equivalent to True.

The statement of a conjecture is simply done by:

\[
\forall \text{BirthdayBook}; \text{BirthdayBook1}; \text{name}? : \text{NAME}; \text{date}? : \text{DATE} \bullet \\
\text{name}? \notin \text{known} \land (\text{known} = \{i : 1..\text{hwm} \bullet \text{names}(i)\}) \\
\Rightarrow (\forall i : 1..\text{hwm} \bullet \text{name}? \neq \text{names}(i))
\]

1.7 Conclusion

In the following, we discuss two versions of analysis: one based on relational refinement, another on functional refinement, which leads to simpler proof. See corresponding BBSpec.thy file for the relational refinement, and BBSpec_Functional.thy for the functional refinement.

The following ISAR command starts a new Isabelle theory based on Z, including all libraries and setups.

2 Import, Inspection, and Basic Analysis of the Specification

theory BBSpec
imports Z
begin

2.1 Loading a ZETA-unit and the Consequences

The following HOL-Z toplevel commands allows for loading directly the output of the ZETA format, in this case, we load the previous specification BBSpec presented in the previous section.

load_holz "BBSpec"

This leads to a new state of the proof environment where all sorts of elements of the specification were bound to ISAR names and can therefore be referenced in future proofs.

A guided tour through the generated definitions looks as follows: For abstract types, constants describing the type sets exist:

thm NAME_def

Data types result in a number of simplification rules

thm BBSpec.REPORT.simps

Schema (both states and operation schemas) were converted to constant definitions denoting the 'set of records', i.e. their value

thm BirthdayBook_def

thm Remind_def
InitBirthdayBook_def
Schemas, axiomatic definitions and conjectures were collected into the variables:

\texttt{thm SCHEMAS}
\texttt{thm AXDEFS}
\texttt{thm CONJECTURES}

2.2 Analysis I: Proving Conjectures

Example:

\begin{verbatim}
lemma conjecture_0_proof : "conjecture_0"
by (unfold conjecture_0_def, zstrip,
 zunfold BirthdayBook_def BirthdayBook1_def, auto simp: Z2HOL)
\end{verbatim}

Of course, the conjecture can also be stated in the analysis document (the .thy-file) directly.

\begin{verbatim}
zlemma PO_refine_1_AddBirthday_simple :
"(%A BirthdayBook @ (%A BirthdayBook1 @
(∀ name? ∈ NAME. ∀ date? ∈ DATE.
 ((name? ∈ known ∧ known = {n. ∃ i ∈ 1..hwm. n = (names%^i)})
 − →
 (∀ i ∈ 1..hwm. name? ≠ (names %^ i))))
)))"
by (zstrip,auto)
\end{verbatim}

Note that the input of the formula must be done with the zlemma command since this supports HOL-Z syntax (and not just HOL syntax).

2.3 Analysis II: Checking Consistency

Now we turn to the statement of analysis judgements and refinement judgements. Both lead to the generation of proof obligations.

The refinement package provides a number of generic toplevel commands for these analysis judgements and, moreover, methods to inspect and discharge proof obligations.

Such method-specific support helps a lot to improve critical review of specifications ("is this really what you want to specify?"), as well as a basis for specific tactics.

Generic inspection commands are:

\begin{verbatim}
list_po
check_po
\end{verbatim}

...which provide functionality for listing pending proof obligations and also checks that they have been discharged. At the moment, both commands are nops since no proof obligation has been generated.

The first analytic judgement statement commands are:

\begin{verbatim}
gen_state_cc BirthdayBook
gen_state_cc BirthdayBook1
\end{verbatim}
... which lead to the generation of the proof obligations \texttt{BBSpec.ccState_BirthdayBook_1} and \texttt{BBSpec.ccState_BirthdayBook1_1}. They state that the state schemas (representing invariants) should be satisfiable. With the generic command:

\texttt{show_po BBSpec.ccState_BirthdayBook1_1}

As an example, we will discharge this proof obligation by providing a proof for it.

\texttt{po "BBSpec.ccState_BirthdayBook1_1"}

This means that we have to show:

1. $\exists \text{BirthdayBook1 }\bullet \text{True}$

Obviously, we have to eliminate the schema quantifier by an respective introduction tactic for the schema calculus:

\texttt{apply(zintro_sch_ex,clarify,(rule refl)+)}
\texttt{apply(zunfold BirthdayBook1_def)}
\texttt{apply(auto simp: Z2HOL)}
\texttt{apply(rule_tac [3] ZInteg.zero_is_natural, simp_all)}
\texttt{apply(rule_tac f="\lambda x. arbitrary" in lambda_total1,simp)+}
\texttt{discharged}

...we can display the precise form of proof obligation.

Moreover, we generate proof obligations that assure that an operation schema is in fact implementable or “non-blocking”, in the sense that there is a (not necessarily computable) function mapping pre-state and input to a post-state and output.

\texttt{gen_op_cc AddBirthday}
\texttt{gen_op_cc AddBirthday1}

\texttt{show_po BBSpec.ccOp_AddBirthday1_1}

Note that the listing of now active proof obligations can be parameterized by filters excluding certain proof-obligation classes (more filtering functions are desirable, but currently not implemented):

\texttt{list_po except ccOp}

\texttt{end}

\section{3 Analysis by Functional Refinement}

\texttt{theory Fun_Refinement}
\texttt{imports BBSpec}

\texttt{begin}

\texttt{end}
3.1 Setting up the functional refinement

Now we set the default abstraction relation in the refinement package; this setting is a pre-requisite to the future generation of refinement related proof obligations.

```coq
set_abs "Abs" [functional]
```

At this place, we add the directive "[functional]" in order to indicate that the abstraction relation is in fact a function.

This results in the additional proof obligation that the abstraction relation is in fact a function, but leads to simpler proof obligations over this abstraction relation later.

Now comes the core of proof obligation generation based on the Forward-Simulation Refinement Method for Z (see Spivey’s Book or 'Using Z')

```coq
refine_init InitBirthdayBook InitBirthdayBook1
refine_op AddBirthday AddBirthday1
show_po Fun_Refinement.fwRefinementInit_BirthdayBook_1
show_po Fun_Refinement.fwRefinementOp_AddBirthday_2
list_po
```

```coq
show_po BBSpec.ccOp_AddBirthday_1
  BBSpec.ccOp_AddBirthday_1_1
  BBSpec.ccState_BirthdayBook_1
  BBSpec.ccState_BirthdayBook1_1
  Fun_Refinement.fwRefinementFunctional_Abs_1
  Fun_Refinement.fwRefinementOp_AddBirthday_1
  Fun_Refinement.fwRefinementOp_AddBirthday_2
  Fun_Refinement.fwRefinementInit_BirthdayBook_1
```

We perform a final check of the proof obligations; however, we filter out certain classes of proof-obligations.

```coq
check_po except ccOp ccState fwRefinementFunctional
  fwRefinementOp fwRefinementInit
```

In this example, we actually filter out all obligations.

In contrast, the toplevel command:

```coq
check_po
```

would result in a failure:

```coq
*** There are 7 unproven proof-obligations (can not ignore!).
*** Check failed.
*** At command "check_po".
```

3.2 Proof of Functionality of the Abstraction Relation

```coq
lemma lemma1:
  "[ BirthdayBook1 (dates, hwm, names); i : ( 1 .. hwm); ia : ( 1 .. hwm);
    names %^ i = names %^ ia ]
```
\[\Rightarrow \text{dates} \%^ i = \text{dates} \%^ \text{ia} \]

apply (zunfold BirthdayBook1_def, simp add: Z2HOL, clarify)
apply (case_tac "i=ia",auto)
done

lemma lemma2:
"(a : rel_appl names \(1..hwm)) = (EX i: 1..hwm. names \%^ i = a)"
apply (auto simp:Z2HOL)
done

3.3 Proofs of the Init-Condition of the Refinement

To show:
1. \(\forall \text{BirthdayBook} \bullet (\forall \text{BirthdayBook1} \bullet (\text{InitBirthdayBook1} \land \text{Abs} \rightarrow \text{InitBirthdayBook}))\)

We perform structural simplification by eliminating Schema-Calculus-Constructs.

apply zstrip

Now we follow the brute force approach: unfolding all schema definitions ...

apply (zunfold InitBirthdayBook1_def InitBirthdayBook_def Abs_def BirthdayBook_def)

Conversion to plain HOL and using the simplifier just finds the witness \{(\{}\},\{\}) automatically.

apply (simp add: Z2HOL)
discharged
3.4 Proof of the First Operation-Refinement-Condition

In the following, we introduce three lemmas that allow the reduction of the first refinement condition to the simplified version above.

We provide three auxiliary lemmas.

First: the syntactic precondition over legal states implies the semantic precondition for AddBirthday1:

```plaintext
zlemma lemma3 : 
"BirthdayBook1 ∧ (∀ i∈1..hwm. name? ≠ (names %^ i)) → pre AddBirthday1"
```

We start with elementary Z-logical massage:

apply(zstrip, zintro_pre AddBirthday1_def)
apply(simp add: DECL_def DELTA_def, rule conjI)

... and split the declarations from body.

In particular, we take the prescribed successor state and propagate it in proof.

... proves that the successor state fulfills state invariant.

apply(zunfold BirthdayBook1_def)
apply(simp add: Ball_def maplet_def zpred_def, auto)

... does its best to make it simpler

auto reduces the proof to a "proof by contradiction" scheme ... Mostly, it has to do with

\((names (+) {(hwm + 1, name?)}) %^ i = (names (+) {(hwm + 1, name?)}) %^ j;\)

while we know that \(names %^- i ≠ names %^- j\). We bring this goal in the end of the assumption list:

apply(rotate_tac 1)

Now comes the proof idea: We split up a case-distinction tree for the cases that \(i\) and \(j\) refer to the new element ... rotate_tac brings these clauses in front in the assumption list and makes them visible for the rewriter.

apply(case_tac [1] "x=(hwm+1)")
apply(case_tac [1] "xa=(hwm+1)")
apply(case_tac [3] "xa=(hwm+1)"

Since we know already that \(i^-j\) and ALL \(i: #1 .. hwm. name? ≠ names %^- i\), these four cases can be reduced ad absurdum.

apply(auto simp: zpred_def)
done

Second: The semantic precondition of the abstract operation implies syntactic precondition

```plaintext
zlemma lemma4 : "pre AddBirthday → name? ∉ known"
```

by(zstrip,zelim_pre,zunfold AddBirthday_def,auto)

Third: Abs-predicate implies this fact over the structure of the state:
here comes a structural proof for the first main goal: use the above three \(Z \)-lemmas in order to reduce the main goal to the simplified version of it above. The technique applies the \texttt{stripS} converter to bring \(Z \)-lemmas on-thy-fly into HOL form and introduce them into the proof by Isabelle standard tactics.

To show:

1. \(\forall \text{BirthdayBook} \bullet (\forall \text{BirthdayBook1} \bullet (\forall \text{?date? name?}. \text{pre AddBirthday} \land \text{Abs} \rightarrow \text{pre AddBirthday1}) \)

After structural normalization:

apply (\texttt{zstrip}, \texttt{clarify})

...we use the lemmas 1) to 3) by weakening assumptions and reducing conclusions.

apply (\texttt{zrule lemma3}, \texttt{zdrule lemma4}, \texttt{zdrule lemma5})
apply (\texttt{auto simp: Z2HOL})
discharged

3.5 Proof of the Second Operation-Refinement-Condition

To establish the second refinement condition, we need two auxiliary lemmas:

lemma \texttt{lemma6}:
"\text{BirthdayBook (birthday, known)} \Rightarrow \text{birthday : NAME} -|-> \text{DATE}"
by (\texttt{zstrip, zunfold BirthdayBook_def}, \texttt{simp add: Z2HOL})

lemma \texttt{lemma7}:
\(\begin{array}{l}
\text{"[BirthdayBook (birthday, \{a. EX \: i: 1 .. hwm. \: \text{names} \: \%^ \: i \: = \: a\}\}); BirthdayBook (birthday'a, \{a. EX \: i: 1 .. hwm'. \: \text{names'} \: \%^ \: i \: = \: a\}\}); BirthdayBook1 (dates, hwm, names); BirthdayBook1 (dates', hwm', names'); AddBirthday1 (dateI, dates, dates', hwm, hwm', nameI, names, names'); BirthdayBook (birthday', known'); ALL \: i: 1 .. hwm. \: \text{names} \: \%^ \: i \: = \: \text{nameI};
\text{birthday'} = \text{insert (nameI, dateI)} \: \text{birthday};
\text{ALL i: 1 .. hwm. birthday } \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: (\text{names } \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: i \: = \: \text{dates } \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: i); \text{ALL i: 1 .. hwm'. birthday'a } \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: (\text{names'} \: \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: i \: = \: \text{dates'} \: \%^ \: \text{\textquotesingle} \: \text{\textquotesingle} \: i} \]
\Rightarrow \text{dom birthday'a = insert nameI (dom birthday)"
\end{array} \)

apply (\texttt{subgoal_tac "nameI -: dom birthday"})
apply (\texttt{simp add: insert_is_pfun})
apply (\texttt{zunfold BirthdayBook_def}, \texttt{simp add: Z2HOL})
apply ((\texttt{erule conjE})*, \texttt{drule sym}, \texttt{simp})
apply (\texttt{zunfold AddBirthday1_def BirthdayBook1_def}, \texttt{simp add: maplet_def Z2HOL, clarify})
def er 1
apply (\texttt{zunfold BirthdayBook_def}, \texttt{simp add: maplet_def Z2HOL, clarify})
apply (\texttt{drule_tac t="dom \%Z" in sym})*
apply (\texttt{simp, blast})

we reorient the two crucial equalities in the assumptions:
apply (thin_tac "?X")
apply (drule_tac t="dom ?Z" in sym)+
apply (rule set_ext, simp, safe, simp)
apply (case_tac "i=hwm+1", simp)
apply (rotate_tac -2)
apply (erule_tac x=i in ballE, simp)

... which yields a contradiction
apply (simp add: zpred_def)
apply (rule_tac x="hwm+1" in bexI, simp, simp,
 simp add: numb_range_def in_naturals[symmetric])
apply (rule_tac x=i in bexI)
apply (thina_tac "ALL x:?S. ?P x")+
apply (thina_tac "?T = ?U")+
apply (subst oplus_by_pair_apply2, simp add: numb_range_def, simp)
apply (simp add: numb_range_def)
done

lemma lemma8:
"[BirthdayBook (birthday, {a. EX i: 1 .. hwm. names %^ i = a});
 BirthdayBook (birthday’a, {a. EX i: 1 .. hwm’. names’ %^ i = a});
 BirthdayBook1 (dates, hwm, names); BirthdayBook1 (dates’, hwm’, names’);
 AddBirthday1 (dateI, dates, dates’, hwm, hwm’, nameI, names, names’);
 BirthdayBook (birthday’, known’);
 ALL i: 1 .. hwm. names %^ i = insert (nameI, dateI) birthday;
 ALL i: 1 .. hwm’. birthday’a %^ (names’ %^ i) = dates’ %^ i;
 i ∈ dom birthday’a; dom birthday’a = dom (insert (nameI, dateI) birthday)]
⇒ birthday’a %^ i = insert (nameI, dateI) birthday %^ i"
apply (subgoal_tac "nameI ~: dom birthday")
apply (simp add: insert_is_pfun)
apply (zunfold BirthdayBook_def,simp add: Z2HOL)
apply ((erule conjE)+, drule sym, simp)
apply (zunfold AddBirthday1_def,zunfold BirthdayBook1_def,simp add: maplet_def Z2HOL, clarify)
defer 1
apply (zunfold BirthdayBook_def,simp add: maplet_def Z2HOL, clarify)
apply (drule_tac t="dom ?Z" in sym)+
apply (simp, blast)
apply (erule disjE, simp, (thin_tac "?T<:?S = ?U")+)

Case A: i is equal to hwm + 1. Tis boils down to:

1. \[∀i∈\mathbb{N}. hwm + 1. ∀j∈\mathbb{N}. hwm + 1. i ≠ j → (names ⊕ \{(hwm + 1, nameI)\})(i) ≠ (names ⊕ \{(hwm + 1, nameI)\})(j); \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \forall i∈\mathbb{N}. \text{hwm. birthday}(\text{names}(i)) = \text{dates}(i); \forall i∈\mathbb{N}. \text{hwm + 1. birthday'a}(\text{names}(i)) = \text{dates}(i); \forall i∈\mathbb{N}. \text{hwm. names}(i) = a; \text{dom birthday'a} = \text{insert nameI (dom birthday)}; nameI ∉ dom birthday; birthday ∈ \text{NAME} → \text{DATE}; \forall i∈\mathbb{N}. \text{hwm. names}(i) = a = \text{dom birthday}; birthday'a ∈ \text{NAME} → \text{DATE}; \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \text{dom birthday'} = \text{NAME} → \text{DATE}; \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \text{dates} ∈ \text{DATE} → \text{N}; \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \text{dates} ∈ \text{DATE} → \text{N}; \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \text{dates} ∈ \text{DATE} → \text{N}; \forall i∈\mathbb{N}. \text{hwm. names}(i) ≠ nameI; \text{dates} ∈ \text{DATE} → \text{N}; i = nameI] \implies \text{birthday'a}(\text{nameI}) = \text{dateI}
Case B: i is less to \(hwm + 1 \), i.e. in the domain of \(\text{birthdaybook} \):

1. \(\forall y. \ \forall i \in 1..hwm + 1. \forall j \in 1..hwm + 1. \ i \neq j \implies (\text{names} \oplus \{(hwm + 1, \text{nameI})\})(i) \neq (\text{names} \oplus \{(hwm + 1, \text{nameI})\})(j); \forall i \in 1..hwm. \ \text{names}(i) \neq \text{nameI}; \forall i \in 1..hwm. \ \text{birthday}(. \text{names}(i).) = \text{dates}(i); \forall i \in 1..hwm + 1. \ \text{birthday}'a(. \{(\text{names} \oplus \{(hwm + 1, \text{nameI})\})(i).\}) = (\text{dates} \oplus \{(hwm + 1, \text{dateI})\})(i); \text{dom} \ \text{birthday}'a = \text{insert} \ \text{nameI} \ \text{(dom} \ \text{birthday}); \ \text{nameI} \notin \text{dom} \ \text{birthday}; \ \text{NAME} \circ \text{birthday} = \text{birthday}; \text{birthday} \in \text{NAME} \mapsto \text{DATE}; \ \text{dates} \in \text{IN} \mapsto \text{DATE}; \ \text{hwm} \in \text{IN}; \forall i \in 1..hwm. \ \forall j \in 1..hwm. \ i \neq j \implies \text{names}(i) \neq \text{names}(j); (i, y) \in \text{birthday} \implies \text{birthday}'a(i, y) \neq \text{birthday}(i) \neq \text{dateI}) \ \text{birthday}(i) \)
This leads to the proof-state presented in Spivey proof (pp. 141):

1. \forallbirthday known birthday'a known'a dates hwm names dates' hwm' names' date? name? birthday' known'. [BirthdayBook (birthday'a, {a. $\exists i \in 1.. hwm'$. names'(i) = a}); BirthdayBook1 (dates, hwm, names); BirthdayBook1 (dates', hwm', names'); AddBirthday1 (date?, dates, dates', hwm, hwm', name?, names, names'); \forall i $\in 1.. hwm'. birthday(.names(i).)] = dates(i); \forall i $\in 1.. hwm'$. birthday'a(.names'(i).) = dates'(i); BirthdayBook (birthday, {a. $\exists i \in 1.. hwm'$. names(i) = a}); BirthdayBook (insert (name?, date?) birthday, known'); \forall i $\in 1.. hwm$. names(i) \neq name?] \Rightarrow birthday'a = insert (name?, date?) birthday

Now we apply, as suggested in pp. 14, the extensionality rule on partial functions:

apply(rule pfun_ext)

Extensionality works only under condition that both sides are in fact partial functions. Spivey's proof misses this detail.

apply(erule lemma6)+

Now we reach the mail case distinction shown on page 14: we have to show that both domains are equal, and that they are pointwise equal:

We first treat the domain equality: 1. \forallbirthday known birthday'a known'a dates hwm names dates' hwm' names' date? name? birthday' known'. [BirthdayBook (birthday'a, {a. $\exists i \in 1.. hwm'$. names'(i) = a}); BirthdayBook1 (dates, hwm, names); BirthdayBook1 (dates', hwm', names'); AddBirthday1 (date?, dates, dates', hwm, hwm', name?, names, names'); \forall i $\in 1.. hwm'. birthday(.names(i).)] = dates(i); \forall i $\in 1.. hwm'$. birthday'a(.names'(i).) = dates'(i); BirthdayBook (birthday, {a. $\exists i \in 1.. hwm'. names(i) = a}); BirthdayBook (insert (name?, date?) birthday, known'); \forall i $\in 1.. hwm$. names(i) \neq name?] \Rightarrow dom birthday'a = dom (insert (name?, date?) birthday)

apply(simp (no_asm))
apply(rule_tac birthday'="insert (name?, date?) birthday" in lemma7,simp_all)

Now comes the part with the pointwise argument: 1. \forallbirthday birthday'a dates hwm names dates' hwm' names' date? name? known' i. [BirthdayBook (birthday'a, {a. $\exists i \in 1.. hwm'$. names'(i) = a}); BirthdayBook1 (dates, hwm, names); BirthdayBook1 (dates', hwm', names'); AddBirthday1 (date?, dates, dates', hwm, hwm', name?, names, names'); \forall i $\in 1.. hwm'. birthday(.names(i).)] = dates(i); \forall i $\in 1.. hwm'$. birthday'a(.names'(i).) = dates'(i); BirthdayBook (birthday, {a. $\exists i \in 1.. hwm'. names(i) = a}); BirthdayBook (insert (name?, date?) birthday, known'); \forall i $\in 1.. hwm$. names(i) \neq name?; $i =$ name? \forall i \in dom birthday; dom birthday'a = insert name? (dom birthday) \Rightarrow birthday'a(i) = insert (name?, date?) birthday(i)

apply(rule_tac birthday'="birthday'a" and birthday'="insert (name?, date?) birthday" in lemma8,simp_all) discharged

3.6 Global Checks

Now we check that all refinement conditions have indeed been proven:

check_po except ccOp ccState

This concludes the refinement proof based on Forward Simulation in the style of Spivey for the Birthdaybook example.
4 Analysis by Data (Relational) Refinement

theory Rel_Refinement
imports BBSpec

begin

4.1 Setting up the Relational Refinement

Now we set the default abstraction relation in the refinement package; this setting is a pre-requisite to the future generation of refinement related proof obligations.

set_abs "Abs"

Now comes the core of proof obligation generation based on the Forward-Simulation Refinement Method for Z (see Spivey’s Book or "Using Z")

refine_init InitBirthdayBook InitBirthdayBook1
refine_op AddBirthday AddBirthday1

show_po Rel_Refinement.fwRefinementInit_BirthdayBook_1
show_po Rel_Refinement.fwRefinementOp_AddBirthday_2
list_po

show_po BBSpec.ccOp_AddBirthday_1
 BBSpec.ccOp_AddBirthday1_1
 BBSpec.ccState_BirthdayBook_1
 BBSpec.ccState_BirthdayBook1_1
 Rel_Refinement.fwRefinementOp_AddBirthday_1
 Rel_Refinement.fwRefinementOp_AddBirthday_2
 Rel_Refinement.fwRefinementInit_BirthdayBook_1

We perform a final check of the proof obligations; however, we filter out certain classes of proof-obligations.

check_po except ccOp ccState fwRefinementFunctional
 fwRefinementOp fwRefinementInit

In this example, we actually filter out all obligations.

In contrast, the toplevel command:

check_po

would result in a failure:

*** There are 7 unproven proof-obligations (can not ignore!).
*** Check failed.
*** At command "check_po".
4.2 Proofs of the Init-Condition of the Refinement

To show:
1. \(\forall \text{BirthdayBook1} \bullet (\text{InitBirthdayBook1} \rightarrow \exists \text{BirthdayBook} \bullet \text{Abs} \land \text{InitBirthdayBook}) \)

We perform structural simplification by eliminating Schema-Calculus-Constructs.

apply \texttt{zstrip}

Now we follow the brute force approach: unfolding all schema definitions ...

apply \texttt{(zunfold InitBirthdayBook1_def InitBirthdayBook_def Abs_def BirthdayBook_def)}

Conversion to plain HOL and using the simplifier just finds the witness (\{\},\{\}) automatically.

apply \texttt{(simp add: Z2HOL)}

4.3 Proof of the First Operation-Refinement-Condition

In the following, we introduce three lemmas that allow the reduction of the first refinement condition to the simplified version above.

We provide three auxiliary lemmas.

First: the syntactic precondition over legal states implies the semantic precondition for AddBirthday1:

\texttt{zlemma lemma1 :}

"BirthdayBook1 \land (\forall i \in 1..\text{hwm}. \text{name?} \neq (\text{names \%^ i})) \rightarrow \text{pre AddBirthday1}"

We start with elementary Z-logical massage:

apply \texttt{(zstrip,zintro_pre AddBirthday1_def)}

apply \texttt{(simp add: DECL_def DELTA_def, rule conjI)}

... and split the declarations from body.

In particular, we take the prescribed successor state and propagate it in proof.

... proves that the successor state fulfills state invariant.

apply \texttt{(zunfold BirthdayBook1_def)}

apply \texttt{(simp add: Ball_def maplet_def zpred_def, auto)}

... does its best to make it simpler

auto reduces the proof to a "proof by contradiction" scheme ... Mostly, it has to do with

\((\text{names (+) \{\text{(hwm + 1, name?)}\}}) \%^ i = \)
\((\text{names (+) \{\text{(hwm + 1, name?)}\}}) \%^ j; \)

while we know that \(\text{names \%^ i} \neq \text{names \%^ j} \). We bring this goal in the end of the assumption list:

apply \texttt{(rotate_tac 1)}
Now comes the proof idea: We split up a case-distinction tree for the cases that i and j refer to the new element ... rotate_tac brings these clauses in front in the assumption list and makes them visible for the rewriter.

```isar
case_tac [1] "x=(hwm+1)"
case_tac [1] "xa=(hwm+1)"
case_tac [3] "xa=(hwm+1)"
```

Since we know already that \(i \neq j \) and \(\forall i: \#1 .. hwm. \text{name} \neq \text{names} \%^ i \) these four cases can be reduced ad absurdum.

```isar
(auto simp: zpred_def)
done
```

Second: The semantic precondition of the abstract operation implies syntactic precondition

```isar
lemma lemma2 : "pre \text{AddBirthday} \rightarrow \text{name} \notin \text{known}"
by (zstrip,zelim_pre,zunfold AddBirthday_def,auto)
```

Third: Abs-predicate implies this fact over the structure of the state:

```isar
lemma lemma3 :
"\text{Abs} \rightarrow \text{known} = \text{rel}\_\text{appl} \text{names} \%^ (\forall i. i : (1 .. hwm))"
by (tactic "rtac (get_conj (the_context()) ("Abs") 1) 1")
```

here comes a structural proof for the first main goal: use the above three Z-lemmas in order to reduce the main goal to the simplified version of it above. The technique applies the stripS converter to bring Z-lemmas on-thy-fly into HOL form and introduce them into the proof by Isabelle standard tactics.

```isar
Rel_Refinement.fwRefinementOp_AddBirthday_1
```

To show:

1. \(\forall \text{BirthdayBook} \bullet (\forall \text{BirthdayBook1} \bullet (\forall \text{name}\?, \text{pre AddBirthday} \land \text{Abs} \rightarrow \text{pre AddBirthday1})) \)

After structural normalization:

```isar
(zstrip, clarify)
```

...we use the lemmas 1) to 3) by weakening assumptions and reducing conclusions.

```isar
(zrule lemma1,zdrule lemma2,zdrule lemma3)
apply (auto simp: Z2HOL)
discharged
```

4.4 Proof of the Second Operation-Refinement-Condition

To establish the second refinement condition, we need two auxilliary lemmas:

```isar
lemma lemma4:
"(\text{AddBirthday} \land \text{Abs} \land \text{AddBirthday1}) \rightarrow 
\text{known}' = \{n. \exists i \in 1 .. hwm'. n = \text{names}' \%^ i\}"
```

After structural normalization ...

```isar
(zstrip, clarify)
```

...we unfold the definitions:
We apply our main idea: apply reasoning via set extensionality and split equivalence into both directions...

Proof \Rightarrow:

apply (erule disjE)
apply (rule_tac x="hwm+1" in bexI)
apply (simp add: override_apply numb_range_mem in_naturals)
apply (rule numb_range_mem)
apply (simp_all add: in_naturals)
apply (erule bexE)
apply (rule_tac x=xa in bexI)
apply (subst override_apply2)
apply (simp_all add: numb_range_def)

Proof \Leftarrow:

apply (erule exE)
apply (case_tac "i=hwm+1", simp)
apply (rule disjI2)
apply (rule_tac x=i in exI)
apply auto
done

zlemma lemma5 :
" (AddBirthday ∧ Abs ∧ AddBirthday1) \rightarrow
((∀ i∈1..hwm'. birthday'‰(names'‰i) = dates'‰i)"

After structural simplification and unfolding definitions:

apply (zstrip, clarify)
apply (simp add: set_simps prod_simps Z2HOL AddBirthday_def AddBirthday1_def Abs_def
BirthdayBook_def BirthdayBook1_def, clarify)
apply (simp add: Dom_Union image_def asSet_def maplet_def)
we proceed by case distinction: either the accessed element is the last element:

apply (case_tac "i=hwm+1", auto)
...or it is before.
apply (subst dom_insert_apply)
apply (auto simp: zpred_def)
done

po Rel_Refinement.fwRefinementOp_AddBirthday_2
To show:

1. ∀ BirthdayBook • (∀ BirthdayBook1 • (∀ BirthdayBook1 • (∀ date? name?. pre
AddBirthday ∧ Abs ∧ AddBirthday1 $\rightarrow\exists BirthdayBook • Abs' ∧ AddBirthday)))
After structural simplification:

apply (zstrip, clarify)
apply (zelim_pre, zintro_sch_ex)

...we use the equations to construct the trivial successor state.

apply (rule_tac [2] refl)
prefer 2
apply (subgoal_tac "BirthdayBook(birthday',known')")
apply (rotate_tac 1) apply assumption

We have to prove:

1. $\forall \text{birthday} \ \text{known} \ \text{dates} \ \text{hwm} \ \text{names} \ \text{dates'} \ \text{hwm'} \ \text{names'} \ \text{date?} \ \text{name?} \ \text{birthday'} \ \text{known'}$. $[\text{BirthdayBook (birthday, known)}; \text{BirthdayBook1 (dates, hwm, names)}; \text{BirthdayBook1 (dates', hwm', names')}; \text{Abs}; \text{AddBirthday1}; \text{AddBirthday}] \Rightarrow \text{BirthdayBook (birthday', known')}$

2. $\forall \text{birthday} \ \text{known} \ \text{dates} \ \text{hwm} \ \text{names} \ \text{dates'} \ \text{hwm'} \ \text{names'} \ \text{date?} \ \text{name?} \ \text{birthday'} \ \text{known'}$. $[\text{BirthdayBook (birthday, known)}; \text{BirthdayBook1 (dates, hwm, names)}; \text{BirthdayBook1 (dates', hwm', names')}; \text{Abs}; \text{AddBirthday1}; \text{AddBirthday}] \Rightarrow \text{Abs'} \ \land \ \text{AddBirthday}$

...which boils down to extracting this knowledge from schema AddBirthday:

apply (zunfold AddBirthday_def)
apply (tactic "full_expand_schema_tac [thm"AddBirthday_def"] 1")

apply (drule DECL_D1)
apply (simp add: Z2HOL)

Moreover, we have to prove:

1. $\forall \text{birthday} \ \text{known} \ \text{dates} \ \text{hwm} \ \text{names} \ \text{dates'} \ \text{hwm'} \ \text{names'} \ \text{date?} \ \text{name?} \ \text{birthday'} \ \text{known'}$. $[\text{BirthdayBook (birthday, known)}; \text{BirthdayBook1 (dates, hwm, names)}; \text{BirthdayBook1 (dates', hwm', names')}; \text{Abs}; \text{AddBirthday1}; \text{AddBirthday}; \text{BirthdayBook'} \ \land \ \text{BirthdayBook1'}]\Rightarrow \text{known'} = \text{rel_appl names'} ' (\lambda i. \ i \in (1.. \text{hwm'})) \ \land \ (\forall i \in 1.. \text{hwm'}. \ \text{birthday'}(\text{(names'}(i)).) = \text{dates'}(i,.))$

For the latter, we simply apply lemmas 4) and 5).

apply (rule conjI)
apply (simp add: image_def asSet_def maplet_def)
apply (zrule lemma4, auto)
apply (zrule lemma5, auto)
discharged
4.5 Global Checks

Now we check that all refinement conditions have indeed been proven:

\texttt{check_po except ccOp ccState}

This concludes the refinement proof based on Forward Simulation in the style of Spivey for the Birthdaybook example.

end

5 Root Theory importing both Refinement Approaches

theory \texttt{BB}

imports \texttt{Fun_Refinement}

\texttt{Rel_Refinement}

begin

end